uprobes.c (8655B)
1// SPDX-License-Identifier: GPL-2.0-or-later 2/* 3 * User-space Probes (UProbes) for sparc 4 * 5 * Copyright (C) 2013 Oracle Inc. 6 * 7 * Authors: 8 * Jose E. Marchesi <jose.marchesi@oracle.com> 9 * Eric Saint Etienne <eric.saint.etienne@oracle.com> 10 */ 11 12#include <linux/kernel.h> 13#include <linux/highmem.h> 14#include <linux/uprobes.h> 15#include <linux/uaccess.h> 16#include <linux/sched.h> /* For struct task_struct */ 17#include <linux/kdebug.h> 18 19#include <asm/cacheflush.h> 20 21/* Compute the address of the breakpoint instruction and return it. 22 * 23 * Note that uprobe_get_swbp_addr is defined as a weak symbol in 24 * kernel/events/uprobe.c. 25 */ 26unsigned long uprobe_get_swbp_addr(struct pt_regs *regs) 27{ 28 return instruction_pointer(regs); 29} 30 31static void copy_to_page(struct page *page, unsigned long vaddr, 32 const void *src, int len) 33{ 34 void *kaddr = kmap_atomic(page); 35 36 memcpy(kaddr + (vaddr & ~PAGE_MASK), src, len); 37 kunmap_atomic(kaddr); 38} 39 40/* Fill in the xol area with the probed instruction followed by the 41 * single-step trap. Some fixups in the copied instruction are 42 * performed at this point. 43 * 44 * Note that uprobe_xol_copy is defined as a weak symbol in 45 * kernel/events/uprobe.c. 46 */ 47void arch_uprobe_copy_ixol(struct page *page, unsigned long vaddr, 48 void *src, unsigned long len) 49{ 50 const u32 stp_insn = UPROBE_STP_INSN; 51 u32 insn = *(u32 *) src; 52 53 /* Branches annulling their delay slot must be fixed to not do 54 * so. Clearing the annul bit on these instructions we can be 55 * sure the single-step breakpoint in the XOL slot will be 56 * executed. 57 */ 58 59 u32 op = (insn >> 30) & 0x3; 60 u32 op2 = (insn >> 22) & 0x7; 61 62 if (op == 0 && 63 (op2 == 1 || op2 == 2 || op2 == 3 || op2 == 5 || op2 == 6) && 64 (insn & ANNUL_BIT) == ANNUL_BIT) 65 insn &= ~ANNUL_BIT; 66 67 copy_to_page(page, vaddr, &insn, len); 68 copy_to_page(page, vaddr+len, &stp_insn, 4); 69} 70 71 72/* Instruction analysis/validity. 73 * 74 * This function returns 0 on success or a -ve number on error. 75 */ 76int arch_uprobe_analyze_insn(struct arch_uprobe *auprobe, 77 struct mm_struct *mm, unsigned long addr) 78{ 79 /* Any unsupported instruction? Then return -EINVAL */ 80 return 0; 81} 82 83/* If INSN is a relative control transfer instruction, return the 84 * corrected branch destination value. 85 * 86 * Note that regs->tpc and regs->tnpc still hold the values of the 87 * program counters at the time of the single-step trap due to the 88 * execution of the UPROBE_STP_INSN at utask->xol_vaddr + 4. 89 * 90 */ 91static unsigned long relbranch_fixup(u32 insn, struct uprobe_task *utask, 92 struct pt_regs *regs) 93{ 94 /* Branch not taken, no mods necessary. */ 95 if (regs->tnpc == regs->tpc + 0x4UL) 96 return utask->autask.saved_tnpc + 0x4UL; 97 98 /* The three cases are call, branch w/prediction, 99 * and traditional branch. 100 */ 101 if ((insn & 0xc0000000) == 0x40000000 || 102 (insn & 0xc1c00000) == 0x00400000 || 103 (insn & 0xc1c00000) == 0x00800000) { 104 unsigned long real_pc = (unsigned long) utask->vaddr; 105 unsigned long ixol_addr = utask->xol_vaddr; 106 107 /* The instruction did all the work for us 108 * already, just apply the offset to the correct 109 * instruction location. 110 */ 111 return (real_pc + (regs->tnpc - ixol_addr)); 112 } 113 114 /* It is jmpl or some other absolute PC modification instruction, 115 * leave NPC as-is. 116 */ 117 return regs->tnpc; 118} 119 120/* If INSN is an instruction which writes its PC location 121 * into a destination register, fix that up. 122 */ 123static int retpc_fixup(struct pt_regs *regs, u32 insn, 124 unsigned long real_pc) 125{ 126 unsigned long *slot = NULL; 127 int rc = 0; 128 129 /* Simplest case is 'call', which always uses %o7 */ 130 if ((insn & 0xc0000000) == 0x40000000) 131 slot = ®s->u_regs[UREG_I7]; 132 133 /* 'jmpl' encodes the register inside of the opcode */ 134 if ((insn & 0xc1f80000) == 0x81c00000) { 135 unsigned long rd = ((insn >> 25) & 0x1f); 136 137 if (rd <= 15) { 138 slot = ®s->u_regs[rd]; 139 } else { 140 unsigned long fp = regs->u_regs[UREG_FP]; 141 /* Hard case, it goes onto the stack. */ 142 flushw_all(); 143 144 rd -= 16; 145 if (test_thread_64bit_stack(fp)) { 146 unsigned long __user *uslot = 147 (unsigned long __user *) (fp + STACK_BIAS) + rd; 148 rc = __put_user(real_pc, uslot); 149 } else { 150 unsigned int __user *uslot = (unsigned int 151 __user *) fp + rd; 152 rc = __put_user((u32) real_pc, uslot); 153 } 154 } 155 } 156 if (slot != NULL) 157 *slot = real_pc; 158 return rc; 159} 160 161/* Single-stepping can be avoided for certain instructions: NOPs and 162 * instructions that can be emulated. This function determines 163 * whether the instruction where the uprobe is installed falls in one 164 * of these cases and emulates it. 165 * 166 * This function returns true if the single-stepping can be skipped, 167 * false otherwise. 168 */ 169bool arch_uprobe_skip_sstep(struct arch_uprobe *auprobe, struct pt_regs *regs) 170{ 171 /* We currently only emulate NOP instructions. 172 */ 173 174 if (auprobe->ixol == (1 << 24)) { 175 regs->tnpc += 4; 176 regs->tpc += 4; 177 return true; 178 } 179 180 return false; 181} 182 183/* Prepare to execute out of line. At this point 184 * current->utask->xol_vaddr points to an allocated XOL slot properly 185 * initialized with the original instruction and the single-stepping 186 * trap instruction. 187 * 188 * This function returns 0 on success, any other number on error. 189 */ 190int arch_uprobe_pre_xol(struct arch_uprobe *auprobe, struct pt_regs *regs) 191{ 192 struct uprobe_task *utask = current->utask; 193 struct arch_uprobe_task *autask = ¤t->utask->autask; 194 195 /* Save the current program counters so they can be restored 196 * later. 197 */ 198 autask->saved_tpc = regs->tpc; 199 autask->saved_tnpc = regs->tnpc; 200 201 /* Adjust PC and NPC so the first instruction in the XOL slot 202 * will be executed by the user task. 203 */ 204 instruction_pointer_set(regs, utask->xol_vaddr); 205 206 return 0; 207} 208 209/* Prepare to resume execution after the single-step. Called after 210 * single-stepping. To avoid the SMP problems that can occur when we 211 * temporarily put back the original opcode to single-step, we 212 * single-stepped a copy of the instruction. 213 * 214 * This function returns 0 on success, any other number on error. 215 */ 216int arch_uprobe_post_xol(struct arch_uprobe *auprobe, struct pt_regs *regs) 217{ 218 struct uprobe_task *utask = current->utask; 219 struct arch_uprobe_task *autask = &utask->autask; 220 u32 insn = auprobe->ixol; 221 int rc = 0; 222 223 if (utask->state == UTASK_SSTEP_ACK) { 224 regs->tnpc = relbranch_fixup(insn, utask, regs); 225 regs->tpc = autask->saved_tnpc; 226 rc = retpc_fixup(regs, insn, (unsigned long) utask->vaddr); 227 } else { 228 regs->tnpc = utask->vaddr+4; 229 regs->tpc = autask->saved_tnpc+4; 230 } 231 return rc; 232} 233 234/* Handler for uprobe traps. This is called from the traps table and 235 * triggers the proper die notification. 236 */ 237asmlinkage void uprobe_trap(struct pt_regs *regs, 238 unsigned long trap_level) 239{ 240 BUG_ON(trap_level != 0x173 && trap_level != 0x174); 241 242 /* We are only interested in user-mode code. Uprobe traps 243 * shall not be present in kernel code. 244 */ 245 if (!user_mode(regs)) { 246 local_irq_enable(); 247 bad_trap(regs, trap_level); 248 return; 249 } 250 251 /* trap_level == 0x173 --> ta 0x73 252 * trap_level == 0x174 --> ta 0x74 253 */ 254 if (notify_die((trap_level == 0x173) ? DIE_BPT : DIE_SSTEP, 255 (trap_level == 0x173) ? "bpt" : "sstep", 256 regs, 0, trap_level, SIGTRAP) != NOTIFY_STOP) 257 bad_trap(regs, trap_level); 258} 259 260/* Callback routine for handling die notifications. 261*/ 262int arch_uprobe_exception_notify(struct notifier_block *self, 263 unsigned long val, void *data) 264{ 265 int ret = NOTIFY_DONE; 266 struct die_args *args = (struct die_args *)data; 267 268 /* We are only interested in userspace traps */ 269 if (args->regs && !user_mode(args->regs)) 270 return NOTIFY_DONE; 271 272 switch (val) { 273 case DIE_BPT: 274 if (uprobe_pre_sstep_notifier(args->regs)) 275 ret = NOTIFY_STOP; 276 break; 277 278 case DIE_SSTEP: 279 if (uprobe_post_sstep_notifier(args->regs)) 280 ret = NOTIFY_STOP; 281 282 default: 283 break; 284 } 285 286 return ret; 287} 288 289/* This function gets called when a XOL instruction either gets 290 * trapped or the thread has a fatal signal, so reset the instruction 291 * pointer to its probed address. 292 */ 293void arch_uprobe_abort_xol(struct arch_uprobe *auprobe, struct pt_regs *regs) 294{ 295 struct uprobe_task *utask = current->utask; 296 297 instruction_pointer_set(regs, utask->vaddr); 298} 299 300/* If xol insn itself traps and generates a signal(Say, 301 * SIGILL/SIGSEGV/etc), then detect the case where a singlestepped 302 * instruction jumps back to its own address. 303 */ 304bool arch_uprobe_xol_was_trapped(struct task_struct *t) 305{ 306 return false; 307} 308 309unsigned long 310arch_uretprobe_hijack_return_addr(unsigned long trampoline_vaddr, 311 struct pt_regs *regs) 312{ 313 unsigned long orig_ret_vaddr = regs->u_regs[UREG_I7]; 314 315 regs->u_regs[UREG_I7] = trampoline_vaddr-8; 316 317 return orig_ret_vaddr + 8; 318}