cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

math_32.c (17721B)


      1// SPDX-License-Identifier: GPL-2.0
      2/*
      3 * arch/sparc/math-emu/math.c
      4 *
      5 * Copyright (C) 1998 Peter Maydell (pmaydell@chiark.greenend.org.uk)
      6 * Copyright (C) 1997, 1999 Jakub Jelinek (jj@ultra.linux.cz)
      7 * Copyright (C) 1999 David S. Miller (davem@redhat.com)
      8 *
      9 * This is a good place to start if you're trying to understand the
     10 * emulation code, because it's pretty simple. What we do is
     11 * essentially analyse the instruction to work out what the operation
     12 * is and which registers are involved. We then execute the appropriate
     13 * FXXXX function. [The floating point queue introduces a minor wrinkle;
     14 * see below...]
     15 * The fxxxxx.c files each emulate a single insn. They look relatively
     16 * simple because the complexity is hidden away in an unholy tangle
     17 * of preprocessor macros.
     18 *
     19 * The first layer of macros is single.h, double.h, quad.h. Generally
     20 * these files define macros for working with floating point numbers
     21 * of the three IEEE formats. FP_ADD_D(R,A,B) is for adding doubles,
     22 * for instance. These macros are usually defined as calls to more
     23 * generic macros (in this case _FP_ADD(D,2,R,X,Y) where the number
     24 * of machine words required to store the given IEEE format is passed
     25 * as a parameter. [double.h and co check the number of bits in a word
     26 * and define FP_ADD_D & co appropriately].
     27 * The generic macros are defined in op-common.h. This is where all
     28 * the grotty stuff like handling NaNs is coded. To handle the possible
     29 * word sizes macros in op-common.h use macros like _FP_FRAC_SLL_##wc()
     30 * where wc is the 'number of machine words' parameter (here 2).
     31 * These are defined in the third layer of macros: op-1.h, op-2.h
     32 * and op-4.h. These handle operations on floating point numbers composed
     33 * of 1,2 and 4 machine words respectively. [For example, on sparc64
     34 * doubles are one machine word so macros in double.h eventually use
     35 * constructs in op-1.h, but on sparc32 they use op-2.h definitions.]
     36 * soft-fp.h is on the same level as op-common.h, and defines some
     37 * macros which are independent of both word size and FP format.
     38 * Finally, sfp-machine.h is the machine dependent part of the
     39 * code: it defines the word size and what type a word is. It also
     40 * defines how _FP_MUL_MEAT_t() maps to _FP_MUL_MEAT_n_* : op-n.h
     41 * provide several possible flavours of multiply algorithm, most
     42 * of which require that you supply some form of asm or C primitive to
     43 * do the actual multiply. (such asm primitives should be defined
     44 * in sfp-machine.h too). udivmodti4.c is the same sort of thing.
     45 *
     46 * There may be some errors here because I'm working from a
     47 * SPARC architecture manual V9, and what I really want is V8...
     48 * Also, the insns which can generate exceptions seem to be a
     49 * greater subset of the FPops than for V9 (for example, FCMPED
     50 * has to be emulated on V8). So I think I'm going to have
     51 * to emulate them all just to be on the safe side...
     52 *
     53 * Emulation routines originate from soft-fp package, which is
     54 * part of glibc and has appropriate copyrights in it (allegedly).
     55 *
     56 * NB: on sparc int == long == 4 bytes, long long == 8 bytes.
     57 * Most bits of the kernel seem to go for long rather than int,
     58 * so we follow that practice...
     59 */
     60
     61/* TODO:
     62 * fpsave() saves the FP queue but fpload() doesn't reload it.
     63 * Therefore when we context switch or change FPU ownership
     64 * we have to check to see if the queue had anything in it and
     65 * emulate it if it did. This is going to be a pain.
     66 */
     67
     68#include <linux/types.h>
     69#include <linux/sched.h>
     70#include <linux/mm.h>
     71#include <linux/perf_event.h>
     72#include <linux/uaccess.h>
     73
     74#include "sfp-util_32.h"
     75#include <math-emu/soft-fp.h>
     76#include <math-emu/single.h>
     77#include <math-emu/double.h>
     78#include <math-emu/quad.h>
     79
     80#define FLOATFUNC(x) extern int x(void *,void *,void *)
     81
     82/* The Vn labels indicate what version of the SPARC architecture gas thinks
     83 * each insn is. This is from the binutils source :->
     84 */
     85/* quadword instructions */
     86#define FSQRTQ	0x02b		/* v8 */
     87#define FADDQ	0x043		/* v8 */
     88#define FSUBQ	0x047		/* v8 */
     89#define FMULQ	0x04b		/* v8 */
     90#define FDIVQ	0x04f		/* v8 */
     91#define FDMULQ	0x06e		/* v8 */
     92#define FQTOS	0x0c7		/* v8 */
     93#define FQTOD	0x0cb		/* v8 */
     94#define FITOQ	0x0cc		/* v8 */
     95#define FSTOQ	0x0cd		/* v8 */
     96#define FDTOQ	0x0ce		/* v8 */
     97#define FQTOI	0x0d3		/* v8 */
     98#define FCMPQ	0x053		/* v8 */
     99#define FCMPEQ	0x057		/* v8 */
    100/* single/double instructions (subnormal): should all work */
    101#define FSQRTS	0x029		/* v7 */
    102#define FSQRTD	0x02a		/* v7 */
    103#define FADDS	0x041		/* v6 */
    104#define FADDD	0x042		/* v6 */
    105#define FSUBS	0x045		/* v6 */
    106#define FSUBD	0x046		/* v6 */
    107#define FMULS	0x049		/* v6 */
    108#define FMULD	0x04a		/* v6 */
    109#define FDIVS	0x04d		/* v6 */
    110#define FDIVD	0x04e		/* v6 */
    111#define FSMULD	0x069		/* v6 */
    112#define FDTOS	0x0c6		/* v6 */
    113#define FSTOD	0x0c9		/* v6 */
    114#define FSTOI	0x0d1		/* v6 */
    115#define FDTOI	0x0d2		/* v6 */
    116#define FABSS	0x009		/* v6 */
    117#define FCMPS	0x051		/* v6 */
    118#define FCMPES	0x055		/* v6 */
    119#define FCMPD	0x052		/* v6 */
    120#define FCMPED	0x056		/* v6 */
    121#define FMOVS	0x001		/* v6 */
    122#define FNEGS	0x005		/* v6 */
    123#define FITOS	0x0c4		/* v6 */
    124#define FITOD	0x0c8		/* v6 */
    125
    126#define FSR_TEM_SHIFT	23UL
    127#define FSR_TEM_MASK	(0x1fUL << FSR_TEM_SHIFT)
    128#define FSR_AEXC_SHIFT	5UL
    129#define FSR_AEXC_MASK	(0x1fUL << FSR_AEXC_SHIFT)
    130#define FSR_CEXC_SHIFT	0UL
    131#define FSR_CEXC_MASK	(0x1fUL << FSR_CEXC_SHIFT)
    132
    133static int do_one_mathemu(u32 insn, unsigned long *fsr, unsigned long *fregs);
    134
    135/* Unlike the Sparc64 version (which has a struct fpustate), we
    136 * pass the taskstruct corresponding to the task which currently owns the
    137 * FPU. This is partly because we don't have the fpustate struct and
    138 * partly because the task owning the FPU isn't always current (as is
    139 * the case for the Sparc64 port). This is probably SMP-related...
    140 * This function returns 1 if all queued insns were emulated successfully.
    141 * The test for unimplemented FPop in kernel mode has been moved into
    142 * kernel/traps.c for simplicity.
    143 */
    144int do_mathemu(struct pt_regs *regs, struct task_struct *fpt)
    145{
    146	/* regs->pc isn't necessarily the PC at which the offending insn is sitting.
    147	 * The FPU maintains a queue of FPops which cause traps.
    148	 * When it hits an instruction that requires that the trapped op succeeded
    149	 * (usually because it reads a reg. that the trapped op wrote) then it
    150	 * causes this exception. We need to emulate all the insns on the queue
    151	 * and then allow the op to proceed.
    152	 * This code should also handle the case where the trap was precise,
    153	 * in which case the queue length is zero and regs->pc points at the
    154	 * single FPop to be emulated. (this case is untested, though :->)
    155	 * You'll need this case if you want to be able to emulate all FPops
    156	 * because the FPU either doesn't exist or has been software-disabled.
    157	 * [The UltraSPARC makes FP a precise trap; this isn't as stupid as it
    158	 * might sound because the Ultra does funky things with a superscalar
    159	 * architecture.]
    160	 */
    161
    162	/* You wouldn't believe how often I typed 'ftp' when I meant 'fpt' :-> */
    163
    164	int i;
    165	int retcode = 0;                               /* assume all succeed */
    166	unsigned long insn;
    167
    168	perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, 1, regs, 0);
    169
    170#ifdef DEBUG_MATHEMU
    171	printk("In do_mathemu()... pc is %08lx\n", regs->pc);
    172	printk("fpqdepth is %ld\n", fpt->thread.fpqdepth);
    173	for (i = 0; i < fpt->thread.fpqdepth; i++)
    174		printk("%d: %08lx at %08lx\n", i, fpt->thread.fpqueue[i].insn,
    175		       (unsigned long)fpt->thread.fpqueue[i].insn_addr);
    176#endif
    177
    178	if (fpt->thread.fpqdepth == 0) {                   /* no queue, guilty insn is at regs->pc */
    179#ifdef DEBUG_MATHEMU
    180		printk("precise trap at %08lx\n", regs->pc);
    181#endif
    182		if (!get_user(insn, (u32 __user *) regs->pc)) {
    183			retcode = do_one_mathemu(insn, &fpt->thread.fsr, fpt->thread.float_regs);
    184			if (retcode) {
    185				/* in this case we need to fix up PC & nPC */
    186				regs->pc = regs->npc;
    187				regs->npc += 4;
    188			}
    189		}
    190		return retcode;
    191	}
    192
    193	/* Normal case: need to empty the queue... */
    194	for (i = 0; i < fpt->thread.fpqdepth; i++) {
    195		retcode = do_one_mathemu(fpt->thread.fpqueue[i].insn, &(fpt->thread.fsr), fpt->thread.float_regs);
    196		if (!retcode)                               /* insn failed, no point doing any more */
    197			break;
    198	}
    199	/* Now empty the queue and clear the queue_not_empty flag */
    200	if (retcode)
    201		fpt->thread.fsr &= ~(0x3000 | FSR_CEXC_MASK);
    202	else
    203		fpt->thread.fsr &= ~0x3000;
    204	fpt->thread.fpqdepth = 0;
    205
    206	return retcode;
    207}
    208
    209/* All routines returning an exception to raise should detect
    210 * such exceptions _before_ rounding to be consistent with
    211 * the behavior of the hardware in the implemented cases
    212 * (and thus with the recommendations in the V9 architecture
    213 * manual).
    214 *
    215 * We return 0 if a SIGFPE should be sent, 1 otherwise.
    216 */
    217static inline int record_exception(unsigned long *pfsr, int eflag)
    218{
    219	unsigned long fsr = *pfsr;
    220	int would_trap;
    221
    222	/* Determine if this exception would have generated a trap. */
    223	would_trap = (fsr & ((long)eflag << FSR_TEM_SHIFT)) != 0UL;
    224
    225	/* If trapping, we only want to signal one bit. */
    226	if (would_trap != 0) {
    227		eflag &= ((fsr & FSR_TEM_MASK) >> FSR_TEM_SHIFT);
    228		if ((eflag & (eflag - 1)) != 0) {
    229			if (eflag & FP_EX_INVALID)
    230				eflag = FP_EX_INVALID;
    231			else if (eflag & FP_EX_OVERFLOW)
    232				eflag = FP_EX_OVERFLOW;
    233			else if (eflag & FP_EX_UNDERFLOW)
    234				eflag = FP_EX_UNDERFLOW;
    235			else if (eflag & FP_EX_DIVZERO)
    236				eflag = FP_EX_DIVZERO;
    237			else if (eflag & FP_EX_INEXACT)
    238				eflag = FP_EX_INEXACT;
    239		}
    240	}
    241
    242	/* Set CEXC, here is the rule:
    243	 *
    244	 *    In general all FPU ops will set one and only one
    245	 *    bit in the CEXC field, this is always the case
    246	 *    when the IEEE exception trap is enabled in TEM.
    247	 */
    248	fsr &= ~(FSR_CEXC_MASK);
    249	fsr |= ((long)eflag << FSR_CEXC_SHIFT);
    250
    251	/* Set the AEXC field, rule is:
    252	 *
    253	 *    If a trap would not be generated, the
    254	 *    CEXC just generated is OR'd into the
    255	 *    existing value of AEXC.
    256	 */
    257	if (would_trap == 0)
    258		fsr |= ((long)eflag << FSR_AEXC_SHIFT);
    259
    260	/* If trapping, indicate fault trap type IEEE. */
    261	if (would_trap != 0)
    262		fsr |= (1UL << 14);
    263
    264	*pfsr = fsr;
    265
    266	return (would_trap ? 0 : 1);
    267}
    268
    269typedef union {
    270	u32 s;
    271	u64 d;
    272	u64 q[2];
    273} *argp;
    274
    275static int do_one_mathemu(u32 insn, unsigned long *pfsr, unsigned long *fregs)
    276{
    277	/* Emulate the given insn, updating fsr and fregs appropriately. */
    278	int type = 0;
    279	/* r is rd, b is rs2 and a is rs1. The *u arg tells
    280	   whether the argument should be packed/unpacked (0 - do not unpack/pack, 1 - unpack/pack)
    281	   non-u args tells the size of the argument (0 - no argument, 1 - single, 2 - double, 3 - quad */
    282#define TYPE(dummy, r, ru, b, bu, a, au) type = (au << 2) | (a << 0) | (bu << 5) | (b << 3) | (ru << 8) | (r << 6)
    283	int freg;
    284	argp rs1 = NULL, rs2 = NULL, rd = NULL;
    285	FP_DECL_EX;
    286	FP_DECL_S(SA); FP_DECL_S(SB); FP_DECL_S(SR);
    287	FP_DECL_D(DA); FP_DECL_D(DB); FP_DECL_D(DR);
    288	FP_DECL_Q(QA); FP_DECL_Q(QB); FP_DECL_Q(QR);
    289	int IR;
    290	long fsr;
    291
    292#ifdef DEBUG_MATHEMU
    293	printk("In do_mathemu(), emulating %08lx\n", insn);
    294#endif
    295
    296	if ((insn & 0xc1f80000) == 0x81a00000)	/* FPOP1 */ {
    297		switch ((insn >> 5) & 0x1ff) {
    298		case FSQRTQ: TYPE(3,3,1,3,1,0,0); break;
    299		case FADDQ:
    300		case FSUBQ:
    301		case FMULQ:
    302		case FDIVQ: TYPE(3,3,1,3,1,3,1); break;
    303		case FDMULQ: TYPE(3,3,1,2,1,2,1); break;
    304		case FQTOS: TYPE(3,1,1,3,1,0,0); break;
    305		case FQTOD: TYPE(3,2,1,3,1,0,0); break;
    306		case FITOQ: TYPE(3,3,1,1,0,0,0); break;
    307		case FSTOQ: TYPE(3,3,1,1,1,0,0); break;
    308		case FDTOQ: TYPE(3,3,1,2,1,0,0); break;
    309		case FQTOI: TYPE(3,1,0,3,1,0,0); break;
    310		case FSQRTS: TYPE(2,1,1,1,1,0,0); break;
    311		case FSQRTD: TYPE(2,2,1,2,1,0,0); break;
    312		case FADDD:
    313		case FSUBD:
    314		case FMULD:
    315		case FDIVD: TYPE(2,2,1,2,1,2,1); break;
    316		case FADDS:
    317		case FSUBS:
    318		case FMULS:
    319		case FDIVS: TYPE(2,1,1,1,1,1,1); break;
    320		case FSMULD: TYPE(2,2,1,1,1,1,1); break;
    321		case FDTOS: TYPE(2,1,1,2,1,0,0); break;
    322		case FSTOD: TYPE(2,2,1,1,1,0,0); break;
    323		case FSTOI: TYPE(2,1,0,1,1,0,0); break;
    324		case FDTOI: TYPE(2,1,0,2,1,0,0); break;
    325		case FITOS: TYPE(2,1,1,1,0,0,0); break;
    326		case FITOD: TYPE(2,2,1,1,0,0,0); break;
    327		case FMOVS:
    328		case FABSS:
    329		case FNEGS: TYPE(2,1,0,1,0,0,0); break;
    330		}
    331	} else if ((insn & 0xc1f80000) == 0x81a80000)	/* FPOP2 */ {
    332		switch ((insn >> 5) & 0x1ff) {
    333		case FCMPS: TYPE(3,0,0,1,1,1,1); break;
    334		case FCMPES: TYPE(3,0,0,1,1,1,1); break;
    335		case FCMPD: TYPE(3,0,0,2,1,2,1); break;
    336		case FCMPED: TYPE(3,0,0,2,1,2,1); break;
    337		case FCMPQ: TYPE(3,0,0,3,1,3,1); break;
    338		case FCMPEQ: TYPE(3,0,0,3,1,3,1); break;
    339		}
    340	}
    341
    342	if (!type) {	/* oops, didn't recognise that FPop */
    343#ifdef DEBUG_MATHEMU
    344		printk("attempt to emulate unrecognised FPop!\n");
    345#endif
    346		return 0;
    347	}
    348
    349	/* Decode the registers to be used */
    350	freg = (*pfsr >> 14) & 0xf;
    351
    352	*pfsr &= ~0x1c000;				/* clear the traptype bits */
    353	
    354	freg = ((insn >> 14) & 0x1f);
    355	switch (type & 0x3) {				/* is rs1 single, double or quad? */
    356	case 3:
    357		if (freg & 3) {				/* quadwords must have bits 4&5 of the */
    358							/* encoded reg. number set to zero. */
    359			*pfsr |= (6 << 14);
    360			return 0;			/* simulate invalid_fp_register exception */
    361		}
    362		fallthrough;
    363	case 2:
    364		if (freg & 1) {				/* doublewords must have bit 5 zeroed */
    365			*pfsr |= (6 << 14);
    366			return 0;
    367		}
    368	}
    369	rs1 = (argp)&fregs[freg];
    370	switch (type & 0x7) {
    371	case 7: FP_UNPACK_QP (QA, rs1); break;
    372	case 6: FP_UNPACK_DP (DA, rs1); break;
    373	case 5: FP_UNPACK_SP (SA, rs1); break;
    374	}
    375	freg = (insn & 0x1f);
    376	switch ((type >> 3) & 0x3) {			/* same again for rs2 */
    377	case 3:
    378		if (freg & 3) {				/* quadwords must have bits 4&5 of the */
    379							/* encoded reg. number set to zero. */
    380			*pfsr |= (6 << 14);
    381			return 0;			/* simulate invalid_fp_register exception */
    382		}
    383		fallthrough;
    384	case 2:
    385		if (freg & 1) {				/* doublewords must have bit 5 zeroed */
    386			*pfsr |= (6 << 14);
    387			return 0;
    388		}
    389	}
    390	rs2 = (argp)&fregs[freg];
    391	switch ((type >> 3) & 0x7) {
    392	case 7: FP_UNPACK_QP (QB, rs2); break;
    393	case 6: FP_UNPACK_DP (DB, rs2); break;
    394	case 5: FP_UNPACK_SP (SB, rs2); break;
    395	}
    396	freg = ((insn >> 25) & 0x1f);
    397	switch ((type >> 6) & 0x3) {			/* and finally rd. This one's a bit different */
    398	case 0:						/* dest is fcc. (this must be FCMPQ or FCMPEQ) */
    399		if (freg) {				/* V8 has only one set of condition codes, so */
    400							/* anything but 0 in the rd field is an error */
    401			*pfsr |= (6 << 14);		/* (should probably flag as invalid opcode */
    402			return 0;			/* but SIGFPE will do :-> ) */
    403		}
    404		break;
    405	case 3:
    406		if (freg & 3) {				/* quadwords must have bits 4&5 of the */
    407							/* encoded reg. number set to zero. */
    408			*pfsr |= (6 << 14);
    409			return 0;			/* simulate invalid_fp_register exception */
    410		}
    411		fallthrough;
    412	case 2:
    413		if (freg & 1) {				/* doublewords must have bit 5 zeroed */
    414			*pfsr |= (6 << 14);
    415			return 0;
    416		}
    417		fallthrough;
    418	case 1:
    419		rd = (void *)&fregs[freg];
    420		break;
    421	}
    422#ifdef DEBUG_MATHEMU
    423	printk("executing insn...\n");
    424#endif
    425	/* do the Right Thing */
    426	switch ((insn >> 5) & 0x1ff) {
    427	/* + */
    428	case FADDS: FP_ADD_S (SR, SA, SB); break;
    429	case FADDD: FP_ADD_D (DR, DA, DB); break;
    430	case FADDQ: FP_ADD_Q (QR, QA, QB); break;
    431	/* - */
    432	case FSUBS: FP_SUB_S (SR, SA, SB); break;
    433	case FSUBD: FP_SUB_D (DR, DA, DB); break;
    434	case FSUBQ: FP_SUB_Q (QR, QA, QB); break;
    435	/* * */
    436	case FMULS: FP_MUL_S (SR, SA, SB); break;
    437	case FSMULD: FP_CONV (D, S, 2, 1, DA, SA);
    438		     FP_CONV (D, S, 2, 1, DB, SB);
    439	case FMULD: FP_MUL_D (DR, DA, DB); break;
    440	case FDMULQ: FP_CONV (Q, D, 4, 2, QA, DA);
    441		     FP_CONV (Q, D, 4, 2, QB, DB);
    442	case FMULQ: FP_MUL_Q (QR, QA, QB); break;
    443	/* / */
    444	case FDIVS: FP_DIV_S (SR, SA, SB); break;
    445	case FDIVD: FP_DIV_D (DR, DA, DB); break;
    446	case FDIVQ: FP_DIV_Q (QR, QA, QB); break;
    447	/* sqrt */
    448	case FSQRTS: FP_SQRT_S (SR, SB); break;
    449	case FSQRTD: FP_SQRT_D (DR, DB); break;
    450	case FSQRTQ: FP_SQRT_Q (QR, QB); break;
    451	/* mov */
    452	case FMOVS: rd->s = rs2->s; break;
    453	case FABSS: rd->s = rs2->s & 0x7fffffff; break;
    454	case FNEGS: rd->s = rs2->s ^ 0x80000000; break;
    455	/* float to int */
    456	case FSTOI: FP_TO_INT_S (IR, SB, 32, 1); break;
    457	case FDTOI: FP_TO_INT_D (IR, DB, 32, 1); break;
    458	case FQTOI: FP_TO_INT_Q (IR, QB, 32, 1); break;
    459	/* int to float */
    460	case FITOS: IR = rs2->s; FP_FROM_INT_S (SR, IR, 32, int); break;
    461	case FITOD: IR = rs2->s; FP_FROM_INT_D (DR, IR, 32, int); break;
    462	case FITOQ: IR = rs2->s; FP_FROM_INT_Q (QR, IR, 32, int); break;
    463	/* float to float */
    464	case FSTOD: FP_CONV (D, S, 2, 1, DR, SB); break;
    465	case FSTOQ: FP_CONV (Q, S, 4, 1, QR, SB); break;
    466	case FDTOQ: FP_CONV (Q, D, 4, 2, QR, DB); break;
    467	case FDTOS: FP_CONV (S, D, 1, 2, SR, DB); break;
    468	case FQTOS: FP_CONV (S, Q, 1, 4, SR, QB); break;
    469	case FQTOD: FP_CONV (D, Q, 2, 4, DR, QB); break;
    470	/* comparison */
    471	case FCMPS:
    472	case FCMPES:
    473		FP_CMP_S(IR, SB, SA, 3);
    474		if (IR == 3 &&
    475		    (((insn >> 5) & 0x1ff) == FCMPES ||
    476		     FP_ISSIGNAN_S(SA) ||
    477		     FP_ISSIGNAN_S(SB)))
    478			FP_SET_EXCEPTION (FP_EX_INVALID);
    479		break;
    480	case FCMPD:
    481	case FCMPED:
    482		FP_CMP_D(IR, DB, DA, 3);
    483		if (IR == 3 &&
    484		    (((insn >> 5) & 0x1ff) == FCMPED ||
    485		     FP_ISSIGNAN_D(DA) ||
    486		     FP_ISSIGNAN_D(DB)))
    487			FP_SET_EXCEPTION (FP_EX_INVALID);
    488		break;
    489	case FCMPQ:
    490	case FCMPEQ:
    491		FP_CMP_Q(IR, QB, QA, 3);
    492		if (IR == 3 &&
    493		    (((insn >> 5) & 0x1ff) == FCMPEQ ||
    494		     FP_ISSIGNAN_Q(QA) ||
    495		     FP_ISSIGNAN_Q(QB)))
    496			FP_SET_EXCEPTION (FP_EX_INVALID);
    497	}
    498	if (!FP_INHIBIT_RESULTS) {
    499		switch ((type >> 6) & 0x7) {
    500		case 0: fsr = *pfsr;
    501			if (IR == -1) IR = 2;
    502			/* fcc is always fcc0 */
    503			fsr &= ~0xc00; fsr |= (IR << 10);
    504			*pfsr = fsr;
    505			break;
    506		case 1: rd->s = IR; break;
    507		case 5: FP_PACK_SP (rd, SR); break;
    508		case 6: FP_PACK_DP (rd, DR); break;
    509		case 7: FP_PACK_QP (rd, QR); break;
    510		}
    511	}
    512	if (_fex == 0)
    513		return 1;				/* success! */
    514	return record_exception(pfsr, _fex);
    515}