cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

math_64.c (16230B)


      1// SPDX-License-Identifier: GPL-2.0
      2/*
      3 * arch/sparc64/math-emu/math.c
      4 *
      5 * Copyright (C) 1997,1999 Jakub Jelinek (jj@ultra.linux.cz)
      6 * Copyright (C) 1999 David S. Miller (davem@redhat.com)
      7 *
      8 * Emulation routines originate from soft-fp package, which is part
      9 * of glibc and has appropriate copyrights in it.
     10 */
     11
     12#include <linux/types.h>
     13#include <linux/sched.h>
     14#include <linux/errno.h>
     15#include <linux/perf_event.h>
     16
     17#include <asm/fpumacro.h>
     18#include <asm/ptrace.h>
     19#include <linux/uaccess.h>
     20#include <asm/cacheflush.h>
     21
     22#include "sfp-util_64.h"
     23#include <math-emu/soft-fp.h>
     24#include <math-emu/single.h>
     25#include <math-emu/double.h>
     26#include <math-emu/quad.h>
     27
     28/* QUAD - ftt == 3 */
     29#define FMOVQ	0x003
     30#define FNEGQ	0x007
     31#define FABSQ	0x00b
     32#define FSQRTQ	0x02b
     33#define FADDQ	0x043
     34#define FSUBQ	0x047
     35#define FMULQ	0x04b
     36#define FDIVQ	0x04f
     37#define FDMULQ	0x06e
     38#define FQTOX	0x083
     39#define FXTOQ	0x08c
     40#define FQTOS	0x0c7
     41#define FQTOD	0x0cb
     42#define FITOQ	0x0cc
     43#define FSTOQ	0x0cd
     44#define FDTOQ	0x0ce
     45#define FQTOI	0x0d3
     46/* SUBNORMAL - ftt == 2 */
     47#define FSQRTS	0x029
     48#define FSQRTD	0x02a
     49#define FADDS	0x041
     50#define FADDD	0x042
     51#define FSUBS	0x045
     52#define FSUBD	0x046
     53#define FMULS	0x049
     54#define FMULD	0x04a
     55#define FDIVS	0x04d
     56#define FDIVD	0x04e
     57#define FSMULD	0x069
     58#define FSTOX	0x081
     59#define FDTOX	0x082
     60#define FDTOS	0x0c6
     61#define FSTOD	0x0c9
     62#define FSTOI	0x0d1
     63#define FDTOI	0x0d2
     64#define FXTOS	0x084 /* Only Ultra-III generates this. */
     65#define FXTOD	0x088 /* Only Ultra-III generates this. */
     66#if 0	/* Optimized inline in sparc64/kernel/entry.S */
     67#define FITOS	0x0c4 /* Only Ultra-III generates this. */
     68#endif
     69#define FITOD	0x0c8 /* Only Ultra-III generates this. */
     70/* FPOP2 */
     71#define FCMPQ	0x053
     72#define FCMPEQ	0x057
     73#define FMOVQ0	0x003
     74#define FMOVQ1	0x043
     75#define FMOVQ2	0x083
     76#define FMOVQ3	0x0c3
     77#define FMOVQI	0x103
     78#define FMOVQX	0x183
     79#define FMOVQZ	0x027
     80#define FMOVQLE	0x047
     81#define FMOVQLZ 0x067
     82#define FMOVQNZ	0x0a7
     83#define FMOVQGZ	0x0c7
     84#define FMOVQGE 0x0e7
     85
     86#define FSR_TEM_SHIFT	23UL
     87#define FSR_TEM_MASK	(0x1fUL << FSR_TEM_SHIFT)
     88#define FSR_AEXC_SHIFT	5UL
     89#define FSR_AEXC_MASK	(0x1fUL << FSR_AEXC_SHIFT)
     90#define FSR_CEXC_SHIFT	0UL
     91#define FSR_CEXC_MASK	(0x1fUL << FSR_CEXC_SHIFT)
     92
     93/* All routines returning an exception to raise should detect
     94 * such exceptions _before_ rounding to be consistent with
     95 * the behavior of the hardware in the implemented cases
     96 * (and thus with the recommendations in the V9 architecture
     97 * manual).
     98 *
     99 * We return 0 if a SIGFPE should be sent, 1 otherwise.
    100 */
    101static inline int record_exception(struct pt_regs *regs, int eflag)
    102{
    103	u64 fsr = current_thread_info()->xfsr[0];
    104	int would_trap;
    105
    106	/* Determine if this exception would have generated a trap. */
    107	would_trap = (fsr & ((long)eflag << FSR_TEM_SHIFT)) != 0UL;
    108
    109	/* If trapping, we only want to signal one bit. */
    110	if(would_trap != 0) {
    111		eflag &= ((fsr & FSR_TEM_MASK) >> FSR_TEM_SHIFT);
    112		if((eflag & (eflag - 1)) != 0) {
    113			if(eflag & FP_EX_INVALID)
    114				eflag = FP_EX_INVALID;
    115			else if(eflag & FP_EX_OVERFLOW)
    116				eflag = FP_EX_OVERFLOW;
    117			else if(eflag & FP_EX_UNDERFLOW)
    118				eflag = FP_EX_UNDERFLOW;
    119			else if(eflag & FP_EX_DIVZERO)
    120				eflag = FP_EX_DIVZERO;
    121			else if(eflag & FP_EX_INEXACT)
    122				eflag = FP_EX_INEXACT;
    123		}
    124	}
    125
    126	/* Set CEXC, here is the rule:
    127	 *
    128	 *    In general all FPU ops will set one and only one
    129	 *    bit in the CEXC field, this is always the case
    130	 *    when the IEEE exception trap is enabled in TEM.
    131	 */
    132	fsr &= ~(FSR_CEXC_MASK);
    133	fsr |= ((long)eflag << FSR_CEXC_SHIFT);
    134
    135	/* Set the AEXC field, rule is:
    136	 *
    137	 *    If a trap would not be generated, the
    138	 *    CEXC just generated is OR'd into the
    139	 *    existing value of AEXC.
    140	 */
    141	if(would_trap == 0)
    142		fsr |= ((long)eflag << FSR_AEXC_SHIFT);
    143
    144	/* If trapping, indicate fault trap type IEEE. */
    145	if(would_trap != 0)
    146		fsr |= (1UL << 14);
    147
    148	current_thread_info()->xfsr[0] = fsr;
    149
    150	/* If we will not trap, advance the program counter over
    151	 * the instruction being handled.
    152	 */
    153	if(would_trap == 0) {
    154		regs->tpc = regs->tnpc;
    155		regs->tnpc += 4;
    156	}
    157
    158	return (would_trap ? 0 : 1);
    159}
    160
    161typedef union {
    162	u32 s;
    163	u64 d;
    164	u64 q[2];
    165} *argp;
    166
    167int do_mathemu(struct pt_regs *regs, struct fpustate *f, bool illegal_insn_trap)
    168{
    169	unsigned long pc = regs->tpc;
    170	unsigned long tstate = regs->tstate;
    171	u32 insn = 0;
    172	int type = 0;
    173	/* ftt tells which ftt it may happen in, r is rd, b is rs2 and a is rs1. The *u arg tells
    174	   whether the argument should be packed/unpacked (0 - do not unpack/pack, 1 - unpack/pack)
    175	   non-u args tells the size of the argument (0 - no argument, 1 - single, 2 - double, 3 - quad */
    176#define TYPE(ftt, r, ru, b, bu, a, au) type = (au << 2) | (a << 0) | (bu << 5) | (b << 3) | (ru << 8) | (r << 6) | (ftt << 9)
    177	int freg;
    178	static u64 zero[2] = { 0L, 0L };
    179	int flags;
    180	FP_DECL_EX;
    181	FP_DECL_S(SA); FP_DECL_S(SB); FP_DECL_S(SR);
    182	FP_DECL_D(DA); FP_DECL_D(DB); FP_DECL_D(DR);
    183	FP_DECL_Q(QA); FP_DECL_Q(QB); FP_DECL_Q(QR);
    184	int IR;
    185	long XR, xfsr;
    186
    187	if (tstate & TSTATE_PRIV)
    188		die_if_kernel("unfinished/unimplemented FPop from kernel", regs);
    189	perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, 1, regs, 0);
    190	if (test_thread_flag(TIF_32BIT))
    191		pc = (u32)pc;
    192	if (get_user(insn, (u32 __user *) pc) != -EFAULT) {
    193		if ((insn & 0xc1f80000) == 0x81a00000) /* FPOP1 */ {
    194			switch ((insn >> 5) & 0x1ff) {
    195			/* QUAD - ftt == 3 */
    196			case FMOVQ:
    197			case FNEGQ:
    198			case FABSQ: TYPE(3,3,0,3,0,0,0); break;
    199			case FSQRTQ: TYPE(3,3,1,3,1,0,0); break;
    200			case FADDQ:
    201			case FSUBQ:
    202			case FMULQ:
    203			case FDIVQ: TYPE(3,3,1,3,1,3,1); break;
    204			case FDMULQ: TYPE(3,3,1,2,1,2,1); break;
    205			case FQTOX: TYPE(3,2,0,3,1,0,0); break;
    206			case FXTOQ: TYPE(3,3,1,2,0,0,0); break;
    207			case FQTOS: TYPE(3,1,1,3,1,0,0); break;
    208			case FQTOD: TYPE(3,2,1,3,1,0,0); break;
    209			case FITOQ: TYPE(3,3,1,1,0,0,0); break;
    210			case FSTOQ: TYPE(3,3,1,1,1,0,0); break;
    211			case FDTOQ: TYPE(3,3,1,2,1,0,0); break;
    212			case FQTOI: TYPE(3,1,0,3,1,0,0); break;
    213
    214			/* We can get either unimplemented or unfinished
    215			 * for these cases.  Pre-Niagara systems generate
    216			 * unfinished fpop for SUBNORMAL cases, and Niagara
    217			 * always gives unimplemented fpop for fsqrt{s,d}.
    218			 */
    219			case FSQRTS: {
    220				unsigned long x = current_thread_info()->xfsr[0];
    221
    222				x = (x >> 14) & 0x7;
    223				TYPE(x,1,1,1,1,0,0);
    224				break;
    225			}
    226
    227			case FSQRTD: {
    228				unsigned long x = current_thread_info()->xfsr[0];
    229
    230				x = (x >> 14) & 0x7;
    231				TYPE(x,2,1,2,1,0,0);
    232				break;
    233			}
    234
    235			/* SUBNORMAL - ftt == 2 */
    236			case FADDD:
    237			case FSUBD:
    238			case FMULD:
    239			case FDIVD: TYPE(2,2,1,2,1,2,1); break;
    240			case FADDS:
    241			case FSUBS:
    242			case FMULS:
    243			case FDIVS: TYPE(2,1,1,1,1,1,1); break;
    244			case FSMULD: TYPE(2,2,1,1,1,1,1); break;
    245			case FSTOX: TYPE(2,2,0,1,1,0,0); break;
    246			case FDTOX: TYPE(2,2,0,2,1,0,0); break;
    247			case FDTOS: TYPE(2,1,1,2,1,0,0); break;
    248			case FSTOD: TYPE(2,2,1,1,1,0,0); break;
    249			case FSTOI: TYPE(2,1,0,1,1,0,0); break;
    250			case FDTOI: TYPE(2,1,0,2,1,0,0); break;
    251
    252			/* Only Ultra-III generates these */
    253			case FXTOS: TYPE(2,1,1,2,0,0,0); break;
    254			case FXTOD: TYPE(2,2,1,2,0,0,0); break;
    255#if 0			/* Optimized inline in sparc64/kernel/entry.S */
    256			case FITOS: TYPE(2,1,1,1,0,0,0); break;
    257#endif
    258			case FITOD: TYPE(2,2,1,1,0,0,0); break;
    259			}
    260		}
    261		else if ((insn & 0xc1f80000) == 0x81a80000) /* FPOP2 */ {
    262			IR = 2;
    263			switch ((insn >> 5) & 0x1ff) {
    264			case FCMPQ: TYPE(3,0,0,3,1,3,1); break;
    265			case FCMPEQ: TYPE(3,0,0,3,1,3,1); break;
    266			/* Now the conditional fmovq support */
    267			case FMOVQ0:
    268			case FMOVQ1:
    269			case FMOVQ2:
    270			case FMOVQ3:
    271				/* fmovq %fccX, %fY, %fZ */
    272				if (!((insn >> 11) & 3))
    273					XR = current_thread_info()->xfsr[0] >> 10;
    274				else
    275					XR = current_thread_info()->xfsr[0] >> (30 + ((insn >> 10) & 0x6));
    276				XR &= 3;
    277				IR = 0;
    278				switch ((insn >> 14) & 0x7) {
    279				/* case 0: IR = 0; break; */			/* Never */
    280				case 1: if (XR) IR = 1; break;			/* Not Equal */
    281				case 2: if (XR == 1 || XR == 2) IR = 1; break;	/* Less or Greater */
    282				case 3: if (XR & 1) IR = 1; break;		/* Unordered or Less */
    283				case 4: if (XR == 1) IR = 1; break;		/* Less */
    284				case 5: if (XR & 2) IR = 1; break;		/* Unordered or Greater */
    285				case 6: if (XR == 2) IR = 1; break;		/* Greater */
    286				case 7: if (XR == 3) IR = 1; break;		/* Unordered */
    287				}
    288				if ((insn >> 14) & 8)
    289					IR ^= 1;
    290				break;
    291			case FMOVQI:
    292			case FMOVQX:
    293				/* fmovq %[ix]cc, %fY, %fZ */
    294				XR = regs->tstate >> 32;
    295				if ((insn >> 5) & 0x80)
    296					XR >>= 4;
    297				XR &= 0xf;
    298				IR = 0;
    299				freg = ((XR >> 2) ^ XR) & 2;
    300				switch ((insn >> 14) & 0x7) {
    301				/* case 0: IR = 0; break; */			/* Never */
    302				case 1: if (XR & 4) IR = 1; break;		/* Equal */
    303				case 2: if ((XR & 4) || freg) IR = 1; break;	/* Less or Equal */
    304				case 3: if (freg) IR = 1; break;		/* Less */
    305				case 4: if (XR & 5) IR = 1; break;		/* Less or Equal Unsigned */
    306				case 5: if (XR & 1) IR = 1; break;		/* Carry Set */
    307				case 6: if (XR & 8) IR = 1; break;		/* Negative */
    308				case 7: if (XR & 2) IR = 1; break;		/* Overflow Set */
    309				}
    310				if ((insn >> 14) & 8)
    311					IR ^= 1;
    312				break;
    313			case FMOVQZ:
    314			case FMOVQLE:
    315			case FMOVQLZ:
    316			case FMOVQNZ:
    317			case FMOVQGZ:
    318			case FMOVQGE:
    319				freg = (insn >> 14) & 0x1f;
    320				if (!freg)
    321					XR = 0;
    322				else if (freg < 16)
    323					XR = regs->u_regs[freg];
    324				else if (!test_thread_64bit_stack(regs->u_regs[UREG_FP])) {
    325					struct reg_window32 __user *win32;
    326					flushw_user ();
    327					win32 = (struct reg_window32 __user *)((unsigned long)((u32)regs->u_regs[UREG_FP]));
    328					get_user(XR, &win32->locals[freg - 16]);
    329				} else {
    330					struct reg_window __user *win;
    331					flushw_user ();
    332					win = (struct reg_window __user *)(regs->u_regs[UREG_FP] + STACK_BIAS);
    333					get_user(XR, &win->locals[freg - 16]);
    334				}
    335				IR = 0;
    336				switch ((insn >> 10) & 3) {
    337				case 1: if (!XR) IR = 1; break;			/* Register Zero */
    338				case 2: if (XR <= 0) IR = 1; break;		/* Register Less Than or Equal to Zero */
    339				case 3: if (XR < 0) IR = 1; break;		/* Register Less Than Zero */
    340				}
    341				if ((insn >> 10) & 4)
    342					IR ^= 1;
    343				break;
    344			}
    345			if (IR == 0) {
    346				/* The fmov test was false. Do a nop instead */
    347				current_thread_info()->xfsr[0] &= ~(FSR_CEXC_MASK);
    348				regs->tpc = regs->tnpc;
    349				regs->tnpc += 4;
    350				return 1;
    351			} else if (IR == 1) {
    352				/* Change the instruction into plain fmovq */
    353				insn = (insn & 0x3e00001f) | 0x81a00060;
    354				TYPE(3,3,0,3,0,0,0); 
    355			}
    356		}
    357	}
    358	if (type) {
    359		argp rs1 = NULL, rs2 = NULL, rd = NULL;
    360		
    361		/* Starting with UltraSPARC-T2, the cpu does not set the FP Trap
    362		 * Type field in the %fsr to unimplemented_FPop.  Nor does it
    363		 * use the fp_exception_other trap.  Instead it signals an
    364		 * illegal instruction and leaves the FP trap type field of
    365		 * the %fsr unchanged.
    366		 */
    367		if (!illegal_insn_trap) {
    368			int ftt = (current_thread_info()->xfsr[0] >> 14) & 0x7;
    369			if (ftt != (type >> 9))
    370				goto err;
    371		}
    372		current_thread_info()->xfsr[0] &= ~0x1c000;
    373		freg = ((insn >> 14) & 0x1f);
    374		switch (type & 0x3) {
    375		case 3: if (freg & 2) {
    376				current_thread_info()->xfsr[0] |= (6 << 14) /* invalid_fp_register */;
    377				goto err;
    378			}
    379		case 2: freg = ((freg & 1) << 5) | (freg & 0x1e);
    380		case 1: rs1 = (argp)&f->regs[freg];
    381			flags = (freg < 32) ? FPRS_DL : FPRS_DU; 
    382			if (!(current_thread_info()->fpsaved[0] & flags))
    383				rs1 = (argp)&zero;
    384			break;
    385		}
    386		switch (type & 0x7) {
    387		case 7: FP_UNPACK_QP (QA, rs1); break;
    388		case 6: FP_UNPACK_DP (DA, rs1); break;
    389		case 5: FP_UNPACK_SP (SA, rs1); break;
    390		}
    391		freg = (insn & 0x1f);
    392		switch ((type >> 3) & 0x3) {
    393		case 3: if (freg & 2) {
    394				current_thread_info()->xfsr[0] |= (6 << 14) /* invalid_fp_register */;
    395				goto err;
    396			}
    397		case 2: freg = ((freg & 1) << 5) | (freg & 0x1e);
    398		case 1: rs2 = (argp)&f->regs[freg];
    399			flags = (freg < 32) ? FPRS_DL : FPRS_DU; 
    400			if (!(current_thread_info()->fpsaved[0] & flags))
    401				rs2 = (argp)&zero;
    402			break;
    403		}
    404		switch ((type >> 3) & 0x7) {
    405		case 7: FP_UNPACK_QP (QB, rs2); break;
    406		case 6: FP_UNPACK_DP (DB, rs2); break;
    407		case 5: FP_UNPACK_SP (SB, rs2); break;
    408		}
    409		freg = ((insn >> 25) & 0x1f);
    410		switch ((type >> 6) & 0x3) {
    411		case 3: if (freg & 2) {
    412				current_thread_info()->xfsr[0] |= (6 << 14) /* invalid_fp_register */;
    413				goto err;
    414			}
    415		case 2: freg = ((freg & 1) << 5) | (freg & 0x1e);
    416		case 1: rd = (argp)&f->regs[freg];
    417			flags = (freg < 32) ? FPRS_DL : FPRS_DU; 
    418			if (!(current_thread_info()->fpsaved[0] & FPRS_FEF)) {
    419				current_thread_info()->fpsaved[0] = FPRS_FEF;
    420				current_thread_info()->gsr[0] = 0;
    421			}
    422			if (!(current_thread_info()->fpsaved[0] & flags)) {
    423				if (freg < 32)
    424					memset(f->regs, 0, 32*sizeof(u32));
    425				else
    426					memset(f->regs+32, 0, 32*sizeof(u32));
    427			}
    428			current_thread_info()->fpsaved[0] |= flags;
    429			break;
    430		}
    431		switch ((insn >> 5) & 0x1ff) {
    432		/* + */
    433		case FADDS: FP_ADD_S (SR, SA, SB); break;
    434		case FADDD: FP_ADD_D (DR, DA, DB); break;
    435		case FADDQ: FP_ADD_Q (QR, QA, QB); break;
    436		/* - */
    437		case FSUBS: FP_SUB_S (SR, SA, SB); break;
    438		case FSUBD: FP_SUB_D (DR, DA, DB); break;
    439		case FSUBQ: FP_SUB_Q (QR, QA, QB); break;
    440		/* * */
    441		case FMULS: FP_MUL_S (SR, SA, SB); break;
    442		case FSMULD: FP_CONV (D, S, 1, 1, DA, SA);
    443			     FP_CONV (D, S, 1, 1, DB, SB);
    444		case FMULD: FP_MUL_D (DR, DA, DB); break;
    445		case FDMULQ: FP_CONV (Q, D, 2, 1, QA, DA);
    446			     FP_CONV (Q, D, 2, 1, QB, DB);
    447		case FMULQ: FP_MUL_Q (QR, QA, QB); break;
    448		/* / */
    449		case FDIVS: FP_DIV_S (SR, SA, SB); break;
    450		case FDIVD: FP_DIV_D (DR, DA, DB); break;
    451		case FDIVQ: FP_DIV_Q (QR, QA, QB); break;
    452		/* sqrt */
    453		case FSQRTS: FP_SQRT_S (SR, SB); break;
    454		case FSQRTD: FP_SQRT_D (DR, DB); break;
    455		case FSQRTQ: FP_SQRT_Q (QR, QB); break;
    456		/* mov */
    457		case FMOVQ: rd->q[0] = rs2->q[0]; rd->q[1] = rs2->q[1]; break;
    458		case FABSQ: rd->q[0] = rs2->q[0] & 0x7fffffffffffffffUL; rd->q[1] = rs2->q[1]; break;
    459		case FNEGQ: rd->q[0] = rs2->q[0] ^ 0x8000000000000000UL; rd->q[1] = rs2->q[1]; break;
    460		/* float to int */
    461		case FSTOI: FP_TO_INT_S (IR, SB, 32, 1); break;
    462		case FDTOI: FP_TO_INT_D (IR, DB, 32, 1); break;
    463		case FQTOI: FP_TO_INT_Q (IR, QB, 32, 1); break;
    464		case FSTOX: FP_TO_INT_S (XR, SB, 64, 1); break;
    465		case FDTOX: FP_TO_INT_D (XR, DB, 64, 1); break;
    466		case FQTOX: FP_TO_INT_Q (XR, QB, 64, 1); break;
    467		/* int to float */
    468		case FITOQ: IR = rs2->s; FP_FROM_INT_Q (QR, IR, 32, int); break;
    469		case FXTOQ: XR = rs2->d; FP_FROM_INT_Q (QR, XR, 64, long); break;
    470		/* Only Ultra-III generates these */
    471		case FXTOS: XR = rs2->d; FP_FROM_INT_S (SR, XR, 64, long); break;
    472		case FXTOD: XR = rs2->d; FP_FROM_INT_D (DR, XR, 64, long); break;
    473#if 0		/* Optimized inline in sparc64/kernel/entry.S */
    474		case FITOS: IR = rs2->s; FP_FROM_INT_S (SR, IR, 32, int); break;
    475#endif
    476		case FITOD: IR = rs2->s; FP_FROM_INT_D (DR, IR, 32, int); break;
    477		/* float to float */
    478		case FSTOD: FP_CONV (D, S, 1, 1, DR, SB); break;
    479		case FSTOQ: FP_CONV (Q, S, 2, 1, QR, SB); break;
    480		case FDTOQ: FP_CONV (Q, D, 2, 1, QR, DB); break;
    481		case FDTOS: FP_CONV (S, D, 1, 1, SR, DB); break;
    482		case FQTOS: FP_CONV (S, Q, 1, 2, SR, QB); break;
    483		case FQTOD: FP_CONV (D, Q, 1, 2, DR, QB); break;
    484		/* comparison */
    485		case FCMPQ:
    486		case FCMPEQ:
    487			FP_CMP_Q(XR, QB, QA, 3);
    488			if (XR == 3 &&
    489			    (((insn >> 5) & 0x1ff) == FCMPEQ ||
    490			     FP_ISSIGNAN_Q(QA) ||
    491			     FP_ISSIGNAN_Q(QB)))
    492				FP_SET_EXCEPTION (FP_EX_INVALID);
    493		}
    494		if (!FP_INHIBIT_RESULTS) {
    495			switch ((type >> 6) & 0x7) {
    496			case 0: xfsr = current_thread_info()->xfsr[0];
    497				if (XR == -1) XR = 2;
    498				switch (freg & 3) {
    499				/* fcc0, 1, 2, 3 */
    500				case 0: xfsr &= ~0xc00; xfsr |= (XR << 10); break;
    501				case 1: xfsr &= ~0x300000000UL; xfsr |= (XR << 32); break;
    502				case 2: xfsr &= ~0xc00000000UL; xfsr |= (XR << 34); break;
    503				case 3: xfsr &= ~0x3000000000UL; xfsr |= (XR << 36); break;
    504				}
    505				current_thread_info()->xfsr[0] = xfsr;
    506				break;
    507			case 1: rd->s = IR; break;
    508			case 2: rd->d = XR; break;
    509			case 5: FP_PACK_SP (rd, SR); break;
    510			case 6: FP_PACK_DP (rd, DR); break;
    511			case 7: FP_PACK_QP (rd, QR); break;
    512			}
    513		}
    514
    515		if(_fex != 0)
    516			return record_exception(regs, _fex);
    517
    518		/* Success and no exceptions detected. */
    519		current_thread_info()->xfsr[0] &= ~(FSR_CEXC_MASK);
    520		regs->tpc = regs->tnpc;
    521		regs->tnpc += 4;
    522		return 1;
    523	}
    524err:	return 0;
    525}