cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

init_64.c (78754B)


      1// SPDX-License-Identifier: GPL-2.0
      2/*
      3 *  arch/sparc64/mm/init.c
      4 *
      5 *  Copyright (C) 1996-1999 David S. Miller (davem@caip.rutgers.edu)
      6 *  Copyright (C) 1997-1999 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
      7 */
      8 
      9#include <linux/extable.h>
     10#include <linux/kernel.h>
     11#include <linux/sched.h>
     12#include <linux/string.h>
     13#include <linux/init.h>
     14#include <linux/memblock.h>
     15#include <linux/mm.h>
     16#include <linux/hugetlb.h>
     17#include <linux/initrd.h>
     18#include <linux/swap.h>
     19#include <linux/pagemap.h>
     20#include <linux/poison.h>
     21#include <linux/fs.h>
     22#include <linux/seq_file.h>
     23#include <linux/kprobes.h>
     24#include <linux/cache.h>
     25#include <linux/sort.h>
     26#include <linux/ioport.h>
     27#include <linux/percpu.h>
     28#include <linux/mmzone.h>
     29#include <linux/gfp.h>
     30#include <linux/bootmem_info.h>
     31
     32#include <asm/head.h>
     33#include <asm/page.h>
     34#include <asm/pgalloc.h>
     35#include <asm/oplib.h>
     36#include <asm/iommu.h>
     37#include <asm/io.h>
     38#include <linux/uaccess.h>
     39#include <asm/mmu_context.h>
     40#include <asm/tlbflush.h>
     41#include <asm/dma.h>
     42#include <asm/starfire.h>
     43#include <asm/tlb.h>
     44#include <asm/spitfire.h>
     45#include <asm/sections.h>
     46#include <asm/tsb.h>
     47#include <asm/hypervisor.h>
     48#include <asm/prom.h>
     49#include <asm/mdesc.h>
     50#include <asm/cpudata.h>
     51#include <asm/setup.h>
     52#include <asm/irq.h>
     53
     54#include "init_64.h"
     55
     56unsigned long kern_linear_pte_xor[4] __read_mostly;
     57static unsigned long page_cache4v_flag;
     58
     59/* A bitmap, two bits for every 256MB of physical memory.  These two
     60 * bits determine what page size we use for kernel linear
     61 * translations.  They form an index into kern_linear_pte_xor[].  The
     62 * value in the indexed slot is XOR'd with the TLB miss virtual
     63 * address to form the resulting TTE.  The mapping is:
     64 *
     65 *	0	==>	4MB
     66 *	1	==>	256MB
     67 *	2	==>	2GB
     68 *	3	==>	16GB
     69 *
     70 * All sun4v chips support 256MB pages.  Only SPARC-T4 and later
     71 * support 2GB pages, and hopefully future cpus will support the 16GB
     72 * pages as well.  For slots 2 and 3, we encode a 256MB TTE xor there
     73 * if these larger page sizes are not supported by the cpu.
     74 *
     75 * It would be nice to determine this from the machine description
     76 * 'cpu' properties, but we need to have this table setup before the
     77 * MDESC is initialized.
     78 */
     79
     80#ifndef CONFIG_DEBUG_PAGEALLOC
     81/* A special kernel TSB for 4MB, 256MB, 2GB and 16GB linear mappings.
     82 * Space is allocated for this right after the trap table in
     83 * arch/sparc64/kernel/head.S
     84 */
     85extern struct tsb swapper_4m_tsb[KERNEL_TSB4M_NENTRIES];
     86#endif
     87extern struct tsb swapper_tsb[KERNEL_TSB_NENTRIES];
     88
     89static unsigned long cpu_pgsz_mask;
     90
     91#define MAX_BANKS	1024
     92
     93static struct linux_prom64_registers pavail[MAX_BANKS];
     94static int pavail_ents;
     95
     96u64 numa_latency[MAX_NUMNODES][MAX_NUMNODES];
     97
     98static int cmp_p64(const void *a, const void *b)
     99{
    100	const struct linux_prom64_registers *x = a, *y = b;
    101
    102	if (x->phys_addr > y->phys_addr)
    103		return 1;
    104	if (x->phys_addr < y->phys_addr)
    105		return -1;
    106	return 0;
    107}
    108
    109static void __init read_obp_memory(const char *property,
    110				   struct linux_prom64_registers *regs,
    111				   int *num_ents)
    112{
    113	phandle node = prom_finddevice("/memory");
    114	int prop_size = prom_getproplen(node, property);
    115	int ents, ret, i;
    116
    117	ents = prop_size / sizeof(struct linux_prom64_registers);
    118	if (ents > MAX_BANKS) {
    119		prom_printf("The machine has more %s property entries than "
    120			    "this kernel can support (%d).\n",
    121			    property, MAX_BANKS);
    122		prom_halt();
    123	}
    124
    125	ret = prom_getproperty(node, property, (char *) regs, prop_size);
    126	if (ret == -1) {
    127		prom_printf("Couldn't get %s property from /memory.\n",
    128				property);
    129		prom_halt();
    130	}
    131
    132	/* Sanitize what we got from the firmware, by page aligning
    133	 * everything.
    134	 */
    135	for (i = 0; i < ents; i++) {
    136		unsigned long base, size;
    137
    138		base = regs[i].phys_addr;
    139		size = regs[i].reg_size;
    140
    141		size &= PAGE_MASK;
    142		if (base & ~PAGE_MASK) {
    143			unsigned long new_base = PAGE_ALIGN(base);
    144
    145			size -= new_base - base;
    146			if ((long) size < 0L)
    147				size = 0UL;
    148			base = new_base;
    149		}
    150		if (size == 0UL) {
    151			/* If it is empty, simply get rid of it.
    152			 * This simplifies the logic of the other
    153			 * functions that process these arrays.
    154			 */
    155			memmove(&regs[i], &regs[i + 1],
    156				(ents - i - 1) * sizeof(regs[0]));
    157			i--;
    158			ents--;
    159			continue;
    160		}
    161		regs[i].phys_addr = base;
    162		regs[i].reg_size = size;
    163	}
    164
    165	*num_ents = ents;
    166
    167	sort(regs, ents, sizeof(struct linux_prom64_registers),
    168	     cmp_p64, NULL);
    169}
    170
    171/* Kernel physical address base and size in bytes.  */
    172unsigned long kern_base __read_mostly;
    173unsigned long kern_size __read_mostly;
    174
    175/* Initial ramdisk setup */
    176extern unsigned long sparc_ramdisk_image64;
    177extern unsigned int sparc_ramdisk_image;
    178extern unsigned int sparc_ramdisk_size;
    179
    180struct page *mem_map_zero __read_mostly;
    181EXPORT_SYMBOL(mem_map_zero);
    182
    183unsigned int sparc64_highest_unlocked_tlb_ent __read_mostly;
    184
    185unsigned long sparc64_kern_pri_context __read_mostly;
    186unsigned long sparc64_kern_pri_nuc_bits __read_mostly;
    187unsigned long sparc64_kern_sec_context __read_mostly;
    188
    189int num_kernel_image_mappings;
    190
    191#ifdef CONFIG_DEBUG_DCFLUSH
    192atomic_t dcpage_flushes = ATOMIC_INIT(0);
    193#ifdef CONFIG_SMP
    194atomic_t dcpage_flushes_xcall = ATOMIC_INIT(0);
    195#endif
    196#endif
    197
    198inline void flush_dcache_page_impl(struct page *page)
    199{
    200	BUG_ON(tlb_type == hypervisor);
    201#ifdef CONFIG_DEBUG_DCFLUSH
    202	atomic_inc(&dcpage_flushes);
    203#endif
    204
    205#ifdef DCACHE_ALIASING_POSSIBLE
    206	__flush_dcache_page(page_address(page),
    207			    ((tlb_type == spitfire) &&
    208			     page_mapping_file(page) != NULL));
    209#else
    210	if (page_mapping_file(page) != NULL &&
    211	    tlb_type == spitfire)
    212		__flush_icache_page(__pa(page_address(page)));
    213#endif
    214}
    215
    216#define PG_dcache_dirty		PG_arch_1
    217#define PG_dcache_cpu_shift	32UL
    218#define PG_dcache_cpu_mask	\
    219	((1UL<<ilog2(roundup_pow_of_two(NR_CPUS)))-1UL)
    220
    221#define dcache_dirty_cpu(page) \
    222	(((page)->flags >> PG_dcache_cpu_shift) & PG_dcache_cpu_mask)
    223
    224static inline void set_dcache_dirty(struct page *page, int this_cpu)
    225{
    226	unsigned long mask = this_cpu;
    227	unsigned long non_cpu_bits;
    228
    229	non_cpu_bits = ~(PG_dcache_cpu_mask << PG_dcache_cpu_shift);
    230	mask = (mask << PG_dcache_cpu_shift) | (1UL << PG_dcache_dirty);
    231
    232	__asm__ __volatile__("1:\n\t"
    233			     "ldx	[%2], %%g7\n\t"
    234			     "and	%%g7, %1, %%g1\n\t"
    235			     "or	%%g1, %0, %%g1\n\t"
    236			     "casx	[%2], %%g7, %%g1\n\t"
    237			     "cmp	%%g7, %%g1\n\t"
    238			     "bne,pn	%%xcc, 1b\n\t"
    239			     " nop"
    240			     : /* no outputs */
    241			     : "r" (mask), "r" (non_cpu_bits), "r" (&page->flags)
    242			     : "g1", "g7");
    243}
    244
    245static inline void clear_dcache_dirty_cpu(struct page *page, unsigned long cpu)
    246{
    247	unsigned long mask = (1UL << PG_dcache_dirty);
    248
    249	__asm__ __volatile__("! test_and_clear_dcache_dirty\n"
    250			     "1:\n\t"
    251			     "ldx	[%2], %%g7\n\t"
    252			     "srlx	%%g7, %4, %%g1\n\t"
    253			     "and	%%g1, %3, %%g1\n\t"
    254			     "cmp	%%g1, %0\n\t"
    255			     "bne,pn	%%icc, 2f\n\t"
    256			     " andn	%%g7, %1, %%g1\n\t"
    257			     "casx	[%2], %%g7, %%g1\n\t"
    258			     "cmp	%%g7, %%g1\n\t"
    259			     "bne,pn	%%xcc, 1b\n\t"
    260			     " nop\n"
    261			     "2:"
    262			     : /* no outputs */
    263			     : "r" (cpu), "r" (mask), "r" (&page->flags),
    264			       "i" (PG_dcache_cpu_mask),
    265			       "i" (PG_dcache_cpu_shift)
    266			     : "g1", "g7");
    267}
    268
    269static inline void tsb_insert(struct tsb *ent, unsigned long tag, unsigned long pte)
    270{
    271	unsigned long tsb_addr = (unsigned long) ent;
    272
    273	if (tlb_type == cheetah_plus || tlb_type == hypervisor)
    274		tsb_addr = __pa(tsb_addr);
    275
    276	__tsb_insert(tsb_addr, tag, pte);
    277}
    278
    279unsigned long _PAGE_ALL_SZ_BITS __read_mostly;
    280
    281static void flush_dcache(unsigned long pfn)
    282{
    283	struct page *page;
    284
    285	page = pfn_to_page(pfn);
    286	if (page) {
    287		unsigned long pg_flags;
    288
    289		pg_flags = page->flags;
    290		if (pg_flags & (1UL << PG_dcache_dirty)) {
    291			int cpu = ((pg_flags >> PG_dcache_cpu_shift) &
    292				   PG_dcache_cpu_mask);
    293			int this_cpu = get_cpu();
    294
    295			/* This is just to optimize away some function calls
    296			 * in the SMP case.
    297			 */
    298			if (cpu == this_cpu)
    299				flush_dcache_page_impl(page);
    300			else
    301				smp_flush_dcache_page_impl(page, cpu);
    302
    303			clear_dcache_dirty_cpu(page, cpu);
    304
    305			put_cpu();
    306		}
    307	}
    308}
    309
    310/* mm->context.lock must be held */
    311static void __update_mmu_tsb_insert(struct mm_struct *mm, unsigned long tsb_index,
    312				    unsigned long tsb_hash_shift, unsigned long address,
    313				    unsigned long tte)
    314{
    315	struct tsb *tsb = mm->context.tsb_block[tsb_index].tsb;
    316	unsigned long tag;
    317
    318	if (unlikely(!tsb))
    319		return;
    320
    321	tsb += ((address >> tsb_hash_shift) &
    322		(mm->context.tsb_block[tsb_index].tsb_nentries - 1UL));
    323	tag = (address >> 22UL);
    324	tsb_insert(tsb, tag, tte);
    325}
    326
    327#ifdef CONFIG_HUGETLB_PAGE
    328static int __init hugetlbpage_init(void)
    329{
    330	hugetlb_add_hstate(HPAGE_64K_SHIFT - PAGE_SHIFT);
    331	hugetlb_add_hstate(HPAGE_SHIFT - PAGE_SHIFT);
    332	hugetlb_add_hstate(HPAGE_256MB_SHIFT - PAGE_SHIFT);
    333	hugetlb_add_hstate(HPAGE_2GB_SHIFT - PAGE_SHIFT);
    334
    335	return 0;
    336}
    337
    338arch_initcall(hugetlbpage_init);
    339
    340static void __init pud_huge_patch(void)
    341{
    342	struct pud_huge_patch_entry *p;
    343	unsigned long addr;
    344
    345	p = &__pud_huge_patch;
    346	addr = p->addr;
    347	*(unsigned int *)addr = p->insn;
    348
    349	__asm__ __volatile__("flush %0" : : "r" (addr));
    350}
    351
    352bool __init arch_hugetlb_valid_size(unsigned long size)
    353{
    354	unsigned int hugepage_shift = ilog2(size);
    355	unsigned short hv_pgsz_idx;
    356	unsigned int hv_pgsz_mask;
    357
    358	switch (hugepage_shift) {
    359	case HPAGE_16GB_SHIFT:
    360		hv_pgsz_mask = HV_PGSZ_MASK_16GB;
    361		hv_pgsz_idx = HV_PGSZ_IDX_16GB;
    362		pud_huge_patch();
    363		break;
    364	case HPAGE_2GB_SHIFT:
    365		hv_pgsz_mask = HV_PGSZ_MASK_2GB;
    366		hv_pgsz_idx = HV_PGSZ_IDX_2GB;
    367		break;
    368	case HPAGE_256MB_SHIFT:
    369		hv_pgsz_mask = HV_PGSZ_MASK_256MB;
    370		hv_pgsz_idx = HV_PGSZ_IDX_256MB;
    371		break;
    372	case HPAGE_SHIFT:
    373		hv_pgsz_mask = HV_PGSZ_MASK_4MB;
    374		hv_pgsz_idx = HV_PGSZ_IDX_4MB;
    375		break;
    376	case HPAGE_64K_SHIFT:
    377		hv_pgsz_mask = HV_PGSZ_MASK_64K;
    378		hv_pgsz_idx = HV_PGSZ_IDX_64K;
    379		break;
    380	default:
    381		hv_pgsz_mask = 0;
    382	}
    383
    384	if ((hv_pgsz_mask & cpu_pgsz_mask) == 0U)
    385		return false;
    386
    387	return true;
    388}
    389#endif	/* CONFIG_HUGETLB_PAGE */
    390
    391void update_mmu_cache(struct vm_area_struct *vma, unsigned long address, pte_t *ptep)
    392{
    393	struct mm_struct *mm;
    394	unsigned long flags;
    395	bool is_huge_tsb;
    396	pte_t pte = *ptep;
    397
    398	if (tlb_type != hypervisor) {
    399		unsigned long pfn = pte_pfn(pte);
    400
    401		if (pfn_valid(pfn))
    402			flush_dcache(pfn);
    403	}
    404
    405	mm = vma->vm_mm;
    406
    407	/* Don't insert a non-valid PTE into the TSB, we'll deadlock.  */
    408	if (!pte_accessible(mm, pte))
    409		return;
    410
    411	spin_lock_irqsave(&mm->context.lock, flags);
    412
    413	is_huge_tsb = false;
    414#if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
    415	if (mm->context.hugetlb_pte_count || mm->context.thp_pte_count) {
    416		unsigned long hugepage_size = PAGE_SIZE;
    417
    418		if (is_vm_hugetlb_page(vma))
    419			hugepage_size = huge_page_size(hstate_vma(vma));
    420
    421		if (hugepage_size >= PUD_SIZE) {
    422			unsigned long mask = 0x1ffc00000UL;
    423
    424			/* Transfer bits [32:22] from address to resolve
    425			 * at 4M granularity.
    426			 */
    427			pte_val(pte) &= ~mask;
    428			pte_val(pte) |= (address & mask);
    429		} else if (hugepage_size >= PMD_SIZE) {
    430			/* We are fabricating 8MB pages using 4MB
    431			 * real hw pages.
    432			 */
    433			pte_val(pte) |= (address & (1UL << REAL_HPAGE_SHIFT));
    434		}
    435
    436		if (hugepage_size >= PMD_SIZE) {
    437			__update_mmu_tsb_insert(mm, MM_TSB_HUGE,
    438				REAL_HPAGE_SHIFT, address, pte_val(pte));
    439			is_huge_tsb = true;
    440		}
    441	}
    442#endif
    443	if (!is_huge_tsb)
    444		__update_mmu_tsb_insert(mm, MM_TSB_BASE, PAGE_SHIFT,
    445					address, pte_val(pte));
    446
    447	spin_unlock_irqrestore(&mm->context.lock, flags);
    448}
    449
    450void flush_dcache_page(struct page *page)
    451{
    452	struct address_space *mapping;
    453	int this_cpu;
    454
    455	if (tlb_type == hypervisor)
    456		return;
    457
    458	/* Do not bother with the expensive D-cache flush if it
    459	 * is merely the zero page.  The 'bigcore' testcase in GDB
    460	 * causes this case to run millions of times.
    461	 */
    462	if (page == ZERO_PAGE(0))
    463		return;
    464
    465	this_cpu = get_cpu();
    466
    467	mapping = page_mapping_file(page);
    468	if (mapping && !mapping_mapped(mapping)) {
    469		int dirty = test_bit(PG_dcache_dirty, &page->flags);
    470		if (dirty) {
    471			int dirty_cpu = dcache_dirty_cpu(page);
    472
    473			if (dirty_cpu == this_cpu)
    474				goto out;
    475			smp_flush_dcache_page_impl(page, dirty_cpu);
    476		}
    477		set_dcache_dirty(page, this_cpu);
    478	} else {
    479		/* We could delay the flush for the !page_mapping
    480		 * case too.  But that case is for exec env/arg
    481		 * pages and those are %99 certainly going to get
    482		 * faulted into the tlb (and thus flushed) anyways.
    483		 */
    484		flush_dcache_page_impl(page);
    485	}
    486
    487out:
    488	put_cpu();
    489}
    490EXPORT_SYMBOL(flush_dcache_page);
    491
    492void __kprobes flush_icache_range(unsigned long start, unsigned long end)
    493{
    494	/* Cheetah and Hypervisor platform cpus have coherent I-cache. */
    495	if (tlb_type == spitfire) {
    496		unsigned long kaddr;
    497
    498		/* This code only runs on Spitfire cpus so this is
    499		 * why we can assume _PAGE_PADDR_4U.
    500		 */
    501		for (kaddr = start; kaddr < end; kaddr += PAGE_SIZE) {
    502			unsigned long paddr, mask = _PAGE_PADDR_4U;
    503
    504			if (kaddr >= PAGE_OFFSET)
    505				paddr = kaddr & mask;
    506			else {
    507				pte_t *ptep = virt_to_kpte(kaddr);
    508
    509				paddr = pte_val(*ptep) & mask;
    510			}
    511			__flush_icache_page(paddr);
    512		}
    513	}
    514}
    515EXPORT_SYMBOL(flush_icache_range);
    516
    517void mmu_info(struct seq_file *m)
    518{
    519	static const char *pgsz_strings[] = {
    520		"8K", "64K", "512K", "4MB", "32MB",
    521		"256MB", "2GB", "16GB",
    522	};
    523	int i, printed;
    524
    525	if (tlb_type == cheetah)
    526		seq_printf(m, "MMU Type\t: Cheetah\n");
    527	else if (tlb_type == cheetah_plus)
    528		seq_printf(m, "MMU Type\t: Cheetah+\n");
    529	else if (tlb_type == spitfire)
    530		seq_printf(m, "MMU Type\t: Spitfire\n");
    531	else if (tlb_type == hypervisor)
    532		seq_printf(m, "MMU Type\t: Hypervisor (sun4v)\n");
    533	else
    534		seq_printf(m, "MMU Type\t: ???\n");
    535
    536	seq_printf(m, "MMU PGSZs\t: ");
    537	printed = 0;
    538	for (i = 0; i < ARRAY_SIZE(pgsz_strings); i++) {
    539		if (cpu_pgsz_mask & (1UL << i)) {
    540			seq_printf(m, "%s%s",
    541				   printed ? "," : "", pgsz_strings[i]);
    542			printed++;
    543		}
    544	}
    545	seq_putc(m, '\n');
    546
    547#ifdef CONFIG_DEBUG_DCFLUSH
    548	seq_printf(m, "DCPageFlushes\t: %d\n",
    549		   atomic_read(&dcpage_flushes));
    550#ifdef CONFIG_SMP
    551	seq_printf(m, "DCPageFlushesXC\t: %d\n",
    552		   atomic_read(&dcpage_flushes_xcall));
    553#endif /* CONFIG_SMP */
    554#endif /* CONFIG_DEBUG_DCFLUSH */
    555}
    556
    557struct linux_prom_translation prom_trans[512] __read_mostly;
    558unsigned int prom_trans_ents __read_mostly;
    559
    560unsigned long kern_locked_tte_data;
    561
    562/* The obp translations are saved based on 8k pagesize, since obp can
    563 * use a mixture of pagesizes. Misses to the LOW_OBP_ADDRESS ->
    564 * HI_OBP_ADDRESS range are handled in ktlb.S.
    565 */
    566static inline int in_obp_range(unsigned long vaddr)
    567{
    568	return (vaddr >= LOW_OBP_ADDRESS &&
    569		vaddr < HI_OBP_ADDRESS);
    570}
    571
    572static int cmp_ptrans(const void *a, const void *b)
    573{
    574	const struct linux_prom_translation *x = a, *y = b;
    575
    576	if (x->virt > y->virt)
    577		return 1;
    578	if (x->virt < y->virt)
    579		return -1;
    580	return 0;
    581}
    582
    583/* Read OBP translations property into 'prom_trans[]'.  */
    584static void __init read_obp_translations(void)
    585{
    586	int n, node, ents, first, last, i;
    587
    588	node = prom_finddevice("/virtual-memory");
    589	n = prom_getproplen(node, "translations");
    590	if (unlikely(n == 0 || n == -1)) {
    591		prom_printf("prom_mappings: Couldn't get size.\n");
    592		prom_halt();
    593	}
    594	if (unlikely(n > sizeof(prom_trans))) {
    595		prom_printf("prom_mappings: Size %d is too big.\n", n);
    596		prom_halt();
    597	}
    598
    599	if ((n = prom_getproperty(node, "translations",
    600				  (char *)&prom_trans[0],
    601				  sizeof(prom_trans))) == -1) {
    602		prom_printf("prom_mappings: Couldn't get property.\n");
    603		prom_halt();
    604	}
    605
    606	n = n / sizeof(struct linux_prom_translation);
    607
    608	ents = n;
    609
    610	sort(prom_trans, ents, sizeof(struct linux_prom_translation),
    611	     cmp_ptrans, NULL);
    612
    613	/* Now kick out all the non-OBP entries.  */
    614	for (i = 0; i < ents; i++) {
    615		if (in_obp_range(prom_trans[i].virt))
    616			break;
    617	}
    618	first = i;
    619	for (; i < ents; i++) {
    620		if (!in_obp_range(prom_trans[i].virt))
    621			break;
    622	}
    623	last = i;
    624
    625	for (i = 0; i < (last - first); i++) {
    626		struct linux_prom_translation *src = &prom_trans[i + first];
    627		struct linux_prom_translation *dest = &prom_trans[i];
    628
    629		*dest = *src;
    630	}
    631	for (; i < ents; i++) {
    632		struct linux_prom_translation *dest = &prom_trans[i];
    633		dest->virt = dest->size = dest->data = 0x0UL;
    634	}
    635
    636	prom_trans_ents = last - first;
    637
    638	if (tlb_type == spitfire) {
    639		/* Clear diag TTE bits. */
    640		for (i = 0; i < prom_trans_ents; i++)
    641			prom_trans[i].data &= ~0x0003fe0000000000UL;
    642	}
    643
    644	/* Force execute bit on.  */
    645	for (i = 0; i < prom_trans_ents; i++)
    646		prom_trans[i].data |= (tlb_type == hypervisor ?
    647				       _PAGE_EXEC_4V : _PAGE_EXEC_4U);
    648}
    649
    650static void __init hypervisor_tlb_lock(unsigned long vaddr,
    651				       unsigned long pte,
    652				       unsigned long mmu)
    653{
    654	unsigned long ret = sun4v_mmu_map_perm_addr(vaddr, 0, pte, mmu);
    655
    656	if (ret != 0) {
    657		prom_printf("hypervisor_tlb_lock[%lx:%x:%lx:%lx]: "
    658			    "errors with %lx\n", vaddr, 0, pte, mmu, ret);
    659		prom_halt();
    660	}
    661}
    662
    663static unsigned long kern_large_tte(unsigned long paddr);
    664
    665static void __init remap_kernel(void)
    666{
    667	unsigned long phys_page, tte_vaddr, tte_data;
    668	int i, tlb_ent = sparc64_highest_locked_tlbent();
    669
    670	tte_vaddr = (unsigned long) KERNBASE;
    671	phys_page = (prom_boot_mapping_phys_low >> ILOG2_4MB) << ILOG2_4MB;
    672	tte_data = kern_large_tte(phys_page);
    673
    674	kern_locked_tte_data = tte_data;
    675
    676	/* Now lock us into the TLBs via Hypervisor or OBP. */
    677	if (tlb_type == hypervisor) {
    678		for (i = 0; i < num_kernel_image_mappings; i++) {
    679			hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_DMMU);
    680			hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_IMMU);
    681			tte_vaddr += 0x400000;
    682			tte_data += 0x400000;
    683		}
    684	} else {
    685		for (i = 0; i < num_kernel_image_mappings; i++) {
    686			prom_dtlb_load(tlb_ent - i, tte_data, tte_vaddr);
    687			prom_itlb_load(tlb_ent - i, tte_data, tte_vaddr);
    688			tte_vaddr += 0x400000;
    689			tte_data += 0x400000;
    690		}
    691		sparc64_highest_unlocked_tlb_ent = tlb_ent - i;
    692	}
    693	if (tlb_type == cheetah_plus) {
    694		sparc64_kern_pri_context = (CTX_CHEETAH_PLUS_CTX0 |
    695					    CTX_CHEETAH_PLUS_NUC);
    696		sparc64_kern_pri_nuc_bits = CTX_CHEETAH_PLUS_NUC;
    697		sparc64_kern_sec_context = CTX_CHEETAH_PLUS_CTX0;
    698	}
    699}
    700
    701
    702static void __init inherit_prom_mappings(void)
    703{
    704	/* Now fixup OBP's idea about where we really are mapped. */
    705	printk("Remapping the kernel... ");
    706	remap_kernel();
    707	printk("done.\n");
    708}
    709
    710void prom_world(int enter)
    711{
    712	/*
    713	 * No need to change the address space any more, just flush
    714	 * the register windows
    715	 */
    716	__asm__ __volatile__("flushw");
    717}
    718
    719void __flush_dcache_range(unsigned long start, unsigned long end)
    720{
    721	unsigned long va;
    722
    723	if (tlb_type == spitfire) {
    724		int n = 0;
    725
    726		for (va = start; va < end; va += 32) {
    727			spitfire_put_dcache_tag(va & 0x3fe0, 0x0);
    728			if (++n >= 512)
    729				break;
    730		}
    731	} else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
    732		start = __pa(start);
    733		end = __pa(end);
    734		for (va = start; va < end; va += 32)
    735			__asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
    736					     "membar #Sync"
    737					     : /* no outputs */
    738					     : "r" (va),
    739					       "i" (ASI_DCACHE_INVALIDATE));
    740	}
    741}
    742EXPORT_SYMBOL(__flush_dcache_range);
    743
    744/* get_new_mmu_context() uses "cache + 1".  */
    745DEFINE_SPINLOCK(ctx_alloc_lock);
    746unsigned long tlb_context_cache = CTX_FIRST_VERSION;
    747#define MAX_CTX_NR	(1UL << CTX_NR_BITS)
    748#define CTX_BMAP_SLOTS	BITS_TO_LONGS(MAX_CTX_NR)
    749DECLARE_BITMAP(mmu_context_bmap, MAX_CTX_NR);
    750DEFINE_PER_CPU(struct mm_struct *, per_cpu_secondary_mm) = {0};
    751
    752static void mmu_context_wrap(void)
    753{
    754	unsigned long old_ver = tlb_context_cache & CTX_VERSION_MASK;
    755	unsigned long new_ver, new_ctx, old_ctx;
    756	struct mm_struct *mm;
    757	int cpu;
    758
    759	bitmap_zero(mmu_context_bmap, 1 << CTX_NR_BITS);
    760
    761	/* Reserve kernel context */
    762	set_bit(0, mmu_context_bmap);
    763
    764	new_ver = (tlb_context_cache & CTX_VERSION_MASK) + CTX_FIRST_VERSION;
    765	if (unlikely(new_ver == 0))
    766		new_ver = CTX_FIRST_VERSION;
    767	tlb_context_cache = new_ver;
    768
    769	/*
    770	 * Make sure that any new mm that are added into per_cpu_secondary_mm,
    771	 * are going to go through get_new_mmu_context() path.
    772	 */
    773	mb();
    774
    775	/*
    776	 * Updated versions to current on those CPUs that had valid secondary
    777	 * contexts
    778	 */
    779	for_each_online_cpu(cpu) {
    780		/*
    781		 * If a new mm is stored after we took this mm from the array,
    782		 * it will go into get_new_mmu_context() path, because we
    783		 * already bumped the version in tlb_context_cache.
    784		 */
    785		mm = per_cpu(per_cpu_secondary_mm, cpu);
    786
    787		if (unlikely(!mm || mm == &init_mm))
    788			continue;
    789
    790		old_ctx = mm->context.sparc64_ctx_val;
    791		if (likely((old_ctx & CTX_VERSION_MASK) == old_ver)) {
    792			new_ctx = (old_ctx & ~CTX_VERSION_MASK) | new_ver;
    793			set_bit(new_ctx & CTX_NR_MASK, mmu_context_bmap);
    794			mm->context.sparc64_ctx_val = new_ctx;
    795		}
    796	}
    797}
    798
    799/* Caller does TLB context flushing on local CPU if necessary.
    800 * The caller also ensures that CTX_VALID(mm->context) is false.
    801 *
    802 * We must be careful about boundary cases so that we never
    803 * let the user have CTX 0 (nucleus) or we ever use a CTX
    804 * version of zero (and thus NO_CONTEXT would not be caught
    805 * by version mis-match tests in mmu_context.h).
    806 *
    807 * Always invoked with interrupts disabled.
    808 */
    809void get_new_mmu_context(struct mm_struct *mm)
    810{
    811	unsigned long ctx, new_ctx;
    812	unsigned long orig_pgsz_bits;
    813
    814	spin_lock(&ctx_alloc_lock);
    815retry:
    816	/* wrap might have happened, test again if our context became valid */
    817	if (unlikely(CTX_VALID(mm->context)))
    818		goto out;
    819	orig_pgsz_bits = (mm->context.sparc64_ctx_val & CTX_PGSZ_MASK);
    820	ctx = (tlb_context_cache + 1) & CTX_NR_MASK;
    821	new_ctx = find_next_zero_bit(mmu_context_bmap, 1 << CTX_NR_BITS, ctx);
    822	if (new_ctx >= (1 << CTX_NR_BITS)) {
    823		new_ctx = find_next_zero_bit(mmu_context_bmap, ctx, 1);
    824		if (new_ctx >= ctx) {
    825			mmu_context_wrap();
    826			goto retry;
    827		}
    828	}
    829	if (mm->context.sparc64_ctx_val)
    830		cpumask_clear(mm_cpumask(mm));
    831	mmu_context_bmap[new_ctx>>6] |= (1UL << (new_ctx & 63));
    832	new_ctx |= (tlb_context_cache & CTX_VERSION_MASK);
    833	tlb_context_cache = new_ctx;
    834	mm->context.sparc64_ctx_val = new_ctx | orig_pgsz_bits;
    835out:
    836	spin_unlock(&ctx_alloc_lock);
    837}
    838
    839static int numa_enabled = 1;
    840static int numa_debug;
    841
    842static int __init early_numa(char *p)
    843{
    844	if (!p)
    845		return 0;
    846
    847	if (strstr(p, "off"))
    848		numa_enabled = 0;
    849
    850	if (strstr(p, "debug"))
    851		numa_debug = 1;
    852
    853	return 0;
    854}
    855early_param("numa", early_numa);
    856
    857#define numadbg(f, a...) \
    858do {	if (numa_debug) \
    859		printk(KERN_INFO f, ## a); \
    860} while (0)
    861
    862static void __init find_ramdisk(unsigned long phys_base)
    863{
    864#ifdef CONFIG_BLK_DEV_INITRD
    865	if (sparc_ramdisk_image || sparc_ramdisk_image64) {
    866		unsigned long ramdisk_image;
    867
    868		/* Older versions of the bootloader only supported a
    869		 * 32-bit physical address for the ramdisk image
    870		 * location, stored at sparc_ramdisk_image.  Newer
    871		 * SILO versions set sparc_ramdisk_image to zero and
    872		 * provide a full 64-bit physical address at
    873		 * sparc_ramdisk_image64.
    874		 */
    875		ramdisk_image = sparc_ramdisk_image;
    876		if (!ramdisk_image)
    877			ramdisk_image = sparc_ramdisk_image64;
    878
    879		/* Another bootloader quirk.  The bootloader normalizes
    880		 * the physical address to KERNBASE, so we have to
    881		 * factor that back out and add in the lowest valid
    882		 * physical page address to get the true physical address.
    883		 */
    884		ramdisk_image -= KERNBASE;
    885		ramdisk_image += phys_base;
    886
    887		numadbg("Found ramdisk at physical address 0x%lx, size %u\n",
    888			ramdisk_image, sparc_ramdisk_size);
    889
    890		initrd_start = ramdisk_image;
    891		initrd_end = ramdisk_image + sparc_ramdisk_size;
    892
    893		memblock_reserve(initrd_start, sparc_ramdisk_size);
    894
    895		initrd_start += PAGE_OFFSET;
    896		initrd_end += PAGE_OFFSET;
    897	}
    898#endif
    899}
    900
    901struct node_mem_mask {
    902	unsigned long mask;
    903	unsigned long match;
    904};
    905static struct node_mem_mask node_masks[MAX_NUMNODES];
    906static int num_node_masks;
    907
    908#ifdef CONFIG_NUMA
    909
    910struct mdesc_mlgroup {
    911	u64	node;
    912	u64	latency;
    913	u64	match;
    914	u64	mask;
    915};
    916
    917static struct mdesc_mlgroup *mlgroups;
    918static int num_mlgroups;
    919
    920int numa_cpu_lookup_table[NR_CPUS];
    921cpumask_t numa_cpumask_lookup_table[MAX_NUMNODES];
    922
    923struct mdesc_mblock {
    924	u64	base;
    925	u64	size;
    926	u64	offset; /* RA-to-PA */
    927};
    928static struct mdesc_mblock *mblocks;
    929static int num_mblocks;
    930
    931static struct mdesc_mblock * __init addr_to_mblock(unsigned long addr)
    932{
    933	struct mdesc_mblock *m = NULL;
    934	int i;
    935
    936	for (i = 0; i < num_mblocks; i++) {
    937		m = &mblocks[i];
    938
    939		if (addr >= m->base &&
    940		    addr < (m->base + m->size)) {
    941			break;
    942		}
    943	}
    944
    945	return m;
    946}
    947
    948static u64 __init memblock_nid_range_sun4u(u64 start, u64 end, int *nid)
    949{
    950	int prev_nid, new_nid;
    951
    952	prev_nid = NUMA_NO_NODE;
    953	for ( ; start < end; start += PAGE_SIZE) {
    954		for (new_nid = 0; new_nid < num_node_masks; new_nid++) {
    955			struct node_mem_mask *p = &node_masks[new_nid];
    956
    957			if ((start & p->mask) == p->match) {
    958				if (prev_nid == NUMA_NO_NODE)
    959					prev_nid = new_nid;
    960				break;
    961			}
    962		}
    963
    964		if (new_nid == num_node_masks) {
    965			prev_nid = 0;
    966			WARN_ONCE(1, "addr[%Lx] doesn't match a NUMA node rule. Some memory will be owned by node 0.",
    967				  start);
    968			break;
    969		}
    970
    971		if (prev_nid != new_nid)
    972			break;
    973	}
    974	*nid = prev_nid;
    975
    976	return start > end ? end : start;
    977}
    978
    979static u64 __init memblock_nid_range(u64 start, u64 end, int *nid)
    980{
    981	u64 ret_end, pa_start, m_mask, m_match, m_end;
    982	struct mdesc_mblock *mblock;
    983	int _nid, i;
    984
    985	if (tlb_type != hypervisor)
    986		return memblock_nid_range_sun4u(start, end, nid);
    987
    988	mblock = addr_to_mblock(start);
    989	if (!mblock) {
    990		WARN_ONCE(1, "memblock_nid_range: Can't find mblock addr[%Lx]",
    991			  start);
    992
    993		_nid = 0;
    994		ret_end = end;
    995		goto done;
    996	}
    997
    998	pa_start = start + mblock->offset;
    999	m_match = 0;
   1000	m_mask = 0;
   1001
   1002	for (_nid = 0; _nid < num_node_masks; _nid++) {
   1003		struct node_mem_mask *const m = &node_masks[_nid];
   1004
   1005		if ((pa_start & m->mask) == m->match) {
   1006			m_match = m->match;
   1007			m_mask = m->mask;
   1008			break;
   1009		}
   1010	}
   1011
   1012	if (num_node_masks == _nid) {
   1013		/* We could not find NUMA group, so default to 0, but lets
   1014		 * search for latency group, so we could calculate the correct
   1015		 * end address that we return
   1016		 */
   1017		_nid = 0;
   1018
   1019		for (i = 0; i < num_mlgroups; i++) {
   1020			struct mdesc_mlgroup *const m = &mlgroups[i];
   1021
   1022			if ((pa_start & m->mask) == m->match) {
   1023				m_match = m->match;
   1024				m_mask = m->mask;
   1025				break;
   1026			}
   1027		}
   1028
   1029		if (i == num_mlgroups) {
   1030			WARN_ONCE(1, "memblock_nid_range: Can't find latency group addr[%Lx]",
   1031				  start);
   1032
   1033			ret_end = end;
   1034			goto done;
   1035		}
   1036	}
   1037
   1038	/*
   1039	 * Each latency group has match and mask, and each memory block has an
   1040	 * offset.  An address belongs to a latency group if its address matches
   1041	 * the following formula: ((addr + offset) & mask) == match
   1042	 * It is, however, slow to check every single page if it matches a
   1043	 * particular latency group. As optimization we calculate end value by
   1044	 * using bit arithmetics.
   1045	 */
   1046	m_end = m_match + (1ul << __ffs(m_mask)) - mblock->offset;
   1047	m_end += pa_start & ~((1ul << fls64(m_mask)) - 1);
   1048	ret_end = m_end > end ? end : m_end;
   1049
   1050done:
   1051	*nid = _nid;
   1052	return ret_end;
   1053}
   1054#endif
   1055
   1056/* This must be invoked after performing all of the necessary
   1057 * memblock_set_node() calls for 'nid'.  We need to be able to get
   1058 * correct data from get_pfn_range_for_nid().
   1059 */
   1060static void __init allocate_node_data(int nid)
   1061{
   1062	struct pglist_data *p;
   1063	unsigned long start_pfn, end_pfn;
   1064#ifdef CONFIG_NUMA
   1065
   1066	NODE_DATA(nid) = memblock_alloc_node(sizeof(struct pglist_data),
   1067					     SMP_CACHE_BYTES, nid);
   1068	if (!NODE_DATA(nid)) {
   1069		prom_printf("Cannot allocate pglist_data for nid[%d]\n", nid);
   1070		prom_halt();
   1071	}
   1072
   1073	NODE_DATA(nid)->node_id = nid;
   1074#endif
   1075
   1076	p = NODE_DATA(nid);
   1077
   1078	get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
   1079	p->node_start_pfn = start_pfn;
   1080	p->node_spanned_pages = end_pfn - start_pfn;
   1081}
   1082
   1083static void init_node_masks_nonnuma(void)
   1084{
   1085#ifdef CONFIG_NUMA
   1086	int i;
   1087#endif
   1088
   1089	numadbg("Initializing tables for non-numa.\n");
   1090
   1091	node_masks[0].mask = 0;
   1092	node_masks[0].match = 0;
   1093	num_node_masks = 1;
   1094
   1095#ifdef CONFIG_NUMA
   1096	for (i = 0; i < NR_CPUS; i++)
   1097		numa_cpu_lookup_table[i] = 0;
   1098
   1099	cpumask_setall(&numa_cpumask_lookup_table[0]);
   1100#endif
   1101}
   1102
   1103#ifdef CONFIG_NUMA
   1104struct pglist_data *node_data[MAX_NUMNODES];
   1105
   1106EXPORT_SYMBOL(numa_cpu_lookup_table);
   1107EXPORT_SYMBOL(numa_cpumask_lookup_table);
   1108EXPORT_SYMBOL(node_data);
   1109
   1110static int scan_pio_for_cfg_handle(struct mdesc_handle *md, u64 pio,
   1111				   u32 cfg_handle)
   1112{
   1113	u64 arc;
   1114
   1115	mdesc_for_each_arc(arc, md, pio, MDESC_ARC_TYPE_FWD) {
   1116		u64 target = mdesc_arc_target(md, arc);
   1117		const u64 *val;
   1118
   1119		val = mdesc_get_property(md, target,
   1120					 "cfg-handle", NULL);
   1121		if (val && *val == cfg_handle)
   1122			return 0;
   1123	}
   1124	return -ENODEV;
   1125}
   1126
   1127static int scan_arcs_for_cfg_handle(struct mdesc_handle *md, u64 grp,
   1128				    u32 cfg_handle)
   1129{
   1130	u64 arc, candidate, best_latency = ~(u64)0;
   1131
   1132	candidate = MDESC_NODE_NULL;
   1133	mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
   1134		u64 target = mdesc_arc_target(md, arc);
   1135		const char *name = mdesc_node_name(md, target);
   1136		const u64 *val;
   1137
   1138		if (strcmp(name, "pio-latency-group"))
   1139			continue;
   1140
   1141		val = mdesc_get_property(md, target, "latency", NULL);
   1142		if (!val)
   1143			continue;
   1144
   1145		if (*val < best_latency) {
   1146			candidate = target;
   1147			best_latency = *val;
   1148		}
   1149	}
   1150
   1151	if (candidate == MDESC_NODE_NULL)
   1152		return -ENODEV;
   1153
   1154	return scan_pio_for_cfg_handle(md, candidate, cfg_handle);
   1155}
   1156
   1157int of_node_to_nid(struct device_node *dp)
   1158{
   1159	const struct linux_prom64_registers *regs;
   1160	struct mdesc_handle *md;
   1161	u32 cfg_handle;
   1162	int count, nid;
   1163	u64 grp;
   1164
   1165	/* This is the right thing to do on currently supported
   1166	 * SUN4U NUMA platforms as well, as the PCI controller does
   1167	 * not sit behind any particular memory controller.
   1168	 */
   1169	if (!mlgroups)
   1170		return -1;
   1171
   1172	regs = of_get_property(dp, "reg", NULL);
   1173	if (!regs)
   1174		return -1;
   1175
   1176	cfg_handle = (regs->phys_addr >> 32UL) & 0x0fffffff;
   1177
   1178	md = mdesc_grab();
   1179
   1180	count = 0;
   1181	nid = NUMA_NO_NODE;
   1182	mdesc_for_each_node_by_name(md, grp, "group") {
   1183		if (!scan_arcs_for_cfg_handle(md, grp, cfg_handle)) {
   1184			nid = count;
   1185			break;
   1186		}
   1187		count++;
   1188	}
   1189
   1190	mdesc_release(md);
   1191
   1192	return nid;
   1193}
   1194
   1195static void __init add_node_ranges(void)
   1196{
   1197	phys_addr_t start, end;
   1198	unsigned long prev_max;
   1199	u64 i;
   1200
   1201memblock_resized:
   1202	prev_max = memblock.memory.max;
   1203
   1204	for_each_mem_range(i, &start, &end) {
   1205		while (start < end) {
   1206			unsigned long this_end;
   1207			int nid;
   1208
   1209			this_end = memblock_nid_range(start, end, &nid);
   1210
   1211			numadbg("Setting memblock NUMA node nid[%d] "
   1212				"start[%llx] end[%lx]\n",
   1213				nid, start, this_end);
   1214
   1215			memblock_set_node(start, this_end - start,
   1216					  &memblock.memory, nid);
   1217			if (memblock.memory.max != prev_max)
   1218				goto memblock_resized;
   1219			start = this_end;
   1220		}
   1221	}
   1222}
   1223
   1224static int __init grab_mlgroups(struct mdesc_handle *md)
   1225{
   1226	unsigned long paddr;
   1227	int count = 0;
   1228	u64 node;
   1229
   1230	mdesc_for_each_node_by_name(md, node, "memory-latency-group")
   1231		count++;
   1232	if (!count)
   1233		return -ENOENT;
   1234
   1235	paddr = memblock_phys_alloc(count * sizeof(struct mdesc_mlgroup),
   1236				    SMP_CACHE_BYTES);
   1237	if (!paddr)
   1238		return -ENOMEM;
   1239
   1240	mlgroups = __va(paddr);
   1241	num_mlgroups = count;
   1242
   1243	count = 0;
   1244	mdesc_for_each_node_by_name(md, node, "memory-latency-group") {
   1245		struct mdesc_mlgroup *m = &mlgroups[count++];
   1246		const u64 *val;
   1247
   1248		m->node = node;
   1249
   1250		val = mdesc_get_property(md, node, "latency", NULL);
   1251		m->latency = *val;
   1252		val = mdesc_get_property(md, node, "address-match", NULL);
   1253		m->match = *val;
   1254		val = mdesc_get_property(md, node, "address-mask", NULL);
   1255		m->mask = *val;
   1256
   1257		numadbg("MLGROUP[%d]: node[%llx] latency[%llx] "
   1258			"match[%llx] mask[%llx]\n",
   1259			count - 1, m->node, m->latency, m->match, m->mask);
   1260	}
   1261
   1262	return 0;
   1263}
   1264
   1265static int __init grab_mblocks(struct mdesc_handle *md)
   1266{
   1267	unsigned long paddr;
   1268	int count = 0;
   1269	u64 node;
   1270
   1271	mdesc_for_each_node_by_name(md, node, "mblock")
   1272		count++;
   1273	if (!count)
   1274		return -ENOENT;
   1275
   1276	paddr = memblock_phys_alloc(count * sizeof(struct mdesc_mblock),
   1277				    SMP_CACHE_BYTES);
   1278	if (!paddr)
   1279		return -ENOMEM;
   1280
   1281	mblocks = __va(paddr);
   1282	num_mblocks = count;
   1283
   1284	count = 0;
   1285	mdesc_for_each_node_by_name(md, node, "mblock") {
   1286		struct mdesc_mblock *m = &mblocks[count++];
   1287		const u64 *val;
   1288
   1289		val = mdesc_get_property(md, node, "base", NULL);
   1290		m->base = *val;
   1291		val = mdesc_get_property(md, node, "size", NULL);
   1292		m->size = *val;
   1293		val = mdesc_get_property(md, node,
   1294					 "address-congruence-offset", NULL);
   1295
   1296		/* The address-congruence-offset property is optional.
   1297		 * Explicity zero it be identifty this.
   1298		 */
   1299		if (val)
   1300			m->offset = *val;
   1301		else
   1302			m->offset = 0UL;
   1303
   1304		numadbg("MBLOCK[%d]: base[%llx] size[%llx] offset[%llx]\n",
   1305			count - 1, m->base, m->size, m->offset);
   1306	}
   1307
   1308	return 0;
   1309}
   1310
   1311static void __init numa_parse_mdesc_group_cpus(struct mdesc_handle *md,
   1312					       u64 grp, cpumask_t *mask)
   1313{
   1314	u64 arc;
   1315
   1316	cpumask_clear(mask);
   1317
   1318	mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_BACK) {
   1319		u64 target = mdesc_arc_target(md, arc);
   1320		const char *name = mdesc_node_name(md, target);
   1321		const u64 *id;
   1322
   1323		if (strcmp(name, "cpu"))
   1324			continue;
   1325		id = mdesc_get_property(md, target, "id", NULL);
   1326		if (*id < nr_cpu_ids)
   1327			cpumask_set_cpu(*id, mask);
   1328	}
   1329}
   1330
   1331static struct mdesc_mlgroup * __init find_mlgroup(u64 node)
   1332{
   1333	int i;
   1334
   1335	for (i = 0; i < num_mlgroups; i++) {
   1336		struct mdesc_mlgroup *m = &mlgroups[i];
   1337		if (m->node == node)
   1338			return m;
   1339	}
   1340	return NULL;
   1341}
   1342
   1343int __node_distance(int from, int to)
   1344{
   1345	if ((from >= MAX_NUMNODES) || (to >= MAX_NUMNODES)) {
   1346		pr_warn("Returning default NUMA distance value for %d->%d\n",
   1347			from, to);
   1348		return (from == to) ? LOCAL_DISTANCE : REMOTE_DISTANCE;
   1349	}
   1350	return numa_latency[from][to];
   1351}
   1352EXPORT_SYMBOL(__node_distance);
   1353
   1354static int __init find_best_numa_node_for_mlgroup(struct mdesc_mlgroup *grp)
   1355{
   1356	int i;
   1357
   1358	for (i = 0; i < MAX_NUMNODES; i++) {
   1359		struct node_mem_mask *n = &node_masks[i];
   1360
   1361		if ((grp->mask == n->mask) && (grp->match == n->match))
   1362			break;
   1363	}
   1364	return i;
   1365}
   1366
   1367static void __init find_numa_latencies_for_group(struct mdesc_handle *md,
   1368						 u64 grp, int index)
   1369{
   1370	u64 arc;
   1371
   1372	mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
   1373		int tnode;
   1374		u64 target = mdesc_arc_target(md, arc);
   1375		struct mdesc_mlgroup *m = find_mlgroup(target);
   1376
   1377		if (!m)
   1378			continue;
   1379		tnode = find_best_numa_node_for_mlgroup(m);
   1380		if (tnode == MAX_NUMNODES)
   1381			continue;
   1382		numa_latency[index][tnode] = m->latency;
   1383	}
   1384}
   1385
   1386static int __init numa_attach_mlgroup(struct mdesc_handle *md, u64 grp,
   1387				      int index)
   1388{
   1389	struct mdesc_mlgroup *candidate = NULL;
   1390	u64 arc, best_latency = ~(u64)0;
   1391	struct node_mem_mask *n;
   1392
   1393	mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
   1394		u64 target = mdesc_arc_target(md, arc);
   1395		struct mdesc_mlgroup *m = find_mlgroup(target);
   1396		if (!m)
   1397			continue;
   1398		if (m->latency < best_latency) {
   1399			candidate = m;
   1400			best_latency = m->latency;
   1401		}
   1402	}
   1403	if (!candidate)
   1404		return -ENOENT;
   1405
   1406	if (num_node_masks != index) {
   1407		printk(KERN_ERR "Inconsistent NUMA state, "
   1408		       "index[%d] != num_node_masks[%d]\n",
   1409		       index, num_node_masks);
   1410		return -EINVAL;
   1411	}
   1412
   1413	n = &node_masks[num_node_masks++];
   1414
   1415	n->mask = candidate->mask;
   1416	n->match = candidate->match;
   1417
   1418	numadbg("NUMA NODE[%d]: mask[%lx] match[%lx] (latency[%llx])\n",
   1419		index, n->mask, n->match, candidate->latency);
   1420
   1421	return 0;
   1422}
   1423
   1424static int __init numa_parse_mdesc_group(struct mdesc_handle *md, u64 grp,
   1425					 int index)
   1426{
   1427	cpumask_t mask;
   1428	int cpu;
   1429
   1430	numa_parse_mdesc_group_cpus(md, grp, &mask);
   1431
   1432	for_each_cpu(cpu, &mask)
   1433		numa_cpu_lookup_table[cpu] = index;
   1434	cpumask_copy(&numa_cpumask_lookup_table[index], &mask);
   1435
   1436	if (numa_debug) {
   1437		printk(KERN_INFO "NUMA GROUP[%d]: cpus [ ", index);
   1438		for_each_cpu(cpu, &mask)
   1439			printk("%d ", cpu);
   1440		printk("]\n");
   1441	}
   1442
   1443	return numa_attach_mlgroup(md, grp, index);
   1444}
   1445
   1446static int __init numa_parse_mdesc(void)
   1447{
   1448	struct mdesc_handle *md = mdesc_grab();
   1449	int i, j, err, count;
   1450	u64 node;
   1451
   1452	node = mdesc_node_by_name(md, MDESC_NODE_NULL, "latency-groups");
   1453	if (node == MDESC_NODE_NULL) {
   1454		mdesc_release(md);
   1455		return -ENOENT;
   1456	}
   1457
   1458	err = grab_mblocks(md);
   1459	if (err < 0)
   1460		goto out;
   1461
   1462	err = grab_mlgroups(md);
   1463	if (err < 0)
   1464		goto out;
   1465
   1466	count = 0;
   1467	mdesc_for_each_node_by_name(md, node, "group") {
   1468		err = numa_parse_mdesc_group(md, node, count);
   1469		if (err < 0)
   1470			break;
   1471		count++;
   1472	}
   1473
   1474	count = 0;
   1475	mdesc_for_each_node_by_name(md, node, "group") {
   1476		find_numa_latencies_for_group(md, node, count);
   1477		count++;
   1478	}
   1479
   1480	/* Normalize numa latency matrix according to ACPI SLIT spec. */
   1481	for (i = 0; i < MAX_NUMNODES; i++) {
   1482		u64 self_latency = numa_latency[i][i];
   1483
   1484		for (j = 0; j < MAX_NUMNODES; j++) {
   1485			numa_latency[i][j] =
   1486				(numa_latency[i][j] * LOCAL_DISTANCE) /
   1487				self_latency;
   1488		}
   1489	}
   1490
   1491	add_node_ranges();
   1492
   1493	for (i = 0; i < num_node_masks; i++) {
   1494		allocate_node_data(i);
   1495		node_set_online(i);
   1496	}
   1497
   1498	err = 0;
   1499out:
   1500	mdesc_release(md);
   1501	return err;
   1502}
   1503
   1504static int __init numa_parse_jbus(void)
   1505{
   1506	unsigned long cpu, index;
   1507
   1508	/* NUMA node id is encoded in bits 36 and higher, and there is
   1509	 * a 1-to-1 mapping from CPU ID to NUMA node ID.
   1510	 */
   1511	index = 0;
   1512	for_each_present_cpu(cpu) {
   1513		numa_cpu_lookup_table[cpu] = index;
   1514		cpumask_copy(&numa_cpumask_lookup_table[index], cpumask_of(cpu));
   1515		node_masks[index].mask = ~((1UL << 36UL) - 1UL);
   1516		node_masks[index].match = cpu << 36UL;
   1517
   1518		index++;
   1519	}
   1520	num_node_masks = index;
   1521
   1522	add_node_ranges();
   1523
   1524	for (index = 0; index < num_node_masks; index++) {
   1525		allocate_node_data(index);
   1526		node_set_online(index);
   1527	}
   1528
   1529	return 0;
   1530}
   1531
   1532static int __init numa_parse_sun4u(void)
   1533{
   1534	if (tlb_type == cheetah || tlb_type == cheetah_plus) {
   1535		unsigned long ver;
   1536
   1537		__asm__ ("rdpr %%ver, %0" : "=r" (ver));
   1538		if ((ver >> 32UL) == __JALAPENO_ID ||
   1539		    (ver >> 32UL) == __SERRANO_ID)
   1540			return numa_parse_jbus();
   1541	}
   1542	return -1;
   1543}
   1544
   1545static int __init bootmem_init_numa(void)
   1546{
   1547	int i, j;
   1548	int err = -1;
   1549
   1550	numadbg("bootmem_init_numa()\n");
   1551
   1552	/* Some sane defaults for numa latency values */
   1553	for (i = 0; i < MAX_NUMNODES; i++) {
   1554		for (j = 0; j < MAX_NUMNODES; j++)
   1555			numa_latency[i][j] = (i == j) ?
   1556				LOCAL_DISTANCE : REMOTE_DISTANCE;
   1557	}
   1558
   1559	if (numa_enabled) {
   1560		if (tlb_type == hypervisor)
   1561			err = numa_parse_mdesc();
   1562		else
   1563			err = numa_parse_sun4u();
   1564	}
   1565	return err;
   1566}
   1567
   1568#else
   1569
   1570static int bootmem_init_numa(void)
   1571{
   1572	return -1;
   1573}
   1574
   1575#endif
   1576
   1577static void __init bootmem_init_nonnuma(void)
   1578{
   1579	unsigned long top_of_ram = memblock_end_of_DRAM();
   1580	unsigned long total_ram = memblock_phys_mem_size();
   1581
   1582	numadbg("bootmem_init_nonnuma()\n");
   1583
   1584	printk(KERN_INFO "Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
   1585	       top_of_ram, total_ram);
   1586	printk(KERN_INFO "Memory hole size: %ldMB\n",
   1587	       (top_of_ram - total_ram) >> 20);
   1588
   1589	init_node_masks_nonnuma();
   1590	memblock_set_node(0, PHYS_ADDR_MAX, &memblock.memory, 0);
   1591	allocate_node_data(0);
   1592	node_set_online(0);
   1593}
   1594
   1595static unsigned long __init bootmem_init(unsigned long phys_base)
   1596{
   1597	unsigned long end_pfn;
   1598
   1599	end_pfn = memblock_end_of_DRAM() >> PAGE_SHIFT;
   1600	max_pfn = max_low_pfn = end_pfn;
   1601	min_low_pfn = (phys_base >> PAGE_SHIFT);
   1602
   1603	if (bootmem_init_numa() < 0)
   1604		bootmem_init_nonnuma();
   1605
   1606	/* Dump memblock with node info. */
   1607	memblock_dump_all();
   1608
   1609	/* XXX cpu notifier XXX */
   1610
   1611	sparse_init();
   1612
   1613	return end_pfn;
   1614}
   1615
   1616static struct linux_prom64_registers pall[MAX_BANKS] __initdata;
   1617static int pall_ents __initdata;
   1618
   1619static unsigned long max_phys_bits = 40;
   1620
   1621bool kern_addr_valid(unsigned long addr)
   1622{
   1623	pgd_t *pgd;
   1624	p4d_t *p4d;
   1625	pud_t *pud;
   1626	pmd_t *pmd;
   1627	pte_t *pte;
   1628
   1629	if ((long)addr < 0L) {
   1630		unsigned long pa = __pa(addr);
   1631
   1632		if ((pa >> max_phys_bits) != 0UL)
   1633			return false;
   1634
   1635		return pfn_valid(pa >> PAGE_SHIFT);
   1636	}
   1637
   1638	if (addr >= (unsigned long) KERNBASE &&
   1639	    addr < (unsigned long)&_end)
   1640		return true;
   1641
   1642	pgd = pgd_offset_k(addr);
   1643	if (pgd_none(*pgd))
   1644		return false;
   1645
   1646	p4d = p4d_offset(pgd, addr);
   1647	if (p4d_none(*p4d))
   1648		return false;
   1649
   1650	pud = pud_offset(p4d, addr);
   1651	if (pud_none(*pud))
   1652		return false;
   1653
   1654	if (pud_large(*pud))
   1655		return pfn_valid(pud_pfn(*pud));
   1656
   1657	pmd = pmd_offset(pud, addr);
   1658	if (pmd_none(*pmd))
   1659		return false;
   1660
   1661	if (pmd_large(*pmd))
   1662		return pfn_valid(pmd_pfn(*pmd));
   1663
   1664	pte = pte_offset_kernel(pmd, addr);
   1665	if (pte_none(*pte))
   1666		return false;
   1667
   1668	return pfn_valid(pte_pfn(*pte));
   1669}
   1670EXPORT_SYMBOL(kern_addr_valid);
   1671
   1672static unsigned long __ref kernel_map_hugepud(unsigned long vstart,
   1673					      unsigned long vend,
   1674					      pud_t *pud)
   1675{
   1676	const unsigned long mask16gb = (1UL << 34) - 1UL;
   1677	u64 pte_val = vstart;
   1678
   1679	/* Each PUD is 8GB */
   1680	if ((vstart & mask16gb) ||
   1681	    (vend - vstart <= mask16gb)) {
   1682		pte_val ^= kern_linear_pte_xor[2];
   1683		pud_val(*pud) = pte_val | _PAGE_PUD_HUGE;
   1684
   1685		return vstart + PUD_SIZE;
   1686	}
   1687
   1688	pte_val ^= kern_linear_pte_xor[3];
   1689	pte_val |= _PAGE_PUD_HUGE;
   1690
   1691	vend = vstart + mask16gb + 1UL;
   1692	while (vstart < vend) {
   1693		pud_val(*pud) = pte_val;
   1694
   1695		pte_val += PUD_SIZE;
   1696		vstart += PUD_SIZE;
   1697		pud++;
   1698	}
   1699	return vstart;
   1700}
   1701
   1702static bool kernel_can_map_hugepud(unsigned long vstart, unsigned long vend,
   1703				   bool guard)
   1704{
   1705	if (guard && !(vstart & ~PUD_MASK) && (vend - vstart) >= PUD_SIZE)
   1706		return true;
   1707
   1708	return false;
   1709}
   1710
   1711static unsigned long __ref kernel_map_hugepmd(unsigned long vstart,
   1712					      unsigned long vend,
   1713					      pmd_t *pmd)
   1714{
   1715	const unsigned long mask256mb = (1UL << 28) - 1UL;
   1716	const unsigned long mask2gb = (1UL << 31) - 1UL;
   1717	u64 pte_val = vstart;
   1718
   1719	/* Each PMD is 8MB */
   1720	if ((vstart & mask256mb) ||
   1721	    (vend - vstart <= mask256mb)) {
   1722		pte_val ^= kern_linear_pte_xor[0];
   1723		pmd_val(*pmd) = pte_val | _PAGE_PMD_HUGE;
   1724
   1725		return vstart + PMD_SIZE;
   1726	}
   1727
   1728	if ((vstart & mask2gb) ||
   1729	    (vend - vstart <= mask2gb)) {
   1730		pte_val ^= kern_linear_pte_xor[1];
   1731		pte_val |= _PAGE_PMD_HUGE;
   1732		vend = vstart + mask256mb + 1UL;
   1733	} else {
   1734		pte_val ^= kern_linear_pte_xor[2];
   1735		pte_val |= _PAGE_PMD_HUGE;
   1736		vend = vstart + mask2gb + 1UL;
   1737	}
   1738
   1739	while (vstart < vend) {
   1740		pmd_val(*pmd) = pte_val;
   1741
   1742		pte_val += PMD_SIZE;
   1743		vstart += PMD_SIZE;
   1744		pmd++;
   1745	}
   1746
   1747	return vstart;
   1748}
   1749
   1750static bool kernel_can_map_hugepmd(unsigned long vstart, unsigned long vend,
   1751				   bool guard)
   1752{
   1753	if (guard && !(vstart & ~PMD_MASK) && (vend - vstart) >= PMD_SIZE)
   1754		return true;
   1755
   1756	return false;
   1757}
   1758
   1759static unsigned long __ref kernel_map_range(unsigned long pstart,
   1760					    unsigned long pend, pgprot_t prot,
   1761					    bool use_huge)
   1762{
   1763	unsigned long vstart = PAGE_OFFSET + pstart;
   1764	unsigned long vend = PAGE_OFFSET + pend;
   1765	unsigned long alloc_bytes = 0UL;
   1766
   1767	if ((vstart & ~PAGE_MASK) || (vend & ~PAGE_MASK)) {
   1768		prom_printf("kernel_map: Unaligned physmem[%lx:%lx]\n",
   1769			    vstart, vend);
   1770		prom_halt();
   1771	}
   1772
   1773	while (vstart < vend) {
   1774		unsigned long this_end, paddr = __pa(vstart);
   1775		pgd_t *pgd = pgd_offset_k(vstart);
   1776		p4d_t *p4d;
   1777		pud_t *pud;
   1778		pmd_t *pmd;
   1779		pte_t *pte;
   1780
   1781		if (pgd_none(*pgd)) {
   1782			pud_t *new;
   1783
   1784			new = memblock_alloc_from(PAGE_SIZE, PAGE_SIZE,
   1785						  PAGE_SIZE);
   1786			if (!new)
   1787				goto err_alloc;
   1788			alloc_bytes += PAGE_SIZE;
   1789			pgd_populate(&init_mm, pgd, new);
   1790		}
   1791
   1792		p4d = p4d_offset(pgd, vstart);
   1793		if (p4d_none(*p4d)) {
   1794			pud_t *new;
   1795
   1796			new = memblock_alloc_from(PAGE_SIZE, PAGE_SIZE,
   1797						  PAGE_SIZE);
   1798			if (!new)
   1799				goto err_alloc;
   1800			alloc_bytes += PAGE_SIZE;
   1801			p4d_populate(&init_mm, p4d, new);
   1802		}
   1803
   1804		pud = pud_offset(p4d, vstart);
   1805		if (pud_none(*pud)) {
   1806			pmd_t *new;
   1807
   1808			if (kernel_can_map_hugepud(vstart, vend, use_huge)) {
   1809				vstart = kernel_map_hugepud(vstart, vend, pud);
   1810				continue;
   1811			}
   1812			new = memblock_alloc_from(PAGE_SIZE, PAGE_SIZE,
   1813						  PAGE_SIZE);
   1814			if (!new)
   1815				goto err_alloc;
   1816			alloc_bytes += PAGE_SIZE;
   1817			pud_populate(&init_mm, pud, new);
   1818		}
   1819
   1820		pmd = pmd_offset(pud, vstart);
   1821		if (pmd_none(*pmd)) {
   1822			pte_t *new;
   1823
   1824			if (kernel_can_map_hugepmd(vstart, vend, use_huge)) {
   1825				vstart = kernel_map_hugepmd(vstart, vend, pmd);
   1826				continue;
   1827			}
   1828			new = memblock_alloc_from(PAGE_SIZE, PAGE_SIZE,
   1829						  PAGE_SIZE);
   1830			if (!new)
   1831				goto err_alloc;
   1832			alloc_bytes += PAGE_SIZE;
   1833			pmd_populate_kernel(&init_mm, pmd, new);
   1834		}
   1835
   1836		pte = pte_offset_kernel(pmd, vstart);
   1837		this_end = (vstart + PMD_SIZE) & PMD_MASK;
   1838		if (this_end > vend)
   1839			this_end = vend;
   1840
   1841		while (vstart < this_end) {
   1842			pte_val(*pte) = (paddr | pgprot_val(prot));
   1843
   1844			vstart += PAGE_SIZE;
   1845			paddr += PAGE_SIZE;
   1846			pte++;
   1847		}
   1848	}
   1849
   1850	return alloc_bytes;
   1851
   1852err_alloc:
   1853	panic("%s: Failed to allocate %lu bytes align=%lx from=%lx\n",
   1854	      __func__, PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
   1855	return -ENOMEM;
   1856}
   1857
   1858static void __init flush_all_kernel_tsbs(void)
   1859{
   1860	int i;
   1861
   1862	for (i = 0; i < KERNEL_TSB_NENTRIES; i++) {
   1863		struct tsb *ent = &swapper_tsb[i];
   1864
   1865		ent->tag = (1UL << TSB_TAG_INVALID_BIT);
   1866	}
   1867#ifndef CONFIG_DEBUG_PAGEALLOC
   1868	for (i = 0; i < KERNEL_TSB4M_NENTRIES; i++) {
   1869		struct tsb *ent = &swapper_4m_tsb[i];
   1870
   1871		ent->tag = (1UL << TSB_TAG_INVALID_BIT);
   1872	}
   1873#endif
   1874}
   1875
   1876extern unsigned int kvmap_linear_patch[1];
   1877
   1878static void __init kernel_physical_mapping_init(void)
   1879{
   1880	unsigned long i, mem_alloced = 0UL;
   1881	bool use_huge = true;
   1882
   1883#ifdef CONFIG_DEBUG_PAGEALLOC
   1884	use_huge = false;
   1885#endif
   1886	for (i = 0; i < pall_ents; i++) {
   1887		unsigned long phys_start, phys_end;
   1888
   1889		phys_start = pall[i].phys_addr;
   1890		phys_end = phys_start + pall[i].reg_size;
   1891
   1892		mem_alloced += kernel_map_range(phys_start, phys_end,
   1893						PAGE_KERNEL, use_huge);
   1894	}
   1895
   1896	printk("Allocated %ld bytes for kernel page tables.\n",
   1897	       mem_alloced);
   1898
   1899	kvmap_linear_patch[0] = 0x01000000; /* nop */
   1900	flushi(&kvmap_linear_patch[0]);
   1901
   1902	flush_all_kernel_tsbs();
   1903
   1904	__flush_tlb_all();
   1905}
   1906
   1907#ifdef CONFIG_DEBUG_PAGEALLOC
   1908void __kernel_map_pages(struct page *page, int numpages, int enable)
   1909{
   1910	unsigned long phys_start = page_to_pfn(page) << PAGE_SHIFT;
   1911	unsigned long phys_end = phys_start + (numpages * PAGE_SIZE);
   1912
   1913	kernel_map_range(phys_start, phys_end,
   1914			 (enable ? PAGE_KERNEL : __pgprot(0)), false);
   1915
   1916	flush_tsb_kernel_range(PAGE_OFFSET + phys_start,
   1917			       PAGE_OFFSET + phys_end);
   1918
   1919	/* we should perform an IPI and flush all tlbs,
   1920	 * but that can deadlock->flush only current cpu.
   1921	 */
   1922	__flush_tlb_kernel_range(PAGE_OFFSET + phys_start,
   1923				 PAGE_OFFSET + phys_end);
   1924}
   1925#endif
   1926
   1927unsigned long __init find_ecache_flush_span(unsigned long size)
   1928{
   1929	int i;
   1930
   1931	for (i = 0; i < pavail_ents; i++) {
   1932		if (pavail[i].reg_size >= size)
   1933			return pavail[i].phys_addr;
   1934	}
   1935
   1936	return ~0UL;
   1937}
   1938
   1939unsigned long PAGE_OFFSET;
   1940EXPORT_SYMBOL(PAGE_OFFSET);
   1941
   1942unsigned long VMALLOC_END   = 0x0000010000000000UL;
   1943EXPORT_SYMBOL(VMALLOC_END);
   1944
   1945unsigned long sparc64_va_hole_top =    0xfffff80000000000UL;
   1946unsigned long sparc64_va_hole_bottom = 0x0000080000000000UL;
   1947
   1948static void __init setup_page_offset(void)
   1949{
   1950	if (tlb_type == cheetah || tlb_type == cheetah_plus) {
   1951		/* Cheetah/Panther support a full 64-bit virtual
   1952		 * address, so we can use all that our page tables
   1953		 * support.
   1954		 */
   1955		sparc64_va_hole_top =    0xfff0000000000000UL;
   1956		sparc64_va_hole_bottom = 0x0010000000000000UL;
   1957
   1958		max_phys_bits = 42;
   1959	} else if (tlb_type == hypervisor) {
   1960		switch (sun4v_chip_type) {
   1961		case SUN4V_CHIP_NIAGARA1:
   1962		case SUN4V_CHIP_NIAGARA2:
   1963			/* T1 and T2 support 48-bit virtual addresses.  */
   1964			sparc64_va_hole_top =    0xffff800000000000UL;
   1965			sparc64_va_hole_bottom = 0x0000800000000000UL;
   1966
   1967			max_phys_bits = 39;
   1968			break;
   1969		case SUN4V_CHIP_NIAGARA3:
   1970			/* T3 supports 48-bit virtual addresses.  */
   1971			sparc64_va_hole_top =    0xffff800000000000UL;
   1972			sparc64_va_hole_bottom = 0x0000800000000000UL;
   1973
   1974			max_phys_bits = 43;
   1975			break;
   1976		case SUN4V_CHIP_NIAGARA4:
   1977		case SUN4V_CHIP_NIAGARA5:
   1978		case SUN4V_CHIP_SPARC64X:
   1979		case SUN4V_CHIP_SPARC_M6:
   1980			/* T4 and later support 52-bit virtual addresses.  */
   1981			sparc64_va_hole_top =    0xfff8000000000000UL;
   1982			sparc64_va_hole_bottom = 0x0008000000000000UL;
   1983			max_phys_bits = 47;
   1984			break;
   1985		case SUN4V_CHIP_SPARC_M7:
   1986		case SUN4V_CHIP_SPARC_SN:
   1987			/* M7 and later support 52-bit virtual addresses.  */
   1988			sparc64_va_hole_top =    0xfff8000000000000UL;
   1989			sparc64_va_hole_bottom = 0x0008000000000000UL;
   1990			max_phys_bits = 49;
   1991			break;
   1992		case SUN4V_CHIP_SPARC_M8:
   1993		default:
   1994			/* M8 and later support 54-bit virtual addresses.
   1995			 * However, restricting M8 and above VA bits to 53
   1996			 * as 4-level page table cannot support more than
   1997			 * 53 VA bits.
   1998			 */
   1999			sparc64_va_hole_top =    0xfff0000000000000UL;
   2000			sparc64_va_hole_bottom = 0x0010000000000000UL;
   2001			max_phys_bits = 51;
   2002			break;
   2003		}
   2004	}
   2005
   2006	if (max_phys_bits > MAX_PHYS_ADDRESS_BITS) {
   2007		prom_printf("MAX_PHYS_ADDRESS_BITS is too small, need %lu\n",
   2008			    max_phys_bits);
   2009		prom_halt();
   2010	}
   2011
   2012	PAGE_OFFSET = sparc64_va_hole_top;
   2013	VMALLOC_END = ((sparc64_va_hole_bottom >> 1) +
   2014		       (sparc64_va_hole_bottom >> 2));
   2015
   2016	pr_info("MM: PAGE_OFFSET is 0x%016lx (max_phys_bits == %lu)\n",
   2017		PAGE_OFFSET, max_phys_bits);
   2018	pr_info("MM: VMALLOC [0x%016lx --> 0x%016lx]\n",
   2019		VMALLOC_START, VMALLOC_END);
   2020	pr_info("MM: VMEMMAP [0x%016lx --> 0x%016lx]\n",
   2021		VMEMMAP_BASE, VMEMMAP_BASE << 1);
   2022}
   2023
   2024static void __init tsb_phys_patch(void)
   2025{
   2026	struct tsb_ldquad_phys_patch_entry *pquad;
   2027	struct tsb_phys_patch_entry *p;
   2028
   2029	pquad = &__tsb_ldquad_phys_patch;
   2030	while (pquad < &__tsb_ldquad_phys_patch_end) {
   2031		unsigned long addr = pquad->addr;
   2032
   2033		if (tlb_type == hypervisor)
   2034			*(unsigned int *) addr = pquad->sun4v_insn;
   2035		else
   2036			*(unsigned int *) addr = pquad->sun4u_insn;
   2037		wmb();
   2038		__asm__ __volatile__("flush	%0"
   2039				     : /* no outputs */
   2040				     : "r" (addr));
   2041
   2042		pquad++;
   2043	}
   2044
   2045	p = &__tsb_phys_patch;
   2046	while (p < &__tsb_phys_patch_end) {
   2047		unsigned long addr = p->addr;
   2048
   2049		*(unsigned int *) addr = p->insn;
   2050		wmb();
   2051		__asm__ __volatile__("flush	%0"
   2052				     : /* no outputs */
   2053				     : "r" (addr));
   2054
   2055		p++;
   2056	}
   2057}
   2058
   2059/* Don't mark as init, we give this to the Hypervisor.  */
   2060#ifndef CONFIG_DEBUG_PAGEALLOC
   2061#define NUM_KTSB_DESCR	2
   2062#else
   2063#define NUM_KTSB_DESCR	1
   2064#endif
   2065static struct hv_tsb_descr ktsb_descr[NUM_KTSB_DESCR];
   2066
   2067/* The swapper TSBs are loaded with a base sequence of:
   2068 *
   2069 *	sethi	%uhi(SYMBOL), REG1
   2070 *	sethi	%hi(SYMBOL), REG2
   2071 *	or	REG1, %ulo(SYMBOL), REG1
   2072 *	or	REG2, %lo(SYMBOL), REG2
   2073 *	sllx	REG1, 32, REG1
   2074 *	or	REG1, REG2, REG1
   2075 *
   2076 * When we use physical addressing for the TSB accesses, we patch the
   2077 * first four instructions in the above sequence.
   2078 */
   2079
   2080static void patch_one_ktsb_phys(unsigned int *start, unsigned int *end, unsigned long pa)
   2081{
   2082	unsigned long high_bits, low_bits;
   2083
   2084	high_bits = (pa >> 32) & 0xffffffff;
   2085	low_bits = (pa >> 0) & 0xffffffff;
   2086
   2087	while (start < end) {
   2088		unsigned int *ia = (unsigned int *)(unsigned long)*start;
   2089
   2090		ia[0] = (ia[0] & ~0x3fffff) | (high_bits >> 10);
   2091		__asm__ __volatile__("flush	%0" : : "r" (ia));
   2092
   2093		ia[1] = (ia[1] & ~0x3fffff) | (low_bits >> 10);
   2094		__asm__ __volatile__("flush	%0" : : "r" (ia + 1));
   2095
   2096		ia[2] = (ia[2] & ~0x1fff) | (high_bits & 0x3ff);
   2097		__asm__ __volatile__("flush	%0" : : "r" (ia + 2));
   2098
   2099		ia[3] = (ia[3] & ~0x1fff) | (low_bits & 0x3ff);
   2100		__asm__ __volatile__("flush	%0" : : "r" (ia + 3));
   2101
   2102		start++;
   2103	}
   2104}
   2105
   2106static void ktsb_phys_patch(void)
   2107{
   2108	extern unsigned int __swapper_tsb_phys_patch;
   2109	extern unsigned int __swapper_tsb_phys_patch_end;
   2110	unsigned long ktsb_pa;
   2111
   2112	ktsb_pa = kern_base + ((unsigned long)&swapper_tsb[0] - KERNBASE);
   2113	patch_one_ktsb_phys(&__swapper_tsb_phys_patch,
   2114			    &__swapper_tsb_phys_patch_end, ktsb_pa);
   2115#ifndef CONFIG_DEBUG_PAGEALLOC
   2116	{
   2117	extern unsigned int __swapper_4m_tsb_phys_patch;
   2118	extern unsigned int __swapper_4m_tsb_phys_patch_end;
   2119	ktsb_pa = (kern_base +
   2120		   ((unsigned long)&swapper_4m_tsb[0] - KERNBASE));
   2121	patch_one_ktsb_phys(&__swapper_4m_tsb_phys_patch,
   2122			    &__swapper_4m_tsb_phys_patch_end, ktsb_pa);
   2123	}
   2124#endif
   2125}
   2126
   2127static void __init sun4v_ktsb_init(void)
   2128{
   2129	unsigned long ktsb_pa;
   2130
   2131	/* First KTSB for PAGE_SIZE mappings.  */
   2132	ktsb_pa = kern_base + ((unsigned long)&swapper_tsb[0] - KERNBASE);
   2133
   2134	switch (PAGE_SIZE) {
   2135	case 8 * 1024:
   2136	default:
   2137		ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_8K;
   2138		ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_8K;
   2139		break;
   2140
   2141	case 64 * 1024:
   2142		ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_64K;
   2143		ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_64K;
   2144		break;
   2145
   2146	case 512 * 1024:
   2147		ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_512K;
   2148		ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_512K;
   2149		break;
   2150
   2151	case 4 * 1024 * 1024:
   2152		ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_4MB;
   2153		ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_4MB;
   2154		break;
   2155	}
   2156
   2157	ktsb_descr[0].assoc = 1;
   2158	ktsb_descr[0].num_ttes = KERNEL_TSB_NENTRIES;
   2159	ktsb_descr[0].ctx_idx = 0;
   2160	ktsb_descr[0].tsb_base = ktsb_pa;
   2161	ktsb_descr[0].resv = 0;
   2162
   2163#ifndef CONFIG_DEBUG_PAGEALLOC
   2164	/* Second KTSB for 4MB/256MB/2GB/16GB mappings.  */
   2165	ktsb_pa = (kern_base +
   2166		   ((unsigned long)&swapper_4m_tsb[0] - KERNBASE));
   2167
   2168	ktsb_descr[1].pgsz_idx = HV_PGSZ_IDX_4MB;
   2169	ktsb_descr[1].pgsz_mask = ((HV_PGSZ_MASK_4MB |
   2170				    HV_PGSZ_MASK_256MB |
   2171				    HV_PGSZ_MASK_2GB |
   2172				    HV_PGSZ_MASK_16GB) &
   2173				   cpu_pgsz_mask);
   2174	ktsb_descr[1].assoc = 1;
   2175	ktsb_descr[1].num_ttes = KERNEL_TSB4M_NENTRIES;
   2176	ktsb_descr[1].ctx_idx = 0;
   2177	ktsb_descr[1].tsb_base = ktsb_pa;
   2178	ktsb_descr[1].resv = 0;
   2179#endif
   2180}
   2181
   2182void sun4v_ktsb_register(void)
   2183{
   2184	unsigned long pa, ret;
   2185
   2186	pa = kern_base + ((unsigned long)&ktsb_descr[0] - KERNBASE);
   2187
   2188	ret = sun4v_mmu_tsb_ctx0(NUM_KTSB_DESCR, pa);
   2189	if (ret != 0) {
   2190		prom_printf("hypervisor_mmu_tsb_ctx0[%lx]: "
   2191			    "errors with %lx\n", pa, ret);
   2192		prom_halt();
   2193	}
   2194}
   2195
   2196static void __init sun4u_linear_pte_xor_finalize(void)
   2197{
   2198#ifndef CONFIG_DEBUG_PAGEALLOC
   2199	/* This is where we would add Panther support for
   2200	 * 32MB and 256MB pages.
   2201	 */
   2202#endif
   2203}
   2204
   2205static void __init sun4v_linear_pte_xor_finalize(void)
   2206{
   2207	unsigned long pagecv_flag;
   2208
   2209	/* Bit 9 of TTE is no longer CV bit on M7 processor and it instead
   2210	 * enables MCD error. Do not set bit 9 on M7 processor.
   2211	 */
   2212	switch (sun4v_chip_type) {
   2213	case SUN4V_CHIP_SPARC_M7:
   2214	case SUN4V_CHIP_SPARC_M8:
   2215	case SUN4V_CHIP_SPARC_SN:
   2216		pagecv_flag = 0x00;
   2217		break;
   2218	default:
   2219		pagecv_flag = _PAGE_CV_4V;
   2220		break;
   2221	}
   2222#ifndef CONFIG_DEBUG_PAGEALLOC
   2223	if (cpu_pgsz_mask & HV_PGSZ_MASK_256MB) {
   2224		kern_linear_pte_xor[1] = (_PAGE_VALID | _PAGE_SZ256MB_4V) ^
   2225			PAGE_OFFSET;
   2226		kern_linear_pte_xor[1] |= (_PAGE_CP_4V | pagecv_flag |
   2227					   _PAGE_P_4V | _PAGE_W_4V);
   2228	} else {
   2229		kern_linear_pte_xor[1] = kern_linear_pte_xor[0];
   2230	}
   2231
   2232	if (cpu_pgsz_mask & HV_PGSZ_MASK_2GB) {
   2233		kern_linear_pte_xor[2] = (_PAGE_VALID | _PAGE_SZ2GB_4V) ^
   2234			PAGE_OFFSET;
   2235		kern_linear_pte_xor[2] |= (_PAGE_CP_4V | pagecv_flag |
   2236					   _PAGE_P_4V | _PAGE_W_4V);
   2237	} else {
   2238		kern_linear_pte_xor[2] = kern_linear_pte_xor[1];
   2239	}
   2240
   2241	if (cpu_pgsz_mask & HV_PGSZ_MASK_16GB) {
   2242		kern_linear_pte_xor[3] = (_PAGE_VALID | _PAGE_SZ16GB_4V) ^
   2243			PAGE_OFFSET;
   2244		kern_linear_pte_xor[3] |= (_PAGE_CP_4V | pagecv_flag |
   2245					   _PAGE_P_4V | _PAGE_W_4V);
   2246	} else {
   2247		kern_linear_pte_xor[3] = kern_linear_pte_xor[2];
   2248	}
   2249#endif
   2250}
   2251
   2252/* paging_init() sets up the page tables */
   2253
   2254static unsigned long last_valid_pfn;
   2255
   2256static void sun4u_pgprot_init(void);
   2257static void sun4v_pgprot_init(void);
   2258
   2259#define _PAGE_CACHE_4U	(_PAGE_CP_4U | _PAGE_CV_4U)
   2260#define _PAGE_CACHE_4V	(_PAGE_CP_4V | _PAGE_CV_4V)
   2261#define __DIRTY_BITS_4U	 (_PAGE_MODIFIED_4U | _PAGE_WRITE_4U | _PAGE_W_4U)
   2262#define __DIRTY_BITS_4V	 (_PAGE_MODIFIED_4V | _PAGE_WRITE_4V | _PAGE_W_4V)
   2263#define __ACCESS_BITS_4U (_PAGE_ACCESSED_4U | _PAGE_READ_4U | _PAGE_R)
   2264#define __ACCESS_BITS_4V (_PAGE_ACCESSED_4V | _PAGE_READ_4V | _PAGE_R)
   2265
   2266/* We need to exclude reserved regions. This exclusion will include
   2267 * vmlinux and initrd. To be more precise the initrd size could be used to
   2268 * compute a new lower limit because it is freed later during initialization.
   2269 */
   2270static void __init reduce_memory(phys_addr_t limit_ram)
   2271{
   2272	limit_ram += memblock_reserved_size();
   2273	memblock_enforce_memory_limit(limit_ram);
   2274}
   2275
   2276void __init paging_init(void)
   2277{
   2278	unsigned long end_pfn, shift, phys_base;
   2279	unsigned long real_end, i;
   2280
   2281	setup_page_offset();
   2282
   2283	/* These build time checkes make sure that the dcache_dirty_cpu()
   2284	 * page->flags usage will work.
   2285	 *
   2286	 * When a page gets marked as dcache-dirty, we store the
   2287	 * cpu number starting at bit 32 in the page->flags.  Also,
   2288	 * functions like clear_dcache_dirty_cpu use the cpu mask
   2289	 * in 13-bit signed-immediate instruction fields.
   2290	 */
   2291
   2292	/*
   2293	 * Page flags must not reach into upper 32 bits that are used
   2294	 * for the cpu number
   2295	 */
   2296	BUILD_BUG_ON(NR_PAGEFLAGS > 32);
   2297
   2298	/*
   2299	 * The bit fields placed in the high range must not reach below
   2300	 * the 32 bit boundary. Otherwise we cannot place the cpu field
   2301	 * at the 32 bit boundary.
   2302	 */
   2303	BUILD_BUG_ON(SECTIONS_WIDTH + NODES_WIDTH + ZONES_WIDTH +
   2304		ilog2(roundup_pow_of_two(NR_CPUS)) > 32);
   2305
   2306	BUILD_BUG_ON(NR_CPUS > 4096);
   2307
   2308	kern_base = (prom_boot_mapping_phys_low >> ILOG2_4MB) << ILOG2_4MB;
   2309	kern_size = (unsigned long)&_end - (unsigned long)KERNBASE;
   2310
   2311	/* Invalidate both kernel TSBs.  */
   2312	memset(swapper_tsb, 0x40, sizeof(swapper_tsb));
   2313#ifndef CONFIG_DEBUG_PAGEALLOC
   2314	memset(swapper_4m_tsb, 0x40, sizeof(swapper_4m_tsb));
   2315#endif
   2316
   2317	/* TTE.cv bit on sparc v9 occupies the same position as TTE.mcde
   2318	 * bit on M7 processor. This is a conflicting usage of the same
   2319	 * bit. Enabling TTE.cv on M7 would turn on Memory Corruption
   2320	 * Detection error on all pages and this will lead to problems
   2321	 * later. Kernel does not run with MCD enabled and hence rest
   2322	 * of the required steps to fully configure memory corruption
   2323	 * detection are not taken. We need to ensure TTE.mcde is not
   2324	 * set on M7 processor. Compute the value of cacheability
   2325	 * flag for use later taking this into consideration.
   2326	 */
   2327	switch (sun4v_chip_type) {
   2328	case SUN4V_CHIP_SPARC_M7:
   2329	case SUN4V_CHIP_SPARC_M8:
   2330	case SUN4V_CHIP_SPARC_SN:
   2331		page_cache4v_flag = _PAGE_CP_4V;
   2332		break;
   2333	default:
   2334		page_cache4v_flag = _PAGE_CACHE_4V;
   2335		break;
   2336	}
   2337
   2338	if (tlb_type == hypervisor)
   2339		sun4v_pgprot_init();
   2340	else
   2341		sun4u_pgprot_init();
   2342
   2343	if (tlb_type == cheetah_plus ||
   2344	    tlb_type == hypervisor) {
   2345		tsb_phys_patch();
   2346		ktsb_phys_patch();
   2347	}
   2348
   2349	if (tlb_type == hypervisor)
   2350		sun4v_patch_tlb_handlers();
   2351
   2352	/* Find available physical memory...
   2353	 *
   2354	 * Read it twice in order to work around a bug in openfirmware.
   2355	 * The call to grab this table itself can cause openfirmware to
   2356	 * allocate memory, which in turn can take away some space from
   2357	 * the list of available memory.  Reading it twice makes sure
   2358	 * we really do get the final value.
   2359	 */
   2360	read_obp_translations();
   2361	read_obp_memory("reg", &pall[0], &pall_ents);
   2362	read_obp_memory("available", &pavail[0], &pavail_ents);
   2363	read_obp_memory("available", &pavail[0], &pavail_ents);
   2364
   2365	phys_base = 0xffffffffffffffffUL;
   2366	for (i = 0; i < pavail_ents; i++) {
   2367		phys_base = min(phys_base, pavail[i].phys_addr);
   2368		memblock_add(pavail[i].phys_addr, pavail[i].reg_size);
   2369	}
   2370
   2371	memblock_reserve(kern_base, kern_size);
   2372
   2373	find_ramdisk(phys_base);
   2374
   2375	if (cmdline_memory_size)
   2376		reduce_memory(cmdline_memory_size);
   2377
   2378	memblock_allow_resize();
   2379	memblock_dump_all();
   2380
   2381	set_bit(0, mmu_context_bmap);
   2382
   2383	shift = kern_base + PAGE_OFFSET - ((unsigned long)KERNBASE);
   2384
   2385	real_end = (unsigned long)_end;
   2386	num_kernel_image_mappings = DIV_ROUND_UP(real_end - KERNBASE, 1 << ILOG2_4MB);
   2387	printk("Kernel: Using %d locked TLB entries for main kernel image.\n",
   2388	       num_kernel_image_mappings);
   2389
   2390	/* Set kernel pgd to upper alias so physical page computations
   2391	 * work.
   2392	 */
   2393	init_mm.pgd += ((shift) / (sizeof(pgd_t)));
   2394	
   2395	memset(swapper_pg_dir, 0, sizeof(swapper_pg_dir));
   2396
   2397	inherit_prom_mappings();
   2398	
   2399	/* Ok, we can use our TLB miss and window trap handlers safely.  */
   2400	setup_tba();
   2401
   2402	__flush_tlb_all();
   2403
   2404	prom_build_devicetree();
   2405	of_populate_present_mask();
   2406#ifndef CONFIG_SMP
   2407	of_fill_in_cpu_data();
   2408#endif
   2409
   2410	if (tlb_type == hypervisor) {
   2411		sun4v_mdesc_init();
   2412		mdesc_populate_present_mask(cpu_all_mask);
   2413#ifndef CONFIG_SMP
   2414		mdesc_fill_in_cpu_data(cpu_all_mask);
   2415#endif
   2416		mdesc_get_page_sizes(cpu_all_mask, &cpu_pgsz_mask);
   2417
   2418		sun4v_linear_pte_xor_finalize();
   2419
   2420		sun4v_ktsb_init();
   2421		sun4v_ktsb_register();
   2422	} else {
   2423		unsigned long impl, ver;
   2424
   2425		cpu_pgsz_mask = (HV_PGSZ_MASK_8K | HV_PGSZ_MASK_64K |
   2426				 HV_PGSZ_MASK_512K | HV_PGSZ_MASK_4MB);
   2427
   2428		__asm__ __volatile__("rdpr %%ver, %0" : "=r" (ver));
   2429		impl = ((ver >> 32) & 0xffff);
   2430		if (impl == PANTHER_IMPL)
   2431			cpu_pgsz_mask |= (HV_PGSZ_MASK_32MB |
   2432					  HV_PGSZ_MASK_256MB);
   2433
   2434		sun4u_linear_pte_xor_finalize();
   2435	}
   2436
   2437	/* Flush the TLBs and the 4M TSB so that the updated linear
   2438	 * pte XOR settings are realized for all mappings.
   2439	 */
   2440	__flush_tlb_all();
   2441#ifndef CONFIG_DEBUG_PAGEALLOC
   2442	memset(swapper_4m_tsb, 0x40, sizeof(swapper_4m_tsb));
   2443#endif
   2444	__flush_tlb_all();
   2445
   2446	/* Setup bootmem... */
   2447	last_valid_pfn = end_pfn = bootmem_init(phys_base);
   2448
   2449	kernel_physical_mapping_init();
   2450
   2451	{
   2452		unsigned long max_zone_pfns[MAX_NR_ZONES];
   2453
   2454		memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
   2455
   2456		max_zone_pfns[ZONE_NORMAL] = end_pfn;
   2457
   2458		free_area_init(max_zone_pfns);
   2459	}
   2460
   2461	printk("Booting Linux...\n");
   2462}
   2463
   2464int page_in_phys_avail(unsigned long paddr)
   2465{
   2466	int i;
   2467
   2468	paddr &= PAGE_MASK;
   2469
   2470	for (i = 0; i < pavail_ents; i++) {
   2471		unsigned long start, end;
   2472
   2473		start = pavail[i].phys_addr;
   2474		end = start + pavail[i].reg_size;
   2475
   2476		if (paddr >= start && paddr < end)
   2477			return 1;
   2478	}
   2479	if (paddr >= kern_base && paddr < (kern_base + kern_size))
   2480		return 1;
   2481#ifdef CONFIG_BLK_DEV_INITRD
   2482	if (paddr >= __pa(initrd_start) &&
   2483	    paddr < __pa(PAGE_ALIGN(initrd_end)))
   2484		return 1;
   2485#endif
   2486
   2487	return 0;
   2488}
   2489
   2490static void __init register_page_bootmem_info(void)
   2491{
   2492#ifdef CONFIG_NUMA
   2493	int i;
   2494
   2495	for_each_online_node(i)
   2496		if (NODE_DATA(i)->node_spanned_pages)
   2497			register_page_bootmem_info_node(NODE_DATA(i));
   2498#endif
   2499}
   2500void __init mem_init(void)
   2501{
   2502	high_memory = __va(last_valid_pfn << PAGE_SHIFT);
   2503
   2504	memblock_free_all();
   2505
   2506	/*
   2507	 * Must be done after boot memory is put on freelist, because here we
   2508	 * might set fields in deferred struct pages that have not yet been
   2509	 * initialized, and memblock_free_all() initializes all the reserved
   2510	 * deferred pages for us.
   2511	 */
   2512	register_page_bootmem_info();
   2513
   2514	/*
   2515	 * Set up the zero page, mark it reserved, so that page count
   2516	 * is not manipulated when freeing the page from user ptes.
   2517	 */
   2518	mem_map_zero = alloc_pages(GFP_KERNEL|__GFP_ZERO, 0);
   2519	if (mem_map_zero == NULL) {
   2520		prom_printf("paging_init: Cannot alloc zero page.\n");
   2521		prom_halt();
   2522	}
   2523	mark_page_reserved(mem_map_zero);
   2524
   2525
   2526	if (tlb_type == cheetah || tlb_type == cheetah_plus)
   2527		cheetah_ecache_flush_init();
   2528}
   2529
   2530void free_initmem(void)
   2531{
   2532	unsigned long addr, initend;
   2533	int do_free = 1;
   2534
   2535	/* If the physical memory maps were trimmed by kernel command
   2536	 * line options, don't even try freeing this initmem stuff up.
   2537	 * The kernel image could have been in the trimmed out region
   2538	 * and if so the freeing below will free invalid page structs.
   2539	 */
   2540	if (cmdline_memory_size)
   2541		do_free = 0;
   2542
   2543	/*
   2544	 * The init section is aligned to 8k in vmlinux.lds. Page align for >8k pagesizes.
   2545	 */
   2546	addr = PAGE_ALIGN((unsigned long)(__init_begin));
   2547	initend = (unsigned long)(__init_end) & PAGE_MASK;
   2548	for (; addr < initend; addr += PAGE_SIZE) {
   2549		unsigned long page;
   2550
   2551		page = (addr +
   2552			((unsigned long) __va(kern_base)) -
   2553			((unsigned long) KERNBASE));
   2554		memset((void *)addr, POISON_FREE_INITMEM, PAGE_SIZE);
   2555
   2556		if (do_free)
   2557			free_reserved_page(virt_to_page(page));
   2558	}
   2559}
   2560
   2561pgprot_t PAGE_KERNEL __read_mostly;
   2562EXPORT_SYMBOL(PAGE_KERNEL);
   2563
   2564pgprot_t PAGE_KERNEL_LOCKED __read_mostly;
   2565pgprot_t PAGE_COPY __read_mostly;
   2566
   2567pgprot_t PAGE_SHARED __read_mostly;
   2568EXPORT_SYMBOL(PAGE_SHARED);
   2569
   2570unsigned long pg_iobits __read_mostly;
   2571
   2572unsigned long _PAGE_IE __read_mostly;
   2573EXPORT_SYMBOL(_PAGE_IE);
   2574
   2575unsigned long _PAGE_E __read_mostly;
   2576EXPORT_SYMBOL(_PAGE_E);
   2577
   2578unsigned long _PAGE_CACHE __read_mostly;
   2579EXPORT_SYMBOL(_PAGE_CACHE);
   2580
   2581#ifdef CONFIG_SPARSEMEM_VMEMMAP
   2582int __meminit vmemmap_populate(unsigned long vstart, unsigned long vend,
   2583			       int node, struct vmem_altmap *altmap)
   2584{
   2585	unsigned long pte_base;
   2586
   2587	pte_base = (_PAGE_VALID | _PAGE_SZ4MB_4U |
   2588		    _PAGE_CP_4U | _PAGE_CV_4U |
   2589		    _PAGE_P_4U | _PAGE_W_4U);
   2590	if (tlb_type == hypervisor)
   2591		pte_base = (_PAGE_VALID | _PAGE_SZ4MB_4V |
   2592			    page_cache4v_flag | _PAGE_P_4V | _PAGE_W_4V);
   2593
   2594	pte_base |= _PAGE_PMD_HUGE;
   2595
   2596	vstart = vstart & PMD_MASK;
   2597	vend = ALIGN(vend, PMD_SIZE);
   2598	for (; vstart < vend; vstart += PMD_SIZE) {
   2599		pgd_t *pgd = vmemmap_pgd_populate(vstart, node);
   2600		unsigned long pte;
   2601		p4d_t *p4d;
   2602		pud_t *pud;
   2603		pmd_t *pmd;
   2604
   2605		if (!pgd)
   2606			return -ENOMEM;
   2607
   2608		p4d = vmemmap_p4d_populate(pgd, vstart, node);
   2609		if (!p4d)
   2610			return -ENOMEM;
   2611
   2612		pud = vmemmap_pud_populate(p4d, vstart, node);
   2613		if (!pud)
   2614			return -ENOMEM;
   2615
   2616		pmd = pmd_offset(pud, vstart);
   2617		pte = pmd_val(*pmd);
   2618		if (!(pte & _PAGE_VALID)) {
   2619			void *block = vmemmap_alloc_block(PMD_SIZE, node);
   2620
   2621			if (!block)
   2622				return -ENOMEM;
   2623
   2624			pmd_val(*pmd) = pte_base | __pa(block);
   2625		}
   2626	}
   2627
   2628	return 0;
   2629}
   2630
   2631void vmemmap_free(unsigned long start, unsigned long end,
   2632		struct vmem_altmap *altmap)
   2633{
   2634}
   2635#endif /* CONFIG_SPARSEMEM_VMEMMAP */
   2636
   2637static void prot_init_common(unsigned long page_none,
   2638			     unsigned long page_shared,
   2639			     unsigned long page_copy,
   2640			     unsigned long page_readonly,
   2641			     unsigned long page_exec_bit)
   2642{
   2643	PAGE_COPY = __pgprot(page_copy);
   2644	PAGE_SHARED = __pgprot(page_shared);
   2645
   2646	protection_map[0x0] = __pgprot(page_none);
   2647	protection_map[0x1] = __pgprot(page_readonly & ~page_exec_bit);
   2648	protection_map[0x2] = __pgprot(page_copy & ~page_exec_bit);
   2649	protection_map[0x3] = __pgprot(page_copy & ~page_exec_bit);
   2650	protection_map[0x4] = __pgprot(page_readonly);
   2651	protection_map[0x5] = __pgprot(page_readonly);
   2652	protection_map[0x6] = __pgprot(page_copy);
   2653	protection_map[0x7] = __pgprot(page_copy);
   2654	protection_map[0x8] = __pgprot(page_none);
   2655	protection_map[0x9] = __pgprot(page_readonly & ~page_exec_bit);
   2656	protection_map[0xa] = __pgprot(page_shared & ~page_exec_bit);
   2657	protection_map[0xb] = __pgprot(page_shared & ~page_exec_bit);
   2658	protection_map[0xc] = __pgprot(page_readonly);
   2659	protection_map[0xd] = __pgprot(page_readonly);
   2660	protection_map[0xe] = __pgprot(page_shared);
   2661	protection_map[0xf] = __pgprot(page_shared);
   2662}
   2663
   2664static void __init sun4u_pgprot_init(void)
   2665{
   2666	unsigned long page_none, page_shared, page_copy, page_readonly;
   2667	unsigned long page_exec_bit;
   2668	int i;
   2669
   2670	PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID |
   2671				_PAGE_CACHE_4U | _PAGE_P_4U |
   2672				__ACCESS_BITS_4U | __DIRTY_BITS_4U |
   2673				_PAGE_EXEC_4U);
   2674	PAGE_KERNEL_LOCKED = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID |
   2675				       _PAGE_CACHE_4U | _PAGE_P_4U |
   2676				       __ACCESS_BITS_4U | __DIRTY_BITS_4U |
   2677				       _PAGE_EXEC_4U | _PAGE_L_4U);
   2678
   2679	_PAGE_IE = _PAGE_IE_4U;
   2680	_PAGE_E = _PAGE_E_4U;
   2681	_PAGE_CACHE = _PAGE_CACHE_4U;
   2682
   2683	pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4U | __DIRTY_BITS_4U |
   2684		     __ACCESS_BITS_4U | _PAGE_E_4U);
   2685
   2686#ifdef CONFIG_DEBUG_PAGEALLOC
   2687	kern_linear_pte_xor[0] = _PAGE_VALID ^ PAGE_OFFSET;
   2688#else
   2689	kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4U) ^
   2690		PAGE_OFFSET;
   2691#endif
   2692	kern_linear_pte_xor[0] |= (_PAGE_CP_4U | _PAGE_CV_4U |
   2693				   _PAGE_P_4U | _PAGE_W_4U);
   2694
   2695	for (i = 1; i < 4; i++)
   2696		kern_linear_pte_xor[i] = kern_linear_pte_xor[0];
   2697
   2698	_PAGE_ALL_SZ_BITS =  (_PAGE_SZ4MB_4U | _PAGE_SZ512K_4U |
   2699			      _PAGE_SZ64K_4U | _PAGE_SZ8K_4U |
   2700			      _PAGE_SZ32MB_4U | _PAGE_SZ256MB_4U);
   2701
   2702
   2703	page_none = _PAGE_PRESENT_4U | _PAGE_ACCESSED_4U | _PAGE_CACHE_4U;
   2704	page_shared = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
   2705		       __ACCESS_BITS_4U | _PAGE_WRITE_4U | _PAGE_EXEC_4U);
   2706	page_copy   = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
   2707		       __ACCESS_BITS_4U | _PAGE_EXEC_4U);
   2708	page_readonly   = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
   2709			   __ACCESS_BITS_4U | _PAGE_EXEC_4U);
   2710
   2711	page_exec_bit = _PAGE_EXEC_4U;
   2712
   2713	prot_init_common(page_none, page_shared, page_copy, page_readonly,
   2714			 page_exec_bit);
   2715}
   2716
   2717static void __init sun4v_pgprot_init(void)
   2718{
   2719	unsigned long page_none, page_shared, page_copy, page_readonly;
   2720	unsigned long page_exec_bit;
   2721	int i;
   2722
   2723	PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4V | _PAGE_VALID |
   2724				page_cache4v_flag | _PAGE_P_4V |
   2725				__ACCESS_BITS_4V | __DIRTY_BITS_4V |
   2726				_PAGE_EXEC_4V);
   2727	PAGE_KERNEL_LOCKED = PAGE_KERNEL;
   2728
   2729	_PAGE_IE = _PAGE_IE_4V;
   2730	_PAGE_E = _PAGE_E_4V;
   2731	_PAGE_CACHE = page_cache4v_flag;
   2732
   2733#ifdef CONFIG_DEBUG_PAGEALLOC
   2734	kern_linear_pte_xor[0] = _PAGE_VALID ^ PAGE_OFFSET;
   2735#else
   2736	kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4V) ^
   2737		PAGE_OFFSET;
   2738#endif
   2739	kern_linear_pte_xor[0] |= (page_cache4v_flag | _PAGE_P_4V |
   2740				   _PAGE_W_4V);
   2741
   2742	for (i = 1; i < 4; i++)
   2743		kern_linear_pte_xor[i] = kern_linear_pte_xor[0];
   2744
   2745	pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4V | __DIRTY_BITS_4V |
   2746		     __ACCESS_BITS_4V | _PAGE_E_4V);
   2747
   2748	_PAGE_ALL_SZ_BITS = (_PAGE_SZ16GB_4V | _PAGE_SZ2GB_4V |
   2749			     _PAGE_SZ256MB_4V | _PAGE_SZ32MB_4V |
   2750			     _PAGE_SZ4MB_4V | _PAGE_SZ512K_4V |
   2751			     _PAGE_SZ64K_4V | _PAGE_SZ8K_4V);
   2752
   2753	page_none = _PAGE_PRESENT_4V | _PAGE_ACCESSED_4V | page_cache4v_flag;
   2754	page_shared = (_PAGE_VALID | _PAGE_PRESENT_4V | page_cache4v_flag |
   2755		       __ACCESS_BITS_4V | _PAGE_WRITE_4V | _PAGE_EXEC_4V);
   2756	page_copy   = (_PAGE_VALID | _PAGE_PRESENT_4V | page_cache4v_flag |
   2757		       __ACCESS_BITS_4V | _PAGE_EXEC_4V);
   2758	page_readonly = (_PAGE_VALID | _PAGE_PRESENT_4V | page_cache4v_flag |
   2759			 __ACCESS_BITS_4V | _PAGE_EXEC_4V);
   2760
   2761	page_exec_bit = _PAGE_EXEC_4V;
   2762
   2763	prot_init_common(page_none, page_shared, page_copy, page_readonly,
   2764			 page_exec_bit);
   2765}
   2766
   2767unsigned long pte_sz_bits(unsigned long sz)
   2768{
   2769	if (tlb_type == hypervisor) {
   2770		switch (sz) {
   2771		case 8 * 1024:
   2772		default:
   2773			return _PAGE_SZ8K_4V;
   2774		case 64 * 1024:
   2775			return _PAGE_SZ64K_4V;
   2776		case 512 * 1024:
   2777			return _PAGE_SZ512K_4V;
   2778		case 4 * 1024 * 1024:
   2779			return _PAGE_SZ4MB_4V;
   2780		}
   2781	} else {
   2782		switch (sz) {
   2783		case 8 * 1024:
   2784		default:
   2785			return _PAGE_SZ8K_4U;
   2786		case 64 * 1024:
   2787			return _PAGE_SZ64K_4U;
   2788		case 512 * 1024:
   2789			return _PAGE_SZ512K_4U;
   2790		case 4 * 1024 * 1024:
   2791			return _PAGE_SZ4MB_4U;
   2792		}
   2793	}
   2794}
   2795
   2796pte_t mk_pte_io(unsigned long page, pgprot_t prot, int space, unsigned long page_size)
   2797{
   2798	pte_t pte;
   2799
   2800	pte_val(pte)  = page | pgprot_val(pgprot_noncached(prot));
   2801	pte_val(pte) |= (((unsigned long)space) << 32);
   2802	pte_val(pte) |= pte_sz_bits(page_size);
   2803
   2804	return pte;
   2805}
   2806
   2807static unsigned long kern_large_tte(unsigned long paddr)
   2808{
   2809	unsigned long val;
   2810
   2811	val = (_PAGE_VALID | _PAGE_SZ4MB_4U |
   2812	       _PAGE_CP_4U | _PAGE_CV_4U | _PAGE_P_4U |
   2813	       _PAGE_EXEC_4U | _PAGE_L_4U | _PAGE_W_4U);
   2814	if (tlb_type == hypervisor)
   2815		val = (_PAGE_VALID | _PAGE_SZ4MB_4V |
   2816		       page_cache4v_flag | _PAGE_P_4V |
   2817		       _PAGE_EXEC_4V | _PAGE_W_4V);
   2818
   2819	return val | paddr;
   2820}
   2821
   2822/* If not locked, zap it. */
   2823void __flush_tlb_all(void)
   2824{
   2825	unsigned long pstate;
   2826	int i;
   2827
   2828	__asm__ __volatile__("flushw\n\t"
   2829			     "rdpr	%%pstate, %0\n\t"
   2830			     "wrpr	%0, %1, %%pstate"
   2831			     : "=r" (pstate)
   2832			     : "i" (PSTATE_IE));
   2833	if (tlb_type == hypervisor) {
   2834		sun4v_mmu_demap_all();
   2835	} else if (tlb_type == spitfire) {
   2836		for (i = 0; i < 64; i++) {
   2837			/* Spitfire Errata #32 workaround */
   2838			/* NOTE: Always runs on spitfire, so no
   2839			 *       cheetah+ page size encodings.
   2840			 */
   2841			__asm__ __volatile__("stxa	%0, [%1] %2\n\t"
   2842					     "flush	%%g6"
   2843					     : /* No outputs */
   2844					     : "r" (0),
   2845					     "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
   2846
   2847			if (!(spitfire_get_dtlb_data(i) & _PAGE_L_4U)) {
   2848				__asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
   2849						     "membar #Sync"
   2850						     : /* no outputs */
   2851						     : "r" (TLB_TAG_ACCESS), "i" (ASI_DMMU));
   2852				spitfire_put_dtlb_data(i, 0x0UL);
   2853			}
   2854
   2855			/* Spitfire Errata #32 workaround */
   2856			/* NOTE: Always runs on spitfire, so no
   2857			 *       cheetah+ page size encodings.
   2858			 */
   2859			__asm__ __volatile__("stxa	%0, [%1] %2\n\t"
   2860					     "flush	%%g6"
   2861					     : /* No outputs */
   2862					     : "r" (0),
   2863					     "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
   2864
   2865			if (!(spitfire_get_itlb_data(i) & _PAGE_L_4U)) {
   2866				__asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
   2867						     "membar #Sync"
   2868						     : /* no outputs */
   2869						     : "r" (TLB_TAG_ACCESS), "i" (ASI_IMMU));
   2870				spitfire_put_itlb_data(i, 0x0UL);
   2871			}
   2872		}
   2873	} else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
   2874		cheetah_flush_dtlb_all();
   2875		cheetah_flush_itlb_all();
   2876	}
   2877	__asm__ __volatile__("wrpr	%0, 0, %%pstate"
   2878			     : : "r" (pstate));
   2879}
   2880
   2881pte_t *pte_alloc_one_kernel(struct mm_struct *mm)
   2882{
   2883	struct page *page = alloc_page(GFP_KERNEL | __GFP_ZERO);
   2884	pte_t *pte = NULL;
   2885
   2886	if (page)
   2887		pte = (pte_t *) page_address(page);
   2888
   2889	return pte;
   2890}
   2891
   2892pgtable_t pte_alloc_one(struct mm_struct *mm)
   2893{
   2894	struct page *page = alloc_page(GFP_KERNEL | __GFP_ZERO);
   2895	if (!page)
   2896		return NULL;
   2897	if (!pgtable_pte_page_ctor(page)) {
   2898		__free_page(page);
   2899		return NULL;
   2900	}
   2901	return (pte_t *) page_address(page);
   2902}
   2903
   2904void pte_free_kernel(struct mm_struct *mm, pte_t *pte)
   2905{
   2906	free_page((unsigned long)pte);
   2907}
   2908
   2909static void __pte_free(pgtable_t pte)
   2910{
   2911	struct page *page = virt_to_page(pte);
   2912
   2913	pgtable_pte_page_dtor(page);
   2914	__free_page(page);
   2915}
   2916
   2917void pte_free(struct mm_struct *mm, pgtable_t pte)
   2918{
   2919	__pte_free(pte);
   2920}
   2921
   2922void pgtable_free(void *table, bool is_page)
   2923{
   2924	if (is_page)
   2925		__pte_free(table);
   2926	else
   2927		kmem_cache_free(pgtable_cache, table);
   2928}
   2929
   2930#ifdef CONFIG_TRANSPARENT_HUGEPAGE
   2931void update_mmu_cache_pmd(struct vm_area_struct *vma, unsigned long addr,
   2932			  pmd_t *pmd)
   2933{
   2934	unsigned long pte, flags;
   2935	struct mm_struct *mm;
   2936	pmd_t entry = *pmd;
   2937
   2938	if (!pmd_large(entry) || !pmd_young(entry))
   2939		return;
   2940
   2941	pte = pmd_val(entry);
   2942
   2943	/* Don't insert a non-valid PMD into the TSB, we'll deadlock.  */
   2944	if (!(pte & _PAGE_VALID))
   2945		return;
   2946
   2947	/* We are fabricating 8MB pages using 4MB real hw pages.  */
   2948	pte |= (addr & (1UL << REAL_HPAGE_SHIFT));
   2949
   2950	mm = vma->vm_mm;
   2951
   2952	spin_lock_irqsave(&mm->context.lock, flags);
   2953
   2954	if (mm->context.tsb_block[MM_TSB_HUGE].tsb != NULL)
   2955		__update_mmu_tsb_insert(mm, MM_TSB_HUGE, REAL_HPAGE_SHIFT,
   2956					addr, pte);
   2957
   2958	spin_unlock_irqrestore(&mm->context.lock, flags);
   2959}
   2960#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
   2961
   2962#if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
   2963static void context_reload(void *__data)
   2964{
   2965	struct mm_struct *mm = __data;
   2966
   2967	if (mm == current->mm)
   2968		load_secondary_context(mm);
   2969}
   2970
   2971void hugetlb_setup(struct pt_regs *regs)
   2972{
   2973	struct mm_struct *mm = current->mm;
   2974	struct tsb_config *tp;
   2975
   2976	if (faulthandler_disabled() || !mm) {
   2977		const struct exception_table_entry *entry;
   2978
   2979		entry = search_exception_tables(regs->tpc);
   2980		if (entry) {
   2981			regs->tpc = entry->fixup;
   2982			regs->tnpc = regs->tpc + 4;
   2983			return;
   2984		}
   2985		pr_alert("Unexpected HugeTLB setup in atomic context.\n");
   2986		die_if_kernel("HugeTSB in atomic", regs);
   2987	}
   2988
   2989	tp = &mm->context.tsb_block[MM_TSB_HUGE];
   2990	if (likely(tp->tsb == NULL))
   2991		tsb_grow(mm, MM_TSB_HUGE, 0);
   2992
   2993	tsb_context_switch(mm);
   2994	smp_tsb_sync(mm);
   2995
   2996	/* On UltraSPARC-III+ and later, configure the second half of
   2997	 * the Data-TLB for huge pages.
   2998	 */
   2999	if (tlb_type == cheetah_plus) {
   3000		bool need_context_reload = false;
   3001		unsigned long ctx;
   3002
   3003		spin_lock_irq(&ctx_alloc_lock);
   3004		ctx = mm->context.sparc64_ctx_val;
   3005		ctx &= ~CTX_PGSZ_MASK;
   3006		ctx |= CTX_PGSZ_BASE << CTX_PGSZ0_SHIFT;
   3007		ctx |= CTX_PGSZ_HUGE << CTX_PGSZ1_SHIFT;
   3008
   3009		if (ctx != mm->context.sparc64_ctx_val) {
   3010			/* When changing the page size fields, we
   3011			 * must perform a context flush so that no
   3012			 * stale entries match.  This flush must
   3013			 * occur with the original context register
   3014			 * settings.
   3015			 */
   3016			do_flush_tlb_mm(mm);
   3017
   3018			/* Reload the context register of all processors
   3019			 * also executing in this address space.
   3020			 */
   3021			mm->context.sparc64_ctx_val = ctx;
   3022			need_context_reload = true;
   3023		}
   3024		spin_unlock_irq(&ctx_alloc_lock);
   3025
   3026		if (need_context_reload)
   3027			on_each_cpu(context_reload, mm, 0);
   3028	}
   3029}
   3030#endif
   3031
   3032static struct resource code_resource = {
   3033	.name	= "Kernel code",
   3034	.flags	= IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
   3035};
   3036
   3037static struct resource data_resource = {
   3038	.name	= "Kernel data",
   3039	.flags	= IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
   3040};
   3041
   3042static struct resource bss_resource = {
   3043	.name	= "Kernel bss",
   3044	.flags	= IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
   3045};
   3046
   3047static inline resource_size_t compute_kern_paddr(void *addr)
   3048{
   3049	return (resource_size_t) (addr - KERNBASE + kern_base);
   3050}
   3051
   3052static void __init kernel_lds_init(void)
   3053{
   3054	code_resource.start = compute_kern_paddr(_text);
   3055	code_resource.end   = compute_kern_paddr(_etext - 1);
   3056	data_resource.start = compute_kern_paddr(_etext);
   3057	data_resource.end   = compute_kern_paddr(_edata - 1);
   3058	bss_resource.start  = compute_kern_paddr(__bss_start);
   3059	bss_resource.end    = compute_kern_paddr(_end - 1);
   3060}
   3061
   3062static int __init report_memory(void)
   3063{
   3064	int i;
   3065	struct resource *res;
   3066
   3067	kernel_lds_init();
   3068
   3069	for (i = 0; i < pavail_ents; i++) {
   3070		res = kzalloc(sizeof(struct resource), GFP_KERNEL);
   3071
   3072		if (!res) {
   3073			pr_warn("Failed to allocate source.\n");
   3074			break;
   3075		}
   3076
   3077		res->name = "System RAM";
   3078		res->start = pavail[i].phys_addr;
   3079		res->end = pavail[i].phys_addr + pavail[i].reg_size - 1;
   3080		res->flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM;
   3081
   3082		if (insert_resource(&iomem_resource, res) < 0) {
   3083			pr_warn("Resource insertion failed.\n");
   3084			break;
   3085		}
   3086
   3087		insert_resource(res, &code_resource);
   3088		insert_resource(res, &data_resource);
   3089		insert_resource(res, &bss_resource);
   3090	}
   3091
   3092	return 0;
   3093}
   3094arch_initcall(report_memory);
   3095
   3096#ifdef CONFIG_SMP
   3097#define do_flush_tlb_kernel_range	smp_flush_tlb_kernel_range
   3098#else
   3099#define do_flush_tlb_kernel_range	__flush_tlb_kernel_range
   3100#endif
   3101
   3102void flush_tlb_kernel_range(unsigned long start, unsigned long end)
   3103{
   3104	if (start < HI_OBP_ADDRESS && end > LOW_OBP_ADDRESS) {
   3105		if (start < LOW_OBP_ADDRESS) {
   3106			flush_tsb_kernel_range(start, LOW_OBP_ADDRESS);
   3107			do_flush_tlb_kernel_range(start, LOW_OBP_ADDRESS);
   3108		}
   3109		if (end > HI_OBP_ADDRESS) {
   3110			flush_tsb_kernel_range(HI_OBP_ADDRESS, end);
   3111			do_flush_tlb_kernel_range(HI_OBP_ADDRESS, end);
   3112		}
   3113	} else {
   3114		flush_tsb_kernel_range(start, end);
   3115		do_flush_tlb_kernel_range(start, end);
   3116	}
   3117}
   3118
   3119void copy_user_highpage(struct page *to, struct page *from,
   3120	unsigned long vaddr, struct vm_area_struct *vma)
   3121{
   3122	char *vfrom, *vto;
   3123
   3124	vfrom = kmap_atomic(from);
   3125	vto = kmap_atomic(to);
   3126	copy_user_page(vto, vfrom, vaddr, to);
   3127	kunmap_atomic(vto);
   3128	kunmap_atomic(vfrom);
   3129
   3130	/* If this page has ADI enabled, copy over any ADI tags
   3131	 * as well
   3132	 */
   3133	if (vma->vm_flags & VM_SPARC_ADI) {
   3134		unsigned long pfrom, pto, i, adi_tag;
   3135
   3136		pfrom = page_to_phys(from);
   3137		pto = page_to_phys(to);
   3138
   3139		for (i = pfrom; i < (pfrom + PAGE_SIZE); i += adi_blksize()) {
   3140			asm volatile("ldxa [%1] %2, %0\n\t"
   3141					: "=r" (adi_tag)
   3142					:  "r" (i), "i" (ASI_MCD_REAL));
   3143			asm volatile("stxa %0, [%1] %2\n\t"
   3144					:
   3145					: "r" (adi_tag), "r" (pto),
   3146					  "i" (ASI_MCD_REAL));
   3147			pto += adi_blksize();
   3148		}
   3149		asm volatile("membar #Sync\n\t");
   3150	}
   3151}
   3152EXPORT_SYMBOL(copy_user_highpage);
   3153
   3154void copy_highpage(struct page *to, struct page *from)
   3155{
   3156	char *vfrom, *vto;
   3157
   3158	vfrom = kmap_atomic(from);
   3159	vto = kmap_atomic(to);
   3160	copy_page(vto, vfrom);
   3161	kunmap_atomic(vto);
   3162	kunmap_atomic(vfrom);
   3163
   3164	/* If this platform is ADI enabled, copy any ADI tags
   3165	 * as well
   3166	 */
   3167	if (adi_capable()) {
   3168		unsigned long pfrom, pto, i, adi_tag;
   3169
   3170		pfrom = page_to_phys(from);
   3171		pto = page_to_phys(to);
   3172
   3173		for (i = pfrom; i < (pfrom + PAGE_SIZE); i += adi_blksize()) {
   3174			asm volatile("ldxa [%1] %2, %0\n\t"
   3175					: "=r" (adi_tag)
   3176					:  "r" (i), "i" (ASI_MCD_REAL));
   3177			asm volatile("stxa %0, [%1] %2\n\t"
   3178					:
   3179					: "r" (adi_tag), "r" (pto),
   3180					  "i" (ASI_MCD_REAL));
   3181			pto += adi_blksize();
   3182		}
   3183		asm volatile("membar #Sync\n\t");
   3184	}
   3185}
   3186EXPORT_SYMBOL(copy_highpage);
   3187
   3188pgprot_t vm_get_page_prot(unsigned long vm_flags)
   3189{
   3190	unsigned long prot = pgprot_val(protection_map[vm_flags &
   3191					(VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]);
   3192
   3193	if (vm_flags & VM_SPARC_ADI)
   3194		prot |= _PAGE_MCD_4V;
   3195
   3196	return __pgprot(prot);
   3197}
   3198EXPORT_SYMBOL(vm_get_page_prot);