cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

srmmu.c (50315B)


      1// SPDX-License-Identifier: GPL-2.0
      2/*
      3 * srmmu.c:  SRMMU specific routines for memory management.
      4 *
      5 * Copyright (C) 1995 David S. Miller  (davem@caip.rutgers.edu)
      6 * Copyright (C) 1995,2002 Pete Zaitcev (zaitcev@yahoo.com)
      7 * Copyright (C) 1996 Eddie C. Dost    (ecd@skynet.be)
      8 * Copyright (C) 1997,1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
      9 * Copyright (C) 1999,2000 Anton Blanchard (anton@samba.org)
     10 */
     11
     12#include <linux/seq_file.h>
     13#include <linux/spinlock.h>
     14#include <linux/memblock.h>
     15#include <linux/pagemap.h>
     16#include <linux/vmalloc.h>
     17#include <linux/kdebug.h>
     18#include <linux/export.h>
     19#include <linux/kernel.h>
     20#include <linux/init.h>
     21#include <linux/log2.h>
     22#include <linux/gfp.h>
     23#include <linux/fs.h>
     24#include <linux/mm.h>
     25
     26#include <asm/mmu_context.h>
     27#include <asm/cacheflush.h>
     28#include <asm/tlbflush.h>
     29#include <asm/io-unit.h>
     30#include <asm/pgalloc.h>
     31#include <asm/pgtable.h>
     32#include <asm/bitext.h>
     33#include <asm/vaddrs.h>
     34#include <asm/cache.h>
     35#include <asm/traps.h>
     36#include <asm/oplib.h>
     37#include <asm/mbus.h>
     38#include <asm/page.h>
     39#include <asm/asi.h>
     40#include <asm/smp.h>
     41#include <asm/io.h>
     42
     43/* Now the cpu specific definitions. */
     44#include <asm/turbosparc.h>
     45#include <asm/tsunami.h>
     46#include <asm/viking.h>
     47#include <asm/swift.h>
     48#include <asm/leon.h>
     49#include <asm/mxcc.h>
     50#include <asm/ross.h>
     51
     52#include "mm_32.h"
     53
     54enum mbus_module srmmu_modtype;
     55static unsigned int hwbug_bitmask;
     56int vac_cache_size;
     57EXPORT_SYMBOL(vac_cache_size);
     58int vac_line_size;
     59
     60extern struct resource sparc_iomap;
     61
     62extern unsigned long last_valid_pfn;
     63
     64static pgd_t *srmmu_swapper_pg_dir;
     65
     66const struct sparc32_cachetlb_ops *sparc32_cachetlb_ops;
     67EXPORT_SYMBOL(sparc32_cachetlb_ops);
     68
     69#ifdef CONFIG_SMP
     70const struct sparc32_cachetlb_ops *local_ops;
     71
     72#define FLUSH_BEGIN(mm)
     73#define FLUSH_END
     74#else
     75#define FLUSH_BEGIN(mm) if ((mm)->context != NO_CONTEXT) {
     76#define FLUSH_END	}
     77#endif
     78
     79int flush_page_for_dma_global = 1;
     80
     81char *srmmu_name;
     82
     83ctxd_t *srmmu_ctx_table_phys;
     84static ctxd_t *srmmu_context_table;
     85
     86int viking_mxcc_present;
     87static DEFINE_SPINLOCK(srmmu_context_spinlock);
     88
     89static int is_hypersparc;
     90
     91static int srmmu_cache_pagetables;
     92
     93/* these will be initialized in srmmu_nocache_calcsize() */
     94static unsigned long srmmu_nocache_size;
     95static unsigned long srmmu_nocache_end;
     96
     97/* 1 bit <=> 256 bytes of nocache <=> 64 PTEs */
     98#define SRMMU_NOCACHE_BITMAP_SHIFT (PAGE_SHIFT - 4)
     99
    100/* The context table is a nocache user with the biggest alignment needs. */
    101#define SRMMU_NOCACHE_ALIGN_MAX (sizeof(ctxd_t)*SRMMU_MAX_CONTEXTS)
    102
    103void *srmmu_nocache_pool;
    104static struct bit_map srmmu_nocache_map;
    105
    106static inline int srmmu_pmd_none(pmd_t pmd)
    107{ return !(pmd_val(pmd) & 0xFFFFFFF); }
    108
    109/* XXX should we hyper_flush_whole_icache here - Anton */
    110static inline void srmmu_ctxd_set(ctxd_t *ctxp, pgd_t *pgdp)
    111{
    112	pte_t pte;
    113
    114	pte = __pte((SRMMU_ET_PTD | (__nocache_pa(pgdp) >> 4)));
    115	set_pte((pte_t *)ctxp, pte);
    116}
    117
    118/*
    119 * Locations of MSI Registers.
    120 */
    121#define MSI_MBUS_ARBEN	0xe0001008	/* MBus Arbiter Enable register */
    122
    123/*
    124 * Useful bits in the MSI Registers.
    125 */
    126#define MSI_ASYNC_MODE  0x80000000	/* Operate the MSI asynchronously */
    127
    128static void msi_set_sync(void)
    129{
    130	__asm__ __volatile__ ("lda [%0] %1, %%g3\n\t"
    131			      "andn %%g3, %2, %%g3\n\t"
    132			      "sta %%g3, [%0] %1\n\t" : :
    133			      "r" (MSI_MBUS_ARBEN),
    134			      "i" (ASI_M_CTL), "r" (MSI_ASYNC_MODE) : "g3");
    135}
    136
    137void pmd_set(pmd_t *pmdp, pte_t *ptep)
    138{
    139	unsigned long ptp = __nocache_pa(ptep) >> 4;
    140	set_pte((pte_t *)&pmd_val(*pmdp), __pte(SRMMU_ET_PTD | ptp));
    141}
    142
    143/*
    144 * size: bytes to allocate in the nocache area.
    145 * align: bytes, number to align at.
    146 * Returns the virtual address of the allocated area.
    147 */
    148static void *__srmmu_get_nocache(int size, int align)
    149{
    150	int offset, minsz = 1 << SRMMU_NOCACHE_BITMAP_SHIFT;
    151	unsigned long addr;
    152
    153	if (size < minsz) {
    154		printk(KERN_ERR "Size 0x%x too small for nocache request\n",
    155		       size);
    156		size = minsz;
    157	}
    158	if (size & (minsz - 1)) {
    159		printk(KERN_ERR "Size 0x%x unaligned in nocache request\n",
    160		       size);
    161		size += minsz - 1;
    162	}
    163	BUG_ON(align > SRMMU_NOCACHE_ALIGN_MAX);
    164
    165	offset = bit_map_string_get(&srmmu_nocache_map,
    166				    size >> SRMMU_NOCACHE_BITMAP_SHIFT,
    167				    align >> SRMMU_NOCACHE_BITMAP_SHIFT);
    168	if (offset == -1) {
    169		printk(KERN_ERR "srmmu: out of nocache %d: %d/%d\n",
    170		       size, (int) srmmu_nocache_size,
    171		       srmmu_nocache_map.used << SRMMU_NOCACHE_BITMAP_SHIFT);
    172		return NULL;
    173	}
    174
    175	addr = SRMMU_NOCACHE_VADDR + (offset << SRMMU_NOCACHE_BITMAP_SHIFT);
    176	return (void *)addr;
    177}
    178
    179void *srmmu_get_nocache(int size, int align)
    180{
    181	void *tmp;
    182
    183	tmp = __srmmu_get_nocache(size, align);
    184
    185	if (tmp)
    186		memset(tmp, 0, size);
    187
    188	return tmp;
    189}
    190
    191void srmmu_free_nocache(void *addr, int size)
    192{
    193	unsigned long vaddr;
    194	int offset;
    195
    196	vaddr = (unsigned long)addr;
    197	if (vaddr < SRMMU_NOCACHE_VADDR) {
    198		printk("Vaddr %lx is smaller than nocache base 0x%lx\n",
    199		    vaddr, (unsigned long)SRMMU_NOCACHE_VADDR);
    200		BUG();
    201	}
    202	if (vaddr + size > srmmu_nocache_end) {
    203		printk("Vaddr %lx is bigger than nocache end 0x%lx\n",
    204		    vaddr, srmmu_nocache_end);
    205		BUG();
    206	}
    207	if (!is_power_of_2(size)) {
    208		printk("Size 0x%x is not a power of 2\n", size);
    209		BUG();
    210	}
    211	if (size < SRMMU_NOCACHE_BITMAP_SHIFT) {
    212		printk("Size 0x%x is too small\n", size);
    213		BUG();
    214	}
    215	if (vaddr & (size - 1)) {
    216		printk("Vaddr %lx is not aligned to size 0x%x\n", vaddr, size);
    217		BUG();
    218	}
    219
    220	offset = (vaddr - SRMMU_NOCACHE_VADDR) >> SRMMU_NOCACHE_BITMAP_SHIFT;
    221	size = size >> SRMMU_NOCACHE_BITMAP_SHIFT;
    222
    223	bit_map_clear(&srmmu_nocache_map, offset, size);
    224}
    225
    226static void srmmu_early_allocate_ptable_skeleton(unsigned long start,
    227						 unsigned long end);
    228
    229/* Return how much physical memory we have.  */
    230static unsigned long __init probe_memory(void)
    231{
    232	unsigned long total = 0;
    233	int i;
    234
    235	for (i = 0; sp_banks[i].num_bytes; i++)
    236		total += sp_banks[i].num_bytes;
    237
    238	return total;
    239}
    240
    241/*
    242 * Reserve nocache dynamically proportionally to the amount of
    243 * system RAM. -- Tomas Szepe <szepe@pinerecords.com>, June 2002
    244 */
    245static void __init srmmu_nocache_calcsize(void)
    246{
    247	unsigned long sysmemavail = probe_memory() / 1024;
    248	int srmmu_nocache_npages;
    249
    250	srmmu_nocache_npages =
    251		sysmemavail / SRMMU_NOCACHE_ALCRATIO / 1024 * 256;
    252
    253 /* P3 XXX The 4x overuse: corroborated by /proc/meminfo. */
    254	// if (srmmu_nocache_npages < 256) srmmu_nocache_npages = 256;
    255	if (srmmu_nocache_npages < SRMMU_MIN_NOCACHE_PAGES)
    256		srmmu_nocache_npages = SRMMU_MIN_NOCACHE_PAGES;
    257
    258	/* anything above 1280 blows up */
    259	if (srmmu_nocache_npages > SRMMU_MAX_NOCACHE_PAGES)
    260		srmmu_nocache_npages = SRMMU_MAX_NOCACHE_PAGES;
    261
    262	srmmu_nocache_size = srmmu_nocache_npages * PAGE_SIZE;
    263	srmmu_nocache_end = SRMMU_NOCACHE_VADDR + srmmu_nocache_size;
    264}
    265
    266static void __init srmmu_nocache_init(void)
    267{
    268	void *srmmu_nocache_bitmap;
    269	unsigned int bitmap_bits;
    270	pgd_t *pgd;
    271	p4d_t *p4d;
    272	pud_t *pud;
    273	pmd_t *pmd;
    274	pte_t *pte;
    275	unsigned long paddr, vaddr;
    276	unsigned long pteval;
    277
    278	bitmap_bits = srmmu_nocache_size >> SRMMU_NOCACHE_BITMAP_SHIFT;
    279
    280	srmmu_nocache_pool = memblock_alloc(srmmu_nocache_size,
    281					    SRMMU_NOCACHE_ALIGN_MAX);
    282	if (!srmmu_nocache_pool)
    283		panic("%s: Failed to allocate %lu bytes align=0x%x\n",
    284		      __func__, srmmu_nocache_size, SRMMU_NOCACHE_ALIGN_MAX);
    285	memset(srmmu_nocache_pool, 0, srmmu_nocache_size);
    286
    287	srmmu_nocache_bitmap =
    288		memblock_alloc(BITS_TO_LONGS(bitmap_bits) * sizeof(long),
    289			       SMP_CACHE_BYTES);
    290	if (!srmmu_nocache_bitmap)
    291		panic("%s: Failed to allocate %zu bytes\n", __func__,
    292		      BITS_TO_LONGS(bitmap_bits) * sizeof(long));
    293	bit_map_init(&srmmu_nocache_map, srmmu_nocache_bitmap, bitmap_bits);
    294
    295	srmmu_swapper_pg_dir = __srmmu_get_nocache(SRMMU_PGD_TABLE_SIZE, SRMMU_PGD_TABLE_SIZE);
    296	memset(__nocache_fix(srmmu_swapper_pg_dir), 0, SRMMU_PGD_TABLE_SIZE);
    297	init_mm.pgd = srmmu_swapper_pg_dir;
    298
    299	srmmu_early_allocate_ptable_skeleton(SRMMU_NOCACHE_VADDR, srmmu_nocache_end);
    300
    301	paddr = __pa((unsigned long)srmmu_nocache_pool);
    302	vaddr = SRMMU_NOCACHE_VADDR;
    303
    304	while (vaddr < srmmu_nocache_end) {
    305		pgd = pgd_offset_k(vaddr);
    306		p4d = p4d_offset(pgd, vaddr);
    307		pud = pud_offset(p4d, vaddr);
    308		pmd = pmd_offset(__nocache_fix(pud), vaddr);
    309		pte = pte_offset_kernel(__nocache_fix(pmd), vaddr);
    310
    311		pteval = ((paddr >> 4) | SRMMU_ET_PTE | SRMMU_PRIV);
    312
    313		if (srmmu_cache_pagetables)
    314			pteval |= SRMMU_CACHE;
    315
    316		set_pte(__nocache_fix(pte), __pte(pteval));
    317
    318		vaddr += PAGE_SIZE;
    319		paddr += PAGE_SIZE;
    320	}
    321
    322	flush_cache_all();
    323	flush_tlb_all();
    324}
    325
    326pgd_t *get_pgd_fast(void)
    327{
    328	pgd_t *pgd = NULL;
    329
    330	pgd = __srmmu_get_nocache(SRMMU_PGD_TABLE_SIZE, SRMMU_PGD_TABLE_SIZE);
    331	if (pgd) {
    332		pgd_t *init = pgd_offset_k(0);
    333		memset(pgd, 0, USER_PTRS_PER_PGD * sizeof(pgd_t));
    334		memcpy(pgd + USER_PTRS_PER_PGD, init + USER_PTRS_PER_PGD,
    335						(PTRS_PER_PGD - USER_PTRS_PER_PGD) * sizeof(pgd_t));
    336	}
    337
    338	return pgd;
    339}
    340
    341/*
    342 * Hardware needs alignment to 256 only, but we align to whole page size
    343 * to reduce fragmentation problems due to the buddy principle.
    344 * XXX Provide actual fragmentation statistics in /proc.
    345 *
    346 * Alignments up to the page size are the same for physical and virtual
    347 * addresses of the nocache area.
    348 */
    349pgtable_t pte_alloc_one(struct mm_struct *mm)
    350{
    351	pte_t *ptep;
    352	struct page *page;
    353
    354	if (!(ptep = pte_alloc_one_kernel(mm)))
    355		return NULL;
    356	page = pfn_to_page(__nocache_pa((unsigned long)ptep) >> PAGE_SHIFT);
    357	spin_lock(&mm->page_table_lock);
    358	if (page_ref_inc_return(page) == 2 && !pgtable_pte_page_ctor(page)) {
    359		page_ref_dec(page);
    360		ptep = NULL;
    361	}
    362	spin_unlock(&mm->page_table_lock);
    363
    364	return ptep;
    365}
    366
    367void pte_free(struct mm_struct *mm, pgtable_t ptep)
    368{
    369	struct page *page;
    370
    371	page = pfn_to_page(__nocache_pa((unsigned long)ptep) >> PAGE_SHIFT);
    372	spin_lock(&mm->page_table_lock);
    373	if (page_ref_dec_return(page) == 1)
    374		pgtable_pte_page_dtor(page);
    375	spin_unlock(&mm->page_table_lock);
    376
    377	srmmu_free_nocache(ptep, SRMMU_PTE_TABLE_SIZE);
    378}
    379
    380/* context handling - a dynamically sized pool is used */
    381#define NO_CONTEXT	-1
    382
    383struct ctx_list {
    384	struct ctx_list *next;
    385	struct ctx_list *prev;
    386	unsigned int ctx_number;
    387	struct mm_struct *ctx_mm;
    388};
    389
    390static struct ctx_list *ctx_list_pool;
    391static struct ctx_list ctx_free;
    392static struct ctx_list ctx_used;
    393
    394/* At boot time we determine the number of contexts */
    395static int num_contexts;
    396
    397static inline void remove_from_ctx_list(struct ctx_list *entry)
    398{
    399	entry->next->prev = entry->prev;
    400	entry->prev->next = entry->next;
    401}
    402
    403static inline void add_to_ctx_list(struct ctx_list *head, struct ctx_list *entry)
    404{
    405	entry->next = head;
    406	(entry->prev = head->prev)->next = entry;
    407	head->prev = entry;
    408}
    409#define add_to_free_ctxlist(entry) add_to_ctx_list(&ctx_free, entry)
    410#define add_to_used_ctxlist(entry) add_to_ctx_list(&ctx_used, entry)
    411
    412
    413static inline void alloc_context(struct mm_struct *old_mm, struct mm_struct *mm)
    414{
    415	struct ctx_list *ctxp;
    416
    417	ctxp = ctx_free.next;
    418	if (ctxp != &ctx_free) {
    419		remove_from_ctx_list(ctxp);
    420		add_to_used_ctxlist(ctxp);
    421		mm->context = ctxp->ctx_number;
    422		ctxp->ctx_mm = mm;
    423		return;
    424	}
    425	ctxp = ctx_used.next;
    426	if (ctxp->ctx_mm == old_mm)
    427		ctxp = ctxp->next;
    428	if (ctxp == &ctx_used)
    429		panic("out of mmu contexts");
    430	flush_cache_mm(ctxp->ctx_mm);
    431	flush_tlb_mm(ctxp->ctx_mm);
    432	remove_from_ctx_list(ctxp);
    433	add_to_used_ctxlist(ctxp);
    434	ctxp->ctx_mm->context = NO_CONTEXT;
    435	ctxp->ctx_mm = mm;
    436	mm->context = ctxp->ctx_number;
    437}
    438
    439static inline void free_context(int context)
    440{
    441	struct ctx_list *ctx_old;
    442
    443	ctx_old = ctx_list_pool + context;
    444	remove_from_ctx_list(ctx_old);
    445	add_to_free_ctxlist(ctx_old);
    446}
    447
    448static void __init sparc_context_init(int numctx)
    449{
    450	int ctx;
    451	unsigned long size;
    452
    453	size = numctx * sizeof(struct ctx_list);
    454	ctx_list_pool = memblock_alloc(size, SMP_CACHE_BYTES);
    455	if (!ctx_list_pool)
    456		panic("%s: Failed to allocate %lu bytes\n", __func__, size);
    457
    458	for (ctx = 0; ctx < numctx; ctx++) {
    459		struct ctx_list *clist;
    460
    461		clist = (ctx_list_pool + ctx);
    462		clist->ctx_number = ctx;
    463		clist->ctx_mm = NULL;
    464	}
    465	ctx_free.next = ctx_free.prev = &ctx_free;
    466	ctx_used.next = ctx_used.prev = &ctx_used;
    467	for (ctx = 0; ctx < numctx; ctx++)
    468		add_to_free_ctxlist(ctx_list_pool + ctx);
    469}
    470
    471void switch_mm(struct mm_struct *old_mm, struct mm_struct *mm,
    472	       struct task_struct *tsk)
    473{
    474	unsigned long flags;
    475
    476	if (mm->context == NO_CONTEXT) {
    477		spin_lock_irqsave(&srmmu_context_spinlock, flags);
    478		alloc_context(old_mm, mm);
    479		spin_unlock_irqrestore(&srmmu_context_spinlock, flags);
    480		srmmu_ctxd_set(&srmmu_context_table[mm->context], mm->pgd);
    481	}
    482
    483	if (sparc_cpu_model == sparc_leon)
    484		leon_switch_mm();
    485
    486	if (is_hypersparc)
    487		hyper_flush_whole_icache();
    488
    489	srmmu_set_context(mm->context);
    490}
    491
    492/* Low level IO area allocation on the SRMMU. */
    493static inline void srmmu_mapioaddr(unsigned long physaddr,
    494				   unsigned long virt_addr, int bus_type)
    495{
    496	pgd_t *pgdp;
    497	p4d_t *p4dp;
    498	pud_t *pudp;
    499	pmd_t *pmdp;
    500	pte_t *ptep;
    501	unsigned long tmp;
    502
    503	physaddr &= PAGE_MASK;
    504	pgdp = pgd_offset_k(virt_addr);
    505	p4dp = p4d_offset(pgdp, virt_addr);
    506	pudp = pud_offset(p4dp, virt_addr);
    507	pmdp = pmd_offset(pudp, virt_addr);
    508	ptep = pte_offset_kernel(pmdp, virt_addr);
    509	tmp = (physaddr >> 4) | SRMMU_ET_PTE;
    510
    511	/* I need to test whether this is consistent over all
    512	 * sun4m's.  The bus_type represents the upper 4 bits of
    513	 * 36-bit physical address on the I/O space lines...
    514	 */
    515	tmp |= (bus_type << 28);
    516	tmp |= SRMMU_PRIV;
    517	__flush_page_to_ram(virt_addr);
    518	set_pte(ptep, __pte(tmp));
    519}
    520
    521void srmmu_mapiorange(unsigned int bus, unsigned long xpa,
    522		      unsigned long xva, unsigned int len)
    523{
    524	while (len != 0) {
    525		len -= PAGE_SIZE;
    526		srmmu_mapioaddr(xpa, xva, bus);
    527		xva += PAGE_SIZE;
    528		xpa += PAGE_SIZE;
    529	}
    530	flush_tlb_all();
    531}
    532
    533static inline void srmmu_unmapioaddr(unsigned long virt_addr)
    534{
    535	pgd_t *pgdp;
    536	p4d_t *p4dp;
    537	pud_t *pudp;
    538	pmd_t *pmdp;
    539	pte_t *ptep;
    540
    541
    542	pgdp = pgd_offset_k(virt_addr);
    543	p4dp = p4d_offset(pgdp, virt_addr);
    544	pudp = pud_offset(p4dp, virt_addr);
    545	pmdp = pmd_offset(pudp, virt_addr);
    546	ptep = pte_offset_kernel(pmdp, virt_addr);
    547
    548	/* No need to flush uncacheable page. */
    549	__pte_clear(ptep);
    550}
    551
    552void srmmu_unmapiorange(unsigned long virt_addr, unsigned int len)
    553{
    554	while (len != 0) {
    555		len -= PAGE_SIZE;
    556		srmmu_unmapioaddr(virt_addr);
    557		virt_addr += PAGE_SIZE;
    558	}
    559	flush_tlb_all();
    560}
    561
    562/* tsunami.S */
    563extern void tsunami_flush_cache_all(void);
    564extern void tsunami_flush_cache_mm(struct mm_struct *mm);
    565extern void tsunami_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
    566extern void tsunami_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
    567extern void tsunami_flush_page_to_ram(unsigned long page);
    568extern void tsunami_flush_page_for_dma(unsigned long page);
    569extern void tsunami_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
    570extern void tsunami_flush_tlb_all(void);
    571extern void tsunami_flush_tlb_mm(struct mm_struct *mm);
    572extern void tsunami_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
    573extern void tsunami_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
    574extern void tsunami_setup_blockops(void);
    575
    576/* swift.S */
    577extern void swift_flush_cache_all(void);
    578extern void swift_flush_cache_mm(struct mm_struct *mm);
    579extern void swift_flush_cache_range(struct vm_area_struct *vma,
    580				    unsigned long start, unsigned long end);
    581extern void swift_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
    582extern void swift_flush_page_to_ram(unsigned long page);
    583extern void swift_flush_page_for_dma(unsigned long page);
    584extern void swift_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
    585extern void swift_flush_tlb_all(void);
    586extern void swift_flush_tlb_mm(struct mm_struct *mm);
    587extern void swift_flush_tlb_range(struct vm_area_struct *vma,
    588				  unsigned long start, unsigned long end);
    589extern void swift_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
    590
    591#if 0  /* P3: deadwood to debug precise flushes on Swift. */
    592void swift_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
    593{
    594	int cctx, ctx1;
    595
    596	page &= PAGE_MASK;
    597	if ((ctx1 = vma->vm_mm->context) != -1) {
    598		cctx = srmmu_get_context();
    599/* Is context # ever different from current context? P3 */
    600		if (cctx != ctx1) {
    601			printk("flush ctx %02x curr %02x\n", ctx1, cctx);
    602			srmmu_set_context(ctx1);
    603			swift_flush_page(page);
    604			__asm__ __volatile__("sta %%g0, [%0] %1\n\t" : :
    605					"r" (page), "i" (ASI_M_FLUSH_PROBE));
    606			srmmu_set_context(cctx);
    607		} else {
    608			 /* Rm. prot. bits from virt. c. */
    609			/* swift_flush_cache_all(); */
    610			/* swift_flush_cache_page(vma, page); */
    611			swift_flush_page(page);
    612
    613			__asm__ __volatile__("sta %%g0, [%0] %1\n\t" : :
    614				"r" (page), "i" (ASI_M_FLUSH_PROBE));
    615			/* same as above: srmmu_flush_tlb_page() */
    616		}
    617	}
    618}
    619#endif
    620
    621/*
    622 * The following are all MBUS based SRMMU modules, and therefore could
    623 * be found in a multiprocessor configuration.  On the whole, these
    624 * chips seems to be much more touchy about DVMA and page tables
    625 * with respect to cache coherency.
    626 */
    627
    628/* viking.S */
    629extern void viking_flush_cache_all(void);
    630extern void viking_flush_cache_mm(struct mm_struct *mm);
    631extern void viking_flush_cache_range(struct vm_area_struct *vma, unsigned long start,
    632				     unsigned long end);
    633extern void viking_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
    634extern void viking_flush_page_to_ram(unsigned long page);
    635extern void viking_flush_page_for_dma(unsigned long page);
    636extern void viking_flush_sig_insns(struct mm_struct *mm, unsigned long addr);
    637extern void viking_flush_page(unsigned long page);
    638extern void viking_mxcc_flush_page(unsigned long page);
    639extern void viking_flush_tlb_all(void);
    640extern void viking_flush_tlb_mm(struct mm_struct *mm);
    641extern void viking_flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
    642				   unsigned long end);
    643extern void viking_flush_tlb_page(struct vm_area_struct *vma,
    644				  unsigned long page);
    645extern void sun4dsmp_flush_tlb_all(void);
    646extern void sun4dsmp_flush_tlb_mm(struct mm_struct *mm);
    647extern void sun4dsmp_flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
    648				   unsigned long end);
    649extern void sun4dsmp_flush_tlb_page(struct vm_area_struct *vma,
    650				  unsigned long page);
    651
    652/* hypersparc.S */
    653extern void hypersparc_flush_cache_all(void);
    654extern void hypersparc_flush_cache_mm(struct mm_struct *mm);
    655extern void hypersparc_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
    656extern void hypersparc_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
    657extern void hypersparc_flush_page_to_ram(unsigned long page);
    658extern void hypersparc_flush_page_for_dma(unsigned long page);
    659extern void hypersparc_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
    660extern void hypersparc_flush_tlb_all(void);
    661extern void hypersparc_flush_tlb_mm(struct mm_struct *mm);
    662extern void hypersparc_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
    663extern void hypersparc_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
    664extern void hypersparc_setup_blockops(void);
    665
    666/*
    667 * NOTE: All of this startup code assumes the low 16mb (approx.) of
    668 *       kernel mappings are done with one single contiguous chunk of
    669 *       ram.  On small ram machines (classics mainly) we only get
    670 *       around 8mb mapped for us.
    671 */
    672
    673static void __init early_pgtable_allocfail(char *type)
    674{
    675	prom_printf("inherit_prom_mappings: Cannot alloc kernel %s.\n", type);
    676	prom_halt();
    677}
    678
    679static void __init srmmu_early_allocate_ptable_skeleton(unsigned long start,
    680							unsigned long end)
    681{
    682	pgd_t *pgdp;
    683	p4d_t *p4dp;
    684	pud_t *pudp;
    685	pmd_t *pmdp;
    686	pte_t *ptep;
    687
    688	while (start < end) {
    689		pgdp = pgd_offset_k(start);
    690		p4dp = p4d_offset(pgdp, start);
    691		pudp = pud_offset(p4dp, start);
    692		if (pud_none(*__nocache_fix(pudp))) {
    693			pmdp = __srmmu_get_nocache(
    694			    SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE);
    695			if (pmdp == NULL)
    696				early_pgtable_allocfail("pmd");
    697			memset(__nocache_fix(pmdp), 0, SRMMU_PMD_TABLE_SIZE);
    698			pud_set(__nocache_fix(pudp), pmdp);
    699		}
    700		pmdp = pmd_offset(__nocache_fix(pudp), start);
    701		if (srmmu_pmd_none(*__nocache_fix(pmdp))) {
    702			ptep = __srmmu_get_nocache(PTE_SIZE, PTE_SIZE);
    703			if (ptep == NULL)
    704				early_pgtable_allocfail("pte");
    705			memset(__nocache_fix(ptep), 0, PTE_SIZE);
    706			pmd_set(__nocache_fix(pmdp), ptep);
    707		}
    708		if (start > (0xffffffffUL - PMD_SIZE))
    709			break;
    710		start = (start + PMD_SIZE) & PMD_MASK;
    711	}
    712}
    713
    714static void __init srmmu_allocate_ptable_skeleton(unsigned long start,
    715						  unsigned long end)
    716{
    717	pgd_t *pgdp;
    718	p4d_t *p4dp;
    719	pud_t *pudp;
    720	pmd_t *pmdp;
    721	pte_t *ptep;
    722
    723	while (start < end) {
    724		pgdp = pgd_offset_k(start);
    725		p4dp = p4d_offset(pgdp, start);
    726		pudp = pud_offset(p4dp, start);
    727		if (pud_none(*pudp)) {
    728			pmdp = __srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE);
    729			if (pmdp == NULL)
    730				early_pgtable_allocfail("pmd");
    731			memset(pmdp, 0, SRMMU_PMD_TABLE_SIZE);
    732			pud_set((pud_t *)pgdp, pmdp);
    733		}
    734		pmdp = pmd_offset(pudp, start);
    735		if (srmmu_pmd_none(*pmdp)) {
    736			ptep = __srmmu_get_nocache(PTE_SIZE,
    737							     PTE_SIZE);
    738			if (ptep == NULL)
    739				early_pgtable_allocfail("pte");
    740			memset(ptep, 0, PTE_SIZE);
    741			pmd_set(pmdp, ptep);
    742		}
    743		if (start > (0xffffffffUL - PMD_SIZE))
    744			break;
    745		start = (start + PMD_SIZE) & PMD_MASK;
    746	}
    747}
    748
    749/* These flush types are not available on all chips... */
    750static inline unsigned long srmmu_probe(unsigned long vaddr)
    751{
    752	unsigned long retval;
    753
    754	if (sparc_cpu_model != sparc_leon) {
    755
    756		vaddr &= PAGE_MASK;
    757		__asm__ __volatile__("lda [%1] %2, %0\n\t" :
    758				     "=r" (retval) :
    759				     "r" (vaddr | 0x400), "i" (ASI_M_FLUSH_PROBE));
    760	} else {
    761		retval = leon_swprobe(vaddr, NULL);
    762	}
    763	return retval;
    764}
    765
    766/*
    767 * This is much cleaner than poking around physical address space
    768 * looking at the prom's page table directly which is what most
    769 * other OS's do.  Yuck... this is much better.
    770 */
    771static void __init srmmu_inherit_prom_mappings(unsigned long start,
    772					       unsigned long end)
    773{
    774	unsigned long probed;
    775	unsigned long addr;
    776	pgd_t *pgdp;
    777	p4d_t *p4dp;
    778	pud_t *pudp;
    779	pmd_t *pmdp;
    780	pte_t *ptep;
    781	int what; /* 0 = normal-pte, 1 = pmd-level pte, 2 = pgd-level pte */
    782
    783	while (start <= end) {
    784		if (start == 0)
    785			break; /* probably wrap around */
    786		if (start == 0xfef00000)
    787			start = KADB_DEBUGGER_BEGVM;
    788		probed = srmmu_probe(start);
    789		if (!probed) {
    790			/* continue probing until we find an entry */
    791			start += PAGE_SIZE;
    792			continue;
    793		}
    794
    795		/* A red snapper, see what it really is. */
    796		what = 0;
    797		addr = start - PAGE_SIZE;
    798
    799		if (!(start & ~(PMD_MASK))) {
    800			if (srmmu_probe(addr + PMD_SIZE) == probed)
    801				what = 1;
    802		}
    803
    804		if (!(start & ~(PGDIR_MASK))) {
    805			if (srmmu_probe(addr + PGDIR_SIZE) == probed)
    806				what = 2;
    807		}
    808
    809		pgdp = pgd_offset_k(start);
    810		p4dp = p4d_offset(pgdp, start);
    811		pudp = pud_offset(p4dp, start);
    812		if (what == 2) {
    813			*__nocache_fix(pgdp) = __pgd(probed);
    814			start += PGDIR_SIZE;
    815			continue;
    816		}
    817		if (pud_none(*__nocache_fix(pudp))) {
    818			pmdp = __srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE,
    819						   SRMMU_PMD_TABLE_SIZE);
    820			if (pmdp == NULL)
    821				early_pgtable_allocfail("pmd");
    822			memset(__nocache_fix(pmdp), 0, SRMMU_PMD_TABLE_SIZE);
    823			pud_set(__nocache_fix(pudp), pmdp);
    824		}
    825		pmdp = pmd_offset(__nocache_fix(pudp), start);
    826		if (what == 1) {
    827			*(pmd_t *)__nocache_fix(pmdp) = __pmd(probed);
    828			start += PMD_SIZE;
    829			continue;
    830		}
    831		if (srmmu_pmd_none(*__nocache_fix(pmdp))) {
    832			ptep = __srmmu_get_nocache(PTE_SIZE, PTE_SIZE);
    833			if (ptep == NULL)
    834				early_pgtable_allocfail("pte");
    835			memset(__nocache_fix(ptep), 0, PTE_SIZE);
    836			pmd_set(__nocache_fix(pmdp), ptep);
    837		}
    838		ptep = pte_offset_kernel(__nocache_fix(pmdp), start);
    839		*__nocache_fix(ptep) = __pte(probed);
    840		start += PAGE_SIZE;
    841	}
    842}
    843
    844#define KERNEL_PTE(page_shifted) ((page_shifted)|SRMMU_CACHE|SRMMU_PRIV|SRMMU_VALID)
    845
    846/* Create a third-level SRMMU 16MB page mapping. */
    847static void __init do_large_mapping(unsigned long vaddr, unsigned long phys_base)
    848{
    849	pgd_t *pgdp = pgd_offset_k(vaddr);
    850	unsigned long big_pte;
    851
    852	big_pte = KERNEL_PTE(phys_base >> 4);
    853	*__nocache_fix(pgdp) = __pgd(big_pte);
    854}
    855
    856/* Map sp_bank entry SP_ENTRY, starting at virtual address VBASE. */
    857static unsigned long __init map_spbank(unsigned long vbase, int sp_entry)
    858{
    859	unsigned long pstart = (sp_banks[sp_entry].base_addr & PGDIR_MASK);
    860	unsigned long vstart = (vbase & PGDIR_MASK);
    861	unsigned long vend = PGDIR_ALIGN(vbase + sp_banks[sp_entry].num_bytes);
    862	/* Map "low" memory only */
    863	const unsigned long min_vaddr = PAGE_OFFSET;
    864	const unsigned long max_vaddr = PAGE_OFFSET + SRMMU_MAXMEM;
    865
    866	if (vstart < min_vaddr || vstart >= max_vaddr)
    867		return vstart;
    868
    869	if (vend > max_vaddr || vend < min_vaddr)
    870		vend = max_vaddr;
    871
    872	while (vstart < vend) {
    873		do_large_mapping(vstart, pstart);
    874		vstart += PGDIR_SIZE; pstart += PGDIR_SIZE;
    875	}
    876	return vstart;
    877}
    878
    879static void __init map_kernel(void)
    880{
    881	int i;
    882
    883	if (phys_base > 0) {
    884		do_large_mapping(PAGE_OFFSET, phys_base);
    885	}
    886
    887	for (i = 0; sp_banks[i].num_bytes != 0; i++) {
    888		map_spbank((unsigned long)__va(sp_banks[i].base_addr), i);
    889	}
    890}
    891
    892void (*poke_srmmu)(void) = NULL;
    893
    894void __init srmmu_paging_init(void)
    895{
    896	int i;
    897	phandle cpunode;
    898	char node_str[128];
    899	pgd_t *pgd;
    900	p4d_t *p4d;
    901	pud_t *pud;
    902	pmd_t *pmd;
    903	pte_t *pte;
    904	unsigned long pages_avail;
    905
    906	init_mm.context = (unsigned long) NO_CONTEXT;
    907	sparc_iomap.start = SUN4M_IOBASE_VADDR;	/* 16MB of IOSPACE on all sun4m's. */
    908
    909	if (sparc_cpu_model == sun4d)
    910		num_contexts = 65536; /* We know it is Viking */
    911	else {
    912		/* Find the number of contexts on the srmmu. */
    913		cpunode = prom_getchild(prom_root_node);
    914		num_contexts = 0;
    915		while (cpunode != 0) {
    916			prom_getstring(cpunode, "device_type", node_str, sizeof(node_str));
    917			if (!strcmp(node_str, "cpu")) {
    918				num_contexts = prom_getintdefault(cpunode, "mmu-nctx", 0x8);
    919				break;
    920			}
    921			cpunode = prom_getsibling(cpunode);
    922		}
    923	}
    924
    925	if (!num_contexts) {
    926		prom_printf("Something wrong, can't find cpu node in paging_init.\n");
    927		prom_halt();
    928	}
    929
    930	pages_avail = 0;
    931	last_valid_pfn = bootmem_init(&pages_avail);
    932
    933	srmmu_nocache_calcsize();
    934	srmmu_nocache_init();
    935	srmmu_inherit_prom_mappings(0xfe400000, (LINUX_OPPROM_ENDVM - PAGE_SIZE));
    936	map_kernel();
    937
    938	/* ctx table has to be physically aligned to its size */
    939	srmmu_context_table = __srmmu_get_nocache(num_contexts * sizeof(ctxd_t), num_contexts * sizeof(ctxd_t));
    940	srmmu_ctx_table_phys = (ctxd_t *)__nocache_pa(srmmu_context_table);
    941
    942	for (i = 0; i < num_contexts; i++)
    943		srmmu_ctxd_set(__nocache_fix(&srmmu_context_table[i]), srmmu_swapper_pg_dir);
    944
    945	flush_cache_all();
    946	srmmu_set_ctable_ptr((unsigned long)srmmu_ctx_table_phys);
    947#ifdef CONFIG_SMP
    948	/* Stop from hanging here... */
    949	local_ops->tlb_all();
    950#else
    951	flush_tlb_all();
    952#endif
    953	poke_srmmu();
    954
    955	srmmu_allocate_ptable_skeleton(sparc_iomap.start, IOBASE_END);
    956	srmmu_allocate_ptable_skeleton(DVMA_VADDR, DVMA_END);
    957
    958	srmmu_allocate_ptable_skeleton(
    959		__fix_to_virt(__end_of_fixed_addresses - 1), FIXADDR_TOP);
    960	srmmu_allocate_ptable_skeleton(PKMAP_BASE, PKMAP_END);
    961
    962	pgd = pgd_offset_k(PKMAP_BASE);
    963	p4d = p4d_offset(pgd, PKMAP_BASE);
    964	pud = pud_offset(p4d, PKMAP_BASE);
    965	pmd = pmd_offset(pud, PKMAP_BASE);
    966	pte = pte_offset_kernel(pmd, PKMAP_BASE);
    967	pkmap_page_table = pte;
    968
    969	flush_cache_all();
    970	flush_tlb_all();
    971
    972	sparc_context_init(num_contexts);
    973
    974	{
    975		unsigned long max_zone_pfn[MAX_NR_ZONES] = { 0 };
    976
    977		max_zone_pfn[ZONE_DMA] = max_low_pfn;
    978		max_zone_pfn[ZONE_NORMAL] = max_low_pfn;
    979		max_zone_pfn[ZONE_HIGHMEM] = highend_pfn;
    980
    981		free_area_init(max_zone_pfn);
    982	}
    983}
    984
    985void mmu_info(struct seq_file *m)
    986{
    987	seq_printf(m,
    988		   "MMU type\t: %s\n"
    989		   "contexts\t: %d\n"
    990		   "nocache total\t: %ld\n"
    991		   "nocache used\t: %d\n",
    992		   srmmu_name,
    993		   num_contexts,
    994		   srmmu_nocache_size,
    995		   srmmu_nocache_map.used << SRMMU_NOCACHE_BITMAP_SHIFT);
    996}
    997
    998int init_new_context(struct task_struct *tsk, struct mm_struct *mm)
    999{
   1000	mm->context = NO_CONTEXT;
   1001	return 0;
   1002}
   1003
   1004void destroy_context(struct mm_struct *mm)
   1005{
   1006	unsigned long flags;
   1007
   1008	if (mm->context != NO_CONTEXT) {
   1009		flush_cache_mm(mm);
   1010		srmmu_ctxd_set(&srmmu_context_table[mm->context], srmmu_swapper_pg_dir);
   1011		flush_tlb_mm(mm);
   1012		spin_lock_irqsave(&srmmu_context_spinlock, flags);
   1013		free_context(mm->context);
   1014		spin_unlock_irqrestore(&srmmu_context_spinlock, flags);
   1015		mm->context = NO_CONTEXT;
   1016	}
   1017}
   1018
   1019/* Init various srmmu chip types. */
   1020static void __init srmmu_is_bad(void)
   1021{
   1022	prom_printf("Could not determine SRMMU chip type.\n");
   1023	prom_halt();
   1024}
   1025
   1026static void __init init_vac_layout(void)
   1027{
   1028	phandle nd;
   1029	int cache_lines;
   1030	char node_str[128];
   1031#ifdef CONFIG_SMP
   1032	int cpu = 0;
   1033	unsigned long max_size = 0;
   1034	unsigned long min_line_size = 0x10000000;
   1035#endif
   1036
   1037	nd = prom_getchild(prom_root_node);
   1038	while ((nd = prom_getsibling(nd)) != 0) {
   1039		prom_getstring(nd, "device_type", node_str, sizeof(node_str));
   1040		if (!strcmp(node_str, "cpu")) {
   1041			vac_line_size = prom_getint(nd, "cache-line-size");
   1042			if (vac_line_size == -1) {
   1043				prom_printf("can't determine cache-line-size, halting.\n");
   1044				prom_halt();
   1045			}
   1046			cache_lines = prom_getint(nd, "cache-nlines");
   1047			if (cache_lines == -1) {
   1048				prom_printf("can't determine cache-nlines, halting.\n");
   1049				prom_halt();
   1050			}
   1051
   1052			vac_cache_size = cache_lines * vac_line_size;
   1053#ifdef CONFIG_SMP
   1054			if (vac_cache_size > max_size)
   1055				max_size = vac_cache_size;
   1056			if (vac_line_size < min_line_size)
   1057				min_line_size = vac_line_size;
   1058			//FIXME: cpus not contiguous!!
   1059			cpu++;
   1060			if (cpu >= nr_cpu_ids || !cpu_online(cpu))
   1061				break;
   1062#else
   1063			break;
   1064#endif
   1065		}
   1066	}
   1067	if (nd == 0) {
   1068		prom_printf("No CPU nodes found, halting.\n");
   1069		prom_halt();
   1070	}
   1071#ifdef CONFIG_SMP
   1072	vac_cache_size = max_size;
   1073	vac_line_size = min_line_size;
   1074#endif
   1075	printk("SRMMU: Using VAC size of %d bytes, line size %d bytes.\n",
   1076	       (int)vac_cache_size, (int)vac_line_size);
   1077}
   1078
   1079static void poke_hypersparc(void)
   1080{
   1081	volatile unsigned long clear;
   1082	unsigned long mreg = srmmu_get_mmureg();
   1083
   1084	hyper_flush_unconditional_combined();
   1085
   1086	mreg &= ~(HYPERSPARC_CWENABLE);
   1087	mreg |= (HYPERSPARC_CENABLE | HYPERSPARC_WBENABLE);
   1088	mreg |= (HYPERSPARC_CMODE);
   1089
   1090	srmmu_set_mmureg(mreg);
   1091
   1092#if 0 /* XXX I think this is bad news... -DaveM */
   1093	hyper_clear_all_tags();
   1094#endif
   1095
   1096	put_ross_icr(HYPERSPARC_ICCR_FTD | HYPERSPARC_ICCR_ICE);
   1097	hyper_flush_whole_icache();
   1098	clear = srmmu_get_faddr();
   1099	clear = srmmu_get_fstatus();
   1100}
   1101
   1102static const struct sparc32_cachetlb_ops hypersparc_ops = {
   1103	.cache_all	= hypersparc_flush_cache_all,
   1104	.cache_mm	= hypersparc_flush_cache_mm,
   1105	.cache_page	= hypersparc_flush_cache_page,
   1106	.cache_range	= hypersparc_flush_cache_range,
   1107	.tlb_all	= hypersparc_flush_tlb_all,
   1108	.tlb_mm		= hypersparc_flush_tlb_mm,
   1109	.tlb_page	= hypersparc_flush_tlb_page,
   1110	.tlb_range	= hypersparc_flush_tlb_range,
   1111	.page_to_ram	= hypersparc_flush_page_to_ram,
   1112	.sig_insns	= hypersparc_flush_sig_insns,
   1113	.page_for_dma	= hypersparc_flush_page_for_dma,
   1114};
   1115
   1116static void __init init_hypersparc(void)
   1117{
   1118	srmmu_name = "ROSS HyperSparc";
   1119	srmmu_modtype = HyperSparc;
   1120
   1121	init_vac_layout();
   1122
   1123	is_hypersparc = 1;
   1124	sparc32_cachetlb_ops = &hypersparc_ops;
   1125
   1126	poke_srmmu = poke_hypersparc;
   1127
   1128	hypersparc_setup_blockops();
   1129}
   1130
   1131static void poke_swift(void)
   1132{
   1133	unsigned long mreg;
   1134
   1135	/* Clear any crap from the cache or else... */
   1136	swift_flush_cache_all();
   1137
   1138	/* Enable I & D caches */
   1139	mreg = srmmu_get_mmureg();
   1140	mreg |= (SWIFT_IE | SWIFT_DE);
   1141	/*
   1142	 * The Swift branch folding logic is completely broken.  At
   1143	 * trap time, if things are just right, if can mistakenly
   1144	 * think that a trap is coming from kernel mode when in fact
   1145	 * it is coming from user mode (it mis-executes the branch in
   1146	 * the trap code).  So you see things like crashme completely
   1147	 * hosing your machine which is completely unacceptable.  Turn
   1148	 * this shit off... nice job Fujitsu.
   1149	 */
   1150	mreg &= ~(SWIFT_BF);
   1151	srmmu_set_mmureg(mreg);
   1152}
   1153
   1154static const struct sparc32_cachetlb_ops swift_ops = {
   1155	.cache_all	= swift_flush_cache_all,
   1156	.cache_mm	= swift_flush_cache_mm,
   1157	.cache_page	= swift_flush_cache_page,
   1158	.cache_range	= swift_flush_cache_range,
   1159	.tlb_all	= swift_flush_tlb_all,
   1160	.tlb_mm		= swift_flush_tlb_mm,
   1161	.tlb_page	= swift_flush_tlb_page,
   1162	.tlb_range	= swift_flush_tlb_range,
   1163	.page_to_ram	= swift_flush_page_to_ram,
   1164	.sig_insns	= swift_flush_sig_insns,
   1165	.page_for_dma	= swift_flush_page_for_dma,
   1166};
   1167
   1168#define SWIFT_MASKID_ADDR  0x10003018
   1169static void __init init_swift(void)
   1170{
   1171	unsigned long swift_rev;
   1172
   1173	__asm__ __volatile__("lda [%1] %2, %0\n\t"
   1174			     "srl %0, 0x18, %0\n\t" :
   1175			     "=r" (swift_rev) :
   1176			     "r" (SWIFT_MASKID_ADDR), "i" (ASI_M_BYPASS));
   1177	srmmu_name = "Fujitsu Swift";
   1178	switch (swift_rev) {
   1179	case 0x11:
   1180	case 0x20:
   1181	case 0x23:
   1182	case 0x30:
   1183		srmmu_modtype = Swift_lots_o_bugs;
   1184		hwbug_bitmask |= (HWBUG_KERN_ACCBROKEN | HWBUG_KERN_CBITBROKEN);
   1185		/*
   1186		 * Gee george, I wonder why Sun is so hush hush about
   1187		 * this hardware bug... really braindamage stuff going
   1188		 * on here.  However I think we can find a way to avoid
   1189		 * all of the workaround overhead under Linux.  Basically,
   1190		 * any page fault can cause kernel pages to become user
   1191		 * accessible (the mmu gets confused and clears some of
   1192		 * the ACC bits in kernel ptes).  Aha, sounds pretty
   1193		 * horrible eh?  But wait, after extensive testing it appears
   1194		 * that if you use pgd_t level large kernel pte's (like the
   1195		 * 4MB pages on the Pentium) the bug does not get tripped
   1196		 * at all.  This avoids almost all of the major overhead.
   1197		 * Welcome to a world where your vendor tells you to,
   1198		 * "apply this kernel patch" instead of "sorry for the
   1199		 * broken hardware, send it back and we'll give you
   1200		 * properly functioning parts"
   1201		 */
   1202		break;
   1203	case 0x25:
   1204	case 0x31:
   1205		srmmu_modtype = Swift_bad_c;
   1206		hwbug_bitmask |= HWBUG_KERN_CBITBROKEN;
   1207		/*
   1208		 * You see Sun allude to this hardware bug but never
   1209		 * admit things directly, they'll say things like,
   1210		 * "the Swift chip cache problems" or similar.
   1211		 */
   1212		break;
   1213	default:
   1214		srmmu_modtype = Swift_ok;
   1215		break;
   1216	}
   1217
   1218	sparc32_cachetlb_ops = &swift_ops;
   1219	flush_page_for_dma_global = 0;
   1220
   1221	/*
   1222	 * Are you now convinced that the Swift is one of the
   1223	 * biggest VLSI abortions of all time?  Bravo Fujitsu!
   1224	 * Fujitsu, the !#?!%$'d up processor people.  I bet if
   1225	 * you examined the microcode of the Swift you'd find
   1226	 * XXX's all over the place.
   1227	 */
   1228	poke_srmmu = poke_swift;
   1229}
   1230
   1231static void turbosparc_flush_cache_all(void)
   1232{
   1233	flush_user_windows();
   1234	turbosparc_idflash_clear();
   1235}
   1236
   1237static void turbosparc_flush_cache_mm(struct mm_struct *mm)
   1238{
   1239	FLUSH_BEGIN(mm)
   1240	flush_user_windows();
   1241	turbosparc_idflash_clear();
   1242	FLUSH_END
   1243}
   1244
   1245static void turbosparc_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
   1246{
   1247	FLUSH_BEGIN(vma->vm_mm)
   1248	flush_user_windows();
   1249	turbosparc_idflash_clear();
   1250	FLUSH_END
   1251}
   1252
   1253static void turbosparc_flush_cache_page(struct vm_area_struct *vma, unsigned long page)
   1254{
   1255	FLUSH_BEGIN(vma->vm_mm)
   1256	flush_user_windows();
   1257	if (vma->vm_flags & VM_EXEC)
   1258		turbosparc_flush_icache();
   1259	turbosparc_flush_dcache();
   1260	FLUSH_END
   1261}
   1262
   1263/* TurboSparc is copy-back, if we turn it on, but this does not work. */
   1264static void turbosparc_flush_page_to_ram(unsigned long page)
   1265{
   1266#ifdef TURBOSPARC_WRITEBACK
   1267	volatile unsigned long clear;
   1268
   1269	if (srmmu_probe(page))
   1270		turbosparc_flush_page_cache(page);
   1271	clear = srmmu_get_fstatus();
   1272#endif
   1273}
   1274
   1275static void turbosparc_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr)
   1276{
   1277}
   1278
   1279static void turbosparc_flush_page_for_dma(unsigned long page)
   1280{
   1281	turbosparc_flush_dcache();
   1282}
   1283
   1284static void turbosparc_flush_tlb_all(void)
   1285{
   1286	srmmu_flush_whole_tlb();
   1287}
   1288
   1289static void turbosparc_flush_tlb_mm(struct mm_struct *mm)
   1290{
   1291	FLUSH_BEGIN(mm)
   1292	srmmu_flush_whole_tlb();
   1293	FLUSH_END
   1294}
   1295
   1296static void turbosparc_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
   1297{
   1298	FLUSH_BEGIN(vma->vm_mm)
   1299	srmmu_flush_whole_tlb();
   1300	FLUSH_END
   1301}
   1302
   1303static void turbosparc_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
   1304{
   1305	FLUSH_BEGIN(vma->vm_mm)
   1306	srmmu_flush_whole_tlb();
   1307	FLUSH_END
   1308}
   1309
   1310
   1311static void poke_turbosparc(void)
   1312{
   1313	unsigned long mreg = srmmu_get_mmureg();
   1314	unsigned long ccreg;
   1315
   1316	/* Clear any crap from the cache or else... */
   1317	turbosparc_flush_cache_all();
   1318	/* Temporarily disable I & D caches */
   1319	mreg &= ~(TURBOSPARC_ICENABLE | TURBOSPARC_DCENABLE);
   1320	mreg &= ~(TURBOSPARC_PCENABLE);		/* Don't check parity */
   1321	srmmu_set_mmureg(mreg);
   1322
   1323	ccreg = turbosparc_get_ccreg();
   1324
   1325#ifdef TURBOSPARC_WRITEBACK
   1326	ccreg |= (TURBOSPARC_SNENABLE);		/* Do DVMA snooping in Dcache */
   1327	ccreg &= ~(TURBOSPARC_uS2 | TURBOSPARC_WTENABLE);
   1328			/* Write-back D-cache, emulate VLSI
   1329			 * abortion number three, not number one */
   1330#else
   1331	/* For now let's play safe, optimize later */
   1332	ccreg |= (TURBOSPARC_SNENABLE | TURBOSPARC_WTENABLE);
   1333			/* Do DVMA snooping in Dcache, Write-thru D-cache */
   1334	ccreg &= ~(TURBOSPARC_uS2);
   1335			/* Emulate VLSI abortion number three, not number one */
   1336#endif
   1337
   1338	switch (ccreg & 7) {
   1339	case 0: /* No SE cache */
   1340	case 7: /* Test mode */
   1341		break;
   1342	default:
   1343		ccreg |= (TURBOSPARC_SCENABLE);
   1344	}
   1345	turbosparc_set_ccreg(ccreg);
   1346
   1347	mreg |= (TURBOSPARC_ICENABLE | TURBOSPARC_DCENABLE); /* I & D caches on */
   1348	mreg |= (TURBOSPARC_ICSNOOP);		/* Icache snooping on */
   1349	srmmu_set_mmureg(mreg);
   1350}
   1351
   1352static const struct sparc32_cachetlb_ops turbosparc_ops = {
   1353	.cache_all	= turbosparc_flush_cache_all,
   1354	.cache_mm	= turbosparc_flush_cache_mm,
   1355	.cache_page	= turbosparc_flush_cache_page,
   1356	.cache_range	= turbosparc_flush_cache_range,
   1357	.tlb_all	= turbosparc_flush_tlb_all,
   1358	.tlb_mm		= turbosparc_flush_tlb_mm,
   1359	.tlb_page	= turbosparc_flush_tlb_page,
   1360	.tlb_range	= turbosparc_flush_tlb_range,
   1361	.page_to_ram	= turbosparc_flush_page_to_ram,
   1362	.sig_insns	= turbosparc_flush_sig_insns,
   1363	.page_for_dma	= turbosparc_flush_page_for_dma,
   1364};
   1365
   1366static void __init init_turbosparc(void)
   1367{
   1368	srmmu_name = "Fujitsu TurboSparc";
   1369	srmmu_modtype = TurboSparc;
   1370	sparc32_cachetlb_ops = &turbosparc_ops;
   1371	poke_srmmu = poke_turbosparc;
   1372}
   1373
   1374static void poke_tsunami(void)
   1375{
   1376	unsigned long mreg = srmmu_get_mmureg();
   1377
   1378	tsunami_flush_icache();
   1379	tsunami_flush_dcache();
   1380	mreg &= ~TSUNAMI_ITD;
   1381	mreg |= (TSUNAMI_IENAB | TSUNAMI_DENAB);
   1382	srmmu_set_mmureg(mreg);
   1383}
   1384
   1385static const struct sparc32_cachetlb_ops tsunami_ops = {
   1386	.cache_all	= tsunami_flush_cache_all,
   1387	.cache_mm	= tsunami_flush_cache_mm,
   1388	.cache_page	= tsunami_flush_cache_page,
   1389	.cache_range	= tsunami_flush_cache_range,
   1390	.tlb_all	= tsunami_flush_tlb_all,
   1391	.tlb_mm		= tsunami_flush_tlb_mm,
   1392	.tlb_page	= tsunami_flush_tlb_page,
   1393	.tlb_range	= tsunami_flush_tlb_range,
   1394	.page_to_ram	= tsunami_flush_page_to_ram,
   1395	.sig_insns	= tsunami_flush_sig_insns,
   1396	.page_for_dma	= tsunami_flush_page_for_dma,
   1397};
   1398
   1399static void __init init_tsunami(void)
   1400{
   1401	/*
   1402	 * Tsunami's pretty sane, Sun and TI actually got it
   1403	 * somewhat right this time.  Fujitsu should have
   1404	 * taken some lessons from them.
   1405	 */
   1406
   1407	srmmu_name = "TI Tsunami";
   1408	srmmu_modtype = Tsunami;
   1409	sparc32_cachetlb_ops = &tsunami_ops;
   1410	poke_srmmu = poke_tsunami;
   1411
   1412	tsunami_setup_blockops();
   1413}
   1414
   1415static void poke_viking(void)
   1416{
   1417	unsigned long mreg = srmmu_get_mmureg();
   1418	static int smp_catch;
   1419
   1420	if (viking_mxcc_present) {
   1421		unsigned long mxcc_control = mxcc_get_creg();
   1422
   1423		mxcc_control |= (MXCC_CTL_ECE | MXCC_CTL_PRE | MXCC_CTL_MCE);
   1424		mxcc_control &= ~(MXCC_CTL_RRC);
   1425		mxcc_set_creg(mxcc_control);
   1426
   1427		/*
   1428		 * We don't need memory parity checks.
   1429		 * XXX This is a mess, have to dig out later. ecd.
   1430		viking_mxcc_turn_off_parity(&mreg, &mxcc_control);
   1431		 */
   1432
   1433		/* We do cache ptables on MXCC. */
   1434		mreg |= VIKING_TCENABLE;
   1435	} else {
   1436		unsigned long bpreg;
   1437
   1438		mreg &= ~(VIKING_TCENABLE);
   1439		if (smp_catch++) {
   1440			/* Must disable mixed-cmd mode here for other cpu's. */
   1441			bpreg = viking_get_bpreg();
   1442			bpreg &= ~(VIKING_ACTION_MIX);
   1443			viking_set_bpreg(bpreg);
   1444
   1445			/* Just in case PROM does something funny. */
   1446			msi_set_sync();
   1447		}
   1448	}
   1449
   1450	mreg |= VIKING_SPENABLE;
   1451	mreg |= (VIKING_ICENABLE | VIKING_DCENABLE);
   1452	mreg |= VIKING_SBENABLE;
   1453	mreg &= ~(VIKING_ACENABLE);
   1454	srmmu_set_mmureg(mreg);
   1455}
   1456
   1457static struct sparc32_cachetlb_ops viking_ops __ro_after_init = {
   1458	.cache_all	= viking_flush_cache_all,
   1459	.cache_mm	= viking_flush_cache_mm,
   1460	.cache_page	= viking_flush_cache_page,
   1461	.cache_range	= viking_flush_cache_range,
   1462	.tlb_all	= viking_flush_tlb_all,
   1463	.tlb_mm		= viking_flush_tlb_mm,
   1464	.tlb_page	= viking_flush_tlb_page,
   1465	.tlb_range	= viking_flush_tlb_range,
   1466	.page_to_ram	= viking_flush_page_to_ram,
   1467	.sig_insns	= viking_flush_sig_insns,
   1468	.page_for_dma	= viking_flush_page_for_dma,
   1469};
   1470
   1471#ifdef CONFIG_SMP
   1472/* On sun4d the cpu broadcasts local TLB flushes, so we can just
   1473 * perform the local TLB flush and all the other cpus will see it.
   1474 * But, unfortunately, there is a bug in the sun4d XBUS backplane
   1475 * that requires that we add some synchronization to these flushes.
   1476 *
   1477 * The bug is that the fifo which keeps track of all the pending TLB
   1478 * broadcasts in the system is an entry or two too small, so if we
   1479 * have too many going at once we'll overflow that fifo and lose a TLB
   1480 * flush resulting in corruption.
   1481 *
   1482 * Our workaround is to take a global spinlock around the TLB flushes,
   1483 * which guarentees we won't ever have too many pending.  It's a big
   1484 * hammer, but a semaphore like system to make sure we only have N TLB
   1485 * flushes going at once will require SMP locking anyways so there's
   1486 * no real value in trying any harder than this.
   1487 */
   1488static struct sparc32_cachetlb_ops viking_sun4d_smp_ops __ro_after_init = {
   1489	.cache_all	= viking_flush_cache_all,
   1490	.cache_mm	= viking_flush_cache_mm,
   1491	.cache_page	= viking_flush_cache_page,
   1492	.cache_range	= viking_flush_cache_range,
   1493	.tlb_all	= sun4dsmp_flush_tlb_all,
   1494	.tlb_mm		= sun4dsmp_flush_tlb_mm,
   1495	.tlb_page	= sun4dsmp_flush_tlb_page,
   1496	.tlb_range	= sun4dsmp_flush_tlb_range,
   1497	.page_to_ram	= viking_flush_page_to_ram,
   1498	.sig_insns	= viking_flush_sig_insns,
   1499	.page_for_dma	= viking_flush_page_for_dma,
   1500};
   1501#endif
   1502
   1503static void __init init_viking(void)
   1504{
   1505	unsigned long mreg = srmmu_get_mmureg();
   1506
   1507	/* Ahhh, the viking.  SRMMU VLSI abortion number two... */
   1508	if (mreg & VIKING_MMODE) {
   1509		srmmu_name = "TI Viking";
   1510		viking_mxcc_present = 0;
   1511		msi_set_sync();
   1512
   1513		/*
   1514		 * We need this to make sure old viking takes no hits
   1515		 * on it's cache for dma snoops to workaround the
   1516		 * "load from non-cacheable memory" interrupt bug.
   1517		 * This is only necessary because of the new way in
   1518		 * which we use the IOMMU.
   1519		 */
   1520		viking_ops.page_for_dma = viking_flush_page;
   1521#ifdef CONFIG_SMP
   1522		viking_sun4d_smp_ops.page_for_dma = viking_flush_page;
   1523#endif
   1524		flush_page_for_dma_global = 0;
   1525	} else {
   1526		srmmu_name = "TI Viking/MXCC";
   1527		viking_mxcc_present = 1;
   1528		srmmu_cache_pagetables = 1;
   1529	}
   1530
   1531	sparc32_cachetlb_ops = (const struct sparc32_cachetlb_ops *)
   1532		&viking_ops;
   1533#ifdef CONFIG_SMP
   1534	if (sparc_cpu_model == sun4d)
   1535		sparc32_cachetlb_ops = (const struct sparc32_cachetlb_ops *)
   1536			&viking_sun4d_smp_ops;
   1537#endif
   1538
   1539	poke_srmmu = poke_viking;
   1540}
   1541
   1542/* Probe for the srmmu chip version. */
   1543static void __init get_srmmu_type(void)
   1544{
   1545	unsigned long mreg, psr;
   1546	unsigned long mod_typ, mod_rev, psr_typ, psr_vers;
   1547
   1548	srmmu_modtype = SRMMU_INVAL_MOD;
   1549	hwbug_bitmask = 0;
   1550
   1551	mreg = srmmu_get_mmureg(); psr = get_psr();
   1552	mod_typ = (mreg & 0xf0000000) >> 28;
   1553	mod_rev = (mreg & 0x0f000000) >> 24;
   1554	psr_typ = (psr >> 28) & 0xf;
   1555	psr_vers = (psr >> 24) & 0xf;
   1556
   1557	/* First, check for sparc-leon. */
   1558	if (sparc_cpu_model == sparc_leon) {
   1559		init_leon();
   1560		return;
   1561	}
   1562
   1563	/* Second, check for HyperSparc or Cypress. */
   1564	if (mod_typ == 1) {
   1565		switch (mod_rev) {
   1566		case 7:
   1567			/* UP or MP Hypersparc */
   1568			init_hypersparc();
   1569			break;
   1570		case 0:
   1571		case 2:
   1572		case 10:
   1573		case 11:
   1574		case 12:
   1575		case 13:
   1576		case 14:
   1577		case 15:
   1578		default:
   1579			prom_printf("Sparc-Linux Cypress support does not longer exit.\n");
   1580			prom_halt();
   1581			break;
   1582		}
   1583		return;
   1584	}
   1585
   1586	/* Now Fujitsu TurboSparc. It might happen that it is
   1587	 * in Swift emulation mode, so we will check later...
   1588	 */
   1589	if (psr_typ == 0 && psr_vers == 5) {
   1590		init_turbosparc();
   1591		return;
   1592	}
   1593
   1594	/* Next check for Fujitsu Swift. */
   1595	if (psr_typ == 0 && psr_vers == 4) {
   1596		phandle cpunode;
   1597		char node_str[128];
   1598
   1599		/* Look if it is not a TurboSparc emulating Swift... */
   1600		cpunode = prom_getchild(prom_root_node);
   1601		while ((cpunode = prom_getsibling(cpunode)) != 0) {
   1602			prom_getstring(cpunode, "device_type", node_str, sizeof(node_str));
   1603			if (!strcmp(node_str, "cpu")) {
   1604				if (!prom_getintdefault(cpunode, "psr-implementation", 1) &&
   1605				    prom_getintdefault(cpunode, "psr-version", 1) == 5) {
   1606					init_turbosparc();
   1607					return;
   1608				}
   1609				break;
   1610			}
   1611		}
   1612
   1613		init_swift();
   1614		return;
   1615	}
   1616
   1617	/* Now the Viking family of srmmu. */
   1618	if (psr_typ == 4 &&
   1619	   ((psr_vers == 0) ||
   1620	    ((psr_vers == 1) && (mod_typ == 0) && (mod_rev == 0)))) {
   1621		init_viking();
   1622		return;
   1623	}
   1624
   1625	/* Finally the Tsunami. */
   1626	if (psr_typ == 4 && psr_vers == 1 && (mod_typ || mod_rev)) {
   1627		init_tsunami();
   1628		return;
   1629	}
   1630
   1631	/* Oh well */
   1632	srmmu_is_bad();
   1633}
   1634
   1635#ifdef CONFIG_SMP
   1636/* Local cross-calls. */
   1637static void smp_flush_page_for_dma(unsigned long page)
   1638{
   1639	xc1((smpfunc_t) local_ops->page_for_dma, page);
   1640	local_ops->page_for_dma(page);
   1641}
   1642
   1643static void smp_flush_cache_all(void)
   1644{
   1645	xc0((smpfunc_t) local_ops->cache_all);
   1646	local_ops->cache_all();
   1647}
   1648
   1649static void smp_flush_tlb_all(void)
   1650{
   1651	xc0((smpfunc_t) local_ops->tlb_all);
   1652	local_ops->tlb_all();
   1653}
   1654
   1655static void smp_flush_cache_mm(struct mm_struct *mm)
   1656{
   1657	if (mm->context != NO_CONTEXT) {
   1658		cpumask_t cpu_mask;
   1659		cpumask_copy(&cpu_mask, mm_cpumask(mm));
   1660		cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
   1661		if (!cpumask_empty(&cpu_mask))
   1662			xc1((smpfunc_t) local_ops->cache_mm, (unsigned long) mm);
   1663		local_ops->cache_mm(mm);
   1664	}
   1665}
   1666
   1667static void smp_flush_tlb_mm(struct mm_struct *mm)
   1668{
   1669	if (mm->context != NO_CONTEXT) {
   1670		cpumask_t cpu_mask;
   1671		cpumask_copy(&cpu_mask, mm_cpumask(mm));
   1672		cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
   1673		if (!cpumask_empty(&cpu_mask)) {
   1674			xc1((smpfunc_t) local_ops->tlb_mm, (unsigned long) mm);
   1675			if (atomic_read(&mm->mm_users) == 1 && current->active_mm == mm)
   1676				cpumask_copy(mm_cpumask(mm),
   1677					     cpumask_of(smp_processor_id()));
   1678		}
   1679		local_ops->tlb_mm(mm);
   1680	}
   1681}
   1682
   1683static void smp_flush_cache_range(struct vm_area_struct *vma,
   1684				  unsigned long start,
   1685				  unsigned long end)
   1686{
   1687	struct mm_struct *mm = vma->vm_mm;
   1688
   1689	if (mm->context != NO_CONTEXT) {
   1690		cpumask_t cpu_mask;
   1691		cpumask_copy(&cpu_mask, mm_cpumask(mm));
   1692		cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
   1693		if (!cpumask_empty(&cpu_mask))
   1694			xc3((smpfunc_t) local_ops->cache_range,
   1695			    (unsigned long) vma, start, end);
   1696		local_ops->cache_range(vma, start, end);
   1697	}
   1698}
   1699
   1700static void smp_flush_tlb_range(struct vm_area_struct *vma,
   1701				unsigned long start,
   1702				unsigned long end)
   1703{
   1704	struct mm_struct *mm = vma->vm_mm;
   1705
   1706	if (mm->context != NO_CONTEXT) {
   1707		cpumask_t cpu_mask;
   1708		cpumask_copy(&cpu_mask, mm_cpumask(mm));
   1709		cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
   1710		if (!cpumask_empty(&cpu_mask))
   1711			xc3((smpfunc_t) local_ops->tlb_range,
   1712			    (unsigned long) vma, start, end);
   1713		local_ops->tlb_range(vma, start, end);
   1714	}
   1715}
   1716
   1717static void smp_flush_cache_page(struct vm_area_struct *vma, unsigned long page)
   1718{
   1719	struct mm_struct *mm = vma->vm_mm;
   1720
   1721	if (mm->context != NO_CONTEXT) {
   1722		cpumask_t cpu_mask;
   1723		cpumask_copy(&cpu_mask, mm_cpumask(mm));
   1724		cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
   1725		if (!cpumask_empty(&cpu_mask))
   1726			xc2((smpfunc_t) local_ops->cache_page,
   1727			    (unsigned long) vma, page);
   1728		local_ops->cache_page(vma, page);
   1729	}
   1730}
   1731
   1732static void smp_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
   1733{
   1734	struct mm_struct *mm = vma->vm_mm;
   1735
   1736	if (mm->context != NO_CONTEXT) {
   1737		cpumask_t cpu_mask;
   1738		cpumask_copy(&cpu_mask, mm_cpumask(mm));
   1739		cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
   1740		if (!cpumask_empty(&cpu_mask))
   1741			xc2((smpfunc_t) local_ops->tlb_page,
   1742			    (unsigned long) vma, page);
   1743		local_ops->tlb_page(vma, page);
   1744	}
   1745}
   1746
   1747static void smp_flush_page_to_ram(unsigned long page)
   1748{
   1749	/* Current theory is that those who call this are the one's
   1750	 * who have just dirtied their cache with the pages contents
   1751	 * in kernel space, therefore we only run this on local cpu.
   1752	 *
   1753	 * XXX This experiment failed, research further... -DaveM
   1754	 */
   1755#if 1
   1756	xc1((smpfunc_t) local_ops->page_to_ram, page);
   1757#endif
   1758	local_ops->page_to_ram(page);
   1759}
   1760
   1761static void smp_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr)
   1762{
   1763	cpumask_t cpu_mask;
   1764	cpumask_copy(&cpu_mask, mm_cpumask(mm));
   1765	cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
   1766	if (!cpumask_empty(&cpu_mask))
   1767		xc2((smpfunc_t) local_ops->sig_insns,
   1768		    (unsigned long) mm, insn_addr);
   1769	local_ops->sig_insns(mm, insn_addr);
   1770}
   1771
   1772static struct sparc32_cachetlb_ops smp_cachetlb_ops __ro_after_init = {
   1773	.cache_all	= smp_flush_cache_all,
   1774	.cache_mm	= smp_flush_cache_mm,
   1775	.cache_page	= smp_flush_cache_page,
   1776	.cache_range	= smp_flush_cache_range,
   1777	.tlb_all	= smp_flush_tlb_all,
   1778	.tlb_mm		= smp_flush_tlb_mm,
   1779	.tlb_page	= smp_flush_tlb_page,
   1780	.tlb_range	= smp_flush_tlb_range,
   1781	.page_to_ram	= smp_flush_page_to_ram,
   1782	.sig_insns	= smp_flush_sig_insns,
   1783	.page_for_dma	= smp_flush_page_for_dma,
   1784};
   1785#endif
   1786
   1787/* Load up routines and constants for sun4m and sun4d mmu */
   1788void __init load_mmu(void)
   1789{
   1790	/* Functions */
   1791	get_srmmu_type();
   1792
   1793#ifdef CONFIG_SMP
   1794	/* El switcheroo... */
   1795	local_ops = sparc32_cachetlb_ops;
   1796
   1797	if (sparc_cpu_model == sun4d || sparc_cpu_model == sparc_leon) {
   1798		smp_cachetlb_ops.tlb_all = local_ops->tlb_all;
   1799		smp_cachetlb_ops.tlb_mm = local_ops->tlb_mm;
   1800		smp_cachetlb_ops.tlb_range = local_ops->tlb_range;
   1801		smp_cachetlb_ops.tlb_page = local_ops->tlb_page;
   1802	}
   1803
   1804	if (poke_srmmu == poke_viking) {
   1805		/* Avoid unnecessary cross calls. */
   1806		smp_cachetlb_ops.cache_all = local_ops->cache_all;
   1807		smp_cachetlb_ops.cache_mm = local_ops->cache_mm;
   1808		smp_cachetlb_ops.cache_range = local_ops->cache_range;
   1809		smp_cachetlb_ops.cache_page = local_ops->cache_page;
   1810
   1811		smp_cachetlb_ops.page_to_ram = local_ops->page_to_ram;
   1812		smp_cachetlb_ops.sig_insns = local_ops->sig_insns;
   1813		smp_cachetlb_ops.page_for_dma = local_ops->page_for_dma;
   1814	}
   1815
   1816	/* It really is const after this point. */
   1817	sparc32_cachetlb_ops = (const struct sparc32_cachetlb_ops *)
   1818		&smp_cachetlb_ops;
   1819#endif
   1820
   1821	if (sparc_cpu_model != sun4d)
   1822		ld_mmu_iommu();
   1823#ifdef CONFIG_SMP
   1824	if (sparc_cpu_model == sun4d)
   1825		sun4d_init_smp();
   1826	else if (sparc_cpu_model == sparc_leon)
   1827		leon_init_smp();
   1828	else
   1829		sun4m_init_smp();
   1830#endif
   1831}