srmmu.c (50315B)
1// SPDX-License-Identifier: GPL-2.0 2/* 3 * srmmu.c: SRMMU specific routines for memory management. 4 * 5 * Copyright (C) 1995 David S. Miller (davem@caip.rutgers.edu) 6 * Copyright (C) 1995,2002 Pete Zaitcev (zaitcev@yahoo.com) 7 * Copyright (C) 1996 Eddie C. Dost (ecd@skynet.be) 8 * Copyright (C) 1997,1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz) 9 * Copyright (C) 1999,2000 Anton Blanchard (anton@samba.org) 10 */ 11 12#include <linux/seq_file.h> 13#include <linux/spinlock.h> 14#include <linux/memblock.h> 15#include <linux/pagemap.h> 16#include <linux/vmalloc.h> 17#include <linux/kdebug.h> 18#include <linux/export.h> 19#include <linux/kernel.h> 20#include <linux/init.h> 21#include <linux/log2.h> 22#include <linux/gfp.h> 23#include <linux/fs.h> 24#include <linux/mm.h> 25 26#include <asm/mmu_context.h> 27#include <asm/cacheflush.h> 28#include <asm/tlbflush.h> 29#include <asm/io-unit.h> 30#include <asm/pgalloc.h> 31#include <asm/pgtable.h> 32#include <asm/bitext.h> 33#include <asm/vaddrs.h> 34#include <asm/cache.h> 35#include <asm/traps.h> 36#include <asm/oplib.h> 37#include <asm/mbus.h> 38#include <asm/page.h> 39#include <asm/asi.h> 40#include <asm/smp.h> 41#include <asm/io.h> 42 43/* Now the cpu specific definitions. */ 44#include <asm/turbosparc.h> 45#include <asm/tsunami.h> 46#include <asm/viking.h> 47#include <asm/swift.h> 48#include <asm/leon.h> 49#include <asm/mxcc.h> 50#include <asm/ross.h> 51 52#include "mm_32.h" 53 54enum mbus_module srmmu_modtype; 55static unsigned int hwbug_bitmask; 56int vac_cache_size; 57EXPORT_SYMBOL(vac_cache_size); 58int vac_line_size; 59 60extern struct resource sparc_iomap; 61 62extern unsigned long last_valid_pfn; 63 64static pgd_t *srmmu_swapper_pg_dir; 65 66const struct sparc32_cachetlb_ops *sparc32_cachetlb_ops; 67EXPORT_SYMBOL(sparc32_cachetlb_ops); 68 69#ifdef CONFIG_SMP 70const struct sparc32_cachetlb_ops *local_ops; 71 72#define FLUSH_BEGIN(mm) 73#define FLUSH_END 74#else 75#define FLUSH_BEGIN(mm) if ((mm)->context != NO_CONTEXT) { 76#define FLUSH_END } 77#endif 78 79int flush_page_for_dma_global = 1; 80 81char *srmmu_name; 82 83ctxd_t *srmmu_ctx_table_phys; 84static ctxd_t *srmmu_context_table; 85 86int viking_mxcc_present; 87static DEFINE_SPINLOCK(srmmu_context_spinlock); 88 89static int is_hypersparc; 90 91static int srmmu_cache_pagetables; 92 93/* these will be initialized in srmmu_nocache_calcsize() */ 94static unsigned long srmmu_nocache_size; 95static unsigned long srmmu_nocache_end; 96 97/* 1 bit <=> 256 bytes of nocache <=> 64 PTEs */ 98#define SRMMU_NOCACHE_BITMAP_SHIFT (PAGE_SHIFT - 4) 99 100/* The context table is a nocache user with the biggest alignment needs. */ 101#define SRMMU_NOCACHE_ALIGN_MAX (sizeof(ctxd_t)*SRMMU_MAX_CONTEXTS) 102 103void *srmmu_nocache_pool; 104static struct bit_map srmmu_nocache_map; 105 106static inline int srmmu_pmd_none(pmd_t pmd) 107{ return !(pmd_val(pmd) & 0xFFFFFFF); } 108 109/* XXX should we hyper_flush_whole_icache here - Anton */ 110static inline void srmmu_ctxd_set(ctxd_t *ctxp, pgd_t *pgdp) 111{ 112 pte_t pte; 113 114 pte = __pte((SRMMU_ET_PTD | (__nocache_pa(pgdp) >> 4))); 115 set_pte((pte_t *)ctxp, pte); 116} 117 118/* 119 * Locations of MSI Registers. 120 */ 121#define MSI_MBUS_ARBEN 0xe0001008 /* MBus Arbiter Enable register */ 122 123/* 124 * Useful bits in the MSI Registers. 125 */ 126#define MSI_ASYNC_MODE 0x80000000 /* Operate the MSI asynchronously */ 127 128static void msi_set_sync(void) 129{ 130 __asm__ __volatile__ ("lda [%0] %1, %%g3\n\t" 131 "andn %%g3, %2, %%g3\n\t" 132 "sta %%g3, [%0] %1\n\t" : : 133 "r" (MSI_MBUS_ARBEN), 134 "i" (ASI_M_CTL), "r" (MSI_ASYNC_MODE) : "g3"); 135} 136 137void pmd_set(pmd_t *pmdp, pte_t *ptep) 138{ 139 unsigned long ptp = __nocache_pa(ptep) >> 4; 140 set_pte((pte_t *)&pmd_val(*pmdp), __pte(SRMMU_ET_PTD | ptp)); 141} 142 143/* 144 * size: bytes to allocate in the nocache area. 145 * align: bytes, number to align at. 146 * Returns the virtual address of the allocated area. 147 */ 148static void *__srmmu_get_nocache(int size, int align) 149{ 150 int offset, minsz = 1 << SRMMU_NOCACHE_BITMAP_SHIFT; 151 unsigned long addr; 152 153 if (size < minsz) { 154 printk(KERN_ERR "Size 0x%x too small for nocache request\n", 155 size); 156 size = minsz; 157 } 158 if (size & (minsz - 1)) { 159 printk(KERN_ERR "Size 0x%x unaligned in nocache request\n", 160 size); 161 size += minsz - 1; 162 } 163 BUG_ON(align > SRMMU_NOCACHE_ALIGN_MAX); 164 165 offset = bit_map_string_get(&srmmu_nocache_map, 166 size >> SRMMU_NOCACHE_BITMAP_SHIFT, 167 align >> SRMMU_NOCACHE_BITMAP_SHIFT); 168 if (offset == -1) { 169 printk(KERN_ERR "srmmu: out of nocache %d: %d/%d\n", 170 size, (int) srmmu_nocache_size, 171 srmmu_nocache_map.used << SRMMU_NOCACHE_BITMAP_SHIFT); 172 return NULL; 173 } 174 175 addr = SRMMU_NOCACHE_VADDR + (offset << SRMMU_NOCACHE_BITMAP_SHIFT); 176 return (void *)addr; 177} 178 179void *srmmu_get_nocache(int size, int align) 180{ 181 void *tmp; 182 183 tmp = __srmmu_get_nocache(size, align); 184 185 if (tmp) 186 memset(tmp, 0, size); 187 188 return tmp; 189} 190 191void srmmu_free_nocache(void *addr, int size) 192{ 193 unsigned long vaddr; 194 int offset; 195 196 vaddr = (unsigned long)addr; 197 if (vaddr < SRMMU_NOCACHE_VADDR) { 198 printk("Vaddr %lx is smaller than nocache base 0x%lx\n", 199 vaddr, (unsigned long)SRMMU_NOCACHE_VADDR); 200 BUG(); 201 } 202 if (vaddr + size > srmmu_nocache_end) { 203 printk("Vaddr %lx is bigger than nocache end 0x%lx\n", 204 vaddr, srmmu_nocache_end); 205 BUG(); 206 } 207 if (!is_power_of_2(size)) { 208 printk("Size 0x%x is not a power of 2\n", size); 209 BUG(); 210 } 211 if (size < SRMMU_NOCACHE_BITMAP_SHIFT) { 212 printk("Size 0x%x is too small\n", size); 213 BUG(); 214 } 215 if (vaddr & (size - 1)) { 216 printk("Vaddr %lx is not aligned to size 0x%x\n", vaddr, size); 217 BUG(); 218 } 219 220 offset = (vaddr - SRMMU_NOCACHE_VADDR) >> SRMMU_NOCACHE_BITMAP_SHIFT; 221 size = size >> SRMMU_NOCACHE_BITMAP_SHIFT; 222 223 bit_map_clear(&srmmu_nocache_map, offset, size); 224} 225 226static void srmmu_early_allocate_ptable_skeleton(unsigned long start, 227 unsigned long end); 228 229/* Return how much physical memory we have. */ 230static unsigned long __init probe_memory(void) 231{ 232 unsigned long total = 0; 233 int i; 234 235 for (i = 0; sp_banks[i].num_bytes; i++) 236 total += sp_banks[i].num_bytes; 237 238 return total; 239} 240 241/* 242 * Reserve nocache dynamically proportionally to the amount of 243 * system RAM. -- Tomas Szepe <szepe@pinerecords.com>, June 2002 244 */ 245static void __init srmmu_nocache_calcsize(void) 246{ 247 unsigned long sysmemavail = probe_memory() / 1024; 248 int srmmu_nocache_npages; 249 250 srmmu_nocache_npages = 251 sysmemavail / SRMMU_NOCACHE_ALCRATIO / 1024 * 256; 252 253 /* P3 XXX The 4x overuse: corroborated by /proc/meminfo. */ 254 // if (srmmu_nocache_npages < 256) srmmu_nocache_npages = 256; 255 if (srmmu_nocache_npages < SRMMU_MIN_NOCACHE_PAGES) 256 srmmu_nocache_npages = SRMMU_MIN_NOCACHE_PAGES; 257 258 /* anything above 1280 blows up */ 259 if (srmmu_nocache_npages > SRMMU_MAX_NOCACHE_PAGES) 260 srmmu_nocache_npages = SRMMU_MAX_NOCACHE_PAGES; 261 262 srmmu_nocache_size = srmmu_nocache_npages * PAGE_SIZE; 263 srmmu_nocache_end = SRMMU_NOCACHE_VADDR + srmmu_nocache_size; 264} 265 266static void __init srmmu_nocache_init(void) 267{ 268 void *srmmu_nocache_bitmap; 269 unsigned int bitmap_bits; 270 pgd_t *pgd; 271 p4d_t *p4d; 272 pud_t *pud; 273 pmd_t *pmd; 274 pte_t *pte; 275 unsigned long paddr, vaddr; 276 unsigned long pteval; 277 278 bitmap_bits = srmmu_nocache_size >> SRMMU_NOCACHE_BITMAP_SHIFT; 279 280 srmmu_nocache_pool = memblock_alloc(srmmu_nocache_size, 281 SRMMU_NOCACHE_ALIGN_MAX); 282 if (!srmmu_nocache_pool) 283 panic("%s: Failed to allocate %lu bytes align=0x%x\n", 284 __func__, srmmu_nocache_size, SRMMU_NOCACHE_ALIGN_MAX); 285 memset(srmmu_nocache_pool, 0, srmmu_nocache_size); 286 287 srmmu_nocache_bitmap = 288 memblock_alloc(BITS_TO_LONGS(bitmap_bits) * sizeof(long), 289 SMP_CACHE_BYTES); 290 if (!srmmu_nocache_bitmap) 291 panic("%s: Failed to allocate %zu bytes\n", __func__, 292 BITS_TO_LONGS(bitmap_bits) * sizeof(long)); 293 bit_map_init(&srmmu_nocache_map, srmmu_nocache_bitmap, bitmap_bits); 294 295 srmmu_swapper_pg_dir = __srmmu_get_nocache(SRMMU_PGD_TABLE_SIZE, SRMMU_PGD_TABLE_SIZE); 296 memset(__nocache_fix(srmmu_swapper_pg_dir), 0, SRMMU_PGD_TABLE_SIZE); 297 init_mm.pgd = srmmu_swapper_pg_dir; 298 299 srmmu_early_allocate_ptable_skeleton(SRMMU_NOCACHE_VADDR, srmmu_nocache_end); 300 301 paddr = __pa((unsigned long)srmmu_nocache_pool); 302 vaddr = SRMMU_NOCACHE_VADDR; 303 304 while (vaddr < srmmu_nocache_end) { 305 pgd = pgd_offset_k(vaddr); 306 p4d = p4d_offset(pgd, vaddr); 307 pud = pud_offset(p4d, vaddr); 308 pmd = pmd_offset(__nocache_fix(pud), vaddr); 309 pte = pte_offset_kernel(__nocache_fix(pmd), vaddr); 310 311 pteval = ((paddr >> 4) | SRMMU_ET_PTE | SRMMU_PRIV); 312 313 if (srmmu_cache_pagetables) 314 pteval |= SRMMU_CACHE; 315 316 set_pte(__nocache_fix(pte), __pte(pteval)); 317 318 vaddr += PAGE_SIZE; 319 paddr += PAGE_SIZE; 320 } 321 322 flush_cache_all(); 323 flush_tlb_all(); 324} 325 326pgd_t *get_pgd_fast(void) 327{ 328 pgd_t *pgd = NULL; 329 330 pgd = __srmmu_get_nocache(SRMMU_PGD_TABLE_SIZE, SRMMU_PGD_TABLE_SIZE); 331 if (pgd) { 332 pgd_t *init = pgd_offset_k(0); 333 memset(pgd, 0, USER_PTRS_PER_PGD * sizeof(pgd_t)); 334 memcpy(pgd + USER_PTRS_PER_PGD, init + USER_PTRS_PER_PGD, 335 (PTRS_PER_PGD - USER_PTRS_PER_PGD) * sizeof(pgd_t)); 336 } 337 338 return pgd; 339} 340 341/* 342 * Hardware needs alignment to 256 only, but we align to whole page size 343 * to reduce fragmentation problems due to the buddy principle. 344 * XXX Provide actual fragmentation statistics in /proc. 345 * 346 * Alignments up to the page size are the same for physical and virtual 347 * addresses of the nocache area. 348 */ 349pgtable_t pte_alloc_one(struct mm_struct *mm) 350{ 351 pte_t *ptep; 352 struct page *page; 353 354 if (!(ptep = pte_alloc_one_kernel(mm))) 355 return NULL; 356 page = pfn_to_page(__nocache_pa((unsigned long)ptep) >> PAGE_SHIFT); 357 spin_lock(&mm->page_table_lock); 358 if (page_ref_inc_return(page) == 2 && !pgtable_pte_page_ctor(page)) { 359 page_ref_dec(page); 360 ptep = NULL; 361 } 362 spin_unlock(&mm->page_table_lock); 363 364 return ptep; 365} 366 367void pte_free(struct mm_struct *mm, pgtable_t ptep) 368{ 369 struct page *page; 370 371 page = pfn_to_page(__nocache_pa((unsigned long)ptep) >> PAGE_SHIFT); 372 spin_lock(&mm->page_table_lock); 373 if (page_ref_dec_return(page) == 1) 374 pgtable_pte_page_dtor(page); 375 spin_unlock(&mm->page_table_lock); 376 377 srmmu_free_nocache(ptep, SRMMU_PTE_TABLE_SIZE); 378} 379 380/* context handling - a dynamically sized pool is used */ 381#define NO_CONTEXT -1 382 383struct ctx_list { 384 struct ctx_list *next; 385 struct ctx_list *prev; 386 unsigned int ctx_number; 387 struct mm_struct *ctx_mm; 388}; 389 390static struct ctx_list *ctx_list_pool; 391static struct ctx_list ctx_free; 392static struct ctx_list ctx_used; 393 394/* At boot time we determine the number of contexts */ 395static int num_contexts; 396 397static inline void remove_from_ctx_list(struct ctx_list *entry) 398{ 399 entry->next->prev = entry->prev; 400 entry->prev->next = entry->next; 401} 402 403static inline void add_to_ctx_list(struct ctx_list *head, struct ctx_list *entry) 404{ 405 entry->next = head; 406 (entry->prev = head->prev)->next = entry; 407 head->prev = entry; 408} 409#define add_to_free_ctxlist(entry) add_to_ctx_list(&ctx_free, entry) 410#define add_to_used_ctxlist(entry) add_to_ctx_list(&ctx_used, entry) 411 412 413static inline void alloc_context(struct mm_struct *old_mm, struct mm_struct *mm) 414{ 415 struct ctx_list *ctxp; 416 417 ctxp = ctx_free.next; 418 if (ctxp != &ctx_free) { 419 remove_from_ctx_list(ctxp); 420 add_to_used_ctxlist(ctxp); 421 mm->context = ctxp->ctx_number; 422 ctxp->ctx_mm = mm; 423 return; 424 } 425 ctxp = ctx_used.next; 426 if (ctxp->ctx_mm == old_mm) 427 ctxp = ctxp->next; 428 if (ctxp == &ctx_used) 429 panic("out of mmu contexts"); 430 flush_cache_mm(ctxp->ctx_mm); 431 flush_tlb_mm(ctxp->ctx_mm); 432 remove_from_ctx_list(ctxp); 433 add_to_used_ctxlist(ctxp); 434 ctxp->ctx_mm->context = NO_CONTEXT; 435 ctxp->ctx_mm = mm; 436 mm->context = ctxp->ctx_number; 437} 438 439static inline void free_context(int context) 440{ 441 struct ctx_list *ctx_old; 442 443 ctx_old = ctx_list_pool + context; 444 remove_from_ctx_list(ctx_old); 445 add_to_free_ctxlist(ctx_old); 446} 447 448static void __init sparc_context_init(int numctx) 449{ 450 int ctx; 451 unsigned long size; 452 453 size = numctx * sizeof(struct ctx_list); 454 ctx_list_pool = memblock_alloc(size, SMP_CACHE_BYTES); 455 if (!ctx_list_pool) 456 panic("%s: Failed to allocate %lu bytes\n", __func__, size); 457 458 for (ctx = 0; ctx < numctx; ctx++) { 459 struct ctx_list *clist; 460 461 clist = (ctx_list_pool + ctx); 462 clist->ctx_number = ctx; 463 clist->ctx_mm = NULL; 464 } 465 ctx_free.next = ctx_free.prev = &ctx_free; 466 ctx_used.next = ctx_used.prev = &ctx_used; 467 for (ctx = 0; ctx < numctx; ctx++) 468 add_to_free_ctxlist(ctx_list_pool + ctx); 469} 470 471void switch_mm(struct mm_struct *old_mm, struct mm_struct *mm, 472 struct task_struct *tsk) 473{ 474 unsigned long flags; 475 476 if (mm->context == NO_CONTEXT) { 477 spin_lock_irqsave(&srmmu_context_spinlock, flags); 478 alloc_context(old_mm, mm); 479 spin_unlock_irqrestore(&srmmu_context_spinlock, flags); 480 srmmu_ctxd_set(&srmmu_context_table[mm->context], mm->pgd); 481 } 482 483 if (sparc_cpu_model == sparc_leon) 484 leon_switch_mm(); 485 486 if (is_hypersparc) 487 hyper_flush_whole_icache(); 488 489 srmmu_set_context(mm->context); 490} 491 492/* Low level IO area allocation on the SRMMU. */ 493static inline void srmmu_mapioaddr(unsigned long physaddr, 494 unsigned long virt_addr, int bus_type) 495{ 496 pgd_t *pgdp; 497 p4d_t *p4dp; 498 pud_t *pudp; 499 pmd_t *pmdp; 500 pte_t *ptep; 501 unsigned long tmp; 502 503 physaddr &= PAGE_MASK; 504 pgdp = pgd_offset_k(virt_addr); 505 p4dp = p4d_offset(pgdp, virt_addr); 506 pudp = pud_offset(p4dp, virt_addr); 507 pmdp = pmd_offset(pudp, virt_addr); 508 ptep = pte_offset_kernel(pmdp, virt_addr); 509 tmp = (physaddr >> 4) | SRMMU_ET_PTE; 510 511 /* I need to test whether this is consistent over all 512 * sun4m's. The bus_type represents the upper 4 bits of 513 * 36-bit physical address on the I/O space lines... 514 */ 515 tmp |= (bus_type << 28); 516 tmp |= SRMMU_PRIV; 517 __flush_page_to_ram(virt_addr); 518 set_pte(ptep, __pte(tmp)); 519} 520 521void srmmu_mapiorange(unsigned int bus, unsigned long xpa, 522 unsigned long xva, unsigned int len) 523{ 524 while (len != 0) { 525 len -= PAGE_SIZE; 526 srmmu_mapioaddr(xpa, xva, bus); 527 xva += PAGE_SIZE; 528 xpa += PAGE_SIZE; 529 } 530 flush_tlb_all(); 531} 532 533static inline void srmmu_unmapioaddr(unsigned long virt_addr) 534{ 535 pgd_t *pgdp; 536 p4d_t *p4dp; 537 pud_t *pudp; 538 pmd_t *pmdp; 539 pte_t *ptep; 540 541 542 pgdp = pgd_offset_k(virt_addr); 543 p4dp = p4d_offset(pgdp, virt_addr); 544 pudp = pud_offset(p4dp, virt_addr); 545 pmdp = pmd_offset(pudp, virt_addr); 546 ptep = pte_offset_kernel(pmdp, virt_addr); 547 548 /* No need to flush uncacheable page. */ 549 __pte_clear(ptep); 550} 551 552void srmmu_unmapiorange(unsigned long virt_addr, unsigned int len) 553{ 554 while (len != 0) { 555 len -= PAGE_SIZE; 556 srmmu_unmapioaddr(virt_addr); 557 virt_addr += PAGE_SIZE; 558 } 559 flush_tlb_all(); 560} 561 562/* tsunami.S */ 563extern void tsunami_flush_cache_all(void); 564extern void tsunami_flush_cache_mm(struct mm_struct *mm); 565extern void tsunami_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end); 566extern void tsunami_flush_cache_page(struct vm_area_struct *vma, unsigned long page); 567extern void tsunami_flush_page_to_ram(unsigned long page); 568extern void tsunami_flush_page_for_dma(unsigned long page); 569extern void tsunami_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr); 570extern void tsunami_flush_tlb_all(void); 571extern void tsunami_flush_tlb_mm(struct mm_struct *mm); 572extern void tsunami_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end); 573extern void tsunami_flush_tlb_page(struct vm_area_struct *vma, unsigned long page); 574extern void tsunami_setup_blockops(void); 575 576/* swift.S */ 577extern void swift_flush_cache_all(void); 578extern void swift_flush_cache_mm(struct mm_struct *mm); 579extern void swift_flush_cache_range(struct vm_area_struct *vma, 580 unsigned long start, unsigned long end); 581extern void swift_flush_cache_page(struct vm_area_struct *vma, unsigned long page); 582extern void swift_flush_page_to_ram(unsigned long page); 583extern void swift_flush_page_for_dma(unsigned long page); 584extern void swift_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr); 585extern void swift_flush_tlb_all(void); 586extern void swift_flush_tlb_mm(struct mm_struct *mm); 587extern void swift_flush_tlb_range(struct vm_area_struct *vma, 588 unsigned long start, unsigned long end); 589extern void swift_flush_tlb_page(struct vm_area_struct *vma, unsigned long page); 590 591#if 0 /* P3: deadwood to debug precise flushes on Swift. */ 592void swift_flush_tlb_page(struct vm_area_struct *vma, unsigned long page) 593{ 594 int cctx, ctx1; 595 596 page &= PAGE_MASK; 597 if ((ctx1 = vma->vm_mm->context) != -1) { 598 cctx = srmmu_get_context(); 599/* Is context # ever different from current context? P3 */ 600 if (cctx != ctx1) { 601 printk("flush ctx %02x curr %02x\n", ctx1, cctx); 602 srmmu_set_context(ctx1); 603 swift_flush_page(page); 604 __asm__ __volatile__("sta %%g0, [%0] %1\n\t" : : 605 "r" (page), "i" (ASI_M_FLUSH_PROBE)); 606 srmmu_set_context(cctx); 607 } else { 608 /* Rm. prot. bits from virt. c. */ 609 /* swift_flush_cache_all(); */ 610 /* swift_flush_cache_page(vma, page); */ 611 swift_flush_page(page); 612 613 __asm__ __volatile__("sta %%g0, [%0] %1\n\t" : : 614 "r" (page), "i" (ASI_M_FLUSH_PROBE)); 615 /* same as above: srmmu_flush_tlb_page() */ 616 } 617 } 618} 619#endif 620 621/* 622 * The following are all MBUS based SRMMU modules, and therefore could 623 * be found in a multiprocessor configuration. On the whole, these 624 * chips seems to be much more touchy about DVMA and page tables 625 * with respect to cache coherency. 626 */ 627 628/* viking.S */ 629extern void viking_flush_cache_all(void); 630extern void viking_flush_cache_mm(struct mm_struct *mm); 631extern void viking_flush_cache_range(struct vm_area_struct *vma, unsigned long start, 632 unsigned long end); 633extern void viking_flush_cache_page(struct vm_area_struct *vma, unsigned long page); 634extern void viking_flush_page_to_ram(unsigned long page); 635extern void viking_flush_page_for_dma(unsigned long page); 636extern void viking_flush_sig_insns(struct mm_struct *mm, unsigned long addr); 637extern void viking_flush_page(unsigned long page); 638extern void viking_mxcc_flush_page(unsigned long page); 639extern void viking_flush_tlb_all(void); 640extern void viking_flush_tlb_mm(struct mm_struct *mm); 641extern void viking_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, 642 unsigned long end); 643extern void viking_flush_tlb_page(struct vm_area_struct *vma, 644 unsigned long page); 645extern void sun4dsmp_flush_tlb_all(void); 646extern void sun4dsmp_flush_tlb_mm(struct mm_struct *mm); 647extern void sun4dsmp_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, 648 unsigned long end); 649extern void sun4dsmp_flush_tlb_page(struct vm_area_struct *vma, 650 unsigned long page); 651 652/* hypersparc.S */ 653extern void hypersparc_flush_cache_all(void); 654extern void hypersparc_flush_cache_mm(struct mm_struct *mm); 655extern void hypersparc_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end); 656extern void hypersparc_flush_cache_page(struct vm_area_struct *vma, unsigned long page); 657extern void hypersparc_flush_page_to_ram(unsigned long page); 658extern void hypersparc_flush_page_for_dma(unsigned long page); 659extern void hypersparc_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr); 660extern void hypersparc_flush_tlb_all(void); 661extern void hypersparc_flush_tlb_mm(struct mm_struct *mm); 662extern void hypersparc_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end); 663extern void hypersparc_flush_tlb_page(struct vm_area_struct *vma, unsigned long page); 664extern void hypersparc_setup_blockops(void); 665 666/* 667 * NOTE: All of this startup code assumes the low 16mb (approx.) of 668 * kernel mappings are done with one single contiguous chunk of 669 * ram. On small ram machines (classics mainly) we only get 670 * around 8mb mapped for us. 671 */ 672 673static void __init early_pgtable_allocfail(char *type) 674{ 675 prom_printf("inherit_prom_mappings: Cannot alloc kernel %s.\n", type); 676 prom_halt(); 677} 678 679static void __init srmmu_early_allocate_ptable_skeleton(unsigned long start, 680 unsigned long end) 681{ 682 pgd_t *pgdp; 683 p4d_t *p4dp; 684 pud_t *pudp; 685 pmd_t *pmdp; 686 pte_t *ptep; 687 688 while (start < end) { 689 pgdp = pgd_offset_k(start); 690 p4dp = p4d_offset(pgdp, start); 691 pudp = pud_offset(p4dp, start); 692 if (pud_none(*__nocache_fix(pudp))) { 693 pmdp = __srmmu_get_nocache( 694 SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE); 695 if (pmdp == NULL) 696 early_pgtable_allocfail("pmd"); 697 memset(__nocache_fix(pmdp), 0, SRMMU_PMD_TABLE_SIZE); 698 pud_set(__nocache_fix(pudp), pmdp); 699 } 700 pmdp = pmd_offset(__nocache_fix(pudp), start); 701 if (srmmu_pmd_none(*__nocache_fix(pmdp))) { 702 ptep = __srmmu_get_nocache(PTE_SIZE, PTE_SIZE); 703 if (ptep == NULL) 704 early_pgtable_allocfail("pte"); 705 memset(__nocache_fix(ptep), 0, PTE_SIZE); 706 pmd_set(__nocache_fix(pmdp), ptep); 707 } 708 if (start > (0xffffffffUL - PMD_SIZE)) 709 break; 710 start = (start + PMD_SIZE) & PMD_MASK; 711 } 712} 713 714static void __init srmmu_allocate_ptable_skeleton(unsigned long start, 715 unsigned long end) 716{ 717 pgd_t *pgdp; 718 p4d_t *p4dp; 719 pud_t *pudp; 720 pmd_t *pmdp; 721 pte_t *ptep; 722 723 while (start < end) { 724 pgdp = pgd_offset_k(start); 725 p4dp = p4d_offset(pgdp, start); 726 pudp = pud_offset(p4dp, start); 727 if (pud_none(*pudp)) { 728 pmdp = __srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE); 729 if (pmdp == NULL) 730 early_pgtable_allocfail("pmd"); 731 memset(pmdp, 0, SRMMU_PMD_TABLE_SIZE); 732 pud_set((pud_t *)pgdp, pmdp); 733 } 734 pmdp = pmd_offset(pudp, start); 735 if (srmmu_pmd_none(*pmdp)) { 736 ptep = __srmmu_get_nocache(PTE_SIZE, 737 PTE_SIZE); 738 if (ptep == NULL) 739 early_pgtable_allocfail("pte"); 740 memset(ptep, 0, PTE_SIZE); 741 pmd_set(pmdp, ptep); 742 } 743 if (start > (0xffffffffUL - PMD_SIZE)) 744 break; 745 start = (start + PMD_SIZE) & PMD_MASK; 746 } 747} 748 749/* These flush types are not available on all chips... */ 750static inline unsigned long srmmu_probe(unsigned long vaddr) 751{ 752 unsigned long retval; 753 754 if (sparc_cpu_model != sparc_leon) { 755 756 vaddr &= PAGE_MASK; 757 __asm__ __volatile__("lda [%1] %2, %0\n\t" : 758 "=r" (retval) : 759 "r" (vaddr | 0x400), "i" (ASI_M_FLUSH_PROBE)); 760 } else { 761 retval = leon_swprobe(vaddr, NULL); 762 } 763 return retval; 764} 765 766/* 767 * This is much cleaner than poking around physical address space 768 * looking at the prom's page table directly which is what most 769 * other OS's do. Yuck... this is much better. 770 */ 771static void __init srmmu_inherit_prom_mappings(unsigned long start, 772 unsigned long end) 773{ 774 unsigned long probed; 775 unsigned long addr; 776 pgd_t *pgdp; 777 p4d_t *p4dp; 778 pud_t *pudp; 779 pmd_t *pmdp; 780 pte_t *ptep; 781 int what; /* 0 = normal-pte, 1 = pmd-level pte, 2 = pgd-level pte */ 782 783 while (start <= end) { 784 if (start == 0) 785 break; /* probably wrap around */ 786 if (start == 0xfef00000) 787 start = KADB_DEBUGGER_BEGVM; 788 probed = srmmu_probe(start); 789 if (!probed) { 790 /* continue probing until we find an entry */ 791 start += PAGE_SIZE; 792 continue; 793 } 794 795 /* A red snapper, see what it really is. */ 796 what = 0; 797 addr = start - PAGE_SIZE; 798 799 if (!(start & ~(PMD_MASK))) { 800 if (srmmu_probe(addr + PMD_SIZE) == probed) 801 what = 1; 802 } 803 804 if (!(start & ~(PGDIR_MASK))) { 805 if (srmmu_probe(addr + PGDIR_SIZE) == probed) 806 what = 2; 807 } 808 809 pgdp = pgd_offset_k(start); 810 p4dp = p4d_offset(pgdp, start); 811 pudp = pud_offset(p4dp, start); 812 if (what == 2) { 813 *__nocache_fix(pgdp) = __pgd(probed); 814 start += PGDIR_SIZE; 815 continue; 816 } 817 if (pud_none(*__nocache_fix(pudp))) { 818 pmdp = __srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE, 819 SRMMU_PMD_TABLE_SIZE); 820 if (pmdp == NULL) 821 early_pgtable_allocfail("pmd"); 822 memset(__nocache_fix(pmdp), 0, SRMMU_PMD_TABLE_SIZE); 823 pud_set(__nocache_fix(pudp), pmdp); 824 } 825 pmdp = pmd_offset(__nocache_fix(pudp), start); 826 if (what == 1) { 827 *(pmd_t *)__nocache_fix(pmdp) = __pmd(probed); 828 start += PMD_SIZE; 829 continue; 830 } 831 if (srmmu_pmd_none(*__nocache_fix(pmdp))) { 832 ptep = __srmmu_get_nocache(PTE_SIZE, PTE_SIZE); 833 if (ptep == NULL) 834 early_pgtable_allocfail("pte"); 835 memset(__nocache_fix(ptep), 0, PTE_SIZE); 836 pmd_set(__nocache_fix(pmdp), ptep); 837 } 838 ptep = pte_offset_kernel(__nocache_fix(pmdp), start); 839 *__nocache_fix(ptep) = __pte(probed); 840 start += PAGE_SIZE; 841 } 842} 843 844#define KERNEL_PTE(page_shifted) ((page_shifted)|SRMMU_CACHE|SRMMU_PRIV|SRMMU_VALID) 845 846/* Create a third-level SRMMU 16MB page mapping. */ 847static void __init do_large_mapping(unsigned long vaddr, unsigned long phys_base) 848{ 849 pgd_t *pgdp = pgd_offset_k(vaddr); 850 unsigned long big_pte; 851 852 big_pte = KERNEL_PTE(phys_base >> 4); 853 *__nocache_fix(pgdp) = __pgd(big_pte); 854} 855 856/* Map sp_bank entry SP_ENTRY, starting at virtual address VBASE. */ 857static unsigned long __init map_spbank(unsigned long vbase, int sp_entry) 858{ 859 unsigned long pstart = (sp_banks[sp_entry].base_addr & PGDIR_MASK); 860 unsigned long vstart = (vbase & PGDIR_MASK); 861 unsigned long vend = PGDIR_ALIGN(vbase + sp_banks[sp_entry].num_bytes); 862 /* Map "low" memory only */ 863 const unsigned long min_vaddr = PAGE_OFFSET; 864 const unsigned long max_vaddr = PAGE_OFFSET + SRMMU_MAXMEM; 865 866 if (vstart < min_vaddr || vstart >= max_vaddr) 867 return vstart; 868 869 if (vend > max_vaddr || vend < min_vaddr) 870 vend = max_vaddr; 871 872 while (vstart < vend) { 873 do_large_mapping(vstart, pstart); 874 vstart += PGDIR_SIZE; pstart += PGDIR_SIZE; 875 } 876 return vstart; 877} 878 879static void __init map_kernel(void) 880{ 881 int i; 882 883 if (phys_base > 0) { 884 do_large_mapping(PAGE_OFFSET, phys_base); 885 } 886 887 for (i = 0; sp_banks[i].num_bytes != 0; i++) { 888 map_spbank((unsigned long)__va(sp_banks[i].base_addr), i); 889 } 890} 891 892void (*poke_srmmu)(void) = NULL; 893 894void __init srmmu_paging_init(void) 895{ 896 int i; 897 phandle cpunode; 898 char node_str[128]; 899 pgd_t *pgd; 900 p4d_t *p4d; 901 pud_t *pud; 902 pmd_t *pmd; 903 pte_t *pte; 904 unsigned long pages_avail; 905 906 init_mm.context = (unsigned long) NO_CONTEXT; 907 sparc_iomap.start = SUN4M_IOBASE_VADDR; /* 16MB of IOSPACE on all sun4m's. */ 908 909 if (sparc_cpu_model == sun4d) 910 num_contexts = 65536; /* We know it is Viking */ 911 else { 912 /* Find the number of contexts on the srmmu. */ 913 cpunode = prom_getchild(prom_root_node); 914 num_contexts = 0; 915 while (cpunode != 0) { 916 prom_getstring(cpunode, "device_type", node_str, sizeof(node_str)); 917 if (!strcmp(node_str, "cpu")) { 918 num_contexts = prom_getintdefault(cpunode, "mmu-nctx", 0x8); 919 break; 920 } 921 cpunode = prom_getsibling(cpunode); 922 } 923 } 924 925 if (!num_contexts) { 926 prom_printf("Something wrong, can't find cpu node in paging_init.\n"); 927 prom_halt(); 928 } 929 930 pages_avail = 0; 931 last_valid_pfn = bootmem_init(&pages_avail); 932 933 srmmu_nocache_calcsize(); 934 srmmu_nocache_init(); 935 srmmu_inherit_prom_mappings(0xfe400000, (LINUX_OPPROM_ENDVM - PAGE_SIZE)); 936 map_kernel(); 937 938 /* ctx table has to be physically aligned to its size */ 939 srmmu_context_table = __srmmu_get_nocache(num_contexts * sizeof(ctxd_t), num_contexts * sizeof(ctxd_t)); 940 srmmu_ctx_table_phys = (ctxd_t *)__nocache_pa(srmmu_context_table); 941 942 for (i = 0; i < num_contexts; i++) 943 srmmu_ctxd_set(__nocache_fix(&srmmu_context_table[i]), srmmu_swapper_pg_dir); 944 945 flush_cache_all(); 946 srmmu_set_ctable_ptr((unsigned long)srmmu_ctx_table_phys); 947#ifdef CONFIG_SMP 948 /* Stop from hanging here... */ 949 local_ops->tlb_all(); 950#else 951 flush_tlb_all(); 952#endif 953 poke_srmmu(); 954 955 srmmu_allocate_ptable_skeleton(sparc_iomap.start, IOBASE_END); 956 srmmu_allocate_ptable_skeleton(DVMA_VADDR, DVMA_END); 957 958 srmmu_allocate_ptable_skeleton( 959 __fix_to_virt(__end_of_fixed_addresses - 1), FIXADDR_TOP); 960 srmmu_allocate_ptable_skeleton(PKMAP_BASE, PKMAP_END); 961 962 pgd = pgd_offset_k(PKMAP_BASE); 963 p4d = p4d_offset(pgd, PKMAP_BASE); 964 pud = pud_offset(p4d, PKMAP_BASE); 965 pmd = pmd_offset(pud, PKMAP_BASE); 966 pte = pte_offset_kernel(pmd, PKMAP_BASE); 967 pkmap_page_table = pte; 968 969 flush_cache_all(); 970 flush_tlb_all(); 971 972 sparc_context_init(num_contexts); 973 974 { 975 unsigned long max_zone_pfn[MAX_NR_ZONES] = { 0 }; 976 977 max_zone_pfn[ZONE_DMA] = max_low_pfn; 978 max_zone_pfn[ZONE_NORMAL] = max_low_pfn; 979 max_zone_pfn[ZONE_HIGHMEM] = highend_pfn; 980 981 free_area_init(max_zone_pfn); 982 } 983} 984 985void mmu_info(struct seq_file *m) 986{ 987 seq_printf(m, 988 "MMU type\t: %s\n" 989 "contexts\t: %d\n" 990 "nocache total\t: %ld\n" 991 "nocache used\t: %d\n", 992 srmmu_name, 993 num_contexts, 994 srmmu_nocache_size, 995 srmmu_nocache_map.used << SRMMU_NOCACHE_BITMAP_SHIFT); 996} 997 998int init_new_context(struct task_struct *tsk, struct mm_struct *mm) 999{ 1000 mm->context = NO_CONTEXT; 1001 return 0; 1002} 1003 1004void destroy_context(struct mm_struct *mm) 1005{ 1006 unsigned long flags; 1007 1008 if (mm->context != NO_CONTEXT) { 1009 flush_cache_mm(mm); 1010 srmmu_ctxd_set(&srmmu_context_table[mm->context], srmmu_swapper_pg_dir); 1011 flush_tlb_mm(mm); 1012 spin_lock_irqsave(&srmmu_context_spinlock, flags); 1013 free_context(mm->context); 1014 spin_unlock_irqrestore(&srmmu_context_spinlock, flags); 1015 mm->context = NO_CONTEXT; 1016 } 1017} 1018 1019/* Init various srmmu chip types. */ 1020static void __init srmmu_is_bad(void) 1021{ 1022 prom_printf("Could not determine SRMMU chip type.\n"); 1023 prom_halt(); 1024} 1025 1026static void __init init_vac_layout(void) 1027{ 1028 phandle nd; 1029 int cache_lines; 1030 char node_str[128]; 1031#ifdef CONFIG_SMP 1032 int cpu = 0; 1033 unsigned long max_size = 0; 1034 unsigned long min_line_size = 0x10000000; 1035#endif 1036 1037 nd = prom_getchild(prom_root_node); 1038 while ((nd = prom_getsibling(nd)) != 0) { 1039 prom_getstring(nd, "device_type", node_str, sizeof(node_str)); 1040 if (!strcmp(node_str, "cpu")) { 1041 vac_line_size = prom_getint(nd, "cache-line-size"); 1042 if (vac_line_size == -1) { 1043 prom_printf("can't determine cache-line-size, halting.\n"); 1044 prom_halt(); 1045 } 1046 cache_lines = prom_getint(nd, "cache-nlines"); 1047 if (cache_lines == -1) { 1048 prom_printf("can't determine cache-nlines, halting.\n"); 1049 prom_halt(); 1050 } 1051 1052 vac_cache_size = cache_lines * vac_line_size; 1053#ifdef CONFIG_SMP 1054 if (vac_cache_size > max_size) 1055 max_size = vac_cache_size; 1056 if (vac_line_size < min_line_size) 1057 min_line_size = vac_line_size; 1058 //FIXME: cpus not contiguous!! 1059 cpu++; 1060 if (cpu >= nr_cpu_ids || !cpu_online(cpu)) 1061 break; 1062#else 1063 break; 1064#endif 1065 } 1066 } 1067 if (nd == 0) { 1068 prom_printf("No CPU nodes found, halting.\n"); 1069 prom_halt(); 1070 } 1071#ifdef CONFIG_SMP 1072 vac_cache_size = max_size; 1073 vac_line_size = min_line_size; 1074#endif 1075 printk("SRMMU: Using VAC size of %d bytes, line size %d bytes.\n", 1076 (int)vac_cache_size, (int)vac_line_size); 1077} 1078 1079static void poke_hypersparc(void) 1080{ 1081 volatile unsigned long clear; 1082 unsigned long mreg = srmmu_get_mmureg(); 1083 1084 hyper_flush_unconditional_combined(); 1085 1086 mreg &= ~(HYPERSPARC_CWENABLE); 1087 mreg |= (HYPERSPARC_CENABLE | HYPERSPARC_WBENABLE); 1088 mreg |= (HYPERSPARC_CMODE); 1089 1090 srmmu_set_mmureg(mreg); 1091 1092#if 0 /* XXX I think this is bad news... -DaveM */ 1093 hyper_clear_all_tags(); 1094#endif 1095 1096 put_ross_icr(HYPERSPARC_ICCR_FTD | HYPERSPARC_ICCR_ICE); 1097 hyper_flush_whole_icache(); 1098 clear = srmmu_get_faddr(); 1099 clear = srmmu_get_fstatus(); 1100} 1101 1102static const struct sparc32_cachetlb_ops hypersparc_ops = { 1103 .cache_all = hypersparc_flush_cache_all, 1104 .cache_mm = hypersparc_flush_cache_mm, 1105 .cache_page = hypersparc_flush_cache_page, 1106 .cache_range = hypersparc_flush_cache_range, 1107 .tlb_all = hypersparc_flush_tlb_all, 1108 .tlb_mm = hypersparc_flush_tlb_mm, 1109 .tlb_page = hypersparc_flush_tlb_page, 1110 .tlb_range = hypersparc_flush_tlb_range, 1111 .page_to_ram = hypersparc_flush_page_to_ram, 1112 .sig_insns = hypersparc_flush_sig_insns, 1113 .page_for_dma = hypersparc_flush_page_for_dma, 1114}; 1115 1116static void __init init_hypersparc(void) 1117{ 1118 srmmu_name = "ROSS HyperSparc"; 1119 srmmu_modtype = HyperSparc; 1120 1121 init_vac_layout(); 1122 1123 is_hypersparc = 1; 1124 sparc32_cachetlb_ops = &hypersparc_ops; 1125 1126 poke_srmmu = poke_hypersparc; 1127 1128 hypersparc_setup_blockops(); 1129} 1130 1131static void poke_swift(void) 1132{ 1133 unsigned long mreg; 1134 1135 /* Clear any crap from the cache or else... */ 1136 swift_flush_cache_all(); 1137 1138 /* Enable I & D caches */ 1139 mreg = srmmu_get_mmureg(); 1140 mreg |= (SWIFT_IE | SWIFT_DE); 1141 /* 1142 * The Swift branch folding logic is completely broken. At 1143 * trap time, if things are just right, if can mistakenly 1144 * think that a trap is coming from kernel mode when in fact 1145 * it is coming from user mode (it mis-executes the branch in 1146 * the trap code). So you see things like crashme completely 1147 * hosing your machine which is completely unacceptable. Turn 1148 * this shit off... nice job Fujitsu. 1149 */ 1150 mreg &= ~(SWIFT_BF); 1151 srmmu_set_mmureg(mreg); 1152} 1153 1154static const struct sparc32_cachetlb_ops swift_ops = { 1155 .cache_all = swift_flush_cache_all, 1156 .cache_mm = swift_flush_cache_mm, 1157 .cache_page = swift_flush_cache_page, 1158 .cache_range = swift_flush_cache_range, 1159 .tlb_all = swift_flush_tlb_all, 1160 .tlb_mm = swift_flush_tlb_mm, 1161 .tlb_page = swift_flush_tlb_page, 1162 .tlb_range = swift_flush_tlb_range, 1163 .page_to_ram = swift_flush_page_to_ram, 1164 .sig_insns = swift_flush_sig_insns, 1165 .page_for_dma = swift_flush_page_for_dma, 1166}; 1167 1168#define SWIFT_MASKID_ADDR 0x10003018 1169static void __init init_swift(void) 1170{ 1171 unsigned long swift_rev; 1172 1173 __asm__ __volatile__("lda [%1] %2, %0\n\t" 1174 "srl %0, 0x18, %0\n\t" : 1175 "=r" (swift_rev) : 1176 "r" (SWIFT_MASKID_ADDR), "i" (ASI_M_BYPASS)); 1177 srmmu_name = "Fujitsu Swift"; 1178 switch (swift_rev) { 1179 case 0x11: 1180 case 0x20: 1181 case 0x23: 1182 case 0x30: 1183 srmmu_modtype = Swift_lots_o_bugs; 1184 hwbug_bitmask |= (HWBUG_KERN_ACCBROKEN | HWBUG_KERN_CBITBROKEN); 1185 /* 1186 * Gee george, I wonder why Sun is so hush hush about 1187 * this hardware bug... really braindamage stuff going 1188 * on here. However I think we can find a way to avoid 1189 * all of the workaround overhead under Linux. Basically, 1190 * any page fault can cause kernel pages to become user 1191 * accessible (the mmu gets confused and clears some of 1192 * the ACC bits in kernel ptes). Aha, sounds pretty 1193 * horrible eh? But wait, after extensive testing it appears 1194 * that if you use pgd_t level large kernel pte's (like the 1195 * 4MB pages on the Pentium) the bug does not get tripped 1196 * at all. This avoids almost all of the major overhead. 1197 * Welcome to a world where your vendor tells you to, 1198 * "apply this kernel patch" instead of "sorry for the 1199 * broken hardware, send it back and we'll give you 1200 * properly functioning parts" 1201 */ 1202 break; 1203 case 0x25: 1204 case 0x31: 1205 srmmu_modtype = Swift_bad_c; 1206 hwbug_bitmask |= HWBUG_KERN_CBITBROKEN; 1207 /* 1208 * You see Sun allude to this hardware bug but never 1209 * admit things directly, they'll say things like, 1210 * "the Swift chip cache problems" or similar. 1211 */ 1212 break; 1213 default: 1214 srmmu_modtype = Swift_ok; 1215 break; 1216 } 1217 1218 sparc32_cachetlb_ops = &swift_ops; 1219 flush_page_for_dma_global = 0; 1220 1221 /* 1222 * Are you now convinced that the Swift is one of the 1223 * biggest VLSI abortions of all time? Bravo Fujitsu! 1224 * Fujitsu, the !#?!%$'d up processor people. I bet if 1225 * you examined the microcode of the Swift you'd find 1226 * XXX's all over the place. 1227 */ 1228 poke_srmmu = poke_swift; 1229} 1230 1231static void turbosparc_flush_cache_all(void) 1232{ 1233 flush_user_windows(); 1234 turbosparc_idflash_clear(); 1235} 1236 1237static void turbosparc_flush_cache_mm(struct mm_struct *mm) 1238{ 1239 FLUSH_BEGIN(mm) 1240 flush_user_windows(); 1241 turbosparc_idflash_clear(); 1242 FLUSH_END 1243} 1244 1245static void turbosparc_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end) 1246{ 1247 FLUSH_BEGIN(vma->vm_mm) 1248 flush_user_windows(); 1249 turbosparc_idflash_clear(); 1250 FLUSH_END 1251} 1252 1253static void turbosparc_flush_cache_page(struct vm_area_struct *vma, unsigned long page) 1254{ 1255 FLUSH_BEGIN(vma->vm_mm) 1256 flush_user_windows(); 1257 if (vma->vm_flags & VM_EXEC) 1258 turbosparc_flush_icache(); 1259 turbosparc_flush_dcache(); 1260 FLUSH_END 1261} 1262 1263/* TurboSparc is copy-back, if we turn it on, but this does not work. */ 1264static void turbosparc_flush_page_to_ram(unsigned long page) 1265{ 1266#ifdef TURBOSPARC_WRITEBACK 1267 volatile unsigned long clear; 1268 1269 if (srmmu_probe(page)) 1270 turbosparc_flush_page_cache(page); 1271 clear = srmmu_get_fstatus(); 1272#endif 1273} 1274 1275static void turbosparc_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr) 1276{ 1277} 1278 1279static void turbosparc_flush_page_for_dma(unsigned long page) 1280{ 1281 turbosparc_flush_dcache(); 1282} 1283 1284static void turbosparc_flush_tlb_all(void) 1285{ 1286 srmmu_flush_whole_tlb(); 1287} 1288 1289static void turbosparc_flush_tlb_mm(struct mm_struct *mm) 1290{ 1291 FLUSH_BEGIN(mm) 1292 srmmu_flush_whole_tlb(); 1293 FLUSH_END 1294} 1295 1296static void turbosparc_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end) 1297{ 1298 FLUSH_BEGIN(vma->vm_mm) 1299 srmmu_flush_whole_tlb(); 1300 FLUSH_END 1301} 1302 1303static void turbosparc_flush_tlb_page(struct vm_area_struct *vma, unsigned long page) 1304{ 1305 FLUSH_BEGIN(vma->vm_mm) 1306 srmmu_flush_whole_tlb(); 1307 FLUSH_END 1308} 1309 1310 1311static void poke_turbosparc(void) 1312{ 1313 unsigned long mreg = srmmu_get_mmureg(); 1314 unsigned long ccreg; 1315 1316 /* Clear any crap from the cache or else... */ 1317 turbosparc_flush_cache_all(); 1318 /* Temporarily disable I & D caches */ 1319 mreg &= ~(TURBOSPARC_ICENABLE | TURBOSPARC_DCENABLE); 1320 mreg &= ~(TURBOSPARC_PCENABLE); /* Don't check parity */ 1321 srmmu_set_mmureg(mreg); 1322 1323 ccreg = turbosparc_get_ccreg(); 1324 1325#ifdef TURBOSPARC_WRITEBACK 1326 ccreg |= (TURBOSPARC_SNENABLE); /* Do DVMA snooping in Dcache */ 1327 ccreg &= ~(TURBOSPARC_uS2 | TURBOSPARC_WTENABLE); 1328 /* Write-back D-cache, emulate VLSI 1329 * abortion number three, not number one */ 1330#else 1331 /* For now let's play safe, optimize later */ 1332 ccreg |= (TURBOSPARC_SNENABLE | TURBOSPARC_WTENABLE); 1333 /* Do DVMA snooping in Dcache, Write-thru D-cache */ 1334 ccreg &= ~(TURBOSPARC_uS2); 1335 /* Emulate VLSI abortion number three, not number one */ 1336#endif 1337 1338 switch (ccreg & 7) { 1339 case 0: /* No SE cache */ 1340 case 7: /* Test mode */ 1341 break; 1342 default: 1343 ccreg |= (TURBOSPARC_SCENABLE); 1344 } 1345 turbosparc_set_ccreg(ccreg); 1346 1347 mreg |= (TURBOSPARC_ICENABLE | TURBOSPARC_DCENABLE); /* I & D caches on */ 1348 mreg |= (TURBOSPARC_ICSNOOP); /* Icache snooping on */ 1349 srmmu_set_mmureg(mreg); 1350} 1351 1352static const struct sparc32_cachetlb_ops turbosparc_ops = { 1353 .cache_all = turbosparc_flush_cache_all, 1354 .cache_mm = turbosparc_flush_cache_mm, 1355 .cache_page = turbosparc_flush_cache_page, 1356 .cache_range = turbosparc_flush_cache_range, 1357 .tlb_all = turbosparc_flush_tlb_all, 1358 .tlb_mm = turbosparc_flush_tlb_mm, 1359 .tlb_page = turbosparc_flush_tlb_page, 1360 .tlb_range = turbosparc_flush_tlb_range, 1361 .page_to_ram = turbosparc_flush_page_to_ram, 1362 .sig_insns = turbosparc_flush_sig_insns, 1363 .page_for_dma = turbosparc_flush_page_for_dma, 1364}; 1365 1366static void __init init_turbosparc(void) 1367{ 1368 srmmu_name = "Fujitsu TurboSparc"; 1369 srmmu_modtype = TurboSparc; 1370 sparc32_cachetlb_ops = &turbosparc_ops; 1371 poke_srmmu = poke_turbosparc; 1372} 1373 1374static void poke_tsunami(void) 1375{ 1376 unsigned long mreg = srmmu_get_mmureg(); 1377 1378 tsunami_flush_icache(); 1379 tsunami_flush_dcache(); 1380 mreg &= ~TSUNAMI_ITD; 1381 mreg |= (TSUNAMI_IENAB | TSUNAMI_DENAB); 1382 srmmu_set_mmureg(mreg); 1383} 1384 1385static const struct sparc32_cachetlb_ops tsunami_ops = { 1386 .cache_all = tsunami_flush_cache_all, 1387 .cache_mm = tsunami_flush_cache_mm, 1388 .cache_page = tsunami_flush_cache_page, 1389 .cache_range = tsunami_flush_cache_range, 1390 .tlb_all = tsunami_flush_tlb_all, 1391 .tlb_mm = tsunami_flush_tlb_mm, 1392 .tlb_page = tsunami_flush_tlb_page, 1393 .tlb_range = tsunami_flush_tlb_range, 1394 .page_to_ram = tsunami_flush_page_to_ram, 1395 .sig_insns = tsunami_flush_sig_insns, 1396 .page_for_dma = tsunami_flush_page_for_dma, 1397}; 1398 1399static void __init init_tsunami(void) 1400{ 1401 /* 1402 * Tsunami's pretty sane, Sun and TI actually got it 1403 * somewhat right this time. Fujitsu should have 1404 * taken some lessons from them. 1405 */ 1406 1407 srmmu_name = "TI Tsunami"; 1408 srmmu_modtype = Tsunami; 1409 sparc32_cachetlb_ops = &tsunami_ops; 1410 poke_srmmu = poke_tsunami; 1411 1412 tsunami_setup_blockops(); 1413} 1414 1415static void poke_viking(void) 1416{ 1417 unsigned long mreg = srmmu_get_mmureg(); 1418 static int smp_catch; 1419 1420 if (viking_mxcc_present) { 1421 unsigned long mxcc_control = mxcc_get_creg(); 1422 1423 mxcc_control |= (MXCC_CTL_ECE | MXCC_CTL_PRE | MXCC_CTL_MCE); 1424 mxcc_control &= ~(MXCC_CTL_RRC); 1425 mxcc_set_creg(mxcc_control); 1426 1427 /* 1428 * We don't need memory parity checks. 1429 * XXX This is a mess, have to dig out later. ecd. 1430 viking_mxcc_turn_off_parity(&mreg, &mxcc_control); 1431 */ 1432 1433 /* We do cache ptables on MXCC. */ 1434 mreg |= VIKING_TCENABLE; 1435 } else { 1436 unsigned long bpreg; 1437 1438 mreg &= ~(VIKING_TCENABLE); 1439 if (smp_catch++) { 1440 /* Must disable mixed-cmd mode here for other cpu's. */ 1441 bpreg = viking_get_bpreg(); 1442 bpreg &= ~(VIKING_ACTION_MIX); 1443 viking_set_bpreg(bpreg); 1444 1445 /* Just in case PROM does something funny. */ 1446 msi_set_sync(); 1447 } 1448 } 1449 1450 mreg |= VIKING_SPENABLE; 1451 mreg |= (VIKING_ICENABLE | VIKING_DCENABLE); 1452 mreg |= VIKING_SBENABLE; 1453 mreg &= ~(VIKING_ACENABLE); 1454 srmmu_set_mmureg(mreg); 1455} 1456 1457static struct sparc32_cachetlb_ops viking_ops __ro_after_init = { 1458 .cache_all = viking_flush_cache_all, 1459 .cache_mm = viking_flush_cache_mm, 1460 .cache_page = viking_flush_cache_page, 1461 .cache_range = viking_flush_cache_range, 1462 .tlb_all = viking_flush_tlb_all, 1463 .tlb_mm = viking_flush_tlb_mm, 1464 .tlb_page = viking_flush_tlb_page, 1465 .tlb_range = viking_flush_tlb_range, 1466 .page_to_ram = viking_flush_page_to_ram, 1467 .sig_insns = viking_flush_sig_insns, 1468 .page_for_dma = viking_flush_page_for_dma, 1469}; 1470 1471#ifdef CONFIG_SMP 1472/* On sun4d the cpu broadcasts local TLB flushes, so we can just 1473 * perform the local TLB flush and all the other cpus will see it. 1474 * But, unfortunately, there is a bug in the sun4d XBUS backplane 1475 * that requires that we add some synchronization to these flushes. 1476 * 1477 * The bug is that the fifo which keeps track of all the pending TLB 1478 * broadcasts in the system is an entry or two too small, so if we 1479 * have too many going at once we'll overflow that fifo and lose a TLB 1480 * flush resulting in corruption. 1481 * 1482 * Our workaround is to take a global spinlock around the TLB flushes, 1483 * which guarentees we won't ever have too many pending. It's a big 1484 * hammer, but a semaphore like system to make sure we only have N TLB 1485 * flushes going at once will require SMP locking anyways so there's 1486 * no real value in trying any harder than this. 1487 */ 1488static struct sparc32_cachetlb_ops viking_sun4d_smp_ops __ro_after_init = { 1489 .cache_all = viking_flush_cache_all, 1490 .cache_mm = viking_flush_cache_mm, 1491 .cache_page = viking_flush_cache_page, 1492 .cache_range = viking_flush_cache_range, 1493 .tlb_all = sun4dsmp_flush_tlb_all, 1494 .tlb_mm = sun4dsmp_flush_tlb_mm, 1495 .tlb_page = sun4dsmp_flush_tlb_page, 1496 .tlb_range = sun4dsmp_flush_tlb_range, 1497 .page_to_ram = viking_flush_page_to_ram, 1498 .sig_insns = viking_flush_sig_insns, 1499 .page_for_dma = viking_flush_page_for_dma, 1500}; 1501#endif 1502 1503static void __init init_viking(void) 1504{ 1505 unsigned long mreg = srmmu_get_mmureg(); 1506 1507 /* Ahhh, the viking. SRMMU VLSI abortion number two... */ 1508 if (mreg & VIKING_MMODE) { 1509 srmmu_name = "TI Viking"; 1510 viking_mxcc_present = 0; 1511 msi_set_sync(); 1512 1513 /* 1514 * We need this to make sure old viking takes no hits 1515 * on it's cache for dma snoops to workaround the 1516 * "load from non-cacheable memory" interrupt bug. 1517 * This is only necessary because of the new way in 1518 * which we use the IOMMU. 1519 */ 1520 viking_ops.page_for_dma = viking_flush_page; 1521#ifdef CONFIG_SMP 1522 viking_sun4d_smp_ops.page_for_dma = viking_flush_page; 1523#endif 1524 flush_page_for_dma_global = 0; 1525 } else { 1526 srmmu_name = "TI Viking/MXCC"; 1527 viking_mxcc_present = 1; 1528 srmmu_cache_pagetables = 1; 1529 } 1530 1531 sparc32_cachetlb_ops = (const struct sparc32_cachetlb_ops *) 1532 &viking_ops; 1533#ifdef CONFIG_SMP 1534 if (sparc_cpu_model == sun4d) 1535 sparc32_cachetlb_ops = (const struct sparc32_cachetlb_ops *) 1536 &viking_sun4d_smp_ops; 1537#endif 1538 1539 poke_srmmu = poke_viking; 1540} 1541 1542/* Probe for the srmmu chip version. */ 1543static void __init get_srmmu_type(void) 1544{ 1545 unsigned long mreg, psr; 1546 unsigned long mod_typ, mod_rev, psr_typ, psr_vers; 1547 1548 srmmu_modtype = SRMMU_INVAL_MOD; 1549 hwbug_bitmask = 0; 1550 1551 mreg = srmmu_get_mmureg(); psr = get_psr(); 1552 mod_typ = (mreg & 0xf0000000) >> 28; 1553 mod_rev = (mreg & 0x0f000000) >> 24; 1554 psr_typ = (psr >> 28) & 0xf; 1555 psr_vers = (psr >> 24) & 0xf; 1556 1557 /* First, check for sparc-leon. */ 1558 if (sparc_cpu_model == sparc_leon) { 1559 init_leon(); 1560 return; 1561 } 1562 1563 /* Second, check for HyperSparc or Cypress. */ 1564 if (mod_typ == 1) { 1565 switch (mod_rev) { 1566 case 7: 1567 /* UP or MP Hypersparc */ 1568 init_hypersparc(); 1569 break; 1570 case 0: 1571 case 2: 1572 case 10: 1573 case 11: 1574 case 12: 1575 case 13: 1576 case 14: 1577 case 15: 1578 default: 1579 prom_printf("Sparc-Linux Cypress support does not longer exit.\n"); 1580 prom_halt(); 1581 break; 1582 } 1583 return; 1584 } 1585 1586 /* Now Fujitsu TurboSparc. It might happen that it is 1587 * in Swift emulation mode, so we will check later... 1588 */ 1589 if (psr_typ == 0 && psr_vers == 5) { 1590 init_turbosparc(); 1591 return; 1592 } 1593 1594 /* Next check for Fujitsu Swift. */ 1595 if (psr_typ == 0 && psr_vers == 4) { 1596 phandle cpunode; 1597 char node_str[128]; 1598 1599 /* Look if it is not a TurboSparc emulating Swift... */ 1600 cpunode = prom_getchild(prom_root_node); 1601 while ((cpunode = prom_getsibling(cpunode)) != 0) { 1602 prom_getstring(cpunode, "device_type", node_str, sizeof(node_str)); 1603 if (!strcmp(node_str, "cpu")) { 1604 if (!prom_getintdefault(cpunode, "psr-implementation", 1) && 1605 prom_getintdefault(cpunode, "psr-version", 1) == 5) { 1606 init_turbosparc(); 1607 return; 1608 } 1609 break; 1610 } 1611 } 1612 1613 init_swift(); 1614 return; 1615 } 1616 1617 /* Now the Viking family of srmmu. */ 1618 if (psr_typ == 4 && 1619 ((psr_vers == 0) || 1620 ((psr_vers == 1) && (mod_typ == 0) && (mod_rev == 0)))) { 1621 init_viking(); 1622 return; 1623 } 1624 1625 /* Finally the Tsunami. */ 1626 if (psr_typ == 4 && psr_vers == 1 && (mod_typ || mod_rev)) { 1627 init_tsunami(); 1628 return; 1629 } 1630 1631 /* Oh well */ 1632 srmmu_is_bad(); 1633} 1634 1635#ifdef CONFIG_SMP 1636/* Local cross-calls. */ 1637static void smp_flush_page_for_dma(unsigned long page) 1638{ 1639 xc1((smpfunc_t) local_ops->page_for_dma, page); 1640 local_ops->page_for_dma(page); 1641} 1642 1643static void smp_flush_cache_all(void) 1644{ 1645 xc0((smpfunc_t) local_ops->cache_all); 1646 local_ops->cache_all(); 1647} 1648 1649static void smp_flush_tlb_all(void) 1650{ 1651 xc0((smpfunc_t) local_ops->tlb_all); 1652 local_ops->tlb_all(); 1653} 1654 1655static void smp_flush_cache_mm(struct mm_struct *mm) 1656{ 1657 if (mm->context != NO_CONTEXT) { 1658 cpumask_t cpu_mask; 1659 cpumask_copy(&cpu_mask, mm_cpumask(mm)); 1660 cpumask_clear_cpu(smp_processor_id(), &cpu_mask); 1661 if (!cpumask_empty(&cpu_mask)) 1662 xc1((smpfunc_t) local_ops->cache_mm, (unsigned long) mm); 1663 local_ops->cache_mm(mm); 1664 } 1665} 1666 1667static void smp_flush_tlb_mm(struct mm_struct *mm) 1668{ 1669 if (mm->context != NO_CONTEXT) { 1670 cpumask_t cpu_mask; 1671 cpumask_copy(&cpu_mask, mm_cpumask(mm)); 1672 cpumask_clear_cpu(smp_processor_id(), &cpu_mask); 1673 if (!cpumask_empty(&cpu_mask)) { 1674 xc1((smpfunc_t) local_ops->tlb_mm, (unsigned long) mm); 1675 if (atomic_read(&mm->mm_users) == 1 && current->active_mm == mm) 1676 cpumask_copy(mm_cpumask(mm), 1677 cpumask_of(smp_processor_id())); 1678 } 1679 local_ops->tlb_mm(mm); 1680 } 1681} 1682 1683static void smp_flush_cache_range(struct vm_area_struct *vma, 1684 unsigned long start, 1685 unsigned long end) 1686{ 1687 struct mm_struct *mm = vma->vm_mm; 1688 1689 if (mm->context != NO_CONTEXT) { 1690 cpumask_t cpu_mask; 1691 cpumask_copy(&cpu_mask, mm_cpumask(mm)); 1692 cpumask_clear_cpu(smp_processor_id(), &cpu_mask); 1693 if (!cpumask_empty(&cpu_mask)) 1694 xc3((smpfunc_t) local_ops->cache_range, 1695 (unsigned long) vma, start, end); 1696 local_ops->cache_range(vma, start, end); 1697 } 1698} 1699 1700static void smp_flush_tlb_range(struct vm_area_struct *vma, 1701 unsigned long start, 1702 unsigned long end) 1703{ 1704 struct mm_struct *mm = vma->vm_mm; 1705 1706 if (mm->context != NO_CONTEXT) { 1707 cpumask_t cpu_mask; 1708 cpumask_copy(&cpu_mask, mm_cpumask(mm)); 1709 cpumask_clear_cpu(smp_processor_id(), &cpu_mask); 1710 if (!cpumask_empty(&cpu_mask)) 1711 xc3((smpfunc_t) local_ops->tlb_range, 1712 (unsigned long) vma, start, end); 1713 local_ops->tlb_range(vma, start, end); 1714 } 1715} 1716 1717static void smp_flush_cache_page(struct vm_area_struct *vma, unsigned long page) 1718{ 1719 struct mm_struct *mm = vma->vm_mm; 1720 1721 if (mm->context != NO_CONTEXT) { 1722 cpumask_t cpu_mask; 1723 cpumask_copy(&cpu_mask, mm_cpumask(mm)); 1724 cpumask_clear_cpu(smp_processor_id(), &cpu_mask); 1725 if (!cpumask_empty(&cpu_mask)) 1726 xc2((smpfunc_t) local_ops->cache_page, 1727 (unsigned long) vma, page); 1728 local_ops->cache_page(vma, page); 1729 } 1730} 1731 1732static void smp_flush_tlb_page(struct vm_area_struct *vma, unsigned long page) 1733{ 1734 struct mm_struct *mm = vma->vm_mm; 1735 1736 if (mm->context != NO_CONTEXT) { 1737 cpumask_t cpu_mask; 1738 cpumask_copy(&cpu_mask, mm_cpumask(mm)); 1739 cpumask_clear_cpu(smp_processor_id(), &cpu_mask); 1740 if (!cpumask_empty(&cpu_mask)) 1741 xc2((smpfunc_t) local_ops->tlb_page, 1742 (unsigned long) vma, page); 1743 local_ops->tlb_page(vma, page); 1744 } 1745} 1746 1747static void smp_flush_page_to_ram(unsigned long page) 1748{ 1749 /* Current theory is that those who call this are the one's 1750 * who have just dirtied their cache with the pages contents 1751 * in kernel space, therefore we only run this on local cpu. 1752 * 1753 * XXX This experiment failed, research further... -DaveM 1754 */ 1755#if 1 1756 xc1((smpfunc_t) local_ops->page_to_ram, page); 1757#endif 1758 local_ops->page_to_ram(page); 1759} 1760 1761static void smp_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr) 1762{ 1763 cpumask_t cpu_mask; 1764 cpumask_copy(&cpu_mask, mm_cpumask(mm)); 1765 cpumask_clear_cpu(smp_processor_id(), &cpu_mask); 1766 if (!cpumask_empty(&cpu_mask)) 1767 xc2((smpfunc_t) local_ops->sig_insns, 1768 (unsigned long) mm, insn_addr); 1769 local_ops->sig_insns(mm, insn_addr); 1770} 1771 1772static struct sparc32_cachetlb_ops smp_cachetlb_ops __ro_after_init = { 1773 .cache_all = smp_flush_cache_all, 1774 .cache_mm = smp_flush_cache_mm, 1775 .cache_page = smp_flush_cache_page, 1776 .cache_range = smp_flush_cache_range, 1777 .tlb_all = smp_flush_tlb_all, 1778 .tlb_mm = smp_flush_tlb_mm, 1779 .tlb_page = smp_flush_tlb_page, 1780 .tlb_range = smp_flush_tlb_range, 1781 .page_to_ram = smp_flush_page_to_ram, 1782 .sig_insns = smp_flush_sig_insns, 1783 .page_for_dma = smp_flush_page_for_dma, 1784}; 1785#endif 1786 1787/* Load up routines and constants for sun4m and sun4d mmu */ 1788void __init load_mmu(void) 1789{ 1790 /* Functions */ 1791 get_srmmu_type(); 1792 1793#ifdef CONFIG_SMP 1794 /* El switcheroo... */ 1795 local_ops = sparc32_cachetlb_ops; 1796 1797 if (sparc_cpu_model == sun4d || sparc_cpu_model == sparc_leon) { 1798 smp_cachetlb_ops.tlb_all = local_ops->tlb_all; 1799 smp_cachetlb_ops.tlb_mm = local_ops->tlb_mm; 1800 smp_cachetlb_ops.tlb_range = local_ops->tlb_range; 1801 smp_cachetlb_ops.tlb_page = local_ops->tlb_page; 1802 } 1803 1804 if (poke_srmmu == poke_viking) { 1805 /* Avoid unnecessary cross calls. */ 1806 smp_cachetlb_ops.cache_all = local_ops->cache_all; 1807 smp_cachetlb_ops.cache_mm = local_ops->cache_mm; 1808 smp_cachetlb_ops.cache_range = local_ops->cache_range; 1809 smp_cachetlb_ops.cache_page = local_ops->cache_page; 1810 1811 smp_cachetlb_ops.page_to_ram = local_ops->page_to_ram; 1812 smp_cachetlb_ops.sig_insns = local_ops->sig_insns; 1813 smp_cachetlb_ops.page_for_dma = local_ops->page_for_dma; 1814 } 1815 1816 /* It really is const after this point. */ 1817 sparc32_cachetlb_ops = (const struct sparc32_cachetlb_ops *) 1818 &smp_cachetlb_ops; 1819#endif 1820 1821 if (sparc_cpu_model != sun4d) 1822 ld_mmu_iommu(); 1823#ifdef CONFIG_SMP 1824 if (sparc_cpu_model == sun4d) 1825 sun4d_init_smp(); 1826 else if (sparc_cpu_model == sparc_leon) 1827 leon_init_smp(); 1828 else 1829 sun4m_init_smp(); 1830#endif 1831}