cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

tsb.c (17719B)


      1// SPDX-License-Identifier: GPL-2.0
      2/* arch/sparc64/mm/tsb.c
      3 *
      4 * Copyright (C) 2006, 2008 David S. Miller <davem@davemloft.net>
      5 */
      6
      7#include <linux/kernel.h>
      8#include <linux/preempt.h>
      9#include <linux/slab.h>
     10#include <linux/mm_types.h>
     11#include <linux/pgtable.h>
     12
     13#include <asm/page.h>
     14#include <asm/mmu_context.h>
     15#include <asm/setup.h>
     16#include <asm/tsb.h>
     17#include <asm/tlb.h>
     18#include <asm/oplib.h>
     19
     20extern struct tsb swapper_tsb[KERNEL_TSB_NENTRIES];
     21
     22static inline unsigned long tsb_hash(unsigned long vaddr, unsigned long hash_shift, unsigned long nentries)
     23{
     24	vaddr >>= hash_shift;
     25	return vaddr & (nentries - 1);
     26}
     27
     28static inline int tag_compare(unsigned long tag, unsigned long vaddr)
     29{
     30	return (tag == (vaddr >> 22));
     31}
     32
     33static void flush_tsb_kernel_range_scan(unsigned long start, unsigned long end)
     34{
     35	unsigned long idx;
     36
     37	for (idx = 0; idx < KERNEL_TSB_NENTRIES; idx++) {
     38		struct tsb *ent = &swapper_tsb[idx];
     39		unsigned long match = idx << 13;
     40
     41		match |= (ent->tag << 22);
     42		if (match >= start && match < end)
     43			ent->tag = (1UL << TSB_TAG_INVALID_BIT);
     44	}
     45}
     46
     47/* TSB flushes need only occur on the processor initiating the address
     48 * space modification, not on each cpu the address space has run on.
     49 * Only the TLB flush needs that treatment.
     50 */
     51
     52void flush_tsb_kernel_range(unsigned long start, unsigned long end)
     53{
     54	unsigned long v;
     55
     56	if ((end - start) >> PAGE_SHIFT >= 2 * KERNEL_TSB_NENTRIES)
     57		return flush_tsb_kernel_range_scan(start, end);
     58
     59	for (v = start; v < end; v += PAGE_SIZE) {
     60		unsigned long hash = tsb_hash(v, PAGE_SHIFT,
     61					      KERNEL_TSB_NENTRIES);
     62		struct tsb *ent = &swapper_tsb[hash];
     63
     64		if (tag_compare(ent->tag, v))
     65			ent->tag = (1UL << TSB_TAG_INVALID_BIT);
     66	}
     67}
     68
     69static void __flush_tsb_one_entry(unsigned long tsb, unsigned long v,
     70				  unsigned long hash_shift,
     71				  unsigned long nentries)
     72{
     73	unsigned long tag, ent, hash;
     74
     75	v &= ~0x1UL;
     76	hash = tsb_hash(v, hash_shift, nentries);
     77	ent = tsb + (hash * sizeof(struct tsb));
     78	tag = (v >> 22UL);
     79
     80	tsb_flush(ent, tag);
     81}
     82
     83static void __flush_tsb_one(struct tlb_batch *tb, unsigned long hash_shift,
     84			    unsigned long tsb, unsigned long nentries)
     85{
     86	unsigned long i;
     87
     88	for (i = 0; i < tb->tlb_nr; i++)
     89		__flush_tsb_one_entry(tsb, tb->vaddrs[i], hash_shift, nentries);
     90}
     91
     92#if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
     93static void __flush_huge_tsb_one_entry(unsigned long tsb, unsigned long v,
     94				       unsigned long hash_shift,
     95				       unsigned long nentries,
     96				       unsigned int hugepage_shift)
     97{
     98	unsigned int hpage_entries;
     99	unsigned int i;
    100
    101	hpage_entries = 1 << (hugepage_shift - hash_shift);
    102	for (i = 0; i < hpage_entries; i++)
    103		__flush_tsb_one_entry(tsb, v + (i << hash_shift), hash_shift,
    104				      nentries);
    105}
    106
    107static void __flush_huge_tsb_one(struct tlb_batch *tb, unsigned long hash_shift,
    108				 unsigned long tsb, unsigned long nentries,
    109				 unsigned int hugepage_shift)
    110{
    111	unsigned long i;
    112
    113	for (i = 0; i < tb->tlb_nr; i++)
    114		__flush_huge_tsb_one_entry(tsb, tb->vaddrs[i], hash_shift,
    115					   nentries, hugepage_shift);
    116}
    117#endif
    118
    119void flush_tsb_user(struct tlb_batch *tb)
    120{
    121	struct mm_struct *mm = tb->mm;
    122	unsigned long nentries, base, flags;
    123
    124	spin_lock_irqsave(&mm->context.lock, flags);
    125
    126	if (tb->hugepage_shift < REAL_HPAGE_SHIFT) {
    127		base = (unsigned long) mm->context.tsb_block[MM_TSB_BASE].tsb;
    128		nentries = mm->context.tsb_block[MM_TSB_BASE].tsb_nentries;
    129		if (tlb_type == cheetah_plus || tlb_type == hypervisor)
    130			base = __pa(base);
    131		if (tb->hugepage_shift == PAGE_SHIFT)
    132			__flush_tsb_one(tb, PAGE_SHIFT, base, nentries);
    133#if defined(CONFIG_HUGETLB_PAGE)
    134		else
    135			__flush_huge_tsb_one(tb, PAGE_SHIFT, base, nentries,
    136					     tb->hugepage_shift);
    137#endif
    138	}
    139#if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
    140	else if (mm->context.tsb_block[MM_TSB_HUGE].tsb) {
    141		base = (unsigned long) mm->context.tsb_block[MM_TSB_HUGE].tsb;
    142		nentries = mm->context.tsb_block[MM_TSB_HUGE].tsb_nentries;
    143		if (tlb_type == cheetah_plus || tlb_type == hypervisor)
    144			base = __pa(base);
    145		__flush_huge_tsb_one(tb, REAL_HPAGE_SHIFT, base, nentries,
    146				     tb->hugepage_shift);
    147	}
    148#endif
    149	spin_unlock_irqrestore(&mm->context.lock, flags);
    150}
    151
    152void flush_tsb_user_page(struct mm_struct *mm, unsigned long vaddr,
    153			 unsigned int hugepage_shift)
    154{
    155	unsigned long nentries, base, flags;
    156
    157	spin_lock_irqsave(&mm->context.lock, flags);
    158
    159	if (hugepage_shift < REAL_HPAGE_SHIFT) {
    160		base = (unsigned long) mm->context.tsb_block[MM_TSB_BASE].tsb;
    161		nentries = mm->context.tsb_block[MM_TSB_BASE].tsb_nentries;
    162		if (tlb_type == cheetah_plus || tlb_type == hypervisor)
    163			base = __pa(base);
    164		if (hugepage_shift == PAGE_SHIFT)
    165			__flush_tsb_one_entry(base, vaddr, PAGE_SHIFT,
    166					      nentries);
    167#if defined(CONFIG_HUGETLB_PAGE)
    168		else
    169			__flush_huge_tsb_one_entry(base, vaddr, PAGE_SHIFT,
    170						   nentries, hugepage_shift);
    171#endif
    172	}
    173#if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
    174	else if (mm->context.tsb_block[MM_TSB_HUGE].tsb) {
    175		base = (unsigned long) mm->context.tsb_block[MM_TSB_HUGE].tsb;
    176		nentries = mm->context.tsb_block[MM_TSB_HUGE].tsb_nentries;
    177		if (tlb_type == cheetah_plus || tlb_type == hypervisor)
    178			base = __pa(base);
    179		__flush_huge_tsb_one_entry(base, vaddr, REAL_HPAGE_SHIFT,
    180					   nentries, hugepage_shift);
    181	}
    182#endif
    183	spin_unlock_irqrestore(&mm->context.lock, flags);
    184}
    185
    186#define HV_PGSZ_IDX_BASE	HV_PGSZ_IDX_8K
    187#define HV_PGSZ_MASK_BASE	HV_PGSZ_MASK_8K
    188
    189#if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
    190#define HV_PGSZ_IDX_HUGE	HV_PGSZ_IDX_4MB
    191#define HV_PGSZ_MASK_HUGE	HV_PGSZ_MASK_4MB
    192#endif
    193
    194static void setup_tsb_params(struct mm_struct *mm, unsigned long tsb_idx, unsigned long tsb_bytes)
    195{
    196	unsigned long tsb_reg, base, tsb_paddr;
    197	unsigned long page_sz, tte;
    198
    199	mm->context.tsb_block[tsb_idx].tsb_nentries =
    200		tsb_bytes / sizeof(struct tsb);
    201
    202	switch (tsb_idx) {
    203	case MM_TSB_BASE:
    204		base = TSBMAP_8K_BASE;
    205		break;
    206#if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
    207	case MM_TSB_HUGE:
    208		base = TSBMAP_4M_BASE;
    209		break;
    210#endif
    211	default:
    212		BUG();
    213	}
    214
    215	tte = pgprot_val(PAGE_KERNEL_LOCKED);
    216	tsb_paddr = __pa(mm->context.tsb_block[tsb_idx].tsb);
    217	BUG_ON(tsb_paddr & (tsb_bytes - 1UL));
    218
    219	/* Use the smallest page size that can map the whole TSB
    220	 * in one TLB entry.
    221	 */
    222	switch (tsb_bytes) {
    223	case 8192 << 0:
    224		tsb_reg = 0x0UL;
    225#ifdef DCACHE_ALIASING_POSSIBLE
    226		base += (tsb_paddr & 8192);
    227#endif
    228		page_sz = 8192;
    229		break;
    230
    231	case 8192 << 1:
    232		tsb_reg = 0x1UL;
    233		page_sz = 64 * 1024;
    234		break;
    235
    236	case 8192 << 2:
    237		tsb_reg = 0x2UL;
    238		page_sz = 64 * 1024;
    239		break;
    240
    241	case 8192 << 3:
    242		tsb_reg = 0x3UL;
    243		page_sz = 64 * 1024;
    244		break;
    245
    246	case 8192 << 4:
    247		tsb_reg = 0x4UL;
    248		page_sz = 512 * 1024;
    249		break;
    250
    251	case 8192 << 5:
    252		tsb_reg = 0x5UL;
    253		page_sz = 512 * 1024;
    254		break;
    255
    256	case 8192 << 6:
    257		tsb_reg = 0x6UL;
    258		page_sz = 512 * 1024;
    259		break;
    260
    261	case 8192 << 7:
    262		tsb_reg = 0x7UL;
    263		page_sz = 4 * 1024 * 1024;
    264		break;
    265
    266	default:
    267		printk(KERN_ERR "TSB[%s:%d]: Impossible TSB size %lu, killing process.\n",
    268		       current->comm, current->pid, tsb_bytes);
    269		BUG();
    270	}
    271	tte |= pte_sz_bits(page_sz);
    272
    273	if (tlb_type == cheetah_plus || tlb_type == hypervisor) {
    274		/* Physical mapping, no locked TLB entry for TSB.  */
    275		tsb_reg |= tsb_paddr;
    276
    277		mm->context.tsb_block[tsb_idx].tsb_reg_val = tsb_reg;
    278		mm->context.tsb_block[tsb_idx].tsb_map_vaddr = 0;
    279		mm->context.tsb_block[tsb_idx].tsb_map_pte = 0;
    280	} else {
    281		tsb_reg |= base;
    282		tsb_reg |= (tsb_paddr & (page_sz - 1UL));
    283		tte |= (tsb_paddr & ~(page_sz - 1UL));
    284
    285		mm->context.tsb_block[tsb_idx].tsb_reg_val = tsb_reg;
    286		mm->context.tsb_block[tsb_idx].tsb_map_vaddr = base;
    287		mm->context.tsb_block[tsb_idx].tsb_map_pte = tte;
    288	}
    289
    290	/* Setup the Hypervisor TSB descriptor.  */
    291	if (tlb_type == hypervisor) {
    292		struct hv_tsb_descr *hp = &mm->context.tsb_descr[tsb_idx];
    293
    294		switch (tsb_idx) {
    295		case MM_TSB_BASE:
    296			hp->pgsz_idx = HV_PGSZ_IDX_BASE;
    297			break;
    298#if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
    299		case MM_TSB_HUGE:
    300			hp->pgsz_idx = HV_PGSZ_IDX_HUGE;
    301			break;
    302#endif
    303		default:
    304			BUG();
    305		}
    306		hp->assoc = 1;
    307		hp->num_ttes = tsb_bytes / 16;
    308		hp->ctx_idx = 0;
    309		switch (tsb_idx) {
    310		case MM_TSB_BASE:
    311			hp->pgsz_mask = HV_PGSZ_MASK_BASE;
    312			break;
    313#if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
    314		case MM_TSB_HUGE:
    315			hp->pgsz_mask = HV_PGSZ_MASK_HUGE;
    316			break;
    317#endif
    318		default:
    319			BUG();
    320		}
    321		hp->tsb_base = tsb_paddr;
    322		hp->resv = 0;
    323	}
    324}
    325
    326struct kmem_cache *pgtable_cache __read_mostly;
    327
    328static struct kmem_cache *tsb_caches[8] __read_mostly;
    329
    330static const char *tsb_cache_names[8] = {
    331	"tsb_8KB",
    332	"tsb_16KB",
    333	"tsb_32KB",
    334	"tsb_64KB",
    335	"tsb_128KB",
    336	"tsb_256KB",
    337	"tsb_512KB",
    338	"tsb_1MB",
    339};
    340
    341void __init pgtable_cache_init(void)
    342{
    343	unsigned long i;
    344
    345	pgtable_cache = kmem_cache_create("pgtable_cache",
    346					  PAGE_SIZE, PAGE_SIZE,
    347					  0,
    348					  _clear_page);
    349	if (!pgtable_cache) {
    350		prom_printf("pgtable_cache_init(): Could not create!\n");
    351		prom_halt();
    352	}
    353
    354	for (i = 0; i < ARRAY_SIZE(tsb_cache_names); i++) {
    355		unsigned long size = 8192 << i;
    356		const char *name = tsb_cache_names[i];
    357
    358		tsb_caches[i] = kmem_cache_create(name,
    359						  size, size,
    360						  0, NULL);
    361		if (!tsb_caches[i]) {
    362			prom_printf("Could not create %s cache\n", name);
    363			prom_halt();
    364		}
    365	}
    366}
    367
    368int sysctl_tsb_ratio = -2;
    369
    370static unsigned long tsb_size_to_rss_limit(unsigned long new_size)
    371{
    372	unsigned long num_ents = (new_size / sizeof(struct tsb));
    373
    374	if (sysctl_tsb_ratio < 0)
    375		return num_ents - (num_ents >> -sysctl_tsb_ratio);
    376	else
    377		return num_ents + (num_ents >> sysctl_tsb_ratio);
    378}
    379
    380/* When the RSS of an address space exceeds tsb_rss_limit for a TSB,
    381 * do_sparc64_fault() invokes this routine to try and grow it.
    382 *
    383 * When we reach the maximum TSB size supported, we stick ~0UL into
    384 * tsb_rss_limit for that TSB so the grow checks in do_sparc64_fault()
    385 * will not trigger any longer.
    386 *
    387 * The TSB can be anywhere from 8K to 1MB in size, in increasing powers
    388 * of two.  The TSB must be aligned to it's size, so f.e. a 512K TSB
    389 * must be 512K aligned.  It also must be physically contiguous, so we
    390 * cannot use vmalloc().
    391 *
    392 * The idea here is to grow the TSB when the RSS of the process approaches
    393 * the number of entries that the current TSB can hold at once.  Currently,
    394 * we trigger when the RSS hits 3/4 of the TSB capacity.
    395 */
    396void tsb_grow(struct mm_struct *mm, unsigned long tsb_index, unsigned long rss)
    397{
    398	unsigned long max_tsb_size = 1 * 1024 * 1024;
    399	unsigned long new_size, old_size, flags;
    400	struct tsb *old_tsb, *new_tsb;
    401	unsigned long new_cache_index, old_cache_index;
    402	unsigned long new_rss_limit;
    403	gfp_t gfp_flags;
    404
    405	if (max_tsb_size > (PAGE_SIZE << MAX_ORDER))
    406		max_tsb_size = (PAGE_SIZE << MAX_ORDER);
    407
    408	new_cache_index = 0;
    409	for (new_size = 8192; new_size < max_tsb_size; new_size <<= 1UL) {
    410		new_rss_limit = tsb_size_to_rss_limit(new_size);
    411		if (new_rss_limit > rss)
    412			break;
    413		new_cache_index++;
    414	}
    415
    416	if (new_size == max_tsb_size)
    417		new_rss_limit = ~0UL;
    418
    419retry_tsb_alloc:
    420	gfp_flags = GFP_KERNEL;
    421	if (new_size > (PAGE_SIZE * 2))
    422		gfp_flags |= __GFP_NOWARN | __GFP_NORETRY;
    423
    424	new_tsb = kmem_cache_alloc_node(tsb_caches[new_cache_index],
    425					gfp_flags, numa_node_id());
    426	if (unlikely(!new_tsb)) {
    427		/* Not being able to fork due to a high-order TSB
    428		 * allocation failure is very bad behavior.  Just back
    429		 * down to a 0-order allocation and force no TSB
    430		 * growing for this address space.
    431		 */
    432		if (mm->context.tsb_block[tsb_index].tsb == NULL &&
    433		    new_cache_index > 0) {
    434			new_cache_index = 0;
    435			new_size = 8192;
    436			new_rss_limit = ~0UL;
    437			goto retry_tsb_alloc;
    438		}
    439
    440		/* If we failed on a TSB grow, we are under serious
    441		 * memory pressure so don't try to grow any more.
    442		 */
    443		if (mm->context.tsb_block[tsb_index].tsb != NULL)
    444			mm->context.tsb_block[tsb_index].tsb_rss_limit = ~0UL;
    445		return;
    446	}
    447
    448	/* Mark all tags as invalid.  */
    449	tsb_init(new_tsb, new_size);
    450
    451	/* Ok, we are about to commit the changes.  If we are
    452	 * growing an existing TSB the locking is very tricky,
    453	 * so WATCH OUT!
    454	 *
    455	 * We have to hold mm->context.lock while committing to the
    456	 * new TSB, this synchronizes us with processors in
    457	 * flush_tsb_user() and switch_mm() for this address space.
    458	 *
    459	 * But even with that lock held, processors run asynchronously
    460	 * accessing the old TSB via TLB miss handling.  This is OK
    461	 * because those actions are just propagating state from the
    462	 * Linux page tables into the TSB, page table mappings are not
    463	 * being changed.  If a real fault occurs, the processor will
    464	 * synchronize with us when it hits flush_tsb_user(), this is
    465	 * also true for the case where vmscan is modifying the page
    466	 * tables.  The only thing we need to be careful with is to
    467	 * skip any locked TSB entries during copy_tsb().
    468	 *
    469	 * When we finish committing to the new TSB, we have to drop
    470	 * the lock and ask all other cpus running this address space
    471	 * to run tsb_context_switch() to see the new TSB table.
    472	 */
    473	spin_lock_irqsave(&mm->context.lock, flags);
    474
    475	old_tsb = mm->context.tsb_block[tsb_index].tsb;
    476	old_cache_index =
    477		(mm->context.tsb_block[tsb_index].tsb_reg_val & 0x7UL);
    478	old_size = (mm->context.tsb_block[tsb_index].tsb_nentries *
    479		    sizeof(struct tsb));
    480
    481
    482	/* Handle multiple threads trying to grow the TSB at the same time.
    483	 * One will get in here first, and bump the size and the RSS limit.
    484	 * The others will get in here next and hit this check.
    485	 */
    486	if (unlikely(old_tsb &&
    487		     (rss < mm->context.tsb_block[tsb_index].tsb_rss_limit))) {
    488		spin_unlock_irqrestore(&mm->context.lock, flags);
    489
    490		kmem_cache_free(tsb_caches[new_cache_index], new_tsb);
    491		return;
    492	}
    493
    494	mm->context.tsb_block[tsb_index].tsb_rss_limit = new_rss_limit;
    495
    496	if (old_tsb) {
    497		extern void copy_tsb(unsigned long old_tsb_base,
    498				     unsigned long old_tsb_size,
    499				     unsigned long new_tsb_base,
    500				     unsigned long new_tsb_size,
    501				     unsigned long page_size_shift);
    502		unsigned long old_tsb_base = (unsigned long) old_tsb;
    503		unsigned long new_tsb_base = (unsigned long) new_tsb;
    504
    505		if (tlb_type == cheetah_plus || tlb_type == hypervisor) {
    506			old_tsb_base = __pa(old_tsb_base);
    507			new_tsb_base = __pa(new_tsb_base);
    508		}
    509		copy_tsb(old_tsb_base, old_size, new_tsb_base, new_size,
    510			tsb_index == MM_TSB_BASE ?
    511			PAGE_SHIFT : REAL_HPAGE_SHIFT);
    512	}
    513
    514	mm->context.tsb_block[tsb_index].tsb = new_tsb;
    515	setup_tsb_params(mm, tsb_index, new_size);
    516
    517	spin_unlock_irqrestore(&mm->context.lock, flags);
    518
    519	/* If old_tsb is NULL, we're being invoked for the first time
    520	 * from init_new_context().
    521	 */
    522	if (old_tsb) {
    523		/* Reload it on the local cpu.  */
    524		tsb_context_switch(mm);
    525
    526		/* Now force other processors to do the same.  */
    527		preempt_disable();
    528		smp_tsb_sync(mm);
    529		preempt_enable();
    530
    531		/* Now it is safe to free the old tsb.  */
    532		kmem_cache_free(tsb_caches[old_cache_index], old_tsb);
    533	}
    534}
    535
    536int init_new_context(struct task_struct *tsk, struct mm_struct *mm)
    537{
    538	unsigned long mm_rss = get_mm_rss(mm);
    539#if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
    540	unsigned long saved_hugetlb_pte_count;
    541	unsigned long saved_thp_pte_count;
    542#endif
    543	unsigned int i;
    544
    545	spin_lock_init(&mm->context.lock);
    546
    547	mm->context.sparc64_ctx_val = 0UL;
    548
    549	mm->context.tag_store = NULL;
    550	spin_lock_init(&mm->context.tag_lock);
    551
    552#if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
    553	/* We reset them to zero because the fork() page copying
    554	 * will re-increment the counters as the parent PTEs are
    555	 * copied into the child address space.
    556	 */
    557	saved_hugetlb_pte_count = mm->context.hugetlb_pte_count;
    558	saved_thp_pte_count = mm->context.thp_pte_count;
    559	mm->context.hugetlb_pte_count = 0;
    560	mm->context.thp_pte_count = 0;
    561
    562	mm_rss -= saved_thp_pte_count * (HPAGE_SIZE / PAGE_SIZE);
    563#endif
    564
    565	/* copy_mm() copies over the parent's mm_struct before calling
    566	 * us, so we need to zero out the TSB pointer or else tsb_grow()
    567	 * will be confused and think there is an older TSB to free up.
    568	 */
    569	for (i = 0; i < MM_NUM_TSBS; i++)
    570		mm->context.tsb_block[i].tsb = NULL;
    571
    572	/* If this is fork, inherit the parent's TSB size.  We would
    573	 * grow it to that size on the first page fault anyways.
    574	 */
    575	tsb_grow(mm, MM_TSB_BASE, mm_rss);
    576
    577#if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
    578	if (unlikely(saved_hugetlb_pte_count + saved_thp_pte_count))
    579		tsb_grow(mm, MM_TSB_HUGE,
    580			 (saved_hugetlb_pte_count + saved_thp_pte_count) *
    581			 REAL_HPAGE_PER_HPAGE);
    582#endif
    583
    584	if (unlikely(!mm->context.tsb_block[MM_TSB_BASE].tsb))
    585		return -ENOMEM;
    586
    587	return 0;
    588}
    589
    590static void tsb_destroy_one(struct tsb_config *tp)
    591{
    592	unsigned long cache_index;
    593
    594	if (!tp->tsb)
    595		return;
    596	cache_index = tp->tsb_reg_val & 0x7UL;
    597	kmem_cache_free(tsb_caches[cache_index], tp->tsb);
    598	tp->tsb = NULL;
    599	tp->tsb_reg_val = 0UL;
    600}
    601
    602void destroy_context(struct mm_struct *mm)
    603{
    604	unsigned long flags, i;
    605
    606	for (i = 0; i < MM_NUM_TSBS; i++)
    607		tsb_destroy_one(&mm->context.tsb_block[i]);
    608
    609	spin_lock_irqsave(&ctx_alloc_lock, flags);
    610
    611	if (CTX_VALID(mm->context)) {
    612		unsigned long nr = CTX_NRBITS(mm->context);
    613		mmu_context_bmap[nr>>6] &= ~(1UL << (nr & 63));
    614	}
    615
    616	spin_unlock_irqrestore(&ctx_alloc_lock, flags);
    617
    618	/* If ADI tag storage was allocated for this task, free it */
    619	if (mm->context.tag_store) {
    620		tag_storage_desc_t *tag_desc;
    621		unsigned long max_desc;
    622		unsigned char *tags;
    623
    624		tag_desc = mm->context.tag_store;
    625		max_desc = PAGE_SIZE/sizeof(tag_storage_desc_t);
    626		for (i = 0; i < max_desc; i++) {
    627			tags = tag_desc->tags;
    628			tag_desc->tags = NULL;
    629			kfree(tags);
    630			tag_desc++;
    631		}
    632		kfree(mm->context.tag_store);
    633		mm->context.tag_store = NULL;
    634	}
    635}