cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

bpf_jit_comp_32.c (20287B)


      1// SPDX-License-Identifier: GPL-2.0
      2#include <linux/moduleloader.h>
      3#include <linux/workqueue.h>
      4#include <linux/netdevice.h>
      5#include <linux/filter.h>
      6#include <linux/cache.h>
      7#include <linux/if_vlan.h>
      8
      9#include <asm/cacheflush.h>
     10#include <asm/ptrace.h>
     11
     12#include "bpf_jit_32.h"
     13
     14static inline bool is_simm13(unsigned int value)
     15{
     16	return value + 0x1000 < 0x2000;
     17}
     18
     19#define SEEN_DATAREF 1 /* might call external helpers */
     20#define SEEN_XREG    2 /* ebx is used */
     21#define SEEN_MEM     4 /* use mem[] for temporary storage */
     22
     23#define S13(X)		((X) & 0x1fff)
     24#define IMMED		0x00002000
     25#define RD(X)		((X) << 25)
     26#define RS1(X)		((X) << 14)
     27#define RS2(X)		((X))
     28#define OP(X)		((X) << 30)
     29#define OP2(X)		((X) << 22)
     30#define OP3(X)		((X) << 19)
     31#define COND(X)		((X) << 25)
     32#define F1(X)		OP(X)
     33#define F2(X, Y)	(OP(X) | OP2(Y))
     34#define F3(X, Y)	(OP(X) | OP3(Y))
     35
     36#define CONDN		COND(0x0)
     37#define CONDE		COND(0x1)
     38#define CONDLE		COND(0x2)
     39#define CONDL		COND(0x3)
     40#define CONDLEU		COND(0x4)
     41#define CONDCS		COND(0x5)
     42#define CONDNEG		COND(0x6)
     43#define CONDVC		COND(0x7)
     44#define CONDA		COND(0x8)
     45#define CONDNE		COND(0x9)
     46#define CONDG		COND(0xa)
     47#define CONDGE		COND(0xb)
     48#define CONDGU		COND(0xc)
     49#define CONDCC		COND(0xd)
     50#define CONDPOS		COND(0xe)
     51#define CONDVS		COND(0xf)
     52
     53#define CONDGEU		CONDCC
     54#define CONDLU		CONDCS
     55
     56#define WDISP22(X)	(((X) >> 2) & 0x3fffff)
     57
     58#define BA		(F2(0, 2) | CONDA)
     59#define BGU		(F2(0, 2) | CONDGU)
     60#define BLEU		(F2(0, 2) | CONDLEU)
     61#define BGEU		(F2(0, 2) | CONDGEU)
     62#define BLU		(F2(0, 2) | CONDLU)
     63#define BE		(F2(0, 2) | CONDE)
     64#define BNE		(F2(0, 2) | CONDNE)
     65
     66#define BE_PTR		BE
     67
     68#define SETHI(K, REG)	\
     69	(F2(0, 0x4) | RD(REG) | (((K) >> 10) & 0x3fffff))
     70#define OR_LO(K, REG)	\
     71	(F3(2, 0x02) | IMMED | RS1(REG) | ((K) & 0x3ff) | RD(REG))
     72
     73#define ADD		F3(2, 0x00)
     74#define AND		F3(2, 0x01)
     75#define ANDCC		F3(2, 0x11)
     76#define OR		F3(2, 0x02)
     77#define XOR		F3(2, 0x03)
     78#define SUB		F3(2, 0x04)
     79#define SUBCC		F3(2, 0x14)
     80#define MUL		F3(2, 0x0a)	/* umul */
     81#define DIV		F3(2, 0x0e)	/* udiv */
     82#define SLL		F3(2, 0x25)
     83#define SRL		F3(2, 0x26)
     84#define JMPL		F3(2, 0x38)
     85#define CALL		F1(1)
     86#define BR		F2(0, 0x01)
     87#define RD_Y		F3(2, 0x28)
     88#define WR_Y		F3(2, 0x30)
     89
     90#define LD32		F3(3, 0x00)
     91#define LD8		F3(3, 0x01)
     92#define LD16		F3(3, 0x02)
     93#define LD64		F3(3, 0x0b)
     94#define ST32		F3(3, 0x04)
     95
     96#define LDPTR		LD32
     97#define BASE_STACKFRAME	96
     98
     99#define LD32I		(LD32 | IMMED)
    100#define LD8I		(LD8 | IMMED)
    101#define LD16I		(LD16 | IMMED)
    102#define LD64I		(LD64 | IMMED)
    103#define LDPTRI		(LDPTR | IMMED)
    104#define ST32I		(ST32 | IMMED)
    105
    106#define emit_nop()		\
    107do {				\
    108	*prog++ = SETHI(0, G0);	\
    109} while (0)
    110
    111#define emit_neg()					\
    112do {	/* sub %g0, r_A, r_A */				\
    113	*prog++ = SUB | RS1(G0) | RS2(r_A) | RD(r_A);	\
    114} while (0)
    115
    116#define emit_reg_move(FROM, TO)				\
    117do {	/* or %g0, FROM, TO */				\
    118	*prog++ = OR | RS1(G0) | RS2(FROM) | RD(TO);	\
    119} while (0)
    120
    121#define emit_clear(REG)					\
    122do {	/* or %g0, %g0, REG */				\
    123	*prog++ = OR | RS1(G0) | RS2(G0) | RD(REG);	\
    124} while (0)
    125
    126#define emit_set_const(K, REG)					\
    127do {	/* sethi %hi(K), REG */					\
    128	*prog++ = SETHI(K, REG);				\
    129	/* or REG, %lo(K), REG */				\
    130	*prog++ = OR_LO(K, REG);				\
    131} while (0)
    132
    133	/* Emit
    134	 *
    135	 *	OP	r_A, r_X, r_A
    136	 */
    137#define emit_alu_X(OPCODE)					\
    138do {								\
    139	seen |= SEEN_XREG;					\
    140	*prog++ = OPCODE | RS1(r_A) | RS2(r_X) | RD(r_A);	\
    141} while (0)
    142
    143	/* Emit either:
    144	 *
    145	 *	OP	r_A, K, r_A
    146	 *
    147	 * or
    148	 *
    149	 *	sethi	%hi(K), r_TMP
    150	 *	or	r_TMP, %lo(K), r_TMP
    151	 *	OP	r_A, r_TMP, r_A
    152	 *
    153	 * depending upon whether K fits in a signed 13-bit
    154	 * immediate instruction field.  Emit nothing if K
    155	 * is zero.
    156	 */
    157#define emit_alu_K(OPCODE, K)					\
    158do {								\
    159	if (K || OPCODE == AND || OPCODE == MUL) {		\
    160		unsigned int _insn = OPCODE;			\
    161		_insn |= RS1(r_A) | RD(r_A);			\
    162		if (is_simm13(K)) {				\
    163			*prog++ = _insn | IMMED | S13(K);	\
    164		} else {					\
    165			emit_set_const(K, r_TMP);		\
    166			*prog++ = _insn | RS2(r_TMP);		\
    167		}						\
    168	}							\
    169} while (0)
    170
    171#define emit_loadimm(K, DEST)						\
    172do {									\
    173	if (is_simm13(K)) {						\
    174		/* or %g0, K, DEST */					\
    175		*prog++ = OR | IMMED | RS1(G0) | S13(K) | RD(DEST);	\
    176	} else {							\
    177		emit_set_const(K, DEST);				\
    178	}								\
    179} while (0)
    180
    181#define emit_loadptr(BASE, STRUCT, FIELD, DEST)				\
    182do {	unsigned int _off = offsetof(STRUCT, FIELD);			\
    183	BUILD_BUG_ON(sizeof_field(STRUCT, FIELD) != sizeof(void *));	\
    184	*prog++ = LDPTRI | RS1(BASE) | S13(_off) | RD(DEST);		\
    185} while (0)
    186
    187#define emit_load32(BASE, STRUCT, FIELD, DEST)				\
    188do {	unsigned int _off = offsetof(STRUCT, FIELD);			\
    189	BUILD_BUG_ON(sizeof_field(STRUCT, FIELD) != sizeof(u32));	\
    190	*prog++ = LD32I | RS1(BASE) | S13(_off) | RD(DEST);		\
    191} while (0)
    192
    193#define emit_load16(BASE, STRUCT, FIELD, DEST)				\
    194do {	unsigned int _off = offsetof(STRUCT, FIELD);			\
    195	BUILD_BUG_ON(sizeof_field(STRUCT, FIELD) != sizeof(u16));	\
    196	*prog++ = LD16I | RS1(BASE) | S13(_off) | RD(DEST);		\
    197} while (0)
    198
    199#define __emit_load8(BASE, STRUCT, FIELD, DEST)				\
    200do {	unsigned int _off = offsetof(STRUCT, FIELD);			\
    201	*prog++ = LD8I | RS1(BASE) | S13(_off) | RD(DEST);		\
    202} while (0)
    203
    204#define emit_load8(BASE, STRUCT, FIELD, DEST)				\
    205do {	BUILD_BUG_ON(sizeof_field(STRUCT, FIELD) != sizeof(u8));	\
    206	__emit_load8(BASE, STRUCT, FIELD, DEST);			\
    207} while (0)
    208
    209#define BIAS (-4)
    210
    211#define emit_ldmem(OFF, DEST)						\
    212do {	*prog++ = LD32I | RS1(SP) | S13(BIAS - (OFF)) | RD(DEST);	\
    213} while (0)
    214
    215#define emit_stmem(OFF, SRC)						\
    216do {	*prog++ = ST32I | RS1(SP) | S13(BIAS - (OFF)) | RD(SRC);	\
    217} while (0)
    218
    219#ifdef CONFIG_SMP
    220#define emit_load_cpu(REG)						\
    221	emit_load32(G6, struct thread_info, cpu, REG)
    222#else
    223#define emit_load_cpu(REG)	emit_clear(REG)
    224#endif
    225
    226#define emit_skb_loadptr(FIELD, DEST) \
    227	emit_loadptr(r_SKB, struct sk_buff, FIELD, DEST)
    228#define emit_skb_load32(FIELD, DEST) \
    229	emit_load32(r_SKB, struct sk_buff, FIELD, DEST)
    230#define emit_skb_load16(FIELD, DEST) \
    231	emit_load16(r_SKB, struct sk_buff, FIELD, DEST)
    232#define __emit_skb_load8(FIELD, DEST) \
    233	__emit_load8(r_SKB, struct sk_buff, FIELD, DEST)
    234#define emit_skb_load8(FIELD, DEST) \
    235	emit_load8(r_SKB, struct sk_buff, FIELD, DEST)
    236
    237#define emit_jmpl(BASE, IMM_OFF, LREG) \
    238	*prog++ = (JMPL | IMMED | RS1(BASE) | S13(IMM_OFF) | RD(LREG))
    239
    240#define emit_call(FUNC)					\
    241do {	void *_here = image + addrs[i] - 8;		\
    242	unsigned int _off = (void *)(FUNC) - _here;	\
    243	*prog++ = CALL | (((_off) >> 2) & 0x3fffffff);	\
    244	emit_nop();					\
    245} while (0)
    246
    247#define emit_branch(BR_OPC, DEST)			\
    248do {	unsigned int _here = addrs[i] - 8;		\
    249	*prog++ = BR_OPC | WDISP22((DEST) - _here);	\
    250} while (0)
    251
    252#define emit_branch_off(BR_OPC, OFF)			\
    253do {	*prog++ = BR_OPC | WDISP22(OFF);		\
    254} while (0)
    255
    256#define emit_jump(DEST)		emit_branch(BA, DEST)
    257
    258#define emit_read_y(REG)	*prog++ = RD_Y | RD(REG)
    259#define emit_write_y(REG)	*prog++ = WR_Y | IMMED | RS1(REG) | S13(0)
    260
    261#define emit_cmp(R1, R2) \
    262	*prog++ = (SUBCC | RS1(R1) | RS2(R2) | RD(G0))
    263
    264#define emit_cmpi(R1, IMM) \
    265	*prog++ = (SUBCC | IMMED | RS1(R1) | S13(IMM) | RD(G0));
    266
    267#define emit_btst(R1, R2) \
    268	*prog++ = (ANDCC | RS1(R1) | RS2(R2) | RD(G0))
    269
    270#define emit_btsti(R1, IMM) \
    271	*prog++ = (ANDCC | IMMED | RS1(R1) | S13(IMM) | RD(G0));
    272
    273#define emit_sub(R1, R2, R3) \
    274	*prog++ = (SUB | RS1(R1) | RS2(R2) | RD(R3))
    275
    276#define emit_subi(R1, IMM, R3) \
    277	*prog++ = (SUB | IMMED | RS1(R1) | S13(IMM) | RD(R3))
    278
    279#define emit_add(R1, R2, R3) \
    280	*prog++ = (ADD | RS1(R1) | RS2(R2) | RD(R3))
    281
    282#define emit_addi(R1, IMM, R3) \
    283	*prog++ = (ADD | IMMED | RS1(R1) | S13(IMM) | RD(R3))
    284
    285#define emit_and(R1, R2, R3) \
    286	*prog++ = (AND | RS1(R1) | RS2(R2) | RD(R3))
    287
    288#define emit_andi(R1, IMM, R3) \
    289	*prog++ = (AND | IMMED | RS1(R1) | S13(IMM) | RD(R3))
    290
    291#define emit_alloc_stack(SZ) \
    292	*prog++ = (SUB | IMMED | RS1(SP) | S13(SZ) | RD(SP))
    293
    294#define emit_release_stack(SZ) \
    295	*prog++ = (ADD | IMMED | RS1(SP) | S13(SZ) | RD(SP))
    296
    297/* A note about branch offset calculations.  The addrs[] array,
    298 * indexed by BPF instruction, records the address after all the
    299 * sparc instructions emitted for that BPF instruction.
    300 *
    301 * The most common case is to emit a branch at the end of such
    302 * a code sequence.  So this would be two instructions, the
    303 * branch and it's delay slot.
    304 *
    305 * Therefore by default the branch emitters calculate the branch
    306 * offset field as:
    307 *
    308 *	destination - (addrs[i] - 8)
    309 *
    310 * This "addrs[i] - 8" is the address of the branch itself or
    311 * what "." would be in assembler notation.  The "8" part is
    312 * how we take into consideration the branch and it's delay
    313 * slot mentioned above.
    314 *
    315 * Sometimes we need to emit a branch earlier in the code
    316 * sequence.  And in these situations we adjust "destination"
    317 * to accommodate this difference.  For example, if we needed
    318 * to emit a branch (and it's delay slot) right before the
    319 * final instruction emitted for a BPF opcode, we'd use
    320 * "destination + 4" instead of just plain "destination" above.
    321 *
    322 * This is why you see all of these funny emit_branch() and
    323 * emit_jump() calls with adjusted offsets.
    324 */
    325
    326void bpf_jit_compile(struct bpf_prog *fp)
    327{
    328	unsigned int cleanup_addr, proglen, oldproglen = 0;
    329	u32 temp[8], *prog, *func, seen = 0, pass;
    330	const struct sock_filter *filter = fp->insns;
    331	int i, flen = fp->len, pc_ret0 = -1;
    332	unsigned int *addrs;
    333	void *image;
    334
    335	if (!bpf_jit_enable)
    336		return;
    337
    338	addrs = kmalloc_array(flen, sizeof(*addrs), GFP_KERNEL);
    339	if (addrs == NULL)
    340		return;
    341
    342	/* Before first pass, make a rough estimation of addrs[]
    343	 * each bpf instruction is translated to less than 64 bytes
    344	 */
    345	for (proglen = 0, i = 0; i < flen; i++) {
    346		proglen += 64;
    347		addrs[i] = proglen;
    348	}
    349	cleanup_addr = proglen; /* epilogue address */
    350	image = NULL;
    351	for (pass = 0; pass < 10; pass++) {
    352		u8 seen_or_pass0 = (pass == 0) ? (SEEN_XREG | SEEN_DATAREF | SEEN_MEM) : seen;
    353
    354		/* no prologue/epilogue for trivial filters (RET something) */
    355		proglen = 0;
    356		prog = temp;
    357
    358		/* Prologue */
    359		if (seen_or_pass0) {
    360			if (seen_or_pass0 & SEEN_MEM) {
    361				unsigned int sz = BASE_STACKFRAME;
    362				sz += BPF_MEMWORDS * sizeof(u32);
    363				emit_alloc_stack(sz);
    364			}
    365
    366			/* Make sure we dont leek kernel memory. */
    367			if (seen_or_pass0 & SEEN_XREG)
    368				emit_clear(r_X);
    369
    370			/* If this filter needs to access skb data,
    371			 * load %o4 and %o5 with:
    372			 *  %o4 = skb->len - skb->data_len
    373			 *  %o5 = skb->data
    374			 * And also back up %o7 into r_saved_O7 so we can
    375			 * invoke the stubs using 'call'.
    376			 */
    377			if (seen_or_pass0 & SEEN_DATAREF) {
    378				emit_load32(r_SKB, struct sk_buff, len, r_HEADLEN);
    379				emit_load32(r_SKB, struct sk_buff, data_len, r_TMP);
    380				emit_sub(r_HEADLEN, r_TMP, r_HEADLEN);
    381				emit_loadptr(r_SKB, struct sk_buff, data, r_SKB_DATA);
    382			}
    383		}
    384		emit_reg_move(O7, r_saved_O7);
    385
    386		/* Make sure we dont leak kernel information to the user. */
    387		if (bpf_needs_clear_a(&filter[0]))
    388			emit_clear(r_A); /* A = 0 */
    389
    390		for (i = 0; i < flen; i++) {
    391			unsigned int K = filter[i].k;
    392			unsigned int t_offset;
    393			unsigned int f_offset;
    394			u32 t_op, f_op;
    395			u16 code = bpf_anc_helper(&filter[i]);
    396			int ilen;
    397
    398			switch (code) {
    399			case BPF_ALU | BPF_ADD | BPF_X:	/* A += X; */
    400				emit_alu_X(ADD);
    401				break;
    402			case BPF_ALU | BPF_ADD | BPF_K:	/* A += K; */
    403				emit_alu_K(ADD, K);
    404				break;
    405			case BPF_ALU | BPF_SUB | BPF_X:	/* A -= X; */
    406				emit_alu_X(SUB);
    407				break;
    408			case BPF_ALU | BPF_SUB | BPF_K:	/* A -= K */
    409				emit_alu_K(SUB, K);
    410				break;
    411			case BPF_ALU | BPF_AND | BPF_X:	/* A &= X */
    412				emit_alu_X(AND);
    413				break;
    414			case BPF_ALU | BPF_AND | BPF_K:	/* A &= K */
    415				emit_alu_K(AND, K);
    416				break;
    417			case BPF_ALU | BPF_OR | BPF_X:	/* A |= X */
    418				emit_alu_X(OR);
    419				break;
    420			case BPF_ALU | BPF_OR | BPF_K:	/* A |= K */
    421				emit_alu_K(OR, K);
    422				break;
    423			case BPF_ANC | SKF_AD_ALU_XOR_X: /* A ^= X; */
    424			case BPF_ALU | BPF_XOR | BPF_X:
    425				emit_alu_X(XOR);
    426				break;
    427			case BPF_ALU | BPF_XOR | BPF_K:	/* A ^= K */
    428				emit_alu_K(XOR, K);
    429				break;
    430			case BPF_ALU | BPF_LSH | BPF_X:	/* A <<= X */
    431				emit_alu_X(SLL);
    432				break;
    433			case BPF_ALU | BPF_LSH | BPF_K:	/* A <<= K */
    434				emit_alu_K(SLL, K);
    435				break;
    436			case BPF_ALU | BPF_RSH | BPF_X:	/* A >>= X */
    437				emit_alu_X(SRL);
    438				break;
    439			case BPF_ALU | BPF_RSH | BPF_K:	/* A >>= K */
    440				emit_alu_K(SRL, K);
    441				break;
    442			case BPF_ALU | BPF_MUL | BPF_X:	/* A *= X; */
    443				emit_alu_X(MUL);
    444				break;
    445			case BPF_ALU | BPF_MUL | BPF_K:	/* A *= K */
    446				emit_alu_K(MUL, K);
    447				break;
    448			case BPF_ALU | BPF_DIV | BPF_K:	/* A /= K with K != 0*/
    449				if (K == 1)
    450					break;
    451				emit_write_y(G0);
    452				/* The Sparc v8 architecture requires
    453				 * three instructions between a %y
    454				 * register write and the first use.
    455				 */
    456				emit_nop();
    457				emit_nop();
    458				emit_nop();
    459				emit_alu_K(DIV, K);
    460				break;
    461			case BPF_ALU | BPF_DIV | BPF_X:	/* A /= X; */
    462				emit_cmpi(r_X, 0);
    463				if (pc_ret0 > 0) {
    464					t_offset = addrs[pc_ret0 - 1];
    465					emit_branch(BE, t_offset + 20);
    466					emit_nop(); /* delay slot */
    467				} else {
    468					emit_branch_off(BNE, 16);
    469					emit_nop();
    470					emit_jump(cleanup_addr + 20);
    471					emit_clear(r_A);
    472				}
    473				emit_write_y(G0);
    474				/* The Sparc v8 architecture requires
    475				 * three instructions between a %y
    476				 * register write and the first use.
    477				 */
    478				emit_nop();
    479				emit_nop();
    480				emit_nop();
    481				emit_alu_X(DIV);
    482				break;
    483			case BPF_ALU | BPF_NEG:
    484				emit_neg();
    485				break;
    486			case BPF_RET | BPF_K:
    487				if (!K) {
    488					if (pc_ret0 == -1)
    489						pc_ret0 = i;
    490					emit_clear(r_A);
    491				} else {
    492					emit_loadimm(K, r_A);
    493				}
    494				fallthrough;
    495			case BPF_RET | BPF_A:
    496				if (seen_or_pass0) {
    497					if (i != flen - 1) {
    498						emit_jump(cleanup_addr);
    499						emit_nop();
    500						break;
    501					}
    502					if (seen_or_pass0 & SEEN_MEM) {
    503						unsigned int sz = BASE_STACKFRAME;
    504						sz += BPF_MEMWORDS * sizeof(u32);
    505						emit_release_stack(sz);
    506					}
    507				}
    508				/* jmpl %r_saved_O7 + 8, %g0 */
    509				emit_jmpl(r_saved_O7, 8, G0);
    510				emit_reg_move(r_A, O0); /* delay slot */
    511				break;
    512			case BPF_MISC | BPF_TAX:
    513				seen |= SEEN_XREG;
    514				emit_reg_move(r_A, r_X);
    515				break;
    516			case BPF_MISC | BPF_TXA:
    517				seen |= SEEN_XREG;
    518				emit_reg_move(r_X, r_A);
    519				break;
    520			case BPF_ANC | SKF_AD_CPU:
    521				emit_load_cpu(r_A);
    522				break;
    523			case BPF_ANC | SKF_AD_PROTOCOL:
    524				emit_skb_load16(protocol, r_A);
    525				break;
    526			case BPF_ANC | SKF_AD_PKTTYPE:
    527				__emit_skb_load8(__pkt_type_offset, r_A);
    528				emit_andi(r_A, PKT_TYPE_MAX, r_A);
    529				emit_alu_K(SRL, 5);
    530				break;
    531			case BPF_ANC | SKF_AD_IFINDEX:
    532				emit_skb_loadptr(dev, r_A);
    533				emit_cmpi(r_A, 0);
    534				emit_branch(BE_PTR, cleanup_addr + 4);
    535				emit_nop();
    536				emit_load32(r_A, struct net_device, ifindex, r_A);
    537				break;
    538			case BPF_ANC | SKF_AD_MARK:
    539				emit_skb_load32(mark, r_A);
    540				break;
    541			case BPF_ANC | SKF_AD_QUEUE:
    542				emit_skb_load16(queue_mapping, r_A);
    543				break;
    544			case BPF_ANC | SKF_AD_HATYPE:
    545				emit_skb_loadptr(dev, r_A);
    546				emit_cmpi(r_A, 0);
    547				emit_branch(BE_PTR, cleanup_addr + 4);
    548				emit_nop();
    549				emit_load16(r_A, struct net_device, type, r_A);
    550				break;
    551			case BPF_ANC | SKF_AD_RXHASH:
    552				emit_skb_load32(hash, r_A);
    553				break;
    554			case BPF_ANC | SKF_AD_VLAN_TAG:
    555				emit_skb_load16(vlan_tci, r_A);
    556				break;
    557			case BPF_ANC | SKF_AD_VLAN_TAG_PRESENT:
    558				__emit_skb_load8(__pkt_vlan_present_offset, r_A);
    559				if (PKT_VLAN_PRESENT_BIT)
    560					emit_alu_K(SRL, PKT_VLAN_PRESENT_BIT);
    561				if (PKT_VLAN_PRESENT_BIT < 7)
    562					emit_andi(r_A, 1, r_A);
    563				break;
    564			case BPF_LD | BPF_W | BPF_LEN:
    565				emit_skb_load32(len, r_A);
    566				break;
    567			case BPF_LDX | BPF_W | BPF_LEN:
    568				emit_skb_load32(len, r_X);
    569				break;
    570			case BPF_LD | BPF_IMM:
    571				emit_loadimm(K, r_A);
    572				break;
    573			case BPF_LDX | BPF_IMM:
    574				emit_loadimm(K, r_X);
    575				break;
    576			case BPF_LD | BPF_MEM:
    577				seen |= SEEN_MEM;
    578				emit_ldmem(K * 4, r_A);
    579				break;
    580			case BPF_LDX | BPF_MEM:
    581				seen |= SEEN_MEM | SEEN_XREG;
    582				emit_ldmem(K * 4, r_X);
    583				break;
    584			case BPF_ST:
    585				seen |= SEEN_MEM;
    586				emit_stmem(K * 4, r_A);
    587				break;
    588			case BPF_STX:
    589				seen |= SEEN_MEM | SEEN_XREG;
    590				emit_stmem(K * 4, r_X);
    591				break;
    592
    593#define CHOOSE_LOAD_FUNC(K, func) \
    594	((int)K < 0 ? ((int)K >= SKF_LL_OFF ? func##_negative_offset : func) : func##_positive_offset)
    595
    596			case BPF_LD | BPF_W | BPF_ABS:
    597				func = CHOOSE_LOAD_FUNC(K, bpf_jit_load_word);
    598common_load:			seen |= SEEN_DATAREF;
    599				emit_loadimm(K, r_OFF);
    600				emit_call(func);
    601				break;
    602			case BPF_LD | BPF_H | BPF_ABS:
    603				func = CHOOSE_LOAD_FUNC(K, bpf_jit_load_half);
    604				goto common_load;
    605			case BPF_LD | BPF_B | BPF_ABS:
    606				func = CHOOSE_LOAD_FUNC(K, bpf_jit_load_byte);
    607				goto common_load;
    608			case BPF_LDX | BPF_B | BPF_MSH:
    609				func = CHOOSE_LOAD_FUNC(K, bpf_jit_load_byte_msh);
    610				goto common_load;
    611			case BPF_LD | BPF_W | BPF_IND:
    612				func = bpf_jit_load_word;
    613common_load_ind:		seen |= SEEN_DATAREF | SEEN_XREG;
    614				if (K) {
    615					if (is_simm13(K)) {
    616						emit_addi(r_X, K, r_OFF);
    617					} else {
    618						emit_loadimm(K, r_TMP);
    619						emit_add(r_X, r_TMP, r_OFF);
    620					}
    621				} else {
    622					emit_reg_move(r_X, r_OFF);
    623				}
    624				emit_call(func);
    625				break;
    626			case BPF_LD | BPF_H | BPF_IND:
    627				func = bpf_jit_load_half;
    628				goto common_load_ind;
    629			case BPF_LD | BPF_B | BPF_IND:
    630				func = bpf_jit_load_byte;
    631				goto common_load_ind;
    632			case BPF_JMP | BPF_JA:
    633				emit_jump(addrs[i + K]);
    634				emit_nop();
    635				break;
    636
    637#define COND_SEL(CODE, TOP, FOP)	\
    638	case CODE:			\
    639		t_op = TOP;		\
    640		f_op = FOP;		\
    641		goto cond_branch
    642
    643			COND_SEL(BPF_JMP | BPF_JGT | BPF_K, BGU, BLEU);
    644			COND_SEL(BPF_JMP | BPF_JGE | BPF_K, BGEU, BLU);
    645			COND_SEL(BPF_JMP | BPF_JEQ | BPF_K, BE, BNE);
    646			COND_SEL(BPF_JMP | BPF_JSET | BPF_K, BNE, BE);
    647			COND_SEL(BPF_JMP | BPF_JGT | BPF_X, BGU, BLEU);
    648			COND_SEL(BPF_JMP | BPF_JGE | BPF_X, BGEU, BLU);
    649			COND_SEL(BPF_JMP | BPF_JEQ | BPF_X, BE, BNE);
    650			COND_SEL(BPF_JMP | BPF_JSET | BPF_X, BNE, BE);
    651
    652cond_branch:			f_offset = addrs[i + filter[i].jf];
    653				t_offset = addrs[i + filter[i].jt];
    654
    655				/* same targets, can avoid doing the test :) */
    656				if (filter[i].jt == filter[i].jf) {
    657					emit_jump(t_offset);
    658					emit_nop();
    659					break;
    660				}
    661
    662				switch (code) {
    663				case BPF_JMP | BPF_JGT | BPF_X:
    664				case BPF_JMP | BPF_JGE | BPF_X:
    665				case BPF_JMP | BPF_JEQ | BPF_X:
    666					seen |= SEEN_XREG;
    667					emit_cmp(r_A, r_X);
    668					break;
    669				case BPF_JMP | BPF_JSET | BPF_X:
    670					seen |= SEEN_XREG;
    671					emit_btst(r_A, r_X);
    672					break;
    673				case BPF_JMP | BPF_JEQ | BPF_K:
    674				case BPF_JMP | BPF_JGT | BPF_K:
    675				case BPF_JMP | BPF_JGE | BPF_K:
    676					if (is_simm13(K)) {
    677						emit_cmpi(r_A, K);
    678					} else {
    679						emit_loadimm(K, r_TMP);
    680						emit_cmp(r_A, r_TMP);
    681					}
    682					break;
    683				case BPF_JMP | BPF_JSET | BPF_K:
    684					if (is_simm13(K)) {
    685						emit_btsti(r_A, K);
    686					} else {
    687						emit_loadimm(K, r_TMP);
    688						emit_btst(r_A, r_TMP);
    689					}
    690					break;
    691				}
    692				if (filter[i].jt != 0) {
    693					if (filter[i].jf)
    694						t_offset += 8;
    695					emit_branch(t_op, t_offset);
    696					emit_nop(); /* delay slot */
    697					if (filter[i].jf) {
    698						emit_jump(f_offset);
    699						emit_nop();
    700					}
    701					break;
    702				}
    703				emit_branch(f_op, f_offset);
    704				emit_nop(); /* delay slot */
    705				break;
    706
    707			default:
    708				/* hmm, too complex filter, give up with jit compiler */
    709				goto out;
    710			}
    711			ilen = (void *) prog - (void *) temp;
    712			if (image) {
    713				if (unlikely(proglen + ilen > oldproglen)) {
    714					pr_err("bpb_jit_compile fatal error\n");
    715					kfree(addrs);
    716					module_memfree(image);
    717					return;
    718				}
    719				memcpy(image + proglen, temp, ilen);
    720			}
    721			proglen += ilen;
    722			addrs[i] = proglen;
    723			prog = temp;
    724		}
    725		/* last bpf instruction is always a RET :
    726		 * use it to give the cleanup instruction(s) addr
    727		 */
    728		cleanup_addr = proglen - 8; /* jmpl; mov r_A,%o0; */
    729		if (seen_or_pass0 & SEEN_MEM)
    730			cleanup_addr -= 4; /* add %sp, X, %sp; */
    731
    732		if (image) {
    733			if (proglen != oldproglen)
    734				pr_err("bpb_jit_compile proglen=%u != oldproglen=%u\n",
    735				       proglen, oldproglen);
    736			break;
    737		}
    738		if (proglen == oldproglen) {
    739			image = module_alloc(proglen);
    740			if (!image)
    741				goto out;
    742		}
    743		oldproglen = proglen;
    744	}
    745
    746	if (bpf_jit_enable > 1)
    747		bpf_jit_dump(flen, proglen, pass + 1, image);
    748
    749	if (image) {
    750		fp->bpf_func = (void *)image;
    751		fp->jited = 1;
    752	}
    753out:
    754	kfree(addrs);
    755	return;
    756}
    757
    758void bpf_jit_free(struct bpf_prog *fp)
    759{
    760	if (fp->jited)
    761		module_memfree(fp->bpf_func);
    762
    763	bpf_prog_unlock_free(fp);
    764}