cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

bpf_jit_comp_64.c (39134B)


      1// SPDX-License-Identifier: GPL-2.0
      2#include <linux/moduleloader.h>
      3#include <linux/workqueue.h>
      4#include <linux/netdevice.h>
      5#include <linux/filter.h>
      6#include <linux/bpf.h>
      7#include <linux/cache.h>
      8#include <linux/if_vlan.h>
      9
     10#include <asm/cacheflush.h>
     11#include <asm/ptrace.h>
     12
     13#include "bpf_jit_64.h"
     14
     15static inline bool is_simm13(unsigned int value)
     16{
     17	return value + 0x1000 < 0x2000;
     18}
     19
     20static inline bool is_simm10(unsigned int value)
     21{
     22	return value + 0x200 < 0x400;
     23}
     24
     25static inline bool is_simm5(unsigned int value)
     26{
     27	return value + 0x10 < 0x20;
     28}
     29
     30static inline bool is_sethi(unsigned int value)
     31{
     32	return (value & ~0x3fffff) == 0;
     33}
     34
     35static void bpf_flush_icache(void *start_, void *end_)
     36{
     37	/* Cheetah's I-cache is fully coherent.  */
     38	if (tlb_type == spitfire) {
     39		unsigned long start = (unsigned long) start_;
     40		unsigned long end = (unsigned long) end_;
     41
     42		start &= ~7UL;
     43		end = (end + 7UL) & ~7UL;
     44		while (start < end) {
     45			flushi(start);
     46			start += 32;
     47		}
     48	}
     49}
     50
     51#define S13(X)		((X) & 0x1fff)
     52#define S5(X)		((X) & 0x1f)
     53#define IMMED		0x00002000
     54#define RD(X)		((X) << 25)
     55#define RS1(X)		((X) << 14)
     56#define RS2(X)		((X))
     57#define OP(X)		((X) << 30)
     58#define OP2(X)		((X) << 22)
     59#define OP3(X)		((X) << 19)
     60#define COND(X)		(((X) & 0xf) << 25)
     61#define CBCOND(X)	(((X) & 0x1f) << 25)
     62#define F1(X)		OP(X)
     63#define F2(X, Y)	(OP(X) | OP2(Y))
     64#define F3(X, Y)	(OP(X) | OP3(Y))
     65#define ASI(X)		(((X) & 0xff) << 5)
     66
     67#define CONDN		COND(0x0)
     68#define CONDE		COND(0x1)
     69#define CONDLE		COND(0x2)
     70#define CONDL		COND(0x3)
     71#define CONDLEU		COND(0x4)
     72#define CONDCS		COND(0x5)
     73#define CONDNEG		COND(0x6)
     74#define CONDVC		COND(0x7)
     75#define CONDA		COND(0x8)
     76#define CONDNE		COND(0x9)
     77#define CONDG		COND(0xa)
     78#define CONDGE		COND(0xb)
     79#define CONDGU		COND(0xc)
     80#define CONDCC		COND(0xd)
     81#define CONDPOS		COND(0xe)
     82#define CONDVS		COND(0xf)
     83
     84#define CONDGEU		CONDCC
     85#define CONDLU		CONDCS
     86
     87#define WDISP22(X)	(((X) >> 2) & 0x3fffff)
     88#define WDISP19(X)	(((X) >> 2) & 0x7ffff)
     89
     90/* The 10-bit branch displacement for CBCOND is split into two fields */
     91static u32 WDISP10(u32 off)
     92{
     93	u32 ret = ((off >> 2) & 0xff) << 5;
     94
     95	ret |= ((off >> (2 + 8)) & 0x03) << 19;
     96
     97	return ret;
     98}
     99
    100#define CBCONDE		CBCOND(0x09)
    101#define CBCONDLE	CBCOND(0x0a)
    102#define CBCONDL		CBCOND(0x0b)
    103#define CBCONDLEU	CBCOND(0x0c)
    104#define CBCONDCS	CBCOND(0x0d)
    105#define CBCONDN		CBCOND(0x0e)
    106#define CBCONDVS	CBCOND(0x0f)
    107#define CBCONDNE	CBCOND(0x19)
    108#define CBCONDG		CBCOND(0x1a)
    109#define CBCONDGE	CBCOND(0x1b)
    110#define CBCONDGU	CBCOND(0x1c)
    111#define CBCONDCC	CBCOND(0x1d)
    112#define CBCONDPOS	CBCOND(0x1e)
    113#define CBCONDVC	CBCOND(0x1f)
    114
    115#define CBCONDGEU	CBCONDCC
    116#define CBCONDLU	CBCONDCS
    117
    118#define ANNUL		(1 << 29)
    119#define XCC		(1 << 21)
    120
    121#define BRANCH		(F2(0, 1) | XCC)
    122#define CBCOND_OP	(F2(0, 3) | XCC)
    123
    124#define BA		(BRANCH | CONDA)
    125#define BG		(BRANCH | CONDG)
    126#define BL		(BRANCH | CONDL)
    127#define BLE		(BRANCH | CONDLE)
    128#define BGU		(BRANCH | CONDGU)
    129#define BLEU		(BRANCH | CONDLEU)
    130#define BGE		(BRANCH | CONDGE)
    131#define BGEU		(BRANCH | CONDGEU)
    132#define BLU		(BRANCH | CONDLU)
    133#define BE		(BRANCH | CONDE)
    134#define BNE		(BRANCH | CONDNE)
    135
    136#define SETHI(K, REG)	\
    137	(F2(0, 0x4) | RD(REG) | (((K) >> 10) & 0x3fffff))
    138#define OR_LO(K, REG)	\
    139	(F3(2, 0x02) | IMMED | RS1(REG) | ((K) & 0x3ff) | RD(REG))
    140
    141#define ADD		F3(2, 0x00)
    142#define AND		F3(2, 0x01)
    143#define ANDCC		F3(2, 0x11)
    144#define OR		F3(2, 0x02)
    145#define XOR		F3(2, 0x03)
    146#define SUB		F3(2, 0x04)
    147#define SUBCC		F3(2, 0x14)
    148#define MUL		F3(2, 0x0a)
    149#define MULX		F3(2, 0x09)
    150#define UDIVX		F3(2, 0x0d)
    151#define DIV		F3(2, 0x0e)
    152#define SLL		F3(2, 0x25)
    153#define SLLX		(F3(2, 0x25)|(1<<12))
    154#define SRA		F3(2, 0x27)
    155#define SRAX		(F3(2, 0x27)|(1<<12))
    156#define SRL		F3(2, 0x26)
    157#define SRLX		(F3(2, 0x26)|(1<<12))
    158#define JMPL		F3(2, 0x38)
    159#define SAVE		F3(2, 0x3c)
    160#define RESTORE		F3(2, 0x3d)
    161#define CALL		F1(1)
    162#define BR		F2(0, 0x01)
    163#define RD_Y		F3(2, 0x28)
    164#define WR_Y		F3(2, 0x30)
    165
    166#define LD32		F3(3, 0x00)
    167#define LD8		F3(3, 0x01)
    168#define LD16		F3(3, 0x02)
    169#define LD64		F3(3, 0x0b)
    170#define LD64A		F3(3, 0x1b)
    171#define ST8		F3(3, 0x05)
    172#define ST16		F3(3, 0x06)
    173#define ST32		F3(3, 0x04)
    174#define ST64		F3(3, 0x0e)
    175
    176#define CAS		F3(3, 0x3c)
    177#define CASX		F3(3, 0x3e)
    178
    179#define LDPTR		LD64
    180#define BASE_STACKFRAME	176
    181
    182#define LD32I		(LD32 | IMMED)
    183#define LD8I		(LD8 | IMMED)
    184#define LD16I		(LD16 | IMMED)
    185#define LD64I		(LD64 | IMMED)
    186#define LDPTRI		(LDPTR | IMMED)
    187#define ST32I		(ST32 | IMMED)
    188
    189struct jit_ctx {
    190	struct bpf_prog		*prog;
    191	unsigned int		*offset;
    192	int			idx;
    193	int			epilogue_offset;
    194	bool 			tmp_1_used;
    195	bool 			tmp_2_used;
    196	bool 			tmp_3_used;
    197	bool			saw_frame_pointer;
    198	bool			saw_call;
    199	bool			saw_tail_call;
    200	u32			*image;
    201};
    202
    203#define TMP_REG_1	(MAX_BPF_JIT_REG + 0)
    204#define TMP_REG_2	(MAX_BPF_JIT_REG + 1)
    205#define TMP_REG_3	(MAX_BPF_JIT_REG + 2)
    206
    207/* Map BPF registers to SPARC registers */
    208static const int bpf2sparc[] = {
    209	/* return value from in-kernel function, and exit value from eBPF */
    210	[BPF_REG_0] = O5,
    211
    212	/* arguments from eBPF program to in-kernel function */
    213	[BPF_REG_1] = O0,
    214	[BPF_REG_2] = O1,
    215	[BPF_REG_3] = O2,
    216	[BPF_REG_4] = O3,
    217	[BPF_REG_5] = O4,
    218
    219	/* callee saved registers that in-kernel function will preserve */
    220	[BPF_REG_6] = L0,
    221	[BPF_REG_7] = L1,
    222	[BPF_REG_8] = L2,
    223	[BPF_REG_9] = L3,
    224
    225	/* read-only frame pointer to access stack */
    226	[BPF_REG_FP] = L6,
    227
    228	[BPF_REG_AX] = G7,
    229
    230	/* temporary register for BPF JIT */
    231	[TMP_REG_1] = G1,
    232	[TMP_REG_2] = G2,
    233	[TMP_REG_3] = G3,
    234};
    235
    236static void emit(const u32 insn, struct jit_ctx *ctx)
    237{
    238	if (ctx->image != NULL)
    239		ctx->image[ctx->idx] = insn;
    240
    241	ctx->idx++;
    242}
    243
    244static void emit_call(u32 *func, struct jit_ctx *ctx)
    245{
    246	if (ctx->image != NULL) {
    247		void *here = &ctx->image[ctx->idx];
    248		unsigned int off;
    249
    250		off = (void *)func - here;
    251		ctx->image[ctx->idx] = CALL | ((off >> 2) & 0x3fffffff);
    252	}
    253	ctx->idx++;
    254}
    255
    256static void emit_nop(struct jit_ctx *ctx)
    257{
    258	emit(SETHI(0, G0), ctx);
    259}
    260
    261static void emit_reg_move(u32 from, u32 to, struct jit_ctx *ctx)
    262{
    263	emit(OR | RS1(G0) | RS2(from) | RD(to), ctx);
    264}
    265
    266/* Emit 32-bit constant, zero extended. */
    267static void emit_set_const(s32 K, u32 reg, struct jit_ctx *ctx)
    268{
    269	emit(SETHI(K, reg), ctx);
    270	emit(OR_LO(K, reg), ctx);
    271}
    272
    273/* Emit 32-bit constant, sign extended. */
    274static void emit_set_const_sext(s32 K, u32 reg, struct jit_ctx *ctx)
    275{
    276	if (K >= 0) {
    277		emit(SETHI(K, reg), ctx);
    278		emit(OR_LO(K, reg), ctx);
    279	} else {
    280		u32 hbits = ~(u32) K;
    281		u32 lbits = -0x400 | (u32) K;
    282
    283		emit(SETHI(hbits, reg), ctx);
    284		emit(XOR | IMMED | RS1(reg) | S13(lbits) | RD(reg), ctx);
    285	}
    286}
    287
    288static void emit_alu(u32 opcode, u32 src, u32 dst, struct jit_ctx *ctx)
    289{
    290	emit(opcode | RS1(dst) | RS2(src) | RD(dst), ctx);
    291}
    292
    293static void emit_alu3(u32 opcode, u32 a, u32 b, u32 c, struct jit_ctx *ctx)
    294{
    295	emit(opcode | RS1(a) | RS2(b) | RD(c), ctx);
    296}
    297
    298static void emit_alu_K(unsigned int opcode, unsigned int dst, unsigned int imm,
    299		       struct jit_ctx *ctx)
    300{
    301	bool small_immed = is_simm13(imm);
    302	unsigned int insn = opcode;
    303
    304	insn |= RS1(dst) | RD(dst);
    305	if (small_immed) {
    306		emit(insn | IMMED | S13(imm), ctx);
    307	} else {
    308		unsigned int tmp = bpf2sparc[TMP_REG_1];
    309
    310		ctx->tmp_1_used = true;
    311
    312		emit_set_const_sext(imm, tmp, ctx);
    313		emit(insn | RS2(tmp), ctx);
    314	}
    315}
    316
    317static void emit_alu3_K(unsigned int opcode, unsigned int src, unsigned int imm,
    318			unsigned int dst, struct jit_ctx *ctx)
    319{
    320	bool small_immed = is_simm13(imm);
    321	unsigned int insn = opcode;
    322
    323	insn |= RS1(src) | RD(dst);
    324	if (small_immed) {
    325		emit(insn | IMMED | S13(imm), ctx);
    326	} else {
    327		unsigned int tmp = bpf2sparc[TMP_REG_1];
    328
    329		ctx->tmp_1_used = true;
    330
    331		emit_set_const_sext(imm, tmp, ctx);
    332		emit(insn | RS2(tmp), ctx);
    333	}
    334}
    335
    336static void emit_loadimm32(s32 K, unsigned int dest, struct jit_ctx *ctx)
    337{
    338	if (K >= 0 && is_simm13(K)) {
    339		/* or %g0, K, DEST */
    340		emit(OR | IMMED | RS1(G0) | S13(K) | RD(dest), ctx);
    341	} else {
    342		emit_set_const(K, dest, ctx);
    343	}
    344}
    345
    346static void emit_loadimm(s32 K, unsigned int dest, struct jit_ctx *ctx)
    347{
    348	if (is_simm13(K)) {
    349		/* or %g0, K, DEST */
    350		emit(OR | IMMED | RS1(G0) | S13(K) | RD(dest), ctx);
    351	} else {
    352		emit_set_const(K, dest, ctx);
    353	}
    354}
    355
    356static void emit_loadimm_sext(s32 K, unsigned int dest, struct jit_ctx *ctx)
    357{
    358	if (is_simm13(K)) {
    359		/* or %g0, K, DEST */
    360		emit(OR | IMMED | RS1(G0) | S13(K) | RD(dest), ctx);
    361	} else {
    362		emit_set_const_sext(K, dest, ctx);
    363	}
    364}
    365
    366static void analyze_64bit_constant(u32 high_bits, u32 low_bits,
    367				   int *hbsp, int *lbsp, int *abbasp)
    368{
    369	int lowest_bit_set, highest_bit_set, all_bits_between_are_set;
    370	int i;
    371
    372	lowest_bit_set = highest_bit_set = -1;
    373	i = 0;
    374	do {
    375		if ((lowest_bit_set == -1) && ((low_bits >> i) & 1))
    376			lowest_bit_set = i;
    377		if ((highest_bit_set == -1) && ((high_bits >> (32 - i - 1)) & 1))
    378			highest_bit_set = (64 - i - 1);
    379	}  while (++i < 32 && (highest_bit_set == -1 ||
    380			       lowest_bit_set == -1));
    381	if (i == 32) {
    382		i = 0;
    383		do {
    384			if (lowest_bit_set == -1 && ((high_bits >> i) & 1))
    385				lowest_bit_set = i + 32;
    386			if (highest_bit_set == -1 &&
    387			    ((low_bits >> (32 - i - 1)) & 1))
    388				highest_bit_set = 32 - i - 1;
    389		} while (++i < 32 && (highest_bit_set == -1 ||
    390				      lowest_bit_set == -1));
    391	}
    392
    393	all_bits_between_are_set = 1;
    394	for (i = lowest_bit_set; i <= highest_bit_set; i++) {
    395		if (i < 32) {
    396			if ((low_bits & (1 << i)) != 0)
    397				continue;
    398		} else {
    399			if ((high_bits & (1 << (i - 32))) != 0)
    400				continue;
    401		}
    402		all_bits_between_are_set = 0;
    403		break;
    404	}
    405	*hbsp = highest_bit_set;
    406	*lbsp = lowest_bit_set;
    407	*abbasp = all_bits_between_are_set;
    408}
    409
    410static unsigned long create_simple_focus_bits(unsigned long high_bits,
    411					      unsigned long low_bits,
    412					      int lowest_bit_set, int shift)
    413{
    414	long hi, lo;
    415
    416	if (lowest_bit_set < 32) {
    417		lo = (low_bits >> lowest_bit_set) << shift;
    418		hi = ((high_bits << (32 - lowest_bit_set)) << shift);
    419	} else {
    420		lo = 0;
    421		hi = ((high_bits >> (lowest_bit_set - 32)) << shift);
    422	}
    423	return hi | lo;
    424}
    425
    426static bool const64_is_2insns(unsigned long high_bits,
    427			      unsigned long low_bits)
    428{
    429	int highest_bit_set, lowest_bit_set, all_bits_between_are_set;
    430
    431	if (high_bits == 0 || high_bits == 0xffffffff)
    432		return true;
    433
    434	analyze_64bit_constant(high_bits, low_bits,
    435			       &highest_bit_set, &lowest_bit_set,
    436			       &all_bits_between_are_set);
    437
    438	if ((highest_bit_set == 63 || lowest_bit_set == 0) &&
    439	    all_bits_between_are_set != 0)
    440		return true;
    441
    442	if (highest_bit_set - lowest_bit_set < 21)
    443		return true;
    444
    445	return false;
    446}
    447
    448static void sparc_emit_set_const64_quick2(unsigned long high_bits,
    449					  unsigned long low_imm,
    450					  unsigned int dest,
    451					  int shift_count, struct jit_ctx *ctx)
    452{
    453	emit_loadimm32(high_bits, dest, ctx);
    454
    455	/* Now shift it up into place.  */
    456	emit_alu_K(SLLX, dest, shift_count, ctx);
    457
    458	/* If there is a low immediate part piece, finish up by
    459	 * putting that in as well.
    460	 */
    461	if (low_imm != 0)
    462		emit(OR | IMMED | RS1(dest) | S13(low_imm) | RD(dest), ctx);
    463}
    464
    465static void emit_loadimm64(u64 K, unsigned int dest, struct jit_ctx *ctx)
    466{
    467	int all_bits_between_are_set, lowest_bit_set, highest_bit_set;
    468	unsigned int tmp = bpf2sparc[TMP_REG_1];
    469	u32 low_bits = (K & 0xffffffff);
    470	u32 high_bits = (K >> 32);
    471
    472	/* These two tests also take care of all of the one
    473	 * instruction cases.
    474	 */
    475	if (high_bits == 0xffffffff && (low_bits & 0x80000000))
    476		return emit_loadimm_sext(K, dest, ctx);
    477	if (high_bits == 0x00000000)
    478		return emit_loadimm32(K, dest, ctx);
    479
    480	analyze_64bit_constant(high_bits, low_bits, &highest_bit_set,
    481			       &lowest_bit_set, &all_bits_between_are_set);
    482
    483	/* 1) mov	-1, %reg
    484	 *    sllx	%reg, shift, %reg
    485	 * 2) mov	-1, %reg
    486	 *    srlx	%reg, shift, %reg
    487	 * 3) mov	some_small_const, %reg
    488	 *    sllx	%reg, shift, %reg
    489	 */
    490	if (((highest_bit_set == 63 || lowest_bit_set == 0) &&
    491	     all_bits_between_are_set != 0) ||
    492	    ((highest_bit_set - lowest_bit_set) < 12)) {
    493		int shift = lowest_bit_set;
    494		long the_const = -1;
    495
    496		if ((highest_bit_set != 63 && lowest_bit_set != 0) ||
    497		    all_bits_between_are_set == 0) {
    498			the_const =
    499				create_simple_focus_bits(high_bits, low_bits,
    500							 lowest_bit_set, 0);
    501		} else if (lowest_bit_set == 0)
    502			shift = -(63 - highest_bit_set);
    503
    504		emit(OR | IMMED | RS1(G0) | S13(the_const) | RD(dest), ctx);
    505		if (shift > 0)
    506			emit_alu_K(SLLX, dest, shift, ctx);
    507		else if (shift < 0)
    508			emit_alu_K(SRLX, dest, -shift, ctx);
    509
    510		return;
    511	}
    512
    513	/* Now a range of 22 or less bits set somewhere.
    514	 * 1) sethi	%hi(focus_bits), %reg
    515	 *    sllx	%reg, shift, %reg
    516	 * 2) sethi	%hi(focus_bits), %reg
    517	 *    srlx	%reg, shift, %reg
    518	 */
    519	if ((highest_bit_set - lowest_bit_set) < 21) {
    520		unsigned long focus_bits =
    521			create_simple_focus_bits(high_bits, low_bits,
    522						 lowest_bit_set, 10);
    523
    524		emit(SETHI(focus_bits, dest), ctx);
    525
    526		/* If lowest_bit_set == 10 then a sethi alone could
    527		 * have done it.
    528		 */
    529		if (lowest_bit_set < 10)
    530			emit_alu_K(SRLX, dest, 10 - lowest_bit_set, ctx);
    531		else if (lowest_bit_set > 10)
    532			emit_alu_K(SLLX, dest, lowest_bit_set - 10, ctx);
    533		return;
    534	}
    535
    536	/* Ok, now 3 instruction sequences.  */
    537	if (low_bits == 0) {
    538		emit_loadimm32(high_bits, dest, ctx);
    539		emit_alu_K(SLLX, dest, 32, ctx);
    540		return;
    541	}
    542
    543	/* We may be able to do something quick
    544	 * when the constant is negated, so try that.
    545	 */
    546	if (const64_is_2insns((~high_bits) & 0xffffffff,
    547			      (~low_bits) & 0xfffffc00)) {
    548		/* NOTE: The trailing bits get XOR'd so we need the
    549		 * non-negated bits, not the negated ones.
    550		 */
    551		unsigned long trailing_bits = low_bits & 0x3ff;
    552
    553		if ((((~high_bits) & 0xffffffff) == 0 &&
    554		     ((~low_bits) & 0x80000000) == 0) ||
    555		    (((~high_bits) & 0xffffffff) == 0xffffffff &&
    556		     ((~low_bits) & 0x80000000) != 0)) {
    557			unsigned long fast_int = (~low_bits & 0xffffffff);
    558
    559			if ((is_sethi(fast_int) &&
    560			     (~high_bits & 0xffffffff) == 0)) {
    561				emit(SETHI(fast_int, dest), ctx);
    562			} else if (is_simm13(fast_int)) {
    563				emit(OR | IMMED | RS1(G0) | S13(fast_int) | RD(dest), ctx);
    564			} else {
    565				emit_loadimm64(fast_int, dest, ctx);
    566			}
    567		} else {
    568			u64 n = ((~low_bits) & 0xfffffc00) |
    569				(((unsigned long)((~high_bits) & 0xffffffff))<<32);
    570			emit_loadimm64(n, dest, ctx);
    571		}
    572
    573		low_bits = -0x400 | trailing_bits;
    574
    575		emit(XOR | IMMED | RS1(dest) | S13(low_bits) | RD(dest), ctx);
    576		return;
    577	}
    578
    579	/* 1) sethi	%hi(xxx), %reg
    580	 *    or	%reg, %lo(xxx), %reg
    581	 *    sllx	%reg, yyy, %reg
    582	 */
    583	if ((highest_bit_set - lowest_bit_set) < 32) {
    584		unsigned long focus_bits =
    585			create_simple_focus_bits(high_bits, low_bits,
    586						 lowest_bit_set, 0);
    587
    588		/* So what we know is that the set bits straddle the
    589		 * middle of the 64-bit word.
    590		 */
    591		sparc_emit_set_const64_quick2(focus_bits, 0, dest,
    592					      lowest_bit_set, ctx);
    593		return;
    594	}
    595
    596	/* 1) sethi	%hi(high_bits), %reg
    597	 *    or	%reg, %lo(high_bits), %reg
    598	 *    sllx	%reg, 32, %reg
    599	 *    or	%reg, low_bits, %reg
    600	 */
    601	if (is_simm13(low_bits) && ((int)low_bits > 0)) {
    602		sparc_emit_set_const64_quick2(high_bits, low_bits,
    603					      dest, 32, ctx);
    604		return;
    605	}
    606
    607	/* Oh well, we tried... Do a full 64-bit decomposition.  */
    608	ctx->tmp_1_used = true;
    609
    610	emit_loadimm32(high_bits, tmp, ctx);
    611	emit_loadimm32(low_bits, dest, ctx);
    612	emit_alu_K(SLLX, tmp, 32, ctx);
    613	emit(OR | RS1(dest) | RS2(tmp) | RD(dest), ctx);
    614}
    615
    616static void emit_branch(unsigned int br_opc, unsigned int from_idx, unsigned int to_idx,
    617			struct jit_ctx *ctx)
    618{
    619	unsigned int off = to_idx - from_idx;
    620
    621	if (br_opc & XCC)
    622		emit(br_opc | WDISP19(off << 2), ctx);
    623	else
    624		emit(br_opc | WDISP22(off << 2), ctx);
    625}
    626
    627static void emit_cbcond(unsigned int cb_opc, unsigned int from_idx, unsigned int to_idx,
    628			const u8 dst, const u8 src, struct jit_ctx *ctx)
    629{
    630	unsigned int off = to_idx - from_idx;
    631
    632	emit(cb_opc | WDISP10(off << 2) | RS1(dst) | RS2(src), ctx);
    633}
    634
    635static void emit_cbcondi(unsigned int cb_opc, unsigned int from_idx, unsigned int to_idx,
    636			 const u8 dst, s32 imm, struct jit_ctx *ctx)
    637{
    638	unsigned int off = to_idx - from_idx;
    639
    640	emit(cb_opc | IMMED | WDISP10(off << 2) | RS1(dst) | S5(imm), ctx);
    641}
    642
    643#define emit_read_y(REG, CTX)	emit(RD_Y | RD(REG), CTX)
    644#define emit_write_y(REG, CTX)	emit(WR_Y | IMMED | RS1(REG) | S13(0), CTX)
    645
    646#define emit_cmp(R1, R2, CTX)				\
    647	emit(SUBCC | RS1(R1) | RS2(R2) | RD(G0), CTX)
    648
    649#define emit_cmpi(R1, IMM, CTX)				\
    650	emit(SUBCC | IMMED | RS1(R1) | S13(IMM) | RD(G0), CTX)
    651
    652#define emit_btst(R1, R2, CTX)				\
    653	emit(ANDCC | RS1(R1) | RS2(R2) | RD(G0), CTX)
    654
    655#define emit_btsti(R1, IMM, CTX)			\
    656	emit(ANDCC | IMMED | RS1(R1) | S13(IMM) | RD(G0), CTX)
    657
    658static int emit_compare_and_branch(const u8 code, const u8 dst, u8 src,
    659				   const s32 imm, bool is_imm, int branch_dst,
    660				   struct jit_ctx *ctx)
    661{
    662	bool use_cbcond = (sparc64_elf_hwcap & AV_SPARC_CBCOND) != 0;
    663	const u8 tmp = bpf2sparc[TMP_REG_1];
    664
    665	branch_dst = ctx->offset[branch_dst];
    666
    667	if (!is_simm10(branch_dst - ctx->idx) ||
    668	    BPF_OP(code) == BPF_JSET)
    669		use_cbcond = false;
    670
    671	if (is_imm) {
    672		bool fits = true;
    673
    674		if (use_cbcond) {
    675			if (!is_simm5(imm))
    676				fits = false;
    677		} else if (!is_simm13(imm)) {
    678			fits = false;
    679		}
    680		if (!fits) {
    681			ctx->tmp_1_used = true;
    682			emit_loadimm_sext(imm, tmp, ctx);
    683			src = tmp;
    684			is_imm = false;
    685		}
    686	}
    687
    688	if (!use_cbcond) {
    689		u32 br_opcode;
    690
    691		if (BPF_OP(code) == BPF_JSET) {
    692			if (is_imm)
    693				emit_btsti(dst, imm, ctx);
    694			else
    695				emit_btst(dst, src, ctx);
    696		} else {
    697			if (is_imm)
    698				emit_cmpi(dst, imm, ctx);
    699			else
    700				emit_cmp(dst, src, ctx);
    701		}
    702		switch (BPF_OP(code)) {
    703		case BPF_JEQ:
    704			br_opcode = BE;
    705			break;
    706		case BPF_JGT:
    707			br_opcode = BGU;
    708			break;
    709		case BPF_JLT:
    710			br_opcode = BLU;
    711			break;
    712		case BPF_JGE:
    713			br_opcode = BGEU;
    714			break;
    715		case BPF_JLE:
    716			br_opcode = BLEU;
    717			break;
    718		case BPF_JSET:
    719		case BPF_JNE:
    720			br_opcode = BNE;
    721			break;
    722		case BPF_JSGT:
    723			br_opcode = BG;
    724			break;
    725		case BPF_JSLT:
    726			br_opcode = BL;
    727			break;
    728		case BPF_JSGE:
    729			br_opcode = BGE;
    730			break;
    731		case BPF_JSLE:
    732			br_opcode = BLE;
    733			break;
    734		default:
    735			/* Make sure we dont leak kernel information to the
    736			 * user.
    737			 */
    738			return -EFAULT;
    739		}
    740		emit_branch(br_opcode, ctx->idx, branch_dst, ctx);
    741		emit_nop(ctx);
    742	} else {
    743		u32 cbcond_opcode;
    744
    745		switch (BPF_OP(code)) {
    746		case BPF_JEQ:
    747			cbcond_opcode = CBCONDE;
    748			break;
    749		case BPF_JGT:
    750			cbcond_opcode = CBCONDGU;
    751			break;
    752		case BPF_JLT:
    753			cbcond_opcode = CBCONDLU;
    754			break;
    755		case BPF_JGE:
    756			cbcond_opcode = CBCONDGEU;
    757			break;
    758		case BPF_JLE:
    759			cbcond_opcode = CBCONDLEU;
    760			break;
    761		case BPF_JNE:
    762			cbcond_opcode = CBCONDNE;
    763			break;
    764		case BPF_JSGT:
    765			cbcond_opcode = CBCONDG;
    766			break;
    767		case BPF_JSLT:
    768			cbcond_opcode = CBCONDL;
    769			break;
    770		case BPF_JSGE:
    771			cbcond_opcode = CBCONDGE;
    772			break;
    773		case BPF_JSLE:
    774			cbcond_opcode = CBCONDLE;
    775			break;
    776		default:
    777			/* Make sure we dont leak kernel information to the
    778			 * user.
    779			 */
    780			return -EFAULT;
    781		}
    782		cbcond_opcode |= CBCOND_OP;
    783		if (is_imm)
    784			emit_cbcondi(cbcond_opcode, ctx->idx, branch_dst,
    785				     dst, imm, ctx);
    786		else
    787			emit_cbcond(cbcond_opcode, ctx->idx, branch_dst,
    788				    dst, src, ctx);
    789	}
    790	return 0;
    791}
    792
    793/* Just skip the save instruction and the ctx register move.  */
    794#define BPF_TAILCALL_PROLOGUE_SKIP	32
    795#define BPF_TAILCALL_CNT_SP_OFF		(STACK_BIAS + 128)
    796
    797static void build_prologue(struct jit_ctx *ctx)
    798{
    799	s32 stack_needed = BASE_STACKFRAME;
    800
    801	if (ctx->saw_frame_pointer || ctx->saw_tail_call) {
    802		struct bpf_prog *prog = ctx->prog;
    803		u32 stack_depth;
    804
    805		stack_depth = prog->aux->stack_depth;
    806		stack_needed += round_up(stack_depth, 16);
    807	}
    808
    809	if (ctx->saw_tail_call)
    810		stack_needed += 8;
    811
    812	/* save %sp, -176, %sp */
    813	emit(SAVE | IMMED | RS1(SP) | S13(-stack_needed) | RD(SP), ctx);
    814
    815	/* tail_call_cnt = 0 */
    816	if (ctx->saw_tail_call) {
    817		u32 off = BPF_TAILCALL_CNT_SP_OFF;
    818
    819		emit(ST32 | IMMED | RS1(SP) | S13(off) | RD(G0), ctx);
    820	} else {
    821		emit_nop(ctx);
    822	}
    823	if (ctx->saw_frame_pointer) {
    824		const u8 vfp = bpf2sparc[BPF_REG_FP];
    825
    826		emit(ADD | IMMED | RS1(FP) | S13(STACK_BIAS) | RD(vfp), ctx);
    827	} else {
    828		emit_nop(ctx);
    829	}
    830
    831	emit_reg_move(I0, O0, ctx);
    832	emit_reg_move(I1, O1, ctx);
    833	emit_reg_move(I2, O2, ctx);
    834	emit_reg_move(I3, O3, ctx);
    835	emit_reg_move(I4, O4, ctx);
    836	/* If you add anything here, adjust BPF_TAILCALL_PROLOGUE_SKIP above. */
    837}
    838
    839static void build_epilogue(struct jit_ctx *ctx)
    840{
    841	ctx->epilogue_offset = ctx->idx;
    842
    843	/* ret (jmpl %i7 + 8, %g0) */
    844	emit(JMPL | IMMED | RS1(I7) | S13(8) | RD(G0), ctx);
    845
    846	/* restore %i5, %g0, %o0 */
    847	emit(RESTORE | RS1(bpf2sparc[BPF_REG_0]) | RS2(G0) | RD(O0), ctx);
    848}
    849
    850static void emit_tail_call(struct jit_ctx *ctx)
    851{
    852	const u8 bpf_array = bpf2sparc[BPF_REG_2];
    853	const u8 bpf_index = bpf2sparc[BPF_REG_3];
    854	const u8 tmp = bpf2sparc[TMP_REG_1];
    855	u32 off;
    856
    857	ctx->saw_tail_call = true;
    858
    859	off = offsetof(struct bpf_array, map.max_entries);
    860	emit(LD32 | IMMED | RS1(bpf_array) | S13(off) | RD(tmp), ctx);
    861	emit_cmp(bpf_index, tmp, ctx);
    862#define OFFSET1 17
    863	emit_branch(BGEU, ctx->idx, ctx->idx + OFFSET1, ctx);
    864	emit_nop(ctx);
    865
    866	off = BPF_TAILCALL_CNT_SP_OFF;
    867	emit(LD32 | IMMED | RS1(SP) | S13(off) | RD(tmp), ctx);
    868	emit_cmpi(tmp, MAX_TAIL_CALL_CNT, ctx);
    869#define OFFSET2 13
    870	emit_branch(BGEU, ctx->idx, ctx->idx + OFFSET2, ctx);
    871	emit_nop(ctx);
    872
    873	emit_alu_K(ADD, tmp, 1, ctx);
    874	off = BPF_TAILCALL_CNT_SP_OFF;
    875	emit(ST32 | IMMED | RS1(SP) | S13(off) | RD(tmp), ctx);
    876
    877	emit_alu3_K(SLL, bpf_index, 3, tmp, ctx);
    878	emit_alu(ADD, bpf_array, tmp, ctx);
    879	off = offsetof(struct bpf_array, ptrs);
    880	emit(LD64 | IMMED | RS1(tmp) | S13(off) | RD(tmp), ctx);
    881
    882	emit_cmpi(tmp, 0, ctx);
    883#define OFFSET3 5
    884	emit_branch(BE, ctx->idx, ctx->idx + OFFSET3, ctx);
    885	emit_nop(ctx);
    886
    887	off = offsetof(struct bpf_prog, bpf_func);
    888	emit(LD64 | IMMED | RS1(tmp) | S13(off) | RD(tmp), ctx);
    889
    890	off = BPF_TAILCALL_PROLOGUE_SKIP;
    891	emit(JMPL | IMMED | RS1(tmp) | S13(off) | RD(G0), ctx);
    892	emit_nop(ctx);
    893}
    894
    895static int build_insn(const struct bpf_insn *insn, struct jit_ctx *ctx)
    896{
    897	const u8 code = insn->code;
    898	const u8 dst = bpf2sparc[insn->dst_reg];
    899	const u8 src = bpf2sparc[insn->src_reg];
    900	const int i = insn - ctx->prog->insnsi;
    901	const s16 off = insn->off;
    902	const s32 imm = insn->imm;
    903
    904	if (insn->src_reg == BPF_REG_FP)
    905		ctx->saw_frame_pointer = true;
    906
    907	switch (code) {
    908	/* dst = src */
    909	case BPF_ALU | BPF_MOV | BPF_X:
    910		emit_alu3_K(SRL, src, 0, dst, ctx);
    911		if (insn_is_zext(&insn[1]))
    912			return 1;
    913		break;
    914	case BPF_ALU64 | BPF_MOV | BPF_X:
    915		emit_reg_move(src, dst, ctx);
    916		break;
    917	/* dst = dst OP src */
    918	case BPF_ALU | BPF_ADD | BPF_X:
    919	case BPF_ALU64 | BPF_ADD | BPF_X:
    920		emit_alu(ADD, src, dst, ctx);
    921		goto do_alu32_trunc;
    922	case BPF_ALU | BPF_SUB | BPF_X:
    923	case BPF_ALU64 | BPF_SUB | BPF_X:
    924		emit_alu(SUB, src, dst, ctx);
    925		goto do_alu32_trunc;
    926	case BPF_ALU | BPF_AND | BPF_X:
    927	case BPF_ALU64 | BPF_AND | BPF_X:
    928		emit_alu(AND, src, dst, ctx);
    929		goto do_alu32_trunc;
    930	case BPF_ALU | BPF_OR | BPF_X:
    931	case BPF_ALU64 | BPF_OR | BPF_X:
    932		emit_alu(OR, src, dst, ctx);
    933		goto do_alu32_trunc;
    934	case BPF_ALU | BPF_XOR | BPF_X:
    935	case BPF_ALU64 | BPF_XOR | BPF_X:
    936		emit_alu(XOR, src, dst, ctx);
    937		goto do_alu32_trunc;
    938	case BPF_ALU | BPF_MUL | BPF_X:
    939		emit_alu(MUL, src, dst, ctx);
    940		goto do_alu32_trunc;
    941	case BPF_ALU64 | BPF_MUL | BPF_X:
    942		emit_alu(MULX, src, dst, ctx);
    943		break;
    944	case BPF_ALU | BPF_DIV | BPF_X:
    945		emit_write_y(G0, ctx);
    946		emit_alu(DIV, src, dst, ctx);
    947		if (insn_is_zext(&insn[1]))
    948			return 1;
    949		break;
    950	case BPF_ALU64 | BPF_DIV | BPF_X:
    951		emit_alu(UDIVX, src, dst, ctx);
    952		break;
    953	case BPF_ALU | BPF_MOD | BPF_X: {
    954		const u8 tmp = bpf2sparc[TMP_REG_1];
    955
    956		ctx->tmp_1_used = true;
    957
    958		emit_write_y(G0, ctx);
    959		emit_alu3(DIV, dst, src, tmp, ctx);
    960		emit_alu3(MULX, tmp, src, tmp, ctx);
    961		emit_alu3(SUB, dst, tmp, dst, ctx);
    962		goto do_alu32_trunc;
    963	}
    964	case BPF_ALU64 | BPF_MOD | BPF_X: {
    965		const u8 tmp = bpf2sparc[TMP_REG_1];
    966
    967		ctx->tmp_1_used = true;
    968
    969		emit_alu3(UDIVX, dst, src, tmp, ctx);
    970		emit_alu3(MULX, tmp, src, tmp, ctx);
    971		emit_alu3(SUB, dst, tmp, dst, ctx);
    972		break;
    973	}
    974	case BPF_ALU | BPF_LSH | BPF_X:
    975		emit_alu(SLL, src, dst, ctx);
    976		goto do_alu32_trunc;
    977	case BPF_ALU64 | BPF_LSH | BPF_X:
    978		emit_alu(SLLX, src, dst, ctx);
    979		break;
    980	case BPF_ALU | BPF_RSH | BPF_X:
    981		emit_alu(SRL, src, dst, ctx);
    982		if (insn_is_zext(&insn[1]))
    983			return 1;
    984		break;
    985	case BPF_ALU64 | BPF_RSH | BPF_X:
    986		emit_alu(SRLX, src, dst, ctx);
    987		break;
    988	case BPF_ALU | BPF_ARSH | BPF_X:
    989		emit_alu(SRA, src, dst, ctx);
    990		goto do_alu32_trunc;
    991	case BPF_ALU64 | BPF_ARSH | BPF_X:
    992		emit_alu(SRAX, src, dst, ctx);
    993		break;
    994
    995	/* dst = -dst */
    996	case BPF_ALU | BPF_NEG:
    997	case BPF_ALU64 | BPF_NEG:
    998		emit(SUB | RS1(0) | RS2(dst) | RD(dst), ctx);
    999		goto do_alu32_trunc;
   1000
   1001	case BPF_ALU | BPF_END | BPF_FROM_BE:
   1002		switch (imm) {
   1003		case 16:
   1004			emit_alu_K(SLL, dst, 16, ctx);
   1005			emit_alu_K(SRL, dst, 16, ctx);
   1006			if (insn_is_zext(&insn[1]))
   1007				return 1;
   1008			break;
   1009		case 32:
   1010			if (!ctx->prog->aux->verifier_zext)
   1011				emit_alu_K(SRL, dst, 0, ctx);
   1012			break;
   1013		case 64:
   1014			/* nop */
   1015			break;
   1016
   1017		}
   1018		break;
   1019
   1020	/* dst = BSWAP##imm(dst) */
   1021	case BPF_ALU | BPF_END | BPF_FROM_LE: {
   1022		const u8 tmp = bpf2sparc[TMP_REG_1];
   1023		const u8 tmp2 = bpf2sparc[TMP_REG_2];
   1024
   1025		ctx->tmp_1_used = true;
   1026		switch (imm) {
   1027		case 16:
   1028			emit_alu3_K(AND, dst, 0xff, tmp, ctx);
   1029			emit_alu3_K(SRL, dst, 8, dst, ctx);
   1030			emit_alu3_K(AND, dst, 0xff, dst, ctx);
   1031			emit_alu3_K(SLL, tmp, 8, tmp, ctx);
   1032			emit_alu(OR, tmp, dst, ctx);
   1033			if (insn_is_zext(&insn[1]))
   1034				return 1;
   1035			break;
   1036
   1037		case 32:
   1038			ctx->tmp_2_used = true;
   1039			emit_alu3_K(SRL, dst, 24, tmp, ctx);	/* tmp  = dst >> 24 */
   1040			emit_alu3_K(SRL, dst, 16, tmp2, ctx);	/* tmp2 = dst >> 16 */
   1041			emit_alu3_K(AND, tmp2, 0xff, tmp2, ctx);/* tmp2 = tmp2 & 0xff */
   1042			emit_alu3_K(SLL, tmp2, 8, tmp2, ctx);	/* tmp2 = tmp2 << 8 */
   1043			emit_alu(OR, tmp2, tmp, ctx);		/* tmp  = tmp | tmp2 */
   1044			emit_alu3_K(SRL, dst, 8, tmp2, ctx);	/* tmp2 = dst >> 8 */
   1045			emit_alu3_K(AND, tmp2, 0xff, tmp2, ctx);/* tmp2 = tmp2 & 0xff */
   1046			emit_alu3_K(SLL, tmp2, 16, tmp2, ctx);	/* tmp2 = tmp2 << 16 */
   1047			emit_alu(OR, tmp2, tmp, ctx);		/* tmp  = tmp | tmp2 */
   1048			emit_alu3_K(AND, dst, 0xff, dst, ctx);	/* dst	= dst & 0xff */
   1049			emit_alu3_K(SLL, dst, 24, dst, ctx);	/* dst  = dst << 24 */
   1050			emit_alu(OR, tmp, dst, ctx);		/* dst  = dst | tmp */
   1051			if (insn_is_zext(&insn[1]))
   1052				return 1;
   1053			break;
   1054
   1055		case 64:
   1056			emit_alu3_K(ADD, SP, STACK_BIAS + 128, tmp, ctx);
   1057			emit(ST64 | RS1(tmp) | RS2(G0) | RD(dst), ctx);
   1058			emit(LD64A | ASI(ASI_PL) | RS1(tmp) | RS2(G0) | RD(dst), ctx);
   1059			break;
   1060		}
   1061		break;
   1062	}
   1063	/* dst = imm */
   1064	case BPF_ALU | BPF_MOV | BPF_K:
   1065		emit_loadimm32(imm, dst, ctx);
   1066		if (insn_is_zext(&insn[1]))
   1067			return 1;
   1068		break;
   1069	case BPF_ALU64 | BPF_MOV | BPF_K:
   1070		emit_loadimm_sext(imm, dst, ctx);
   1071		break;
   1072	/* dst = dst OP imm */
   1073	case BPF_ALU | BPF_ADD | BPF_K:
   1074	case BPF_ALU64 | BPF_ADD | BPF_K:
   1075		emit_alu_K(ADD, dst, imm, ctx);
   1076		goto do_alu32_trunc;
   1077	case BPF_ALU | BPF_SUB | BPF_K:
   1078	case BPF_ALU64 | BPF_SUB | BPF_K:
   1079		emit_alu_K(SUB, dst, imm, ctx);
   1080		goto do_alu32_trunc;
   1081	case BPF_ALU | BPF_AND | BPF_K:
   1082	case BPF_ALU64 | BPF_AND | BPF_K:
   1083		emit_alu_K(AND, dst, imm, ctx);
   1084		goto do_alu32_trunc;
   1085	case BPF_ALU | BPF_OR | BPF_K:
   1086	case BPF_ALU64 | BPF_OR | BPF_K:
   1087		emit_alu_K(OR, dst, imm, ctx);
   1088		goto do_alu32_trunc;
   1089	case BPF_ALU | BPF_XOR | BPF_K:
   1090	case BPF_ALU64 | BPF_XOR | BPF_K:
   1091		emit_alu_K(XOR, dst, imm, ctx);
   1092		goto do_alu32_trunc;
   1093	case BPF_ALU | BPF_MUL | BPF_K:
   1094		emit_alu_K(MUL, dst, imm, ctx);
   1095		goto do_alu32_trunc;
   1096	case BPF_ALU64 | BPF_MUL | BPF_K:
   1097		emit_alu_K(MULX, dst, imm, ctx);
   1098		break;
   1099	case BPF_ALU | BPF_DIV | BPF_K:
   1100		if (imm == 0)
   1101			return -EINVAL;
   1102
   1103		emit_write_y(G0, ctx);
   1104		emit_alu_K(DIV, dst, imm, ctx);
   1105		goto do_alu32_trunc;
   1106	case BPF_ALU64 | BPF_DIV | BPF_K:
   1107		if (imm == 0)
   1108			return -EINVAL;
   1109
   1110		emit_alu_K(UDIVX, dst, imm, ctx);
   1111		break;
   1112	case BPF_ALU64 | BPF_MOD | BPF_K:
   1113	case BPF_ALU | BPF_MOD | BPF_K: {
   1114		const u8 tmp = bpf2sparc[TMP_REG_2];
   1115		unsigned int div;
   1116
   1117		if (imm == 0)
   1118			return -EINVAL;
   1119
   1120		div = (BPF_CLASS(code) == BPF_ALU64) ? UDIVX : DIV;
   1121
   1122		ctx->tmp_2_used = true;
   1123
   1124		if (BPF_CLASS(code) != BPF_ALU64)
   1125			emit_write_y(G0, ctx);
   1126		if (is_simm13(imm)) {
   1127			emit(div | IMMED | RS1(dst) | S13(imm) | RD(tmp), ctx);
   1128			emit(MULX | IMMED | RS1(tmp) | S13(imm) | RD(tmp), ctx);
   1129			emit(SUB | RS1(dst) | RS2(tmp) | RD(dst), ctx);
   1130		} else {
   1131			const u8 tmp1 = bpf2sparc[TMP_REG_1];
   1132
   1133			ctx->tmp_1_used = true;
   1134
   1135			emit_set_const_sext(imm, tmp1, ctx);
   1136			emit(div | RS1(dst) | RS2(tmp1) | RD(tmp), ctx);
   1137			emit(MULX | RS1(tmp) | RS2(tmp1) | RD(tmp), ctx);
   1138			emit(SUB | RS1(dst) | RS2(tmp) | RD(dst), ctx);
   1139		}
   1140		goto do_alu32_trunc;
   1141	}
   1142	case BPF_ALU | BPF_LSH | BPF_K:
   1143		emit_alu_K(SLL, dst, imm, ctx);
   1144		goto do_alu32_trunc;
   1145	case BPF_ALU64 | BPF_LSH | BPF_K:
   1146		emit_alu_K(SLLX, dst, imm, ctx);
   1147		break;
   1148	case BPF_ALU | BPF_RSH | BPF_K:
   1149		emit_alu_K(SRL, dst, imm, ctx);
   1150		if (insn_is_zext(&insn[1]))
   1151			return 1;
   1152		break;
   1153	case BPF_ALU64 | BPF_RSH | BPF_K:
   1154		emit_alu_K(SRLX, dst, imm, ctx);
   1155		break;
   1156	case BPF_ALU | BPF_ARSH | BPF_K:
   1157		emit_alu_K(SRA, dst, imm, ctx);
   1158		goto do_alu32_trunc;
   1159	case BPF_ALU64 | BPF_ARSH | BPF_K:
   1160		emit_alu_K(SRAX, dst, imm, ctx);
   1161		break;
   1162
   1163	do_alu32_trunc:
   1164		if (BPF_CLASS(code) == BPF_ALU &&
   1165		    !ctx->prog->aux->verifier_zext)
   1166			emit_alu_K(SRL, dst, 0, ctx);
   1167		break;
   1168
   1169	/* JUMP off */
   1170	case BPF_JMP | BPF_JA:
   1171		emit_branch(BA, ctx->idx, ctx->offset[i + off], ctx);
   1172		emit_nop(ctx);
   1173		break;
   1174	/* IF (dst COND src) JUMP off */
   1175	case BPF_JMP | BPF_JEQ | BPF_X:
   1176	case BPF_JMP | BPF_JGT | BPF_X:
   1177	case BPF_JMP | BPF_JLT | BPF_X:
   1178	case BPF_JMP | BPF_JGE | BPF_X:
   1179	case BPF_JMP | BPF_JLE | BPF_X:
   1180	case BPF_JMP | BPF_JNE | BPF_X:
   1181	case BPF_JMP | BPF_JSGT | BPF_X:
   1182	case BPF_JMP | BPF_JSLT | BPF_X:
   1183	case BPF_JMP | BPF_JSGE | BPF_X:
   1184	case BPF_JMP | BPF_JSLE | BPF_X:
   1185	case BPF_JMP | BPF_JSET | BPF_X: {
   1186		int err;
   1187
   1188		err = emit_compare_and_branch(code, dst, src, 0, false, i + off, ctx);
   1189		if (err)
   1190			return err;
   1191		break;
   1192	}
   1193	/* IF (dst COND imm) JUMP off */
   1194	case BPF_JMP | BPF_JEQ | BPF_K:
   1195	case BPF_JMP | BPF_JGT | BPF_K:
   1196	case BPF_JMP | BPF_JLT | BPF_K:
   1197	case BPF_JMP | BPF_JGE | BPF_K:
   1198	case BPF_JMP | BPF_JLE | BPF_K:
   1199	case BPF_JMP | BPF_JNE | BPF_K:
   1200	case BPF_JMP | BPF_JSGT | BPF_K:
   1201	case BPF_JMP | BPF_JSLT | BPF_K:
   1202	case BPF_JMP | BPF_JSGE | BPF_K:
   1203	case BPF_JMP | BPF_JSLE | BPF_K:
   1204	case BPF_JMP | BPF_JSET | BPF_K: {
   1205		int err;
   1206
   1207		err = emit_compare_and_branch(code, dst, 0, imm, true, i + off, ctx);
   1208		if (err)
   1209			return err;
   1210		break;
   1211	}
   1212
   1213	/* function call */
   1214	case BPF_JMP | BPF_CALL:
   1215	{
   1216		u8 *func = ((u8 *)__bpf_call_base) + imm;
   1217
   1218		ctx->saw_call = true;
   1219
   1220		emit_call((u32 *)func, ctx);
   1221		emit_nop(ctx);
   1222
   1223		emit_reg_move(O0, bpf2sparc[BPF_REG_0], ctx);
   1224		break;
   1225	}
   1226
   1227	/* tail call */
   1228	case BPF_JMP | BPF_TAIL_CALL:
   1229		emit_tail_call(ctx);
   1230		break;
   1231
   1232	/* function return */
   1233	case BPF_JMP | BPF_EXIT:
   1234		/* Optimization: when last instruction is EXIT,
   1235		   simply fallthrough to epilogue. */
   1236		if (i == ctx->prog->len - 1)
   1237			break;
   1238		emit_branch(BA, ctx->idx, ctx->epilogue_offset, ctx);
   1239		emit_nop(ctx);
   1240		break;
   1241
   1242	/* dst = imm64 */
   1243	case BPF_LD | BPF_IMM | BPF_DW:
   1244	{
   1245		const struct bpf_insn insn1 = insn[1];
   1246		u64 imm64;
   1247
   1248		imm64 = (u64)insn1.imm << 32 | (u32)imm;
   1249		emit_loadimm64(imm64, dst, ctx);
   1250
   1251		return 1;
   1252	}
   1253
   1254	/* LDX: dst = *(size *)(src + off) */
   1255	case BPF_LDX | BPF_MEM | BPF_W:
   1256	case BPF_LDX | BPF_MEM | BPF_H:
   1257	case BPF_LDX | BPF_MEM | BPF_B:
   1258	case BPF_LDX | BPF_MEM | BPF_DW: {
   1259		const u8 tmp = bpf2sparc[TMP_REG_1];
   1260		u32 opcode = 0, rs2;
   1261
   1262		ctx->tmp_1_used = true;
   1263		switch (BPF_SIZE(code)) {
   1264		case BPF_W:
   1265			opcode = LD32;
   1266			break;
   1267		case BPF_H:
   1268			opcode = LD16;
   1269			break;
   1270		case BPF_B:
   1271			opcode = LD8;
   1272			break;
   1273		case BPF_DW:
   1274			opcode = LD64;
   1275			break;
   1276		}
   1277
   1278		if (is_simm13(off)) {
   1279			opcode |= IMMED;
   1280			rs2 = S13(off);
   1281		} else {
   1282			emit_loadimm(off, tmp, ctx);
   1283			rs2 = RS2(tmp);
   1284		}
   1285		emit(opcode | RS1(src) | rs2 | RD(dst), ctx);
   1286		if (opcode != LD64 && insn_is_zext(&insn[1]))
   1287			return 1;
   1288		break;
   1289	}
   1290	/* speculation barrier */
   1291	case BPF_ST | BPF_NOSPEC:
   1292		break;
   1293	/* ST: *(size *)(dst + off) = imm */
   1294	case BPF_ST | BPF_MEM | BPF_W:
   1295	case BPF_ST | BPF_MEM | BPF_H:
   1296	case BPF_ST | BPF_MEM | BPF_B:
   1297	case BPF_ST | BPF_MEM | BPF_DW: {
   1298		const u8 tmp = bpf2sparc[TMP_REG_1];
   1299		const u8 tmp2 = bpf2sparc[TMP_REG_2];
   1300		u32 opcode = 0, rs2;
   1301
   1302		if (insn->dst_reg == BPF_REG_FP)
   1303			ctx->saw_frame_pointer = true;
   1304
   1305		ctx->tmp_2_used = true;
   1306		emit_loadimm(imm, tmp2, ctx);
   1307
   1308		switch (BPF_SIZE(code)) {
   1309		case BPF_W:
   1310			opcode = ST32;
   1311			break;
   1312		case BPF_H:
   1313			opcode = ST16;
   1314			break;
   1315		case BPF_B:
   1316			opcode = ST8;
   1317			break;
   1318		case BPF_DW:
   1319			opcode = ST64;
   1320			break;
   1321		}
   1322
   1323		if (is_simm13(off)) {
   1324			opcode |= IMMED;
   1325			rs2 = S13(off);
   1326		} else {
   1327			ctx->tmp_1_used = true;
   1328			emit_loadimm(off, tmp, ctx);
   1329			rs2 = RS2(tmp);
   1330		}
   1331		emit(opcode | RS1(dst) | rs2 | RD(tmp2), ctx);
   1332		break;
   1333	}
   1334
   1335	/* STX: *(size *)(dst + off) = src */
   1336	case BPF_STX | BPF_MEM | BPF_W:
   1337	case BPF_STX | BPF_MEM | BPF_H:
   1338	case BPF_STX | BPF_MEM | BPF_B:
   1339	case BPF_STX | BPF_MEM | BPF_DW: {
   1340		const u8 tmp = bpf2sparc[TMP_REG_1];
   1341		u32 opcode = 0, rs2;
   1342
   1343		if (insn->dst_reg == BPF_REG_FP)
   1344			ctx->saw_frame_pointer = true;
   1345
   1346		switch (BPF_SIZE(code)) {
   1347		case BPF_W:
   1348			opcode = ST32;
   1349			break;
   1350		case BPF_H:
   1351			opcode = ST16;
   1352			break;
   1353		case BPF_B:
   1354			opcode = ST8;
   1355			break;
   1356		case BPF_DW:
   1357			opcode = ST64;
   1358			break;
   1359		}
   1360		if (is_simm13(off)) {
   1361			opcode |= IMMED;
   1362			rs2 = S13(off);
   1363		} else {
   1364			ctx->tmp_1_used = true;
   1365			emit_loadimm(off, tmp, ctx);
   1366			rs2 = RS2(tmp);
   1367		}
   1368		emit(opcode | RS1(dst) | rs2 | RD(src), ctx);
   1369		break;
   1370	}
   1371
   1372	case BPF_STX | BPF_ATOMIC | BPF_W: {
   1373		const u8 tmp = bpf2sparc[TMP_REG_1];
   1374		const u8 tmp2 = bpf2sparc[TMP_REG_2];
   1375		const u8 tmp3 = bpf2sparc[TMP_REG_3];
   1376
   1377		if (insn->imm != BPF_ADD) {
   1378			pr_err_once("unknown atomic op %02x\n", insn->imm);
   1379			return -EINVAL;
   1380		}
   1381
   1382		/* lock *(u32 *)(dst + off) += src */
   1383
   1384		if (insn->dst_reg == BPF_REG_FP)
   1385			ctx->saw_frame_pointer = true;
   1386
   1387		ctx->tmp_1_used = true;
   1388		ctx->tmp_2_used = true;
   1389		ctx->tmp_3_used = true;
   1390		emit_loadimm(off, tmp, ctx);
   1391		emit_alu3(ADD, dst, tmp, tmp, ctx);
   1392
   1393		emit(LD32 | RS1(tmp) | RS2(G0) | RD(tmp2), ctx);
   1394		emit_alu3(ADD, tmp2, src, tmp3, ctx);
   1395		emit(CAS | ASI(ASI_P) | RS1(tmp) | RS2(tmp2) | RD(tmp3), ctx);
   1396		emit_cmp(tmp2, tmp3, ctx);
   1397		emit_branch(BNE, 4, 0, ctx);
   1398		emit_nop(ctx);
   1399		break;
   1400	}
   1401	/* STX XADD: lock *(u64 *)(dst + off) += src */
   1402	case BPF_STX | BPF_ATOMIC | BPF_DW: {
   1403		const u8 tmp = bpf2sparc[TMP_REG_1];
   1404		const u8 tmp2 = bpf2sparc[TMP_REG_2];
   1405		const u8 tmp3 = bpf2sparc[TMP_REG_3];
   1406
   1407		if (insn->imm != BPF_ADD) {
   1408			pr_err_once("unknown atomic op %02x\n", insn->imm);
   1409			return -EINVAL;
   1410		}
   1411
   1412		if (insn->dst_reg == BPF_REG_FP)
   1413			ctx->saw_frame_pointer = true;
   1414
   1415		ctx->tmp_1_used = true;
   1416		ctx->tmp_2_used = true;
   1417		ctx->tmp_3_used = true;
   1418		emit_loadimm(off, tmp, ctx);
   1419		emit_alu3(ADD, dst, tmp, tmp, ctx);
   1420
   1421		emit(LD64 | RS1(tmp) | RS2(G0) | RD(tmp2), ctx);
   1422		emit_alu3(ADD, tmp2, src, tmp3, ctx);
   1423		emit(CASX | ASI(ASI_P) | RS1(tmp) | RS2(tmp2) | RD(tmp3), ctx);
   1424		emit_cmp(tmp2, tmp3, ctx);
   1425		emit_branch(BNE, 4, 0, ctx);
   1426		emit_nop(ctx);
   1427		break;
   1428	}
   1429
   1430	default:
   1431		pr_err_once("unknown opcode %02x\n", code);
   1432		return -EINVAL;
   1433	}
   1434
   1435	return 0;
   1436}
   1437
   1438static int build_body(struct jit_ctx *ctx)
   1439{
   1440	const struct bpf_prog *prog = ctx->prog;
   1441	int i;
   1442
   1443	for (i = 0; i < prog->len; i++) {
   1444		const struct bpf_insn *insn = &prog->insnsi[i];
   1445		int ret;
   1446
   1447		ret = build_insn(insn, ctx);
   1448
   1449		if (ret > 0) {
   1450			i++;
   1451			ctx->offset[i] = ctx->idx;
   1452			continue;
   1453		}
   1454		ctx->offset[i] = ctx->idx;
   1455		if (ret)
   1456			return ret;
   1457	}
   1458	return 0;
   1459}
   1460
   1461static void jit_fill_hole(void *area, unsigned int size)
   1462{
   1463	u32 *ptr;
   1464	/* We are guaranteed to have aligned memory. */
   1465	for (ptr = area; size >= sizeof(u32); size -= sizeof(u32))
   1466		*ptr++ = 0x91d02005; /* ta 5 */
   1467}
   1468
   1469bool bpf_jit_needs_zext(void)
   1470{
   1471	return true;
   1472}
   1473
   1474struct sparc64_jit_data {
   1475	struct bpf_binary_header *header;
   1476	u8 *image;
   1477	struct jit_ctx ctx;
   1478};
   1479
   1480struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *prog)
   1481{
   1482	struct bpf_prog *tmp, *orig_prog = prog;
   1483	struct sparc64_jit_data *jit_data;
   1484	struct bpf_binary_header *header;
   1485	u32 prev_image_size, image_size;
   1486	bool tmp_blinded = false;
   1487	bool extra_pass = false;
   1488	struct jit_ctx ctx;
   1489	u8 *image_ptr;
   1490	int pass, i;
   1491
   1492	if (!prog->jit_requested)
   1493		return orig_prog;
   1494
   1495	tmp = bpf_jit_blind_constants(prog);
   1496	/* If blinding was requested and we failed during blinding,
   1497	 * we must fall back to the interpreter.
   1498	 */
   1499	if (IS_ERR(tmp))
   1500		return orig_prog;
   1501	if (tmp != prog) {
   1502		tmp_blinded = true;
   1503		prog = tmp;
   1504	}
   1505
   1506	jit_data = prog->aux->jit_data;
   1507	if (!jit_data) {
   1508		jit_data = kzalloc(sizeof(*jit_data), GFP_KERNEL);
   1509		if (!jit_data) {
   1510			prog = orig_prog;
   1511			goto out;
   1512		}
   1513		prog->aux->jit_data = jit_data;
   1514	}
   1515	if (jit_data->ctx.offset) {
   1516		ctx = jit_data->ctx;
   1517		image_ptr = jit_data->image;
   1518		header = jit_data->header;
   1519		extra_pass = true;
   1520		image_size = sizeof(u32) * ctx.idx;
   1521		prev_image_size = image_size;
   1522		pass = 1;
   1523		goto skip_init_ctx;
   1524	}
   1525
   1526	memset(&ctx, 0, sizeof(ctx));
   1527	ctx.prog = prog;
   1528
   1529	ctx.offset = kmalloc_array(prog->len, sizeof(unsigned int), GFP_KERNEL);
   1530	if (ctx.offset == NULL) {
   1531		prog = orig_prog;
   1532		goto out_off;
   1533	}
   1534
   1535	/* Longest sequence emitted is for bswap32, 12 instructions.  Pre-cook
   1536	 * the offset array so that we converge faster.
   1537	 */
   1538	for (i = 0; i < prog->len; i++)
   1539		ctx.offset[i] = i * (12 * 4);
   1540
   1541	prev_image_size = ~0U;
   1542	for (pass = 1; pass < 40; pass++) {
   1543		ctx.idx = 0;
   1544
   1545		build_prologue(&ctx);
   1546		if (build_body(&ctx)) {
   1547			prog = orig_prog;
   1548			goto out_off;
   1549		}
   1550		build_epilogue(&ctx);
   1551
   1552		if (bpf_jit_enable > 1)
   1553			pr_info("Pass %d: size = %u, seen = [%c%c%c%c%c%c]\n", pass,
   1554				ctx.idx * 4,
   1555				ctx.tmp_1_used ? '1' : ' ',
   1556				ctx.tmp_2_used ? '2' : ' ',
   1557				ctx.tmp_3_used ? '3' : ' ',
   1558				ctx.saw_frame_pointer ? 'F' : ' ',
   1559				ctx.saw_call ? 'C' : ' ',
   1560				ctx.saw_tail_call ? 'T' : ' ');
   1561
   1562		if (ctx.idx * 4 == prev_image_size)
   1563			break;
   1564		prev_image_size = ctx.idx * 4;
   1565		cond_resched();
   1566	}
   1567
   1568	/* Now we know the actual image size. */
   1569	image_size = sizeof(u32) * ctx.idx;
   1570	header = bpf_jit_binary_alloc(image_size, &image_ptr,
   1571				      sizeof(u32), jit_fill_hole);
   1572	if (header == NULL) {
   1573		prog = orig_prog;
   1574		goto out_off;
   1575	}
   1576
   1577	ctx.image = (u32 *)image_ptr;
   1578skip_init_ctx:
   1579	ctx.idx = 0;
   1580
   1581	build_prologue(&ctx);
   1582
   1583	if (build_body(&ctx)) {
   1584		bpf_jit_binary_free(header);
   1585		prog = orig_prog;
   1586		goto out_off;
   1587	}
   1588
   1589	build_epilogue(&ctx);
   1590
   1591	if (ctx.idx * 4 != prev_image_size) {
   1592		pr_err("bpf_jit: Failed to converge, prev_size=%u size=%d\n",
   1593		       prev_image_size, ctx.idx * 4);
   1594		bpf_jit_binary_free(header);
   1595		prog = orig_prog;
   1596		goto out_off;
   1597	}
   1598
   1599	if (bpf_jit_enable > 1)
   1600		bpf_jit_dump(prog->len, image_size, pass, ctx.image);
   1601
   1602	bpf_flush_icache(header, (u8 *)header + header->size);
   1603
   1604	if (!prog->is_func || extra_pass) {
   1605		bpf_jit_binary_lock_ro(header);
   1606	} else {
   1607		jit_data->ctx = ctx;
   1608		jit_data->image = image_ptr;
   1609		jit_data->header = header;
   1610	}
   1611
   1612	prog->bpf_func = (void *)ctx.image;
   1613	prog->jited = 1;
   1614	prog->jited_len = image_size;
   1615
   1616	if (!prog->is_func || extra_pass) {
   1617		bpf_prog_fill_jited_linfo(prog, ctx.offset);
   1618out_off:
   1619		kfree(ctx.offset);
   1620		kfree(jit_data);
   1621		prog->aux->jit_data = NULL;
   1622	}
   1623out:
   1624	if (tmp_blinded)
   1625		bpf_jit_prog_release_other(prog, prog == orig_prog ?
   1626					   tmp : orig_prog);
   1627	return prog;
   1628}