cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

vector_kern.c (42440B)


      1// SPDX-License-Identifier: GPL-2.0
      2/*
      3 * Copyright (C) 2017 - 2019 Cambridge Greys Limited
      4 * Copyright (C) 2011 - 2014 Cisco Systems Inc
      5 * Copyright (C) 2001 - 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com)
      6 * Copyright (C) 2001 Lennert Buytenhek (buytenh@gnu.org) and
      7 * James Leu (jleu@mindspring.net).
      8 * Copyright (C) 2001 by various other people who didn't put their name here.
      9 */
     10
     11#include <linux/memblock.h>
     12#include <linux/etherdevice.h>
     13#include <linux/ethtool.h>
     14#include <linux/inetdevice.h>
     15#include <linux/init.h>
     16#include <linux/list.h>
     17#include <linux/netdevice.h>
     18#include <linux/platform_device.h>
     19#include <linux/rtnetlink.h>
     20#include <linux/skbuff.h>
     21#include <linux/slab.h>
     22#include <linux/interrupt.h>
     23#include <linux/firmware.h>
     24#include <linux/fs.h>
     25#include <uapi/linux/filter.h>
     26#include <init.h>
     27#include <irq_kern.h>
     28#include <irq_user.h>
     29#include <net_kern.h>
     30#include <os.h>
     31#include "mconsole_kern.h"
     32#include "vector_user.h"
     33#include "vector_kern.h"
     34
     35/*
     36 * Adapted from network devices with the following major changes:
     37 * All transports are static - simplifies the code significantly
     38 * Multiple FDs/IRQs per device
     39 * Vector IO optionally used for read/write, falling back to legacy
     40 * based on configuration and/or availability
     41 * Configuration is no longer positional - L2TPv3 and GRE require up to
     42 * 10 parameters, passing this as positional is not fit for purpose.
     43 * Only socket transports are supported
     44 */
     45
     46
     47#define DRIVER_NAME "uml-vector"
     48struct vector_cmd_line_arg {
     49	struct list_head list;
     50	int unit;
     51	char *arguments;
     52};
     53
     54struct vector_device {
     55	struct list_head list;
     56	struct net_device *dev;
     57	struct platform_device pdev;
     58	int unit;
     59	int opened;
     60};
     61
     62static LIST_HEAD(vec_cmd_line);
     63
     64static DEFINE_SPINLOCK(vector_devices_lock);
     65static LIST_HEAD(vector_devices);
     66
     67static int driver_registered;
     68
     69static void vector_eth_configure(int n, struct arglist *def);
     70static int vector_mmsg_rx(struct vector_private *vp, int budget);
     71
     72/* Argument accessors to set variables (and/or set default values)
     73 * mtu, buffer sizing, default headroom, etc
     74 */
     75
     76#define DEFAULT_HEADROOM 2
     77#define SAFETY_MARGIN 32
     78#define DEFAULT_VECTOR_SIZE 64
     79#define TX_SMALL_PACKET 128
     80#define MAX_IOV_SIZE (MAX_SKB_FRAGS + 1)
     81
     82static const struct {
     83	const char string[ETH_GSTRING_LEN];
     84} ethtool_stats_keys[] = {
     85	{ "rx_queue_max" },
     86	{ "rx_queue_running_average" },
     87	{ "tx_queue_max" },
     88	{ "tx_queue_running_average" },
     89	{ "rx_encaps_errors" },
     90	{ "tx_timeout_count" },
     91	{ "tx_restart_queue" },
     92	{ "tx_kicks" },
     93	{ "tx_flow_control_xon" },
     94	{ "tx_flow_control_xoff" },
     95	{ "rx_csum_offload_good" },
     96	{ "rx_csum_offload_errors"},
     97	{ "sg_ok"},
     98	{ "sg_linearized"},
     99};
    100
    101#define VECTOR_NUM_STATS	ARRAY_SIZE(ethtool_stats_keys)
    102
    103static void vector_reset_stats(struct vector_private *vp)
    104{
    105	vp->estats.rx_queue_max = 0;
    106	vp->estats.rx_queue_running_average = 0;
    107	vp->estats.tx_queue_max = 0;
    108	vp->estats.tx_queue_running_average = 0;
    109	vp->estats.rx_encaps_errors = 0;
    110	vp->estats.tx_timeout_count = 0;
    111	vp->estats.tx_restart_queue = 0;
    112	vp->estats.tx_kicks = 0;
    113	vp->estats.tx_flow_control_xon = 0;
    114	vp->estats.tx_flow_control_xoff = 0;
    115	vp->estats.sg_ok = 0;
    116	vp->estats.sg_linearized = 0;
    117}
    118
    119static int get_mtu(struct arglist *def)
    120{
    121	char *mtu = uml_vector_fetch_arg(def, "mtu");
    122	long result;
    123
    124	if (mtu != NULL) {
    125		if (kstrtoul(mtu, 10, &result) == 0)
    126			if ((result < (1 << 16) - 1) && (result >= 576))
    127				return result;
    128	}
    129	return ETH_MAX_PACKET;
    130}
    131
    132static char *get_bpf_file(struct arglist *def)
    133{
    134	return uml_vector_fetch_arg(def, "bpffile");
    135}
    136
    137static bool get_bpf_flash(struct arglist *def)
    138{
    139	char *allow = uml_vector_fetch_arg(def, "bpfflash");
    140	long result;
    141
    142	if (allow != NULL) {
    143		if (kstrtoul(allow, 10, &result) == 0)
    144			return (allow > 0);
    145	}
    146	return false;
    147}
    148
    149static int get_depth(struct arglist *def)
    150{
    151	char *mtu = uml_vector_fetch_arg(def, "depth");
    152	long result;
    153
    154	if (mtu != NULL) {
    155		if (kstrtoul(mtu, 10, &result) == 0)
    156			return result;
    157	}
    158	return DEFAULT_VECTOR_SIZE;
    159}
    160
    161static int get_headroom(struct arglist *def)
    162{
    163	char *mtu = uml_vector_fetch_arg(def, "headroom");
    164	long result;
    165
    166	if (mtu != NULL) {
    167		if (kstrtoul(mtu, 10, &result) == 0)
    168			return result;
    169	}
    170	return DEFAULT_HEADROOM;
    171}
    172
    173static int get_req_size(struct arglist *def)
    174{
    175	char *gro = uml_vector_fetch_arg(def, "gro");
    176	long result;
    177
    178	if (gro != NULL) {
    179		if (kstrtoul(gro, 10, &result) == 0) {
    180			if (result > 0)
    181				return 65536;
    182		}
    183	}
    184	return get_mtu(def) + ETH_HEADER_OTHER +
    185		get_headroom(def) + SAFETY_MARGIN;
    186}
    187
    188
    189static int get_transport_options(struct arglist *def)
    190{
    191	char *transport = uml_vector_fetch_arg(def, "transport");
    192	char *vector = uml_vector_fetch_arg(def, "vec");
    193
    194	int vec_rx = VECTOR_RX;
    195	int vec_tx = VECTOR_TX;
    196	long parsed;
    197	int result = 0;
    198
    199	if (transport == NULL)
    200		return -EINVAL;
    201
    202	if (vector != NULL) {
    203		if (kstrtoul(vector, 10, &parsed) == 0) {
    204			if (parsed == 0) {
    205				vec_rx = 0;
    206				vec_tx = 0;
    207			}
    208		}
    209	}
    210
    211	if (get_bpf_flash(def))
    212		result = VECTOR_BPF_FLASH;
    213
    214	if (strncmp(transport, TRANS_TAP, TRANS_TAP_LEN) == 0)
    215		return result;
    216	if (strncmp(transport, TRANS_HYBRID, TRANS_HYBRID_LEN) == 0)
    217		return (result | vec_rx | VECTOR_BPF);
    218	if (strncmp(transport, TRANS_RAW, TRANS_RAW_LEN) == 0)
    219		return (result | vec_rx | vec_tx | VECTOR_QDISC_BYPASS);
    220	return (result | vec_rx | vec_tx);
    221}
    222
    223
    224/* A mini-buffer for packet drop read
    225 * All of our supported transports are datagram oriented and we always
    226 * read using recvmsg or recvmmsg. If we pass a buffer which is smaller
    227 * than the packet size it still counts as full packet read and will
    228 * clean the incoming stream to keep sigio/epoll happy
    229 */
    230
    231#define DROP_BUFFER_SIZE 32
    232
    233static char *drop_buffer;
    234
    235/* Array backed queues optimized for bulk enqueue/dequeue and
    236 * 1:N (small values of N) or 1:1 enqueuer/dequeuer ratios.
    237 * For more details and full design rationale see
    238 * http://foswiki.cambridgegreys.com/Main/EatYourTailAndEnjoyIt
    239 */
    240
    241
    242/*
    243 * Advance the mmsg queue head by n = advance. Resets the queue to
    244 * maximum enqueue/dequeue-at-once capacity if possible. Called by
    245 * dequeuers. Caller must hold the head_lock!
    246 */
    247
    248static int vector_advancehead(struct vector_queue *qi, int advance)
    249{
    250	int queue_depth;
    251
    252	qi->head =
    253		(qi->head + advance)
    254			% qi->max_depth;
    255
    256
    257	spin_lock(&qi->tail_lock);
    258	qi->queue_depth -= advance;
    259
    260	/* we are at 0, use this to
    261	 * reset head and tail so we can use max size vectors
    262	 */
    263
    264	if (qi->queue_depth == 0) {
    265		qi->head = 0;
    266		qi->tail = 0;
    267	}
    268	queue_depth = qi->queue_depth;
    269	spin_unlock(&qi->tail_lock);
    270	return queue_depth;
    271}
    272
    273/*	Advance the queue tail by n = advance.
    274 *	This is called by enqueuers which should hold the
    275 *	head lock already
    276 */
    277
    278static int vector_advancetail(struct vector_queue *qi, int advance)
    279{
    280	int queue_depth;
    281
    282	qi->tail =
    283		(qi->tail + advance)
    284			% qi->max_depth;
    285	spin_lock(&qi->head_lock);
    286	qi->queue_depth += advance;
    287	queue_depth = qi->queue_depth;
    288	spin_unlock(&qi->head_lock);
    289	return queue_depth;
    290}
    291
    292static int prep_msg(struct vector_private *vp,
    293	struct sk_buff *skb,
    294	struct iovec *iov)
    295{
    296	int iov_index = 0;
    297	int nr_frags, frag;
    298	skb_frag_t *skb_frag;
    299
    300	nr_frags = skb_shinfo(skb)->nr_frags;
    301	if (nr_frags > MAX_IOV_SIZE) {
    302		if (skb_linearize(skb) != 0)
    303			goto drop;
    304	}
    305	if (vp->header_size > 0) {
    306		iov[iov_index].iov_len = vp->header_size;
    307		vp->form_header(iov[iov_index].iov_base, skb, vp);
    308		iov_index++;
    309	}
    310	iov[iov_index].iov_base = skb->data;
    311	if (nr_frags > 0) {
    312		iov[iov_index].iov_len = skb->len - skb->data_len;
    313		vp->estats.sg_ok++;
    314	} else
    315		iov[iov_index].iov_len = skb->len;
    316	iov_index++;
    317	for (frag = 0; frag < nr_frags; frag++) {
    318		skb_frag = &skb_shinfo(skb)->frags[frag];
    319		iov[iov_index].iov_base = skb_frag_address_safe(skb_frag);
    320		iov[iov_index].iov_len = skb_frag_size(skb_frag);
    321		iov_index++;
    322	}
    323	return iov_index;
    324drop:
    325	return -1;
    326}
    327/*
    328 * Generic vector enqueue with support for forming headers using transport
    329 * specific callback. Allows GRE, L2TPv3, RAW and other transports
    330 * to use a common enqueue procedure in vector mode
    331 */
    332
    333static int vector_enqueue(struct vector_queue *qi, struct sk_buff *skb)
    334{
    335	struct vector_private *vp = netdev_priv(qi->dev);
    336	int queue_depth;
    337	int packet_len;
    338	struct mmsghdr *mmsg_vector = qi->mmsg_vector;
    339	int iov_count;
    340
    341	spin_lock(&qi->tail_lock);
    342	spin_lock(&qi->head_lock);
    343	queue_depth = qi->queue_depth;
    344	spin_unlock(&qi->head_lock);
    345
    346	if (skb)
    347		packet_len = skb->len;
    348
    349	if (queue_depth < qi->max_depth) {
    350
    351		*(qi->skbuff_vector + qi->tail) = skb;
    352		mmsg_vector += qi->tail;
    353		iov_count = prep_msg(
    354			vp,
    355			skb,
    356			mmsg_vector->msg_hdr.msg_iov
    357		);
    358		if (iov_count < 1)
    359			goto drop;
    360		mmsg_vector->msg_hdr.msg_iovlen = iov_count;
    361		mmsg_vector->msg_hdr.msg_name = vp->fds->remote_addr;
    362		mmsg_vector->msg_hdr.msg_namelen = vp->fds->remote_addr_size;
    363		queue_depth = vector_advancetail(qi, 1);
    364	} else
    365		goto drop;
    366	spin_unlock(&qi->tail_lock);
    367	return queue_depth;
    368drop:
    369	qi->dev->stats.tx_dropped++;
    370	if (skb != NULL) {
    371		packet_len = skb->len;
    372		dev_consume_skb_any(skb);
    373		netdev_completed_queue(qi->dev, 1, packet_len);
    374	}
    375	spin_unlock(&qi->tail_lock);
    376	return queue_depth;
    377}
    378
    379static int consume_vector_skbs(struct vector_queue *qi, int count)
    380{
    381	struct sk_buff *skb;
    382	int skb_index;
    383	int bytes_compl = 0;
    384
    385	for (skb_index = qi->head; skb_index < qi->head + count; skb_index++) {
    386		skb = *(qi->skbuff_vector + skb_index);
    387		/* mark as empty to ensure correct destruction if
    388		 * needed
    389		 */
    390		bytes_compl += skb->len;
    391		*(qi->skbuff_vector + skb_index) = NULL;
    392		dev_consume_skb_any(skb);
    393	}
    394	qi->dev->stats.tx_bytes += bytes_compl;
    395	qi->dev->stats.tx_packets += count;
    396	netdev_completed_queue(qi->dev, count, bytes_compl);
    397	return vector_advancehead(qi, count);
    398}
    399
    400/*
    401 * Generic vector deque via sendmmsg with support for forming headers
    402 * using transport specific callback. Allows GRE, L2TPv3, RAW and
    403 * other transports to use a common dequeue procedure in vector mode
    404 */
    405
    406
    407static int vector_send(struct vector_queue *qi)
    408{
    409	struct vector_private *vp = netdev_priv(qi->dev);
    410	struct mmsghdr *send_from;
    411	int result = 0, send_len, queue_depth = qi->max_depth;
    412
    413	if (spin_trylock(&qi->head_lock)) {
    414		if (spin_trylock(&qi->tail_lock)) {
    415			/* update queue_depth to current value */
    416			queue_depth = qi->queue_depth;
    417			spin_unlock(&qi->tail_lock);
    418			while (queue_depth > 0) {
    419				/* Calculate the start of the vector */
    420				send_len = queue_depth;
    421				send_from = qi->mmsg_vector;
    422				send_from += qi->head;
    423				/* Adjust vector size if wraparound */
    424				if (send_len + qi->head > qi->max_depth)
    425					send_len = qi->max_depth - qi->head;
    426				/* Try to TX as many packets as possible */
    427				if (send_len > 0) {
    428					result = uml_vector_sendmmsg(
    429						 vp->fds->tx_fd,
    430						 send_from,
    431						 send_len,
    432						 0
    433					);
    434					vp->in_write_poll =
    435						(result != send_len);
    436				}
    437				/* For some of the sendmmsg error scenarios
    438				 * we may end being unsure in the TX success
    439				 * for all packets. It is safer to declare
    440				 * them all TX-ed and blame the network.
    441				 */
    442				if (result < 0) {
    443					if (net_ratelimit())
    444						netdev_err(vp->dev, "sendmmsg err=%i\n",
    445							result);
    446					vp->in_error = true;
    447					result = send_len;
    448				}
    449				if (result > 0) {
    450					queue_depth =
    451						consume_vector_skbs(qi, result);
    452					/* This is equivalent to an TX IRQ.
    453					 * Restart the upper layers to feed us
    454					 * more packets.
    455					 */
    456					if (result > vp->estats.tx_queue_max)
    457						vp->estats.tx_queue_max = result;
    458					vp->estats.tx_queue_running_average =
    459						(vp->estats.tx_queue_running_average + result) >> 1;
    460				}
    461				netif_wake_queue(qi->dev);
    462				/* if TX is busy, break out of the send loop,
    463				 *  poll write IRQ will reschedule xmit for us
    464				 */
    465				if (result != send_len) {
    466					vp->estats.tx_restart_queue++;
    467					break;
    468				}
    469			}
    470		}
    471		spin_unlock(&qi->head_lock);
    472	}
    473	return queue_depth;
    474}
    475
    476/* Queue destructor. Deliberately stateless so we can use
    477 * it in queue cleanup if initialization fails.
    478 */
    479
    480static void destroy_queue(struct vector_queue *qi)
    481{
    482	int i;
    483	struct iovec *iov;
    484	struct vector_private *vp = netdev_priv(qi->dev);
    485	struct mmsghdr *mmsg_vector;
    486
    487	if (qi == NULL)
    488		return;
    489	/* deallocate any skbuffs - we rely on any unused to be
    490	 * set to NULL.
    491	 */
    492	if (qi->skbuff_vector != NULL) {
    493		for (i = 0; i < qi->max_depth; i++) {
    494			if (*(qi->skbuff_vector + i) != NULL)
    495				dev_kfree_skb_any(*(qi->skbuff_vector + i));
    496		}
    497		kfree(qi->skbuff_vector);
    498	}
    499	/* deallocate matching IOV structures including header buffs */
    500	if (qi->mmsg_vector != NULL) {
    501		mmsg_vector = qi->mmsg_vector;
    502		for (i = 0; i < qi->max_depth; i++) {
    503			iov = mmsg_vector->msg_hdr.msg_iov;
    504			if (iov != NULL) {
    505				if ((vp->header_size > 0) &&
    506					(iov->iov_base != NULL))
    507					kfree(iov->iov_base);
    508				kfree(iov);
    509			}
    510			mmsg_vector++;
    511		}
    512		kfree(qi->mmsg_vector);
    513	}
    514	kfree(qi);
    515}
    516
    517/*
    518 * Queue constructor. Create a queue with a given side.
    519 */
    520static struct vector_queue *create_queue(
    521	struct vector_private *vp,
    522	int max_size,
    523	int header_size,
    524	int num_extra_frags)
    525{
    526	struct vector_queue *result;
    527	int i;
    528	struct iovec *iov;
    529	struct mmsghdr *mmsg_vector;
    530
    531	result = kmalloc(sizeof(struct vector_queue), GFP_KERNEL);
    532	if (result == NULL)
    533		return NULL;
    534	result->max_depth = max_size;
    535	result->dev = vp->dev;
    536	result->mmsg_vector = kmalloc(
    537		(sizeof(struct mmsghdr) * max_size), GFP_KERNEL);
    538	if (result->mmsg_vector == NULL)
    539		goto out_mmsg_fail;
    540	result->skbuff_vector = kmalloc(
    541		(sizeof(void *) * max_size), GFP_KERNEL);
    542	if (result->skbuff_vector == NULL)
    543		goto out_skb_fail;
    544
    545	/* further failures can be handled safely by destroy_queue*/
    546
    547	mmsg_vector = result->mmsg_vector;
    548	for (i = 0; i < max_size; i++) {
    549		/* Clear all pointers - we use non-NULL as marking on
    550		 * what to free on destruction
    551		 */
    552		*(result->skbuff_vector + i) = NULL;
    553		mmsg_vector->msg_hdr.msg_iov = NULL;
    554		mmsg_vector++;
    555	}
    556	mmsg_vector = result->mmsg_vector;
    557	result->max_iov_frags = num_extra_frags;
    558	for (i = 0; i < max_size; i++) {
    559		if (vp->header_size > 0)
    560			iov = kmalloc_array(3 + num_extra_frags,
    561					    sizeof(struct iovec),
    562					    GFP_KERNEL
    563			);
    564		else
    565			iov = kmalloc_array(2 + num_extra_frags,
    566					    sizeof(struct iovec),
    567					    GFP_KERNEL
    568			);
    569		if (iov == NULL)
    570			goto out_fail;
    571		mmsg_vector->msg_hdr.msg_iov = iov;
    572		mmsg_vector->msg_hdr.msg_iovlen = 1;
    573		mmsg_vector->msg_hdr.msg_control = NULL;
    574		mmsg_vector->msg_hdr.msg_controllen = 0;
    575		mmsg_vector->msg_hdr.msg_flags = MSG_DONTWAIT;
    576		mmsg_vector->msg_hdr.msg_name = NULL;
    577		mmsg_vector->msg_hdr.msg_namelen = 0;
    578		if (vp->header_size > 0) {
    579			iov->iov_base = kmalloc(header_size, GFP_KERNEL);
    580			if (iov->iov_base == NULL)
    581				goto out_fail;
    582			iov->iov_len = header_size;
    583			mmsg_vector->msg_hdr.msg_iovlen = 2;
    584			iov++;
    585		}
    586		iov->iov_base = NULL;
    587		iov->iov_len = 0;
    588		mmsg_vector++;
    589	}
    590	spin_lock_init(&result->head_lock);
    591	spin_lock_init(&result->tail_lock);
    592	result->queue_depth = 0;
    593	result->head = 0;
    594	result->tail = 0;
    595	return result;
    596out_skb_fail:
    597	kfree(result->mmsg_vector);
    598out_mmsg_fail:
    599	kfree(result);
    600	return NULL;
    601out_fail:
    602	destroy_queue(result);
    603	return NULL;
    604}
    605
    606/*
    607 * We do not use the RX queue as a proper wraparound queue for now
    608 * This is not necessary because the consumption via napi_gro_receive()
    609 * happens in-line. While we can try using the return code of
    610 * netif_rx() for flow control there are no drivers doing this today.
    611 * For this RX specific use we ignore the tail/head locks and
    612 * just read into a prepared queue filled with skbuffs.
    613 */
    614
    615static struct sk_buff *prep_skb(
    616	struct vector_private *vp,
    617	struct user_msghdr *msg)
    618{
    619	int linear = vp->max_packet + vp->headroom + SAFETY_MARGIN;
    620	struct sk_buff *result;
    621	int iov_index = 0, len;
    622	struct iovec *iov = msg->msg_iov;
    623	int err, nr_frags, frag;
    624	skb_frag_t *skb_frag;
    625
    626	if (vp->req_size <= linear)
    627		len = linear;
    628	else
    629		len = vp->req_size;
    630	result = alloc_skb_with_frags(
    631		linear,
    632		len - vp->max_packet,
    633		3,
    634		&err,
    635		GFP_ATOMIC
    636	);
    637	if (vp->header_size > 0)
    638		iov_index++;
    639	if (result == NULL) {
    640		iov[iov_index].iov_base = NULL;
    641		iov[iov_index].iov_len = 0;
    642		goto done;
    643	}
    644	skb_reserve(result, vp->headroom);
    645	result->dev = vp->dev;
    646	skb_put(result, vp->max_packet);
    647	result->data_len = len - vp->max_packet;
    648	result->len += len - vp->max_packet;
    649	skb_reset_mac_header(result);
    650	result->ip_summed = CHECKSUM_NONE;
    651	iov[iov_index].iov_base = result->data;
    652	iov[iov_index].iov_len = vp->max_packet;
    653	iov_index++;
    654
    655	nr_frags = skb_shinfo(result)->nr_frags;
    656	for (frag = 0; frag < nr_frags; frag++) {
    657		skb_frag = &skb_shinfo(result)->frags[frag];
    658		iov[iov_index].iov_base = skb_frag_address_safe(skb_frag);
    659		if (iov[iov_index].iov_base != NULL)
    660			iov[iov_index].iov_len = skb_frag_size(skb_frag);
    661		else
    662			iov[iov_index].iov_len = 0;
    663		iov_index++;
    664	}
    665done:
    666	msg->msg_iovlen = iov_index;
    667	return result;
    668}
    669
    670
    671/* Prepare queue for recvmmsg one-shot rx - fill with fresh sk_buffs*/
    672
    673static void prep_queue_for_rx(struct vector_queue *qi)
    674{
    675	struct vector_private *vp = netdev_priv(qi->dev);
    676	struct mmsghdr *mmsg_vector = qi->mmsg_vector;
    677	void **skbuff_vector = qi->skbuff_vector;
    678	int i;
    679
    680	if (qi->queue_depth == 0)
    681		return;
    682	for (i = 0; i < qi->queue_depth; i++) {
    683		/* it is OK if allocation fails - recvmmsg with NULL data in
    684		 * iov argument still performs an RX, just drops the packet
    685		 * This allows us stop faffing around with a "drop buffer"
    686		 */
    687
    688		*skbuff_vector = prep_skb(vp, &mmsg_vector->msg_hdr);
    689		skbuff_vector++;
    690		mmsg_vector++;
    691	}
    692	qi->queue_depth = 0;
    693}
    694
    695static struct vector_device *find_device(int n)
    696{
    697	struct vector_device *device;
    698	struct list_head *ele;
    699
    700	spin_lock(&vector_devices_lock);
    701	list_for_each(ele, &vector_devices) {
    702		device = list_entry(ele, struct vector_device, list);
    703		if (device->unit == n)
    704			goto out;
    705	}
    706	device = NULL;
    707 out:
    708	spin_unlock(&vector_devices_lock);
    709	return device;
    710}
    711
    712static int vector_parse(char *str, int *index_out, char **str_out,
    713			char **error_out)
    714{
    715	int n, len, err;
    716	char *start = str;
    717
    718	len = strlen(str);
    719
    720	while ((*str != ':') && (strlen(str) > 1))
    721		str++;
    722	if (*str != ':') {
    723		*error_out = "Expected ':' after device number";
    724		return -EINVAL;
    725	}
    726	*str = '\0';
    727
    728	err = kstrtouint(start, 0, &n);
    729	if (err < 0) {
    730		*error_out = "Bad device number";
    731		return err;
    732	}
    733
    734	str++;
    735	if (find_device(n)) {
    736		*error_out = "Device already configured";
    737		return -EINVAL;
    738	}
    739
    740	*index_out = n;
    741	*str_out = str;
    742	return 0;
    743}
    744
    745static int vector_config(char *str, char **error_out)
    746{
    747	int err, n;
    748	char *params;
    749	struct arglist *parsed;
    750
    751	err = vector_parse(str, &n, &params, error_out);
    752	if (err != 0)
    753		return err;
    754
    755	/* This string is broken up and the pieces used by the underlying
    756	 * driver. We should copy it to make sure things do not go wrong
    757	 * later.
    758	 */
    759
    760	params = kstrdup(params, GFP_KERNEL);
    761	if (params == NULL) {
    762		*error_out = "vector_config failed to strdup string";
    763		return -ENOMEM;
    764	}
    765
    766	parsed = uml_parse_vector_ifspec(params);
    767
    768	if (parsed == NULL) {
    769		*error_out = "vector_config failed to parse parameters";
    770		return -EINVAL;
    771	}
    772
    773	vector_eth_configure(n, parsed);
    774	return 0;
    775}
    776
    777static int vector_id(char **str, int *start_out, int *end_out)
    778{
    779	char *end;
    780	int n;
    781
    782	n = simple_strtoul(*str, &end, 0);
    783	if ((*end != '\0') || (end == *str))
    784		return -1;
    785
    786	*start_out = n;
    787	*end_out = n;
    788	*str = end;
    789	return n;
    790}
    791
    792static int vector_remove(int n, char **error_out)
    793{
    794	struct vector_device *vec_d;
    795	struct net_device *dev;
    796	struct vector_private *vp;
    797
    798	vec_d = find_device(n);
    799	if (vec_d == NULL)
    800		return -ENODEV;
    801	dev = vec_d->dev;
    802	vp = netdev_priv(dev);
    803	if (vp->fds != NULL)
    804		return -EBUSY;
    805	unregister_netdev(dev);
    806	platform_device_unregister(&vec_d->pdev);
    807	return 0;
    808}
    809
    810/*
    811 * There is no shared per-transport initialization code, so
    812 * we will just initialize each interface one by one and
    813 * add them to a list
    814 */
    815
    816static struct platform_driver uml_net_driver = {
    817	.driver = {
    818		.name = DRIVER_NAME,
    819	},
    820};
    821
    822
    823static void vector_device_release(struct device *dev)
    824{
    825	struct vector_device *device = dev_get_drvdata(dev);
    826	struct net_device *netdev = device->dev;
    827
    828	list_del(&device->list);
    829	kfree(device);
    830	free_netdev(netdev);
    831}
    832
    833/* Bog standard recv using recvmsg - not used normally unless the user
    834 * explicitly specifies not to use recvmmsg vector RX.
    835 */
    836
    837static int vector_legacy_rx(struct vector_private *vp)
    838{
    839	int pkt_len;
    840	struct user_msghdr hdr;
    841	struct iovec iov[2 + MAX_IOV_SIZE]; /* header + data use case only */
    842	int iovpos = 0;
    843	struct sk_buff *skb;
    844	int header_check;
    845
    846	hdr.msg_name = NULL;
    847	hdr.msg_namelen = 0;
    848	hdr.msg_iov = (struct iovec *) &iov;
    849	hdr.msg_control = NULL;
    850	hdr.msg_controllen = 0;
    851	hdr.msg_flags = 0;
    852
    853	if (vp->header_size > 0) {
    854		iov[0].iov_base = vp->header_rxbuffer;
    855		iov[0].iov_len = vp->header_size;
    856	}
    857
    858	skb = prep_skb(vp, &hdr);
    859
    860	if (skb == NULL) {
    861		/* Read a packet into drop_buffer and don't do
    862		 * anything with it.
    863		 */
    864		iov[iovpos].iov_base = drop_buffer;
    865		iov[iovpos].iov_len = DROP_BUFFER_SIZE;
    866		hdr.msg_iovlen = 1;
    867		vp->dev->stats.rx_dropped++;
    868	}
    869
    870	pkt_len = uml_vector_recvmsg(vp->fds->rx_fd, &hdr, 0);
    871	if (pkt_len < 0) {
    872		vp->in_error = true;
    873		return pkt_len;
    874	}
    875
    876	if (skb != NULL) {
    877		if (pkt_len > vp->header_size) {
    878			if (vp->header_size > 0) {
    879				header_check = vp->verify_header(
    880					vp->header_rxbuffer, skb, vp);
    881				if (header_check < 0) {
    882					dev_kfree_skb_irq(skb);
    883					vp->dev->stats.rx_dropped++;
    884					vp->estats.rx_encaps_errors++;
    885					return 0;
    886				}
    887				if (header_check > 0) {
    888					vp->estats.rx_csum_offload_good++;
    889					skb->ip_summed = CHECKSUM_UNNECESSARY;
    890				}
    891			}
    892			pskb_trim(skb, pkt_len - vp->rx_header_size);
    893			skb->protocol = eth_type_trans(skb, skb->dev);
    894			vp->dev->stats.rx_bytes += skb->len;
    895			vp->dev->stats.rx_packets++;
    896			napi_gro_receive(&vp->napi, skb);
    897		} else {
    898			dev_kfree_skb_irq(skb);
    899		}
    900	}
    901	return pkt_len;
    902}
    903
    904/*
    905 * Packet at a time TX which falls back to vector TX if the
    906 * underlying transport is busy.
    907 */
    908
    909
    910
    911static int writev_tx(struct vector_private *vp, struct sk_buff *skb)
    912{
    913	struct iovec iov[3 + MAX_IOV_SIZE];
    914	int iov_count, pkt_len = 0;
    915
    916	iov[0].iov_base = vp->header_txbuffer;
    917	iov_count = prep_msg(vp, skb, (struct iovec *) &iov);
    918
    919	if (iov_count < 1)
    920		goto drop;
    921
    922	pkt_len = uml_vector_writev(
    923		vp->fds->tx_fd,
    924		(struct iovec *) &iov,
    925		iov_count
    926	);
    927
    928	if (pkt_len < 0)
    929		goto drop;
    930
    931	netif_trans_update(vp->dev);
    932	netif_wake_queue(vp->dev);
    933
    934	if (pkt_len > 0) {
    935		vp->dev->stats.tx_bytes += skb->len;
    936		vp->dev->stats.tx_packets++;
    937	} else {
    938		vp->dev->stats.tx_dropped++;
    939	}
    940	consume_skb(skb);
    941	return pkt_len;
    942drop:
    943	vp->dev->stats.tx_dropped++;
    944	consume_skb(skb);
    945	if (pkt_len < 0)
    946		vp->in_error = true;
    947	return pkt_len;
    948}
    949
    950/*
    951 * Receive as many messages as we can in one call using the special
    952 * mmsg vector matched to an skb vector which we prepared earlier.
    953 */
    954
    955static int vector_mmsg_rx(struct vector_private *vp, int budget)
    956{
    957	int packet_count, i;
    958	struct vector_queue *qi = vp->rx_queue;
    959	struct sk_buff *skb;
    960	struct mmsghdr *mmsg_vector = qi->mmsg_vector;
    961	void **skbuff_vector = qi->skbuff_vector;
    962	int header_check;
    963
    964	/* Refresh the vector and make sure it is with new skbs and the
    965	 * iovs are updated to point to them.
    966	 */
    967
    968	prep_queue_for_rx(qi);
    969
    970	/* Fire the Lazy Gun - get as many packets as we can in one go. */
    971
    972	if (budget > qi->max_depth)
    973		budget = qi->max_depth;
    974
    975	packet_count = uml_vector_recvmmsg(
    976		vp->fds->rx_fd, qi->mmsg_vector, qi->max_depth, 0);
    977
    978	if (packet_count < 0)
    979		vp->in_error = true;
    980
    981	if (packet_count <= 0)
    982		return packet_count;
    983
    984	/* We treat packet processing as enqueue, buffer refresh as dequeue
    985	 * The queue_depth tells us how many buffers have been used and how
    986	 * many do we need to prep the next time prep_queue_for_rx() is called.
    987	 */
    988
    989	qi->queue_depth = packet_count;
    990
    991	for (i = 0; i < packet_count; i++) {
    992		skb = (*skbuff_vector);
    993		if (mmsg_vector->msg_len > vp->header_size) {
    994			if (vp->header_size > 0) {
    995				header_check = vp->verify_header(
    996					mmsg_vector->msg_hdr.msg_iov->iov_base,
    997					skb,
    998					vp
    999				);
   1000				if (header_check < 0) {
   1001				/* Overlay header failed to verify - discard.
   1002				 * We can actually keep this skb and reuse it,
   1003				 * but that will make the prep logic too
   1004				 * complex.
   1005				 */
   1006					dev_kfree_skb_irq(skb);
   1007					vp->estats.rx_encaps_errors++;
   1008					continue;
   1009				}
   1010				if (header_check > 0) {
   1011					vp->estats.rx_csum_offload_good++;
   1012					skb->ip_summed = CHECKSUM_UNNECESSARY;
   1013				}
   1014			}
   1015			pskb_trim(skb,
   1016				mmsg_vector->msg_len - vp->rx_header_size);
   1017			skb->protocol = eth_type_trans(skb, skb->dev);
   1018			/*
   1019			 * We do not need to lock on updating stats here
   1020			 * The interrupt loop is non-reentrant.
   1021			 */
   1022			vp->dev->stats.rx_bytes += skb->len;
   1023			vp->dev->stats.rx_packets++;
   1024			napi_gro_receive(&vp->napi, skb);
   1025		} else {
   1026			/* Overlay header too short to do anything - discard.
   1027			 * We can actually keep this skb and reuse it,
   1028			 * but that will make the prep logic too complex.
   1029			 */
   1030			if (skb != NULL)
   1031				dev_kfree_skb_irq(skb);
   1032		}
   1033		(*skbuff_vector) = NULL;
   1034		/* Move to the next buffer element */
   1035		mmsg_vector++;
   1036		skbuff_vector++;
   1037	}
   1038	if (packet_count > 0) {
   1039		if (vp->estats.rx_queue_max < packet_count)
   1040			vp->estats.rx_queue_max = packet_count;
   1041		vp->estats.rx_queue_running_average =
   1042			(vp->estats.rx_queue_running_average + packet_count) >> 1;
   1043	}
   1044	return packet_count;
   1045}
   1046
   1047static int vector_net_start_xmit(struct sk_buff *skb, struct net_device *dev)
   1048{
   1049	struct vector_private *vp = netdev_priv(dev);
   1050	int queue_depth = 0;
   1051
   1052	if (vp->in_error) {
   1053		deactivate_fd(vp->fds->rx_fd, vp->rx_irq);
   1054		if ((vp->fds->rx_fd != vp->fds->tx_fd) && (vp->tx_irq != 0))
   1055			deactivate_fd(vp->fds->tx_fd, vp->tx_irq);
   1056		return NETDEV_TX_BUSY;
   1057	}
   1058
   1059	if ((vp->options & VECTOR_TX) == 0) {
   1060		writev_tx(vp, skb);
   1061		return NETDEV_TX_OK;
   1062	}
   1063
   1064	/* We do BQL only in the vector path, no point doing it in
   1065	 * packet at a time mode as there is no device queue
   1066	 */
   1067
   1068	netdev_sent_queue(vp->dev, skb->len);
   1069	queue_depth = vector_enqueue(vp->tx_queue, skb);
   1070
   1071	if (queue_depth < vp->tx_queue->max_depth && netdev_xmit_more()) {
   1072		mod_timer(&vp->tl, vp->coalesce);
   1073		return NETDEV_TX_OK;
   1074	} else {
   1075		queue_depth = vector_send(vp->tx_queue);
   1076		if (queue_depth > 0)
   1077			napi_schedule(&vp->napi);
   1078	}
   1079
   1080	return NETDEV_TX_OK;
   1081}
   1082
   1083static irqreturn_t vector_rx_interrupt(int irq, void *dev_id)
   1084{
   1085	struct net_device *dev = dev_id;
   1086	struct vector_private *vp = netdev_priv(dev);
   1087
   1088	if (!netif_running(dev))
   1089		return IRQ_NONE;
   1090	napi_schedule(&vp->napi);
   1091	return IRQ_HANDLED;
   1092
   1093}
   1094
   1095static irqreturn_t vector_tx_interrupt(int irq, void *dev_id)
   1096{
   1097	struct net_device *dev = dev_id;
   1098	struct vector_private *vp = netdev_priv(dev);
   1099
   1100	if (!netif_running(dev))
   1101		return IRQ_NONE;
   1102	/* We need to pay attention to it only if we got
   1103	 * -EAGAIN or -ENOBUFFS from sendmmsg. Otherwise
   1104	 * we ignore it. In the future, it may be worth
   1105	 * it to improve the IRQ controller a bit to make
   1106	 * tweaking the IRQ mask less costly
   1107	 */
   1108
   1109	napi_schedule(&vp->napi);
   1110	return IRQ_HANDLED;
   1111
   1112}
   1113
   1114static int irq_rr;
   1115
   1116static int vector_net_close(struct net_device *dev)
   1117{
   1118	struct vector_private *vp = netdev_priv(dev);
   1119	unsigned long flags;
   1120
   1121	netif_stop_queue(dev);
   1122	del_timer(&vp->tl);
   1123
   1124	if (vp->fds == NULL)
   1125		return 0;
   1126
   1127	/* Disable and free all IRQS */
   1128	if (vp->rx_irq > 0) {
   1129		um_free_irq(vp->rx_irq, dev);
   1130		vp->rx_irq = 0;
   1131	}
   1132	if (vp->tx_irq > 0) {
   1133		um_free_irq(vp->tx_irq, dev);
   1134		vp->tx_irq = 0;
   1135	}
   1136	napi_disable(&vp->napi);
   1137	netif_napi_del(&vp->napi);
   1138	if (vp->fds->rx_fd > 0) {
   1139		if (vp->bpf)
   1140			uml_vector_detach_bpf(vp->fds->rx_fd, vp->bpf);
   1141		os_close_file(vp->fds->rx_fd);
   1142		vp->fds->rx_fd = -1;
   1143	}
   1144	if (vp->fds->tx_fd > 0) {
   1145		os_close_file(vp->fds->tx_fd);
   1146		vp->fds->tx_fd = -1;
   1147	}
   1148	if (vp->bpf != NULL)
   1149		kfree(vp->bpf->filter);
   1150	kfree(vp->bpf);
   1151	vp->bpf = NULL;
   1152	kfree(vp->fds->remote_addr);
   1153	kfree(vp->transport_data);
   1154	kfree(vp->header_rxbuffer);
   1155	kfree(vp->header_txbuffer);
   1156	if (vp->rx_queue != NULL)
   1157		destroy_queue(vp->rx_queue);
   1158	if (vp->tx_queue != NULL)
   1159		destroy_queue(vp->tx_queue);
   1160	kfree(vp->fds);
   1161	vp->fds = NULL;
   1162	spin_lock_irqsave(&vp->lock, flags);
   1163	vp->opened = false;
   1164	vp->in_error = false;
   1165	spin_unlock_irqrestore(&vp->lock, flags);
   1166	return 0;
   1167}
   1168
   1169static int vector_poll(struct napi_struct *napi, int budget)
   1170{
   1171	struct vector_private *vp = container_of(napi, struct vector_private, napi);
   1172	int work_done = 0;
   1173	int err;
   1174	bool tx_enqueued = false;
   1175
   1176	if ((vp->options & VECTOR_TX) != 0)
   1177		tx_enqueued = (vector_send(vp->tx_queue) > 0);
   1178	if ((vp->options & VECTOR_RX) > 0)
   1179		err = vector_mmsg_rx(vp, budget);
   1180	else {
   1181		err = vector_legacy_rx(vp);
   1182		if (err > 0)
   1183			err = 1;
   1184	}
   1185	if (err > 0)
   1186		work_done += err;
   1187
   1188	if (tx_enqueued || err > 0)
   1189		napi_schedule(napi);
   1190	if (work_done < budget)
   1191		napi_complete_done(napi, work_done);
   1192	return work_done;
   1193}
   1194
   1195static void vector_reset_tx(struct work_struct *work)
   1196{
   1197	struct vector_private *vp =
   1198		container_of(work, struct vector_private, reset_tx);
   1199	netdev_reset_queue(vp->dev);
   1200	netif_start_queue(vp->dev);
   1201	netif_wake_queue(vp->dev);
   1202}
   1203
   1204static int vector_net_open(struct net_device *dev)
   1205{
   1206	struct vector_private *vp = netdev_priv(dev);
   1207	unsigned long flags;
   1208	int err = -EINVAL;
   1209	struct vector_device *vdevice;
   1210
   1211	spin_lock_irqsave(&vp->lock, flags);
   1212	if (vp->opened) {
   1213		spin_unlock_irqrestore(&vp->lock, flags);
   1214		return -ENXIO;
   1215	}
   1216	vp->opened = true;
   1217	spin_unlock_irqrestore(&vp->lock, flags);
   1218
   1219	vp->bpf = uml_vector_user_bpf(get_bpf_file(vp->parsed));
   1220
   1221	vp->fds = uml_vector_user_open(vp->unit, vp->parsed);
   1222
   1223	if (vp->fds == NULL)
   1224		goto out_close;
   1225
   1226	if (build_transport_data(vp) < 0)
   1227		goto out_close;
   1228
   1229	if ((vp->options & VECTOR_RX) > 0) {
   1230		vp->rx_queue = create_queue(
   1231			vp,
   1232			get_depth(vp->parsed),
   1233			vp->rx_header_size,
   1234			MAX_IOV_SIZE
   1235		);
   1236		vp->rx_queue->queue_depth = get_depth(vp->parsed);
   1237	} else {
   1238		vp->header_rxbuffer = kmalloc(
   1239			vp->rx_header_size,
   1240			GFP_KERNEL
   1241		);
   1242		if (vp->header_rxbuffer == NULL)
   1243			goto out_close;
   1244	}
   1245	if ((vp->options & VECTOR_TX) > 0) {
   1246		vp->tx_queue = create_queue(
   1247			vp,
   1248			get_depth(vp->parsed),
   1249			vp->header_size,
   1250			MAX_IOV_SIZE
   1251		);
   1252	} else {
   1253		vp->header_txbuffer = kmalloc(vp->header_size, GFP_KERNEL);
   1254		if (vp->header_txbuffer == NULL)
   1255			goto out_close;
   1256	}
   1257
   1258	netif_napi_add_weight(vp->dev, &vp->napi, vector_poll,
   1259			      get_depth(vp->parsed));
   1260	napi_enable(&vp->napi);
   1261
   1262	/* READ IRQ */
   1263	err = um_request_irq(
   1264		irq_rr + VECTOR_BASE_IRQ, vp->fds->rx_fd,
   1265			IRQ_READ, vector_rx_interrupt,
   1266			IRQF_SHARED, dev->name, dev);
   1267	if (err < 0) {
   1268		netdev_err(dev, "vector_open: failed to get rx irq(%d)\n", err);
   1269		err = -ENETUNREACH;
   1270		goto out_close;
   1271	}
   1272	vp->rx_irq = irq_rr + VECTOR_BASE_IRQ;
   1273	dev->irq = irq_rr + VECTOR_BASE_IRQ;
   1274	irq_rr = (irq_rr + 1) % VECTOR_IRQ_SPACE;
   1275
   1276	/* WRITE IRQ - we need it only if we have vector TX */
   1277	if ((vp->options & VECTOR_TX) > 0) {
   1278		err = um_request_irq(
   1279			irq_rr + VECTOR_BASE_IRQ, vp->fds->tx_fd,
   1280				IRQ_WRITE, vector_tx_interrupt,
   1281				IRQF_SHARED, dev->name, dev);
   1282		if (err < 0) {
   1283			netdev_err(dev,
   1284				"vector_open: failed to get tx irq(%d)\n", err);
   1285			err = -ENETUNREACH;
   1286			goto out_close;
   1287		}
   1288		vp->tx_irq = irq_rr + VECTOR_BASE_IRQ;
   1289		irq_rr = (irq_rr + 1) % VECTOR_IRQ_SPACE;
   1290	}
   1291
   1292	if ((vp->options & VECTOR_QDISC_BYPASS) != 0) {
   1293		if (!uml_raw_enable_qdisc_bypass(vp->fds->rx_fd))
   1294			vp->options |= VECTOR_BPF;
   1295	}
   1296	if (((vp->options & VECTOR_BPF) != 0) && (vp->bpf == NULL))
   1297		vp->bpf = uml_vector_default_bpf(dev->dev_addr);
   1298
   1299	if (vp->bpf != NULL)
   1300		uml_vector_attach_bpf(vp->fds->rx_fd, vp->bpf);
   1301
   1302	netif_start_queue(dev);
   1303	vector_reset_stats(vp);
   1304
   1305	/* clear buffer - it can happen that the host side of the interface
   1306	 * is full when we get here. In this case, new data is never queued,
   1307	 * SIGIOs never arrive, and the net never works.
   1308	 */
   1309
   1310	napi_schedule(&vp->napi);
   1311
   1312	vdevice = find_device(vp->unit);
   1313	vdevice->opened = 1;
   1314
   1315	if ((vp->options & VECTOR_TX) != 0)
   1316		add_timer(&vp->tl);
   1317	return 0;
   1318out_close:
   1319	vector_net_close(dev);
   1320	return err;
   1321}
   1322
   1323
   1324static void vector_net_set_multicast_list(struct net_device *dev)
   1325{
   1326	/* TODO: - we can do some BPF games here */
   1327	return;
   1328}
   1329
   1330static void vector_net_tx_timeout(struct net_device *dev, unsigned int txqueue)
   1331{
   1332	struct vector_private *vp = netdev_priv(dev);
   1333
   1334	vp->estats.tx_timeout_count++;
   1335	netif_trans_update(dev);
   1336	schedule_work(&vp->reset_tx);
   1337}
   1338
   1339static netdev_features_t vector_fix_features(struct net_device *dev,
   1340	netdev_features_t features)
   1341{
   1342	features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
   1343	return features;
   1344}
   1345
   1346static int vector_set_features(struct net_device *dev,
   1347	netdev_features_t features)
   1348{
   1349	struct vector_private *vp = netdev_priv(dev);
   1350	/* Adjust buffer sizes for GSO/GRO. Unfortunately, there is
   1351	 * no way to negotiate it on raw sockets, so we can change
   1352	 * only our side.
   1353	 */
   1354	if (features & NETIF_F_GRO)
   1355		/* All new frame buffers will be GRO-sized */
   1356		vp->req_size = 65536;
   1357	else
   1358		/* All new frame buffers will be normal sized */
   1359		vp->req_size = vp->max_packet + vp->headroom + SAFETY_MARGIN;
   1360	return 0;
   1361}
   1362
   1363#ifdef CONFIG_NET_POLL_CONTROLLER
   1364static void vector_net_poll_controller(struct net_device *dev)
   1365{
   1366	disable_irq(dev->irq);
   1367	vector_rx_interrupt(dev->irq, dev);
   1368	enable_irq(dev->irq);
   1369}
   1370#endif
   1371
   1372static void vector_net_get_drvinfo(struct net_device *dev,
   1373				struct ethtool_drvinfo *info)
   1374{
   1375	strlcpy(info->driver, DRIVER_NAME, sizeof(info->driver));
   1376}
   1377
   1378static int vector_net_load_bpf_flash(struct net_device *dev,
   1379				struct ethtool_flash *efl)
   1380{
   1381	struct vector_private *vp = netdev_priv(dev);
   1382	struct vector_device *vdevice;
   1383	const struct firmware *fw;
   1384	int result = 0;
   1385
   1386	if (!(vp->options & VECTOR_BPF_FLASH)) {
   1387		netdev_err(dev, "loading firmware not permitted: %s\n", efl->data);
   1388		return -1;
   1389	}
   1390
   1391	spin_lock(&vp->lock);
   1392
   1393	if (vp->bpf != NULL) {
   1394		if (vp->opened)
   1395			uml_vector_detach_bpf(vp->fds->rx_fd, vp->bpf);
   1396		kfree(vp->bpf->filter);
   1397		vp->bpf->filter = NULL;
   1398	} else {
   1399		vp->bpf = kmalloc(sizeof(struct sock_fprog), GFP_ATOMIC);
   1400		if (vp->bpf == NULL) {
   1401			netdev_err(dev, "failed to allocate memory for firmware\n");
   1402			goto flash_fail;
   1403		}
   1404	}
   1405
   1406	vdevice = find_device(vp->unit);
   1407
   1408	if (request_firmware(&fw, efl->data, &vdevice->pdev.dev))
   1409		goto flash_fail;
   1410
   1411	vp->bpf->filter = kmemdup(fw->data, fw->size, GFP_ATOMIC);
   1412	if (!vp->bpf->filter)
   1413		goto free_buffer;
   1414
   1415	vp->bpf->len = fw->size / sizeof(struct sock_filter);
   1416	release_firmware(fw);
   1417
   1418	if (vp->opened)
   1419		result = uml_vector_attach_bpf(vp->fds->rx_fd, vp->bpf);
   1420
   1421	spin_unlock(&vp->lock);
   1422
   1423	return result;
   1424
   1425free_buffer:
   1426	release_firmware(fw);
   1427
   1428flash_fail:
   1429	spin_unlock(&vp->lock);
   1430	if (vp->bpf != NULL)
   1431		kfree(vp->bpf->filter);
   1432	kfree(vp->bpf);
   1433	vp->bpf = NULL;
   1434	return -1;
   1435}
   1436
   1437static void vector_get_ringparam(struct net_device *netdev,
   1438				 struct ethtool_ringparam *ring,
   1439				 struct kernel_ethtool_ringparam *kernel_ring,
   1440				 struct netlink_ext_ack *extack)
   1441{
   1442	struct vector_private *vp = netdev_priv(netdev);
   1443
   1444	ring->rx_max_pending = vp->rx_queue->max_depth;
   1445	ring->tx_max_pending = vp->tx_queue->max_depth;
   1446	ring->rx_pending = vp->rx_queue->max_depth;
   1447	ring->tx_pending = vp->tx_queue->max_depth;
   1448}
   1449
   1450static void vector_get_strings(struct net_device *dev, u32 stringset, u8 *buf)
   1451{
   1452	switch (stringset) {
   1453	case ETH_SS_TEST:
   1454		*buf = '\0';
   1455		break;
   1456	case ETH_SS_STATS:
   1457		memcpy(buf, &ethtool_stats_keys, sizeof(ethtool_stats_keys));
   1458		break;
   1459	default:
   1460		WARN_ON(1);
   1461		break;
   1462	}
   1463}
   1464
   1465static int vector_get_sset_count(struct net_device *dev, int sset)
   1466{
   1467	switch (sset) {
   1468	case ETH_SS_TEST:
   1469		return 0;
   1470	case ETH_SS_STATS:
   1471		return VECTOR_NUM_STATS;
   1472	default:
   1473		return -EOPNOTSUPP;
   1474	}
   1475}
   1476
   1477static void vector_get_ethtool_stats(struct net_device *dev,
   1478	struct ethtool_stats *estats,
   1479	u64 *tmp_stats)
   1480{
   1481	struct vector_private *vp = netdev_priv(dev);
   1482
   1483	memcpy(tmp_stats, &vp->estats, sizeof(struct vector_estats));
   1484}
   1485
   1486static int vector_get_coalesce(struct net_device *netdev,
   1487			       struct ethtool_coalesce *ec,
   1488			       struct kernel_ethtool_coalesce *kernel_coal,
   1489			       struct netlink_ext_ack *extack)
   1490{
   1491	struct vector_private *vp = netdev_priv(netdev);
   1492
   1493	ec->tx_coalesce_usecs = (vp->coalesce * 1000000) / HZ;
   1494	return 0;
   1495}
   1496
   1497static int vector_set_coalesce(struct net_device *netdev,
   1498			       struct ethtool_coalesce *ec,
   1499			       struct kernel_ethtool_coalesce *kernel_coal,
   1500			       struct netlink_ext_ack *extack)
   1501{
   1502	struct vector_private *vp = netdev_priv(netdev);
   1503
   1504	vp->coalesce = (ec->tx_coalesce_usecs * HZ) / 1000000;
   1505	if (vp->coalesce == 0)
   1506		vp->coalesce = 1;
   1507	return 0;
   1508}
   1509
   1510static const struct ethtool_ops vector_net_ethtool_ops = {
   1511	.supported_coalesce_params = ETHTOOL_COALESCE_TX_USECS,
   1512	.get_drvinfo	= vector_net_get_drvinfo,
   1513	.get_link	= ethtool_op_get_link,
   1514	.get_ts_info	= ethtool_op_get_ts_info,
   1515	.get_ringparam	= vector_get_ringparam,
   1516	.get_strings	= vector_get_strings,
   1517	.get_sset_count	= vector_get_sset_count,
   1518	.get_ethtool_stats = vector_get_ethtool_stats,
   1519	.get_coalesce	= vector_get_coalesce,
   1520	.set_coalesce	= vector_set_coalesce,
   1521	.flash_device	= vector_net_load_bpf_flash,
   1522};
   1523
   1524
   1525static const struct net_device_ops vector_netdev_ops = {
   1526	.ndo_open		= vector_net_open,
   1527	.ndo_stop		= vector_net_close,
   1528	.ndo_start_xmit		= vector_net_start_xmit,
   1529	.ndo_set_rx_mode	= vector_net_set_multicast_list,
   1530	.ndo_tx_timeout		= vector_net_tx_timeout,
   1531	.ndo_set_mac_address	= eth_mac_addr,
   1532	.ndo_validate_addr	= eth_validate_addr,
   1533	.ndo_fix_features	= vector_fix_features,
   1534	.ndo_set_features	= vector_set_features,
   1535#ifdef CONFIG_NET_POLL_CONTROLLER
   1536	.ndo_poll_controller = vector_net_poll_controller,
   1537#endif
   1538};
   1539
   1540static void vector_timer_expire(struct timer_list *t)
   1541{
   1542	struct vector_private *vp = from_timer(vp, t, tl);
   1543
   1544	vp->estats.tx_kicks++;
   1545	napi_schedule(&vp->napi);
   1546}
   1547
   1548
   1549
   1550static void vector_eth_configure(
   1551		int n,
   1552		struct arglist *def
   1553	)
   1554{
   1555	struct vector_device *device;
   1556	struct net_device *dev;
   1557	struct vector_private *vp;
   1558	int err;
   1559
   1560	device = kzalloc(sizeof(*device), GFP_KERNEL);
   1561	if (device == NULL) {
   1562		printk(KERN_ERR "eth_configure failed to allocate struct "
   1563				 "vector_device\n");
   1564		return;
   1565	}
   1566	dev = alloc_etherdev(sizeof(struct vector_private));
   1567	if (dev == NULL) {
   1568		printk(KERN_ERR "eth_configure: failed to allocate struct "
   1569				 "net_device for vec%d\n", n);
   1570		goto out_free_device;
   1571	}
   1572
   1573	dev->mtu = get_mtu(def);
   1574
   1575	INIT_LIST_HEAD(&device->list);
   1576	device->unit = n;
   1577
   1578	/* If this name ends up conflicting with an existing registered
   1579	 * netdevice, that is OK, register_netdev{,ice}() will notice this
   1580	 * and fail.
   1581	 */
   1582	snprintf(dev->name, sizeof(dev->name), "vec%d", n);
   1583	uml_net_setup_etheraddr(dev, uml_vector_fetch_arg(def, "mac"));
   1584	vp = netdev_priv(dev);
   1585
   1586	/* sysfs register */
   1587	if (!driver_registered) {
   1588		platform_driver_register(&uml_net_driver);
   1589		driver_registered = 1;
   1590	}
   1591	device->pdev.id = n;
   1592	device->pdev.name = DRIVER_NAME;
   1593	device->pdev.dev.release = vector_device_release;
   1594	dev_set_drvdata(&device->pdev.dev, device);
   1595	if (platform_device_register(&device->pdev))
   1596		goto out_free_netdev;
   1597	SET_NETDEV_DEV(dev, &device->pdev.dev);
   1598
   1599	device->dev = dev;
   1600
   1601	*vp = ((struct vector_private)
   1602		{
   1603		.list			= LIST_HEAD_INIT(vp->list),
   1604		.dev			= dev,
   1605		.unit			= n,
   1606		.options		= get_transport_options(def),
   1607		.rx_irq			= 0,
   1608		.tx_irq			= 0,
   1609		.parsed			= def,
   1610		.max_packet		= get_mtu(def) + ETH_HEADER_OTHER,
   1611		/* TODO - we need to calculate headroom so that ip header
   1612		 * is 16 byte aligned all the time
   1613		 */
   1614		.headroom		= get_headroom(def),
   1615		.form_header		= NULL,
   1616		.verify_header		= NULL,
   1617		.header_rxbuffer	= NULL,
   1618		.header_txbuffer	= NULL,
   1619		.header_size		= 0,
   1620		.rx_header_size		= 0,
   1621		.rexmit_scheduled	= false,
   1622		.opened			= false,
   1623		.transport_data		= NULL,
   1624		.in_write_poll		= false,
   1625		.coalesce		= 2,
   1626		.req_size		= get_req_size(def),
   1627		.in_error		= false,
   1628		.bpf			= NULL
   1629	});
   1630
   1631	dev->features = dev->hw_features = (NETIF_F_SG | NETIF_F_FRAGLIST);
   1632	INIT_WORK(&vp->reset_tx, vector_reset_tx);
   1633
   1634	timer_setup(&vp->tl, vector_timer_expire, 0);
   1635	spin_lock_init(&vp->lock);
   1636
   1637	/* FIXME */
   1638	dev->netdev_ops = &vector_netdev_ops;
   1639	dev->ethtool_ops = &vector_net_ethtool_ops;
   1640	dev->watchdog_timeo = (HZ >> 1);
   1641	/* primary IRQ - fixme */
   1642	dev->irq = 0; /* we will adjust this once opened */
   1643
   1644	rtnl_lock();
   1645	err = register_netdevice(dev);
   1646	rtnl_unlock();
   1647	if (err)
   1648		goto out_undo_user_init;
   1649
   1650	spin_lock(&vector_devices_lock);
   1651	list_add(&device->list, &vector_devices);
   1652	spin_unlock(&vector_devices_lock);
   1653
   1654	return;
   1655
   1656out_undo_user_init:
   1657	return;
   1658out_free_netdev:
   1659	free_netdev(dev);
   1660out_free_device:
   1661	kfree(device);
   1662}
   1663
   1664
   1665
   1666
   1667/*
   1668 * Invoked late in the init
   1669 */
   1670
   1671static int __init vector_init(void)
   1672{
   1673	struct list_head *ele;
   1674	struct vector_cmd_line_arg *def;
   1675	struct arglist *parsed;
   1676
   1677	list_for_each(ele, &vec_cmd_line) {
   1678		def = list_entry(ele, struct vector_cmd_line_arg, list);
   1679		parsed = uml_parse_vector_ifspec(def->arguments);
   1680		if (parsed != NULL)
   1681			vector_eth_configure(def->unit, parsed);
   1682	}
   1683	return 0;
   1684}
   1685
   1686
   1687/* Invoked at initial argument parsing, only stores
   1688 * arguments until a proper vector_init is called
   1689 * later
   1690 */
   1691
   1692static int __init vector_setup(char *str)
   1693{
   1694	char *error;
   1695	int n, err;
   1696	struct vector_cmd_line_arg *new;
   1697
   1698	err = vector_parse(str, &n, &str, &error);
   1699	if (err) {
   1700		printk(KERN_ERR "vector_setup - Couldn't parse '%s' : %s\n",
   1701				 str, error);
   1702		return 1;
   1703	}
   1704	new = memblock_alloc(sizeof(*new), SMP_CACHE_BYTES);
   1705	if (!new)
   1706		panic("%s: Failed to allocate %zu bytes\n", __func__,
   1707		      sizeof(*new));
   1708	INIT_LIST_HEAD(&new->list);
   1709	new->unit = n;
   1710	new->arguments = str;
   1711	list_add_tail(&new->list, &vec_cmd_line);
   1712	return 1;
   1713}
   1714
   1715__setup("vec", vector_setup);
   1716__uml_help(vector_setup,
   1717"vec[0-9]+:<option>=<value>,<option>=<value>\n"
   1718"	 Configure a vector io network device.\n\n"
   1719);
   1720
   1721late_initcall(vector_init);
   1722
   1723static struct mc_device vector_mc = {
   1724	.list		= LIST_HEAD_INIT(vector_mc.list),
   1725	.name		= "vec",
   1726	.config		= vector_config,
   1727	.get_config	= NULL,
   1728	.id		= vector_id,
   1729	.remove		= vector_remove,
   1730};
   1731
   1732#ifdef CONFIG_INET
   1733static int vector_inetaddr_event(
   1734	struct notifier_block *this,
   1735	unsigned long event,
   1736	void *ptr)
   1737{
   1738	return NOTIFY_DONE;
   1739}
   1740
   1741static struct notifier_block vector_inetaddr_notifier = {
   1742	.notifier_call		= vector_inetaddr_event,
   1743};
   1744
   1745static void inet_register(void)
   1746{
   1747	register_inetaddr_notifier(&vector_inetaddr_notifier);
   1748}
   1749#else
   1750static inline void inet_register(void)
   1751{
   1752}
   1753#endif
   1754
   1755static int vector_net_init(void)
   1756{
   1757	mconsole_register_dev(&vector_mc);
   1758	inet_register();
   1759	return 0;
   1760}
   1761
   1762__initcall(vector_net_init);
   1763
   1764
   1765