pgtable.h (8881B)
1/* SPDX-License-Identifier: GPL-2.0 */ 2/* 3 * Copyright (C) 2000 - 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com) 4 * Copyright 2003 PathScale, Inc. 5 * Derived from include/asm-i386/pgtable.h 6 */ 7 8#ifndef __UM_PGTABLE_H 9#define __UM_PGTABLE_H 10 11#include <asm/fixmap.h> 12 13#define _PAGE_PRESENT 0x001 14#define _PAGE_NEWPAGE 0x002 15#define _PAGE_NEWPROT 0x004 16#define _PAGE_RW 0x020 17#define _PAGE_USER 0x040 18#define _PAGE_ACCESSED 0x080 19#define _PAGE_DIRTY 0x100 20/* If _PAGE_PRESENT is clear, we use these: */ 21#define _PAGE_PROTNONE 0x010 /* if the user mapped it with PROT_NONE; 22 pte_present gives true */ 23 24#ifdef CONFIG_3_LEVEL_PGTABLES 25#include <asm/pgtable-3level.h> 26#else 27#include <asm/pgtable-2level.h> 28#endif 29 30extern pgd_t swapper_pg_dir[PTRS_PER_PGD]; 31 32/* zero page used for uninitialized stuff */ 33extern unsigned long *empty_zero_page; 34 35/* Just any arbitrary offset to the start of the vmalloc VM area: the 36 * current 8MB value just means that there will be a 8MB "hole" after the 37 * physical memory until the kernel virtual memory starts. That means that 38 * any out-of-bounds memory accesses will hopefully be caught. 39 * The vmalloc() routines leaves a hole of 4kB between each vmalloced 40 * area for the same reason. ;) 41 */ 42 43extern unsigned long end_iomem; 44 45#define VMALLOC_OFFSET (__va_space) 46#define VMALLOC_START ((end_iomem + VMALLOC_OFFSET) & ~(VMALLOC_OFFSET-1)) 47#define PKMAP_BASE ((FIXADDR_START - LAST_PKMAP * PAGE_SIZE) & PMD_MASK) 48#define VMALLOC_END (FIXADDR_START-2*PAGE_SIZE) 49#define MODULES_VADDR VMALLOC_START 50#define MODULES_END VMALLOC_END 51#define MODULES_LEN (MODULES_VADDR - MODULES_END) 52 53#define _PAGE_TABLE (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER | _PAGE_ACCESSED | _PAGE_DIRTY) 54#define _KERNPG_TABLE (_PAGE_PRESENT | _PAGE_RW | _PAGE_ACCESSED | _PAGE_DIRTY) 55#define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY) 56#define __PAGE_KERNEL_EXEC \ 57 (_PAGE_PRESENT | _PAGE_RW | _PAGE_DIRTY | _PAGE_ACCESSED) 58#define PAGE_NONE __pgprot(_PAGE_PROTNONE | _PAGE_ACCESSED) 59#define PAGE_SHARED __pgprot(_PAGE_PRESENT | _PAGE_RW | _PAGE_USER | _PAGE_ACCESSED) 60#define PAGE_COPY __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED) 61#define PAGE_READONLY __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED) 62#define PAGE_KERNEL __pgprot(_PAGE_PRESENT | _PAGE_RW | _PAGE_DIRTY | _PAGE_ACCESSED) 63#define PAGE_KERNEL_EXEC __pgprot(__PAGE_KERNEL_EXEC) 64 65/* 66 * The i386 can't do page protection for execute, and considers that the same 67 * are read. 68 * Also, write permissions imply read permissions. This is the closest we can 69 * get.. 70 */ 71#define __P000 PAGE_NONE 72#define __P001 PAGE_READONLY 73#define __P010 PAGE_COPY 74#define __P011 PAGE_COPY 75#define __P100 PAGE_READONLY 76#define __P101 PAGE_READONLY 77#define __P110 PAGE_COPY 78#define __P111 PAGE_COPY 79 80#define __S000 PAGE_NONE 81#define __S001 PAGE_READONLY 82#define __S010 PAGE_SHARED 83#define __S011 PAGE_SHARED 84#define __S100 PAGE_READONLY 85#define __S101 PAGE_READONLY 86#define __S110 PAGE_SHARED 87#define __S111 PAGE_SHARED 88 89/* 90 * ZERO_PAGE is a global shared page that is always zero: used 91 * for zero-mapped memory areas etc.. 92 */ 93#define ZERO_PAGE(vaddr) virt_to_page(empty_zero_page) 94 95#define pte_clear(mm,addr,xp) pte_set_val(*(xp), (phys_t) 0, __pgprot(_PAGE_NEWPAGE)) 96 97#define pmd_none(x) (!((unsigned long)pmd_val(x) & ~_PAGE_NEWPAGE)) 98#define pmd_bad(x) ((pmd_val(x) & (~PAGE_MASK & ~_PAGE_USER)) != _KERNPG_TABLE) 99 100#define pmd_present(x) (pmd_val(x) & _PAGE_PRESENT) 101#define pmd_clear(xp) do { pmd_val(*(xp)) = _PAGE_NEWPAGE; } while (0) 102 103#define pmd_newpage(x) (pmd_val(x) & _PAGE_NEWPAGE) 104#define pmd_mkuptodate(x) (pmd_val(x) &= ~_PAGE_NEWPAGE) 105 106#define pud_newpage(x) (pud_val(x) & _PAGE_NEWPAGE) 107#define pud_mkuptodate(x) (pud_val(x) &= ~_PAGE_NEWPAGE) 108 109#define p4d_newpage(x) (p4d_val(x) & _PAGE_NEWPAGE) 110#define p4d_mkuptodate(x) (p4d_val(x) &= ~_PAGE_NEWPAGE) 111 112#define pmd_pfn(pmd) (pmd_val(pmd) >> PAGE_SHIFT) 113#define pmd_page(pmd) phys_to_page(pmd_val(pmd) & PAGE_MASK) 114 115#define pte_page(x) pfn_to_page(pte_pfn(x)) 116 117#define pte_present(x) pte_get_bits(x, (_PAGE_PRESENT | _PAGE_PROTNONE)) 118 119/* 120 * ================================= 121 * Flags checking section. 122 * ================================= 123 */ 124 125static inline int pte_none(pte_t pte) 126{ 127 return pte_is_zero(pte); 128} 129 130/* 131 * The following only work if pte_present() is true. 132 * Undefined behaviour if not.. 133 */ 134static inline int pte_read(pte_t pte) 135{ 136 return((pte_get_bits(pte, _PAGE_USER)) && 137 !(pte_get_bits(pte, _PAGE_PROTNONE))); 138} 139 140static inline int pte_exec(pte_t pte){ 141 return((pte_get_bits(pte, _PAGE_USER)) && 142 !(pte_get_bits(pte, _PAGE_PROTNONE))); 143} 144 145static inline int pte_write(pte_t pte) 146{ 147 return((pte_get_bits(pte, _PAGE_RW)) && 148 !(pte_get_bits(pte, _PAGE_PROTNONE))); 149} 150 151static inline int pte_dirty(pte_t pte) 152{ 153 return pte_get_bits(pte, _PAGE_DIRTY); 154} 155 156static inline int pte_young(pte_t pte) 157{ 158 return pte_get_bits(pte, _PAGE_ACCESSED); 159} 160 161static inline int pte_newpage(pte_t pte) 162{ 163 return pte_get_bits(pte, _PAGE_NEWPAGE); 164} 165 166static inline int pte_newprot(pte_t pte) 167{ 168 return(pte_present(pte) && (pte_get_bits(pte, _PAGE_NEWPROT))); 169} 170 171/* 172 * ================================= 173 * Flags setting section. 174 * ================================= 175 */ 176 177static inline pte_t pte_mknewprot(pte_t pte) 178{ 179 pte_set_bits(pte, _PAGE_NEWPROT); 180 return(pte); 181} 182 183static inline pte_t pte_mkclean(pte_t pte) 184{ 185 pte_clear_bits(pte, _PAGE_DIRTY); 186 return(pte); 187} 188 189static inline pte_t pte_mkold(pte_t pte) 190{ 191 pte_clear_bits(pte, _PAGE_ACCESSED); 192 return(pte); 193} 194 195static inline pte_t pte_wrprotect(pte_t pte) 196{ 197 if (likely(pte_get_bits(pte, _PAGE_RW))) 198 pte_clear_bits(pte, _PAGE_RW); 199 else 200 return pte; 201 return(pte_mknewprot(pte)); 202} 203 204static inline pte_t pte_mkread(pte_t pte) 205{ 206 if (unlikely(pte_get_bits(pte, _PAGE_USER))) 207 return pte; 208 pte_set_bits(pte, _PAGE_USER); 209 return(pte_mknewprot(pte)); 210} 211 212static inline pte_t pte_mkdirty(pte_t pte) 213{ 214 pte_set_bits(pte, _PAGE_DIRTY); 215 return(pte); 216} 217 218static inline pte_t pte_mkyoung(pte_t pte) 219{ 220 pte_set_bits(pte, _PAGE_ACCESSED); 221 return(pte); 222} 223 224static inline pte_t pte_mkwrite(pte_t pte) 225{ 226 if (unlikely(pte_get_bits(pte, _PAGE_RW))) 227 return pte; 228 pte_set_bits(pte, _PAGE_RW); 229 return(pte_mknewprot(pte)); 230} 231 232static inline pte_t pte_mkuptodate(pte_t pte) 233{ 234 pte_clear_bits(pte, _PAGE_NEWPAGE); 235 if(pte_present(pte)) 236 pte_clear_bits(pte, _PAGE_NEWPROT); 237 return(pte); 238} 239 240static inline pte_t pte_mknewpage(pte_t pte) 241{ 242 pte_set_bits(pte, _PAGE_NEWPAGE); 243 return(pte); 244} 245 246static inline void set_pte(pte_t *pteptr, pte_t pteval) 247{ 248 pte_copy(*pteptr, pteval); 249 250 /* If it's a swap entry, it needs to be marked _PAGE_NEWPAGE so 251 * fix_range knows to unmap it. _PAGE_NEWPROT is specific to 252 * mapped pages. 253 */ 254 255 *pteptr = pte_mknewpage(*pteptr); 256 if(pte_present(*pteptr)) *pteptr = pte_mknewprot(*pteptr); 257} 258 259static inline void set_pte_at(struct mm_struct *mm, unsigned long addr, 260 pte_t *pteptr, pte_t pteval) 261{ 262 set_pte(pteptr, pteval); 263} 264 265#define __HAVE_ARCH_PTE_SAME 266static inline int pte_same(pte_t pte_a, pte_t pte_b) 267{ 268 return !((pte_val(pte_a) ^ pte_val(pte_b)) & ~_PAGE_NEWPAGE); 269} 270 271/* 272 * Conversion functions: convert a page and protection to a page entry, 273 * and a page entry and page directory to the page they refer to. 274 */ 275 276#define phys_to_page(phys) pfn_to_page(phys_to_pfn(phys)) 277#define __virt_to_page(virt) phys_to_page(__pa(virt)) 278#define page_to_phys(page) pfn_to_phys(page_to_pfn(page)) 279#define virt_to_page(addr) __virt_to_page((const unsigned long) addr) 280 281#define mk_pte(page, pgprot) \ 282 ({ pte_t pte; \ 283 \ 284 pte_set_val(pte, page_to_phys(page), (pgprot)); \ 285 if (pte_present(pte)) \ 286 pte_mknewprot(pte_mknewpage(pte)); \ 287 pte;}) 288 289static inline pte_t pte_modify(pte_t pte, pgprot_t newprot) 290{ 291 pte_set_val(pte, (pte_val(pte) & _PAGE_CHG_MASK), newprot); 292 return pte; 293} 294 295/* 296 * the pmd page can be thought of an array like this: pmd_t[PTRS_PER_PMD] 297 * 298 * this macro returns the index of the entry in the pmd page which would 299 * control the given virtual address 300 */ 301#define pmd_page_vaddr(pmd) ((unsigned long) __va(pmd_val(pmd) & PAGE_MASK)) 302 303struct mm_struct; 304extern pte_t *virt_to_pte(struct mm_struct *mm, unsigned long addr); 305 306#define update_mmu_cache(vma,address,ptep) do {} while (0) 307 308/* Encode and de-code a swap entry */ 309#define __swp_type(x) (((x).val >> 5) & 0x1f) 310#define __swp_offset(x) ((x).val >> 11) 311 312#define __swp_entry(type, offset) \ 313 ((swp_entry_t) { ((type) << 5) | ((offset) << 11) }) 314#define __pte_to_swp_entry(pte) \ 315 ((swp_entry_t) { pte_val(pte_mkuptodate(pte)) }) 316#define __swp_entry_to_pte(x) ((pte_t) { (x).val }) 317 318#define kern_addr_valid(addr) (1) 319 320/* Clear a kernel PTE and flush it from the TLB */ 321#define kpte_clear_flush(ptep, vaddr) \ 322do { \ 323 pte_clear(&init_mm, (vaddr), (ptep)); \ 324 __flush_tlb_one((vaddr)); \ 325} while (0) 326 327#endif