cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

pgtable.h (8881B)


      1/* SPDX-License-Identifier: GPL-2.0 */
      2/*
      3 * Copyright (C) 2000 - 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com)
      4 * Copyright 2003 PathScale, Inc.
      5 * Derived from include/asm-i386/pgtable.h
      6 */
      7
      8#ifndef __UM_PGTABLE_H
      9#define __UM_PGTABLE_H
     10
     11#include <asm/fixmap.h>
     12
     13#define _PAGE_PRESENT	0x001
     14#define _PAGE_NEWPAGE	0x002
     15#define _PAGE_NEWPROT	0x004
     16#define _PAGE_RW	0x020
     17#define _PAGE_USER	0x040
     18#define _PAGE_ACCESSED	0x080
     19#define _PAGE_DIRTY	0x100
     20/* If _PAGE_PRESENT is clear, we use these: */
     21#define _PAGE_PROTNONE	0x010	/* if the user mapped it with PROT_NONE;
     22				   pte_present gives true */
     23
     24#ifdef CONFIG_3_LEVEL_PGTABLES
     25#include <asm/pgtable-3level.h>
     26#else
     27#include <asm/pgtable-2level.h>
     28#endif
     29
     30extern pgd_t swapper_pg_dir[PTRS_PER_PGD];
     31
     32/* zero page used for uninitialized stuff */
     33extern unsigned long *empty_zero_page;
     34
     35/* Just any arbitrary offset to the start of the vmalloc VM area: the
     36 * current 8MB value just means that there will be a 8MB "hole" after the
     37 * physical memory until the kernel virtual memory starts.  That means that
     38 * any out-of-bounds memory accesses will hopefully be caught.
     39 * The vmalloc() routines leaves a hole of 4kB between each vmalloced
     40 * area for the same reason. ;)
     41 */
     42
     43extern unsigned long end_iomem;
     44
     45#define VMALLOC_OFFSET	(__va_space)
     46#define VMALLOC_START ((end_iomem + VMALLOC_OFFSET) & ~(VMALLOC_OFFSET-1))
     47#define PKMAP_BASE ((FIXADDR_START - LAST_PKMAP * PAGE_SIZE) & PMD_MASK)
     48#define VMALLOC_END	(FIXADDR_START-2*PAGE_SIZE)
     49#define MODULES_VADDR	VMALLOC_START
     50#define MODULES_END	VMALLOC_END
     51#define MODULES_LEN	(MODULES_VADDR - MODULES_END)
     52
     53#define _PAGE_TABLE	(_PAGE_PRESENT | _PAGE_RW | _PAGE_USER | _PAGE_ACCESSED | _PAGE_DIRTY)
     54#define _KERNPG_TABLE	(_PAGE_PRESENT | _PAGE_RW | _PAGE_ACCESSED | _PAGE_DIRTY)
     55#define _PAGE_CHG_MASK	(PAGE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY)
     56#define __PAGE_KERNEL_EXEC                                              \
     57	 (_PAGE_PRESENT | _PAGE_RW | _PAGE_DIRTY | _PAGE_ACCESSED)
     58#define PAGE_NONE	__pgprot(_PAGE_PROTNONE | _PAGE_ACCESSED)
     59#define PAGE_SHARED	__pgprot(_PAGE_PRESENT | _PAGE_RW | _PAGE_USER | _PAGE_ACCESSED)
     60#define PAGE_COPY	__pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED)
     61#define PAGE_READONLY	__pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED)
     62#define PAGE_KERNEL	__pgprot(_PAGE_PRESENT | _PAGE_RW | _PAGE_DIRTY | _PAGE_ACCESSED)
     63#define PAGE_KERNEL_EXEC	__pgprot(__PAGE_KERNEL_EXEC)
     64
     65/*
     66 * The i386 can't do page protection for execute, and considers that the same
     67 * are read.
     68 * Also, write permissions imply read permissions. This is the closest we can
     69 * get..
     70 */
     71#define __P000	PAGE_NONE
     72#define __P001	PAGE_READONLY
     73#define __P010	PAGE_COPY
     74#define __P011	PAGE_COPY
     75#define __P100	PAGE_READONLY
     76#define __P101	PAGE_READONLY
     77#define __P110	PAGE_COPY
     78#define __P111	PAGE_COPY
     79
     80#define __S000	PAGE_NONE
     81#define __S001	PAGE_READONLY
     82#define __S010	PAGE_SHARED
     83#define __S011	PAGE_SHARED
     84#define __S100	PAGE_READONLY
     85#define __S101	PAGE_READONLY
     86#define __S110	PAGE_SHARED
     87#define __S111	PAGE_SHARED
     88
     89/*
     90 * ZERO_PAGE is a global shared page that is always zero: used
     91 * for zero-mapped memory areas etc..
     92 */
     93#define ZERO_PAGE(vaddr) virt_to_page(empty_zero_page)
     94
     95#define pte_clear(mm,addr,xp) pte_set_val(*(xp), (phys_t) 0, __pgprot(_PAGE_NEWPAGE))
     96
     97#define pmd_none(x)	(!((unsigned long)pmd_val(x) & ~_PAGE_NEWPAGE))
     98#define	pmd_bad(x)	((pmd_val(x) & (~PAGE_MASK & ~_PAGE_USER)) != _KERNPG_TABLE)
     99
    100#define pmd_present(x)	(pmd_val(x) & _PAGE_PRESENT)
    101#define pmd_clear(xp)	do { pmd_val(*(xp)) = _PAGE_NEWPAGE; } while (0)
    102
    103#define pmd_newpage(x)  (pmd_val(x) & _PAGE_NEWPAGE)
    104#define pmd_mkuptodate(x) (pmd_val(x) &= ~_PAGE_NEWPAGE)
    105
    106#define pud_newpage(x)  (pud_val(x) & _PAGE_NEWPAGE)
    107#define pud_mkuptodate(x) (pud_val(x) &= ~_PAGE_NEWPAGE)
    108
    109#define p4d_newpage(x)  (p4d_val(x) & _PAGE_NEWPAGE)
    110#define p4d_mkuptodate(x) (p4d_val(x) &= ~_PAGE_NEWPAGE)
    111
    112#define pmd_pfn(pmd) (pmd_val(pmd) >> PAGE_SHIFT)
    113#define pmd_page(pmd) phys_to_page(pmd_val(pmd) & PAGE_MASK)
    114
    115#define pte_page(x) pfn_to_page(pte_pfn(x))
    116
    117#define pte_present(x)	pte_get_bits(x, (_PAGE_PRESENT | _PAGE_PROTNONE))
    118
    119/*
    120 * =================================
    121 * Flags checking section.
    122 * =================================
    123 */
    124
    125static inline int pte_none(pte_t pte)
    126{
    127	return pte_is_zero(pte);
    128}
    129
    130/*
    131 * The following only work if pte_present() is true.
    132 * Undefined behaviour if not..
    133 */
    134static inline int pte_read(pte_t pte)
    135{
    136	return((pte_get_bits(pte, _PAGE_USER)) &&
    137	       !(pte_get_bits(pte, _PAGE_PROTNONE)));
    138}
    139
    140static inline int pte_exec(pte_t pte){
    141	return((pte_get_bits(pte, _PAGE_USER)) &&
    142	       !(pte_get_bits(pte, _PAGE_PROTNONE)));
    143}
    144
    145static inline int pte_write(pte_t pte)
    146{
    147	return((pte_get_bits(pte, _PAGE_RW)) &&
    148	       !(pte_get_bits(pte, _PAGE_PROTNONE)));
    149}
    150
    151static inline int pte_dirty(pte_t pte)
    152{
    153	return pte_get_bits(pte, _PAGE_DIRTY);
    154}
    155
    156static inline int pte_young(pte_t pte)
    157{
    158	return pte_get_bits(pte, _PAGE_ACCESSED);
    159}
    160
    161static inline int pte_newpage(pte_t pte)
    162{
    163	return pte_get_bits(pte, _PAGE_NEWPAGE);
    164}
    165
    166static inline int pte_newprot(pte_t pte)
    167{
    168	return(pte_present(pte) && (pte_get_bits(pte, _PAGE_NEWPROT)));
    169}
    170
    171/*
    172 * =================================
    173 * Flags setting section.
    174 * =================================
    175 */
    176
    177static inline pte_t pte_mknewprot(pte_t pte)
    178{
    179	pte_set_bits(pte, _PAGE_NEWPROT);
    180	return(pte);
    181}
    182
    183static inline pte_t pte_mkclean(pte_t pte)
    184{
    185	pte_clear_bits(pte, _PAGE_DIRTY);
    186	return(pte);
    187}
    188
    189static inline pte_t pte_mkold(pte_t pte)
    190{
    191	pte_clear_bits(pte, _PAGE_ACCESSED);
    192	return(pte);
    193}
    194
    195static inline pte_t pte_wrprotect(pte_t pte)
    196{
    197	if (likely(pte_get_bits(pte, _PAGE_RW)))
    198		pte_clear_bits(pte, _PAGE_RW);
    199	else
    200		return pte;
    201	return(pte_mknewprot(pte));
    202}
    203
    204static inline pte_t pte_mkread(pte_t pte)
    205{
    206	if (unlikely(pte_get_bits(pte, _PAGE_USER)))
    207		return pte;
    208	pte_set_bits(pte, _PAGE_USER);
    209	return(pte_mknewprot(pte));
    210}
    211
    212static inline pte_t pte_mkdirty(pte_t pte)
    213{
    214	pte_set_bits(pte, _PAGE_DIRTY);
    215	return(pte);
    216}
    217
    218static inline pte_t pte_mkyoung(pte_t pte)
    219{
    220	pte_set_bits(pte, _PAGE_ACCESSED);
    221	return(pte);
    222}
    223
    224static inline pte_t pte_mkwrite(pte_t pte)
    225{
    226	if (unlikely(pte_get_bits(pte,  _PAGE_RW)))
    227		return pte;
    228	pte_set_bits(pte, _PAGE_RW);
    229	return(pte_mknewprot(pte));
    230}
    231
    232static inline pte_t pte_mkuptodate(pte_t pte)
    233{
    234	pte_clear_bits(pte, _PAGE_NEWPAGE);
    235	if(pte_present(pte))
    236		pte_clear_bits(pte, _PAGE_NEWPROT);
    237	return(pte);
    238}
    239
    240static inline pte_t pte_mknewpage(pte_t pte)
    241{
    242	pte_set_bits(pte, _PAGE_NEWPAGE);
    243	return(pte);
    244}
    245
    246static inline void set_pte(pte_t *pteptr, pte_t pteval)
    247{
    248	pte_copy(*pteptr, pteval);
    249
    250	/* If it's a swap entry, it needs to be marked _PAGE_NEWPAGE so
    251	 * fix_range knows to unmap it.  _PAGE_NEWPROT is specific to
    252	 * mapped pages.
    253	 */
    254
    255	*pteptr = pte_mknewpage(*pteptr);
    256	if(pte_present(*pteptr)) *pteptr = pte_mknewprot(*pteptr);
    257}
    258
    259static inline void set_pte_at(struct mm_struct *mm, unsigned long addr,
    260			      pte_t *pteptr, pte_t pteval)
    261{
    262	set_pte(pteptr, pteval);
    263}
    264
    265#define __HAVE_ARCH_PTE_SAME
    266static inline int pte_same(pte_t pte_a, pte_t pte_b)
    267{
    268	return !((pte_val(pte_a) ^ pte_val(pte_b)) & ~_PAGE_NEWPAGE);
    269}
    270
    271/*
    272 * Conversion functions: convert a page and protection to a page entry,
    273 * and a page entry and page directory to the page they refer to.
    274 */
    275
    276#define phys_to_page(phys) pfn_to_page(phys_to_pfn(phys))
    277#define __virt_to_page(virt) phys_to_page(__pa(virt))
    278#define page_to_phys(page) pfn_to_phys(page_to_pfn(page))
    279#define virt_to_page(addr) __virt_to_page((const unsigned long) addr)
    280
    281#define mk_pte(page, pgprot) \
    282	({ pte_t pte;					\
    283							\
    284	pte_set_val(pte, page_to_phys(page), (pgprot));	\
    285	if (pte_present(pte))				\
    286		pte_mknewprot(pte_mknewpage(pte));	\
    287	pte;})
    288
    289static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
    290{
    291	pte_set_val(pte, (pte_val(pte) & _PAGE_CHG_MASK), newprot);
    292	return pte;
    293}
    294
    295/*
    296 * the pmd page can be thought of an array like this: pmd_t[PTRS_PER_PMD]
    297 *
    298 * this macro returns the index of the entry in the pmd page which would
    299 * control the given virtual address
    300 */
    301#define pmd_page_vaddr(pmd) ((unsigned long) __va(pmd_val(pmd) & PAGE_MASK))
    302
    303struct mm_struct;
    304extern pte_t *virt_to_pte(struct mm_struct *mm, unsigned long addr);
    305
    306#define update_mmu_cache(vma,address,ptep) do {} while (0)
    307
    308/* Encode and de-code a swap entry */
    309#define __swp_type(x)			(((x).val >> 5) & 0x1f)
    310#define __swp_offset(x)			((x).val >> 11)
    311
    312#define __swp_entry(type, offset) \
    313	((swp_entry_t) { ((type) << 5) | ((offset) << 11) })
    314#define __pte_to_swp_entry(pte) \
    315	((swp_entry_t) { pte_val(pte_mkuptodate(pte)) })
    316#define __swp_entry_to_pte(x)		((pte_t) { (x).val })
    317
    318#define kern_addr_valid(addr) (1)
    319
    320/* Clear a kernel PTE and flush it from the TLB */
    321#define kpte_clear_flush(ptep, vaddr)		\
    322do {						\
    323	pte_clear(&init_mm, (vaddr), (ptep));	\
    324	__flush_tlb_one((vaddr));		\
    325} while (0)
    326
    327#endif