cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

kaslr.c (23641B)


      1// SPDX-License-Identifier: GPL-2.0
      2/*
      3 * kaslr.c
      4 *
      5 * This contains the routines needed to generate a reasonable level of
      6 * entropy to choose a randomized kernel base address offset in support
      7 * of Kernel Address Space Layout Randomization (KASLR). Additionally
      8 * handles walking the physical memory maps (and tracking memory regions
      9 * to avoid) in order to select a physical memory location that can
     10 * contain the entire properly aligned running kernel image.
     11 *
     12 */
     13
     14/*
     15 * isspace() in linux/ctype.h is expected by next_args() to filter
     16 * out "space/lf/tab". While boot/ctype.h conflicts with linux/ctype.h,
     17 * since isdigit() is implemented in both of them. Hence disable it
     18 * here.
     19 */
     20#define BOOT_CTYPE_H
     21
     22#include "misc.h"
     23#include "error.h"
     24#include "../string.h"
     25#include "efi.h"
     26
     27#include <generated/compile.h>
     28#include <linux/module.h>
     29#include <linux/uts.h>
     30#include <linux/utsname.h>
     31#include <linux/ctype.h>
     32#include <generated/utsrelease.h>
     33
     34#define _SETUP
     35#include <asm/setup.h>	/* For COMMAND_LINE_SIZE */
     36#undef _SETUP
     37
     38extern unsigned long get_cmd_line_ptr(void);
     39
     40/* Simplified build-specific string for starting entropy. */
     41static const char build_str[] = UTS_RELEASE " (" LINUX_COMPILE_BY "@"
     42		LINUX_COMPILE_HOST ") (" LINUX_COMPILER ") " UTS_VERSION;
     43
     44static unsigned long rotate_xor(unsigned long hash, const void *area,
     45				size_t size)
     46{
     47	size_t i;
     48	unsigned long *ptr = (unsigned long *)area;
     49
     50	for (i = 0; i < size / sizeof(hash); i++) {
     51		/* Rotate by odd number of bits and XOR. */
     52		hash = (hash << ((sizeof(hash) * 8) - 7)) | (hash >> 7);
     53		hash ^= ptr[i];
     54	}
     55
     56	return hash;
     57}
     58
     59/* Attempt to create a simple but unpredictable starting entropy. */
     60static unsigned long get_boot_seed(void)
     61{
     62	unsigned long hash = 0;
     63
     64	hash = rotate_xor(hash, build_str, sizeof(build_str));
     65	hash = rotate_xor(hash, boot_params, sizeof(*boot_params));
     66
     67	return hash;
     68}
     69
     70#define KASLR_COMPRESSED_BOOT
     71#include "../../lib/kaslr.c"
     72
     73
     74/* Only supporting at most 4 unusable memmap regions with kaslr */
     75#define MAX_MEMMAP_REGIONS	4
     76
     77static bool memmap_too_large;
     78
     79
     80/*
     81 * Store memory limit: MAXMEM on 64-bit and KERNEL_IMAGE_SIZE on 32-bit.
     82 * It may be reduced by "mem=nn[KMG]" or "memmap=nn[KMG]" command line options.
     83 */
     84static u64 mem_limit;
     85
     86/* Number of immovable memory regions */
     87static int num_immovable_mem;
     88
     89enum mem_avoid_index {
     90	MEM_AVOID_ZO_RANGE = 0,
     91	MEM_AVOID_INITRD,
     92	MEM_AVOID_CMDLINE,
     93	MEM_AVOID_BOOTPARAMS,
     94	MEM_AVOID_MEMMAP_BEGIN,
     95	MEM_AVOID_MEMMAP_END = MEM_AVOID_MEMMAP_BEGIN + MAX_MEMMAP_REGIONS - 1,
     96	MEM_AVOID_MAX,
     97};
     98
     99static struct mem_vector mem_avoid[MEM_AVOID_MAX];
    100
    101static bool mem_overlaps(struct mem_vector *one, struct mem_vector *two)
    102{
    103	/* Item one is entirely before item two. */
    104	if (one->start + one->size <= two->start)
    105		return false;
    106	/* Item one is entirely after item two. */
    107	if (one->start >= two->start + two->size)
    108		return false;
    109	return true;
    110}
    111
    112char *skip_spaces(const char *str)
    113{
    114	while (isspace(*str))
    115		++str;
    116	return (char *)str;
    117}
    118#include "../../../../lib/ctype.c"
    119#include "../../../../lib/cmdline.c"
    120
    121enum parse_mode {
    122	PARSE_MEMMAP,
    123	PARSE_EFI,
    124};
    125
    126static int
    127parse_memmap(char *p, u64 *start, u64 *size, enum parse_mode mode)
    128{
    129	char *oldp;
    130
    131	if (!p)
    132		return -EINVAL;
    133
    134	/* We don't care about this option here */
    135	if (!strncmp(p, "exactmap", 8))
    136		return -EINVAL;
    137
    138	oldp = p;
    139	*size = memparse(p, &p);
    140	if (p == oldp)
    141		return -EINVAL;
    142
    143	switch (*p) {
    144	case '#':
    145	case '$':
    146	case '!':
    147		*start = memparse(p + 1, &p);
    148		return 0;
    149	case '@':
    150		if (mode == PARSE_MEMMAP) {
    151			/*
    152			 * memmap=nn@ss specifies usable region, should
    153			 * be skipped
    154			 */
    155			*size = 0;
    156		} else {
    157			u64 flags;
    158
    159			/*
    160			 * efi_fake_mem=nn@ss:attr the attr specifies
    161			 * flags that might imply a soft-reservation.
    162			 */
    163			*start = memparse(p + 1, &p);
    164			if (p && *p == ':') {
    165				p++;
    166				if (kstrtoull(p, 0, &flags) < 0)
    167					*size = 0;
    168				else if (flags & EFI_MEMORY_SP)
    169					return 0;
    170			}
    171			*size = 0;
    172		}
    173		fallthrough;
    174	default:
    175		/*
    176		 * If w/o offset, only size specified, memmap=nn[KMG] has the
    177		 * same behaviour as mem=nn[KMG]. It limits the max address
    178		 * system can use. Region above the limit should be avoided.
    179		 */
    180		*start = 0;
    181		return 0;
    182	}
    183
    184	return -EINVAL;
    185}
    186
    187static void mem_avoid_memmap(enum parse_mode mode, char *str)
    188{
    189	static int i;
    190
    191	if (i >= MAX_MEMMAP_REGIONS)
    192		return;
    193
    194	while (str && (i < MAX_MEMMAP_REGIONS)) {
    195		int rc;
    196		u64 start, size;
    197		char *k = strchr(str, ',');
    198
    199		if (k)
    200			*k++ = 0;
    201
    202		rc = parse_memmap(str, &start, &size, mode);
    203		if (rc < 0)
    204			break;
    205		str = k;
    206
    207		if (start == 0) {
    208			/* Store the specified memory limit if size > 0 */
    209			if (size > 0 && size < mem_limit)
    210				mem_limit = size;
    211
    212			continue;
    213		}
    214
    215		mem_avoid[MEM_AVOID_MEMMAP_BEGIN + i].start = start;
    216		mem_avoid[MEM_AVOID_MEMMAP_BEGIN + i].size = size;
    217		i++;
    218	}
    219
    220	/* More than 4 memmaps, fail kaslr */
    221	if ((i >= MAX_MEMMAP_REGIONS) && str)
    222		memmap_too_large = true;
    223}
    224
    225/* Store the number of 1GB huge pages which users specified: */
    226static unsigned long max_gb_huge_pages;
    227
    228static void parse_gb_huge_pages(char *param, char *val)
    229{
    230	static bool gbpage_sz;
    231	char *p;
    232
    233	if (!strcmp(param, "hugepagesz")) {
    234		p = val;
    235		if (memparse(p, &p) != PUD_SIZE) {
    236			gbpage_sz = false;
    237			return;
    238		}
    239
    240		if (gbpage_sz)
    241			warn("Repeatedly set hugeTLB page size of 1G!\n");
    242		gbpage_sz = true;
    243		return;
    244	}
    245
    246	if (!strcmp(param, "hugepages") && gbpage_sz) {
    247		p = val;
    248		max_gb_huge_pages = simple_strtoull(p, &p, 0);
    249		return;
    250	}
    251}
    252
    253static void handle_mem_options(void)
    254{
    255	char *args = (char *)get_cmd_line_ptr();
    256	size_t len;
    257	char *tmp_cmdline;
    258	char *param, *val;
    259	u64 mem_size;
    260
    261	if (!args)
    262		return;
    263
    264	len = strnlen(args, COMMAND_LINE_SIZE-1);
    265	tmp_cmdline = malloc(len + 1);
    266	if (!tmp_cmdline)
    267		error("Failed to allocate space for tmp_cmdline");
    268
    269	memcpy(tmp_cmdline, args, len);
    270	tmp_cmdline[len] = 0;
    271	args = tmp_cmdline;
    272
    273	/* Chew leading spaces */
    274	args = skip_spaces(args);
    275
    276	while (*args) {
    277		args = next_arg(args, &param, &val);
    278		/* Stop at -- */
    279		if (!val && strcmp(param, "--") == 0)
    280			break;
    281
    282		if (!strcmp(param, "memmap")) {
    283			mem_avoid_memmap(PARSE_MEMMAP, val);
    284		} else if (IS_ENABLED(CONFIG_X86_64) && strstr(param, "hugepages")) {
    285			parse_gb_huge_pages(param, val);
    286		} else if (!strcmp(param, "mem")) {
    287			char *p = val;
    288
    289			if (!strcmp(p, "nopentium"))
    290				continue;
    291			mem_size = memparse(p, &p);
    292			if (mem_size == 0)
    293				break;
    294
    295			if (mem_size < mem_limit)
    296				mem_limit = mem_size;
    297		} else if (!strcmp(param, "efi_fake_mem")) {
    298			mem_avoid_memmap(PARSE_EFI, val);
    299		}
    300	}
    301
    302	free(tmp_cmdline);
    303	return;
    304}
    305
    306/*
    307 * In theory, KASLR can put the kernel anywhere in the range of [16M, MAXMEM)
    308 * on 64-bit, and [16M, KERNEL_IMAGE_SIZE) on 32-bit.
    309 *
    310 * The mem_avoid array is used to store the ranges that need to be avoided
    311 * when KASLR searches for an appropriate random address. We must avoid any
    312 * regions that are unsafe to overlap with during decompression, and other
    313 * things like the initrd, cmdline and boot_params. This comment seeks to
    314 * explain mem_avoid as clearly as possible since incorrect mem_avoid
    315 * memory ranges lead to really hard to debug boot failures.
    316 *
    317 * The initrd, cmdline, and boot_params are trivial to identify for
    318 * avoiding. They are MEM_AVOID_INITRD, MEM_AVOID_CMDLINE, and
    319 * MEM_AVOID_BOOTPARAMS respectively below.
    320 *
    321 * What is not obvious how to avoid is the range of memory that is used
    322 * during decompression (MEM_AVOID_ZO_RANGE below). This range must cover
    323 * the compressed kernel (ZO) and its run space, which is used to extract
    324 * the uncompressed kernel (VO) and relocs.
    325 *
    326 * ZO's full run size sits against the end of the decompression buffer, so
    327 * we can calculate where text, data, bss, etc of ZO are positioned more
    328 * easily.
    329 *
    330 * For additional background, the decompression calculations can be found
    331 * in header.S, and the memory diagram is based on the one found in misc.c.
    332 *
    333 * The following conditions are already enforced by the image layouts and
    334 * associated code:
    335 *  - input + input_size >= output + output_size
    336 *  - kernel_total_size <= init_size
    337 *  - kernel_total_size <= output_size (see Note below)
    338 *  - output + init_size >= output + output_size
    339 *
    340 * (Note that kernel_total_size and output_size have no fundamental
    341 * relationship, but output_size is passed to choose_random_location
    342 * as a maximum of the two. The diagram is showing a case where
    343 * kernel_total_size is larger than output_size, but this case is
    344 * handled by bumping output_size.)
    345 *
    346 * The above conditions can be illustrated by a diagram:
    347 *
    348 * 0   output            input            input+input_size    output+init_size
    349 * |     |                 |                             |             |
    350 * |     |                 |                             |             |
    351 * |-----|--------|--------|--------------|-----------|--|-------------|
    352 *                |                       |           |
    353 *                |                       |           |
    354 * output+init_size-ZO_INIT_SIZE  output+output_size  output+kernel_total_size
    355 *
    356 * [output, output+init_size) is the entire memory range used for
    357 * extracting the compressed image.
    358 *
    359 * [output, output+kernel_total_size) is the range needed for the
    360 * uncompressed kernel (VO) and its run size (bss, brk, etc).
    361 *
    362 * [output, output+output_size) is VO plus relocs (i.e. the entire
    363 * uncompressed payload contained by ZO). This is the area of the buffer
    364 * written to during decompression.
    365 *
    366 * [output+init_size-ZO_INIT_SIZE, output+init_size) is the worst-case
    367 * range of the copied ZO and decompression code. (i.e. the range
    368 * covered backwards of size ZO_INIT_SIZE, starting from output+init_size.)
    369 *
    370 * [input, input+input_size) is the original copied compressed image (ZO)
    371 * (i.e. it does not include its run size). This range must be avoided
    372 * because it contains the data used for decompression.
    373 *
    374 * [input+input_size, output+init_size) is [_text, _end) for ZO. This
    375 * range includes ZO's heap and stack, and must be avoided since it
    376 * performs the decompression.
    377 *
    378 * Since the above two ranges need to be avoided and they are adjacent,
    379 * they can be merged, resulting in: [input, output+init_size) which
    380 * becomes the MEM_AVOID_ZO_RANGE below.
    381 */
    382static void mem_avoid_init(unsigned long input, unsigned long input_size,
    383			   unsigned long output)
    384{
    385	unsigned long init_size = boot_params->hdr.init_size;
    386	u64 initrd_start, initrd_size;
    387	unsigned long cmd_line, cmd_line_size;
    388
    389	/*
    390	 * Avoid the region that is unsafe to overlap during
    391	 * decompression.
    392	 */
    393	mem_avoid[MEM_AVOID_ZO_RANGE].start = input;
    394	mem_avoid[MEM_AVOID_ZO_RANGE].size = (output + init_size) - input;
    395
    396	/* Avoid initrd. */
    397	initrd_start  = (u64)boot_params->ext_ramdisk_image << 32;
    398	initrd_start |= boot_params->hdr.ramdisk_image;
    399	initrd_size  = (u64)boot_params->ext_ramdisk_size << 32;
    400	initrd_size |= boot_params->hdr.ramdisk_size;
    401	mem_avoid[MEM_AVOID_INITRD].start = initrd_start;
    402	mem_avoid[MEM_AVOID_INITRD].size = initrd_size;
    403	/* No need to set mapping for initrd, it will be handled in VO. */
    404
    405	/* Avoid kernel command line. */
    406	cmd_line = get_cmd_line_ptr();
    407	/* Calculate size of cmd_line. */
    408	if (cmd_line) {
    409		cmd_line_size = strnlen((char *)cmd_line, COMMAND_LINE_SIZE-1) + 1;
    410		mem_avoid[MEM_AVOID_CMDLINE].start = cmd_line;
    411		mem_avoid[MEM_AVOID_CMDLINE].size = cmd_line_size;
    412	}
    413
    414	/* Avoid boot parameters. */
    415	mem_avoid[MEM_AVOID_BOOTPARAMS].start = (unsigned long)boot_params;
    416	mem_avoid[MEM_AVOID_BOOTPARAMS].size = sizeof(*boot_params);
    417
    418	/* We don't need to set a mapping for setup_data. */
    419
    420	/* Mark the memmap regions we need to avoid */
    421	handle_mem_options();
    422
    423	/* Enumerate the immovable memory regions */
    424	num_immovable_mem = count_immovable_mem_regions();
    425}
    426
    427/*
    428 * Does this memory vector overlap a known avoided area? If so, record the
    429 * overlap region with the lowest address.
    430 */
    431static bool mem_avoid_overlap(struct mem_vector *img,
    432			      struct mem_vector *overlap)
    433{
    434	int i;
    435	struct setup_data *ptr;
    436	u64 earliest = img->start + img->size;
    437	bool is_overlapping = false;
    438
    439	for (i = 0; i < MEM_AVOID_MAX; i++) {
    440		if (mem_overlaps(img, &mem_avoid[i]) &&
    441		    mem_avoid[i].start < earliest) {
    442			*overlap = mem_avoid[i];
    443			earliest = overlap->start;
    444			is_overlapping = true;
    445		}
    446	}
    447
    448	/* Avoid all entries in the setup_data linked list. */
    449	ptr = (struct setup_data *)(unsigned long)boot_params->hdr.setup_data;
    450	while (ptr) {
    451		struct mem_vector avoid;
    452
    453		avoid.start = (unsigned long)ptr;
    454		avoid.size = sizeof(*ptr) + ptr->len;
    455
    456		if (mem_overlaps(img, &avoid) && (avoid.start < earliest)) {
    457			*overlap = avoid;
    458			earliest = overlap->start;
    459			is_overlapping = true;
    460		}
    461
    462		if (ptr->type == SETUP_INDIRECT &&
    463		    ((struct setup_indirect *)ptr->data)->type != SETUP_INDIRECT) {
    464			avoid.start = ((struct setup_indirect *)ptr->data)->addr;
    465			avoid.size = ((struct setup_indirect *)ptr->data)->len;
    466
    467			if (mem_overlaps(img, &avoid) && (avoid.start < earliest)) {
    468				*overlap = avoid;
    469				earliest = overlap->start;
    470				is_overlapping = true;
    471			}
    472		}
    473
    474		ptr = (struct setup_data *)(unsigned long)ptr->next;
    475	}
    476
    477	return is_overlapping;
    478}
    479
    480struct slot_area {
    481	u64 addr;
    482	unsigned long num;
    483};
    484
    485#define MAX_SLOT_AREA 100
    486
    487static struct slot_area slot_areas[MAX_SLOT_AREA];
    488static unsigned int slot_area_index;
    489static unsigned long slot_max;
    490
    491static void store_slot_info(struct mem_vector *region, unsigned long image_size)
    492{
    493	struct slot_area slot_area;
    494
    495	if (slot_area_index == MAX_SLOT_AREA)
    496		return;
    497
    498	slot_area.addr = region->start;
    499	slot_area.num = 1 + (region->size - image_size) / CONFIG_PHYSICAL_ALIGN;
    500
    501	slot_areas[slot_area_index++] = slot_area;
    502	slot_max += slot_area.num;
    503}
    504
    505/*
    506 * Skip as many 1GB huge pages as possible in the passed region
    507 * according to the number which users specified:
    508 */
    509static void
    510process_gb_huge_pages(struct mem_vector *region, unsigned long image_size)
    511{
    512	u64 pud_start, pud_end;
    513	unsigned long gb_huge_pages;
    514	struct mem_vector tmp;
    515
    516	if (!IS_ENABLED(CONFIG_X86_64) || !max_gb_huge_pages) {
    517		store_slot_info(region, image_size);
    518		return;
    519	}
    520
    521	/* Are there any 1GB pages in the region? */
    522	pud_start = ALIGN(region->start, PUD_SIZE);
    523	pud_end = ALIGN_DOWN(region->start + region->size, PUD_SIZE);
    524
    525	/* No good 1GB huge pages found: */
    526	if (pud_start >= pud_end) {
    527		store_slot_info(region, image_size);
    528		return;
    529	}
    530
    531	/* Check if the head part of the region is usable. */
    532	if (pud_start >= region->start + image_size) {
    533		tmp.start = region->start;
    534		tmp.size = pud_start - region->start;
    535		store_slot_info(&tmp, image_size);
    536	}
    537
    538	/* Skip the good 1GB pages. */
    539	gb_huge_pages = (pud_end - pud_start) >> PUD_SHIFT;
    540	if (gb_huge_pages > max_gb_huge_pages) {
    541		pud_end = pud_start + (max_gb_huge_pages << PUD_SHIFT);
    542		max_gb_huge_pages = 0;
    543	} else {
    544		max_gb_huge_pages -= gb_huge_pages;
    545	}
    546
    547	/* Check if the tail part of the region is usable. */
    548	if (region->start + region->size >= pud_end + image_size) {
    549		tmp.start = pud_end;
    550		tmp.size = region->start + region->size - pud_end;
    551		store_slot_info(&tmp, image_size);
    552	}
    553}
    554
    555static u64 slots_fetch_random(void)
    556{
    557	unsigned long slot;
    558	unsigned int i;
    559
    560	/* Handle case of no slots stored. */
    561	if (slot_max == 0)
    562		return 0;
    563
    564	slot = kaslr_get_random_long("Physical") % slot_max;
    565
    566	for (i = 0; i < slot_area_index; i++) {
    567		if (slot >= slot_areas[i].num) {
    568			slot -= slot_areas[i].num;
    569			continue;
    570		}
    571		return slot_areas[i].addr + ((u64)slot * CONFIG_PHYSICAL_ALIGN);
    572	}
    573
    574	if (i == slot_area_index)
    575		debug_putstr("slots_fetch_random() failed!?\n");
    576	return 0;
    577}
    578
    579static void __process_mem_region(struct mem_vector *entry,
    580				 unsigned long minimum,
    581				 unsigned long image_size)
    582{
    583	struct mem_vector region, overlap;
    584	u64 region_end;
    585
    586	/* Enforce minimum and memory limit. */
    587	region.start = max_t(u64, entry->start, minimum);
    588	region_end = min(entry->start + entry->size, mem_limit);
    589
    590	/* Give up if slot area array is full. */
    591	while (slot_area_index < MAX_SLOT_AREA) {
    592		/* Potentially raise address to meet alignment needs. */
    593		region.start = ALIGN(region.start, CONFIG_PHYSICAL_ALIGN);
    594
    595		/* Did we raise the address above the passed in memory entry? */
    596		if (region.start > region_end)
    597			return;
    598
    599		/* Reduce size by any delta from the original address. */
    600		region.size = region_end - region.start;
    601
    602		/* Return if region can't contain decompressed kernel */
    603		if (region.size < image_size)
    604			return;
    605
    606		/* If nothing overlaps, store the region and return. */
    607		if (!mem_avoid_overlap(&region, &overlap)) {
    608			process_gb_huge_pages(&region, image_size);
    609			return;
    610		}
    611
    612		/* Store beginning of region if holds at least image_size. */
    613		if (overlap.start >= region.start + image_size) {
    614			region.size = overlap.start - region.start;
    615			process_gb_huge_pages(&region, image_size);
    616		}
    617
    618		/* Clip off the overlapping region and start over. */
    619		region.start = overlap.start + overlap.size;
    620	}
    621}
    622
    623static bool process_mem_region(struct mem_vector *region,
    624			       unsigned long minimum,
    625			       unsigned long image_size)
    626{
    627	int i;
    628	/*
    629	 * If no immovable memory found, or MEMORY_HOTREMOVE disabled,
    630	 * use @region directly.
    631	 */
    632	if (!num_immovable_mem) {
    633		__process_mem_region(region, minimum, image_size);
    634
    635		if (slot_area_index == MAX_SLOT_AREA) {
    636			debug_putstr("Aborted e820/efi memmap scan (slot_areas full)!\n");
    637			return true;
    638		}
    639		return false;
    640	}
    641
    642#if defined(CONFIG_MEMORY_HOTREMOVE) && defined(CONFIG_ACPI)
    643	/*
    644	 * If immovable memory found, filter the intersection between
    645	 * immovable memory and @region.
    646	 */
    647	for (i = 0; i < num_immovable_mem; i++) {
    648		u64 start, end, entry_end, region_end;
    649		struct mem_vector entry;
    650
    651		if (!mem_overlaps(region, &immovable_mem[i]))
    652			continue;
    653
    654		start = immovable_mem[i].start;
    655		end = start + immovable_mem[i].size;
    656		region_end = region->start + region->size;
    657
    658		entry.start = clamp(region->start, start, end);
    659		entry_end = clamp(region_end, start, end);
    660		entry.size = entry_end - entry.start;
    661
    662		__process_mem_region(&entry, minimum, image_size);
    663
    664		if (slot_area_index == MAX_SLOT_AREA) {
    665			debug_putstr("Aborted e820/efi memmap scan when walking immovable regions(slot_areas full)!\n");
    666			return true;
    667		}
    668	}
    669#endif
    670	return 0;
    671}
    672
    673#ifdef CONFIG_EFI
    674/*
    675 * Returns true if we processed the EFI memmap, which we prefer over the E820
    676 * table if it is available.
    677 */
    678static bool
    679process_efi_entries(unsigned long minimum, unsigned long image_size)
    680{
    681	struct efi_info *e = &boot_params->efi_info;
    682	bool efi_mirror_found = false;
    683	struct mem_vector region;
    684	efi_memory_desc_t *md;
    685	unsigned long pmap;
    686	char *signature;
    687	u32 nr_desc;
    688	int i;
    689
    690	signature = (char *)&e->efi_loader_signature;
    691	if (strncmp(signature, EFI32_LOADER_SIGNATURE, 4) &&
    692	    strncmp(signature, EFI64_LOADER_SIGNATURE, 4))
    693		return false;
    694
    695#ifdef CONFIG_X86_32
    696	/* Can't handle data above 4GB at this time */
    697	if (e->efi_memmap_hi) {
    698		warn("EFI memmap is above 4GB, can't be handled now on x86_32. EFI should be disabled.\n");
    699		return false;
    700	}
    701	pmap =  e->efi_memmap;
    702#else
    703	pmap = (e->efi_memmap | ((__u64)e->efi_memmap_hi << 32));
    704#endif
    705
    706	nr_desc = e->efi_memmap_size / e->efi_memdesc_size;
    707	for (i = 0; i < nr_desc; i++) {
    708		md = efi_early_memdesc_ptr(pmap, e->efi_memdesc_size, i);
    709		if (md->attribute & EFI_MEMORY_MORE_RELIABLE) {
    710			efi_mirror_found = true;
    711			break;
    712		}
    713	}
    714
    715	for (i = 0; i < nr_desc; i++) {
    716		md = efi_early_memdesc_ptr(pmap, e->efi_memdesc_size, i);
    717
    718		/*
    719		 * Here we are more conservative in picking free memory than
    720		 * the EFI spec allows:
    721		 *
    722		 * According to the spec, EFI_BOOT_SERVICES_{CODE|DATA} are also
    723		 * free memory and thus available to place the kernel image into,
    724		 * but in practice there's firmware where using that memory leads
    725		 * to crashes.
    726		 *
    727		 * Only EFI_CONVENTIONAL_MEMORY is guaranteed to be free.
    728		 */
    729		if (md->type != EFI_CONVENTIONAL_MEMORY)
    730			continue;
    731
    732		if (efi_soft_reserve_enabled() &&
    733		    (md->attribute & EFI_MEMORY_SP))
    734			continue;
    735
    736		if (efi_mirror_found &&
    737		    !(md->attribute & EFI_MEMORY_MORE_RELIABLE))
    738			continue;
    739
    740		region.start = md->phys_addr;
    741		region.size = md->num_pages << EFI_PAGE_SHIFT;
    742		if (process_mem_region(&region, minimum, image_size))
    743			break;
    744	}
    745	return true;
    746}
    747#else
    748static inline bool
    749process_efi_entries(unsigned long minimum, unsigned long image_size)
    750{
    751	return false;
    752}
    753#endif
    754
    755static void process_e820_entries(unsigned long minimum,
    756				 unsigned long image_size)
    757{
    758	int i;
    759	struct mem_vector region;
    760	struct boot_e820_entry *entry;
    761
    762	/* Verify potential e820 positions, appending to slots list. */
    763	for (i = 0; i < boot_params->e820_entries; i++) {
    764		entry = &boot_params->e820_table[i];
    765		/* Skip non-RAM entries. */
    766		if (entry->type != E820_TYPE_RAM)
    767			continue;
    768		region.start = entry->addr;
    769		region.size = entry->size;
    770		if (process_mem_region(&region, minimum, image_size))
    771			break;
    772	}
    773}
    774
    775static unsigned long find_random_phys_addr(unsigned long minimum,
    776					   unsigned long image_size)
    777{
    778	u64 phys_addr;
    779
    780	/* Bail out early if it's impossible to succeed. */
    781	if (minimum + image_size > mem_limit)
    782		return 0;
    783
    784	/* Check if we had too many memmaps. */
    785	if (memmap_too_large) {
    786		debug_putstr("Aborted memory entries scan (more than 4 memmap= args)!\n");
    787		return 0;
    788	}
    789
    790	if (!process_efi_entries(minimum, image_size))
    791		process_e820_entries(minimum, image_size);
    792
    793	phys_addr = slots_fetch_random();
    794
    795	/* Perform a final check to make sure the address is in range. */
    796	if (phys_addr < minimum || phys_addr + image_size > mem_limit) {
    797		warn("Invalid physical address chosen!\n");
    798		return 0;
    799	}
    800
    801	return (unsigned long)phys_addr;
    802}
    803
    804static unsigned long find_random_virt_addr(unsigned long minimum,
    805					   unsigned long image_size)
    806{
    807	unsigned long slots, random_addr;
    808
    809	/*
    810	 * There are how many CONFIG_PHYSICAL_ALIGN-sized slots
    811	 * that can hold image_size within the range of minimum to
    812	 * KERNEL_IMAGE_SIZE?
    813	 */
    814	slots = 1 + (KERNEL_IMAGE_SIZE - minimum - image_size) / CONFIG_PHYSICAL_ALIGN;
    815
    816	random_addr = kaslr_get_random_long("Virtual") % slots;
    817
    818	return random_addr * CONFIG_PHYSICAL_ALIGN + minimum;
    819}
    820
    821/*
    822 * Since this function examines addresses much more numerically,
    823 * it takes the input and output pointers as 'unsigned long'.
    824 */
    825void choose_random_location(unsigned long input,
    826			    unsigned long input_size,
    827			    unsigned long *output,
    828			    unsigned long output_size,
    829			    unsigned long *virt_addr)
    830{
    831	unsigned long random_addr, min_addr;
    832
    833	if (cmdline_find_option_bool("nokaslr")) {
    834		warn("KASLR disabled: 'nokaslr' on cmdline.");
    835		return;
    836	}
    837
    838	boot_params->hdr.loadflags |= KASLR_FLAG;
    839
    840	if (IS_ENABLED(CONFIG_X86_32))
    841		mem_limit = KERNEL_IMAGE_SIZE;
    842	else
    843		mem_limit = MAXMEM;
    844
    845	/* Record the various known unsafe memory ranges. */
    846	mem_avoid_init(input, input_size, *output);
    847
    848	/*
    849	 * Low end of the randomization range should be the
    850	 * smaller of 512M or the initial kernel image
    851	 * location:
    852	 */
    853	min_addr = min(*output, 512UL << 20);
    854	/* Make sure minimum is aligned. */
    855	min_addr = ALIGN(min_addr, CONFIG_PHYSICAL_ALIGN);
    856
    857	/* Walk available memory entries to find a random address. */
    858	random_addr = find_random_phys_addr(min_addr, output_size);
    859	if (!random_addr) {
    860		warn("Physical KASLR disabled: no suitable memory region!");
    861	} else {
    862		/* Update the new physical address location. */
    863		if (*output != random_addr)
    864			*output = random_addr;
    865	}
    866
    867
    868	/* Pick random virtual address starting from LOAD_PHYSICAL_ADDR. */
    869	if (IS_ENABLED(CONFIG_X86_64))
    870		random_addr = find_random_virt_addr(LOAD_PHYSICAL_ADDR, output_size);
    871	*virt_addr = random_addr;
    872}