cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

crct10dif-pcl-asm_64.S (11133B)


      1########################################################################
      2# Implement fast CRC-T10DIF computation with SSE and PCLMULQDQ instructions
      3#
      4# Copyright (c) 2013, Intel Corporation
      5#
      6# Authors:
      7#     Erdinc Ozturk <erdinc.ozturk@intel.com>
      8#     Vinodh Gopal <vinodh.gopal@intel.com>
      9#     James Guilford <james.guilford@intel.com>
     10#     Tim Chen <tim.c.chen@linux.intel.com>
     11#
     12# This software is available to you under a choice of one of two
     13# licenses.  You may choose to be licensed under the terms of the GNU
     14# General Public License (GPL) Version 2, available from the file
     15# COPYING in the main directory of this source tree, or the
     16# OpenIB.org BSD license below:
     17#
     18# Redistribution and use in source and binary forms, with or without
     19# modification, are permitted provided that the following conditions are
     20# met:
     21#
     22# * Redistributions of source code must retain the above copyright
     23#   notice, this list of conditions and the following disclaimer.
     24#
     25# * Redistributions in binary form must reproduce the above copyright
     26#   notice, this list of conditions and the following disclaimer in the
     27#   documentation and/or other materials provided with the
     28#   distribution.
     29#
     30# * Neither the name of the Intel Corporation nor the names of its
     31#   contributors may be used to endorse or promote products derived from
     32#   this software without specific prior written permission.
     33#
     34#
     35# THIS SOFTWARE IS PROVIDED BY INTEL CORPORATION ""AS IS"" AND ANY
     36# EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     37# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     38# PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL CORPORATION OR
     39# CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
     40# EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
     41# PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
     42# PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
     43# LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
     44# NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
     45# SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     46#
     47#       Reference paper titled "Fast CRC Computation for Generic
     48#	Polynomials Using PCLMULQDQ Instruction"
     49#       URL: http://www.intel.com/content/dam/www/public/us/en/documents
     50#  /white-papers/fast-crc-computation-generic-polynomials-pclmulqdq-paper.pdf
     51#
     52
     53#include <linux/linkage.h>
     54
     55.text
     56
     57#define		init_crc	%edi
     58#define		buf		%rsi
     59#define		len		%rdx
     60
     61#define		FOLD_CONSTS	%xmm10
     62#define		BSWAP_MASK	%xmm11
     63
     64# Fold reg1, reg2 into the next 32 data bytes, storing the result back into
     65# reg1, reg2.
     66.macro	fold_32_bytes	offset, reg1, reg2
     67	movdqu	\offset(buf), %xmm9
     68	movdqu	\offset+16(buf), %xmm12
     69	pshufb	BSWAP_MASK, %xmm9
     70	pshufb	BSWAP_MASK, %xmm12
     71	movdqa	\reg1, %xmm8
     72	movdqa	\reg2, %xmm13
     73	pclmulqdq	$0x00, FOLD_CONSTS, \reg1
     74	pclmulqdq	$0x11, FOLD_CONSTS, %xmm8
     75	pclmulqdq	$0x00, FOLD_CONSTS, \reg2
     76	pclmulqdq	$0x11, FOLD_CONSTS, %xmm13
     77	pxor	%xmm9 , \reg1
     78	xorps	%xmm8 , \reg1
     79	pxor	%xmm12, \reg2
     80	xorps	%xmm13, \reg2
     81.endm
     82
     83# Fold src_reg into dst_reg.
     84.macro	fold_16_bytes	src_reg, dst_reg
     85	movdqa	\src_reg, %xmm8
     86	pclmulqdq	$0x11, FOLD_CONSTS, \src_reg
     87	pclmulqdq	$0x00, FOLD_CONSTS, %xmm8
     88	pxor	%xmm8, \dst_reg
     89	xorps	\src_reg, \dst_reg
     90.endm
     91
     92#
     93# u16 crc_t10dif_pcl(u16 init_crc, const *u8 buf, size_t len);
     94#
     95# Assumes len >= 16.
     96#
     97.align 16
     98SYM_FUNC_START(crc_t10dif_pcl)
     99
    100	movdqa	.Lbswap_mask(%rip), BSWAP_MASK
    101
    102	# For sizes less than 256 bytes, we can't fold 128 bytes at a time.
    103	cmp	$256, len
    104	jl	.Lless_than_256_bytes
    105
    106	# Load the first 128 data bytes.  Byte swapping is necessary to make the
    107	# bit order match the polynomial coefficient order.
    108	movdqu	16*0(buf), %xmm0
    109	movdqu	16*1(buf), %xmm1
    110	movdqu	16*2(buf), %xmm2
    111	movdqu	16*3(buf), %xmm3
    112	movdqu	16*4(buf), %xmm4
    113	movdqu	16*5(buf), %xmm5
    114	movdqu	16*6(buf), %xmm6
    115	movdqu	16*7(buf), %xmm7
    116	add	$128, buf
    117	pshufb	BSWAP_MASK, %xmm0
    118	pshufb	BSWAP_MASK, %xmm1
    119	pshufb	BSWAP_MASK, %xmm2
    120	pshufb	BSWAP_MASK, %xmm3
    121	pshufb	BSWAP_MASK, %xmm4
    122	pshufb	BSWAP_MASK, %xmm5
    123	pshufb	BSWAP_MASK, %xmm6
    124	pshufb	BSWAP_MASK, %xmm7
    125
    126	# XOR the first 16 data *bits* with the initial CRC value.
    127	pxor	%xmm8, %xmm8
    128	pinsrw	$7, init_crc, %xmm8
    129	pxor	%xmm8, %xmm0
    130
    131	movdqa	.Lfold_across_128_bytes_consts(%rip), FOLD_CONSTS
    132
    133	# Subtract 128 for the 128 data bytes just consumed.  Subtract another
    134	# 128 to simplify the termination condition of the following loop.
    135	sub	$256, len
    136
    137	# While >= 128 data bytes remain (not counting xmm0-7), fold the 128
    138	# bytes xmm0-7 into them, storing the result back into xmm0-7.
    139.Lfold_128_bytes_loop:
    140	fold_32_bytes	0, %xmm0, %xmm1
    141	fold_32_bytes	32, %xmm2, %xmm3
    142	fold_32_bytes	64, %xmm4, %xmm5
    143	fold_32_bytes	96, %xmm6, %xmm7
    144	add	$128, buf
    145	sub	$128, len
    146	jge	.Lfold_128_bytes_loop
    147
    148	# Now fold the 112 bytes in xmm0-xmm6 into the 16 bytes in xmm7.
    149
    150	# Fold across 64 bytes.
    151	movdqa	.Lfold_across_64_bytes_consts(%rip), FOLD_CONSTS
    152	fold_16_bytes	%xmm0, %xmm4
    153	fold_16_bytes	%xmm1, %xmm5
    154	fold_16_bytes	%xmm2, %xmm6
    155	fold_16_bytes	%xmm3, %xmm7
    156	# Fold across 32 bytes.
    157	movdqa	.Lfold_across_32_bytes_consts(%rip), FOLD_CONSTS
    158	fold_16_bytes	%xmm4, %xmm6
    159	fold_16_bytes	%xmm5, %xmm7
    160	# Fold across 16 bytes.
    161	movdqa	.Lfold_across_16_bytes_consts(%rip), FOLD_CONSTS
    162	fold_16_bytes	%xmm6, %xmm7
    163
    164	# Add 128 to get the correct number of data bytes remaining in 0...127
    165	# (not counting xmm7), following the previous extra subtraction by 128.
    166	# Then subtract 16 to simplify the termination condition of the
    167	# following loop.
    168	add	$128-16, len
    169
    170	# While >= 16 data bytes remain (not counting xmm7), fold the 16 bytes
    171	# xmm7 into them, storing the result back into xmm7.
    172	jl	.Lfold_16_bytes_loop_done
    173.Lfold_16_bytes_loop:
    174	movdqa	%xmm7, %xmm8
    175	pclmulqdq	$0x11, FOLD_CONSTS, %xmm7
    176	pclmulqdq	$0x00, FOLD_CONSTS, %xmm8
    177	pxor	%xmm8, %xmm7
    178	movdqu	(buf), %xmm0
    179	pshufb	BSWAP_MASK, %xmm0
    180	pxor	%xmm0 , %xmm7
    181	add	$16, buf
    182	sub	$16, len
    183	jge	.Lfold_16_bytes_loop
    184
    185.Lfold_16_bytes_loop_done:
    186	# Add 16 to get the correct number of data bytes remaining in 0...15
    187	# (not counting xmm7), following the previous extra subtraction by 16.
    188	add	$16, len
    189	je	.Lreduce_final_16_bytes
    190
    191.Lhandle_partial_segment:
    192	# Reduce the last '16 + len' bytes where 1 <= len <= 15 and the first 16
    193	# bytes are in xmm7 and the rest are the remaining data in 'buf'.  To do
    194	# this without needing a fold constant for each possible 'len', redivide
    195	# the bytes into a first chunk of 'len' bytes and a second chunk of 16
    196	# bytes, then fold the first chunk into the second.
    197
    198	movdqa	%xmm7, %xmm2
    199
    200	# xmm1 = last 16 original data bytes
    201	movdqu	-16(buf, len), %xmm1
    202	pshufb	BSWAP_MASK, %xmm1
    203
    204	# xmm2 = high order part of second chunk: xmm7 left-shifted by 'len' bytes.
    205	lea	.Lbyteshift_table+16(%rip), %rax
    206	sub	len, %rax
    207	movdqu	(%rax), %xmm0
    208	pshufb	%xmm0, %xmm2
    209
    210	# xmm7 = first chunk: xmm7 right-shifted by '16-len' bytes.
    211	pxor	.Lmask1(%rip), %xmm0
    212	pshufb	%xmm0, %xmm7
    213
    214	# xmm1 = second chunk: 'len' bytes from xmm1 (low-order bytes),
    215	# then '16-len' bytes from xmm2 (high-order bytes).
    216	pblendvb	%xmm2, %xmm1	#xmm0 is implicit
    217
    218	# Fold the first chunk into the second chunk, storing the result in xmm7.
    219	movdqa	%xmm7, %xmm8
    220	pclmulqdq	$0x11, FOLD_CONSTS, %xmm7
    221	pclmulqdq	$0x00, FOLD_CONSTS, %xmm8
    222	pxor	%xmm8, %xmm7
    223	pxor	%xmm1, %xmm7
    224
    225.Lreduce_final_16_bytes:
    226	# Reduce the 128-bit value M(x), stored in xmm7, to the final 16-bit CRC
    227
    228	# Load 'x^48 * (x^48 mod G(x))' and 'x^48 * (x^80 mod G(x))'.
    229	movdqa	.Lfinal_fold_consts(%rip), FOLD_CONSTS
    230
    231	# Fold the high 64 bits into the low 64 bits, while also multiplying by
    232	# x^64.  This produces a 128-bit value congruent to x^64 * M(x) and
    233	# whose low 48 bits are 0.
    234	movdqa	%xmm7, %xmm0
    235	pclmulqdq	$0x11, FOLD_CONSTS, %xmm7 # high bits * x^48 * (x^80 mod G(x))
    236	pslldq	$8, %xmm0
    237	pxor	%xmm0, %xmm7			  # + low bits * x^64
    238
    239	# Fold the high 32 bits into the low 96 bits.  This produces a 96-bit
    240	# value congruent to x^64 * M(x) and whose low 48 bits are 0.
    241	movdqa	%xmm7, %xmm0
    242	pand	.Lmask2(%rip), %xmm0		  # zero high 32 bits
    243	psrldq	$12, %xmm7			  # extract high 32 bits
    244	pclmulqdq	$0x00, FOLD_CONSTS, %xmm7 # high 32 bits * x^48 * (x^48 mod G(x))
    245	pxor	%xmm0, %xmm7			  # + low bits
    246
    247	# Load G(x) and floor(x^48 / G(x)).
    248	movdqa	.Lbarrett_reduction_consts(%rip), FOLD_CONSTS
    249
    250	# Use Barrett reduction to compute the final CRC value.
    251	movdqa	%xmm7, %xmm0
    252	pclmulqdq	$0x11, FOLD_CONSTS, %xmm7 # high 32 bits * floor(x^48 / G(x))
    253	psrlq	$32, %xmm7			  # /= x^32
    254	pclmulqdq	$0x00, FOLD_CONSTS, %xmm7 # *= G(x)
    255	psrlq	$48, %xmm0
    256	pxor	%xmm7, %xmm0		     # + low 16 nonzero bits
    257	# Final CRC value (x^16 * M(x)) mod G(x) is in low 16 bits of xmm0.
    258
    259	pextrw	$0, %xmm0, %eax
    260	RET
    261
    262.align 16
    263.Lless_than_256_bytes:
    264	# Checksumming a buffer of length 16...255 bytes
    265
    266	# Load the first 16 data bytes.
    267	movdqu	(buf), %xmm7
    268	pshufb	BSWAP_MASK, %xmm7
    269	add	$16, buf
    270
    271	# XOR the first 16 data *bits* with the initial CRC value.
    272	pxor	%xmm0, %xmm0
    273	pinsrw	$7, init_crc, %xmm0
    274	pxor	%xmm0, %xmm7
    275
    276	movdqa	.Lfold_across_16_bytes_consts(%rip), FOLD_CONSTS
    277	cmp	$16, len
    278	je	.Lreduce_final_16_bytes		# len == 16
    279	sub	$32, len
    280	jge	.Lfold_16_bytes_loop		# 32 <= len <= 255
    281	add	$16, len
    282	jmp	.Lhandle_partial_segment	# 17 <= len <= 31
    283SYM_FUNC_END(crc_t10dif_pcl)
    284
    285.section	.rodata, "a", @progbits
    286.align 16
    287
    288# Fold constants precomputed from the polynomial 0x18bb7
    289# G(x) = x^16 + x^15 + x^11 + x^9 + x^8 + x^7 + x^5 + x^4 + x^2 + x^1 + x^0
    290.Lfold_across_128_bytes_consts:
    291	.quad		0x0000000000006123	# x^(8*128)	mod G(x)
    292	.quad		0x0000000000002295	# x^(8*128+64)	mod G(x)
    293.Lfold_across_64_bytes_consts:
    294	.quad		0x0000000000001069	# x^(4*128)	mod G(x)
    295	.quad		0x000000000000dd31	# x^(4*128+64)	mod G(x)
    296.Lfold_across_32_bytes_consts:
    297	.quad		0x000000000000857d	# x^(2*128)	mod G(x)
    298	.quad		0x0000000000007acc	# x^(2*128+64)	mod G(x)
    299.Lfold_across_16_bytes_consts:
    300	.quad		0x000000000000a010	# x^(1*128)	mod G(x)
    301	.quad		0x0000000000001faa	# x^(1*128+64)	mod G(x)
    302.Lfinal_fold_consts:
    303	.quad		0x1368000000000000	# x^48 * (x^48 mod G(x))
    304	.quad		0x2d56000000000000	# x^48 * (x^80 mod G(x))
    305.Lbarrett_reduction_consts:
    306	.quad		0x0000000000018bb7	# G(x)
    307	.quad		0x00000001f65a57f8	# floor(x^48 / G(x))
    308
    309.section	.rodata.cst16.mask1, "aM", @progbits, 16
    310.align 16
    311.Lmask1:
    312	.octa	0x80808080808080808080808080808080
    313
    314.section	.rodata.cst16.mask2, "aM", @progbits, 16
    315.align 16
    316.Lmask2:
    317	.octa	0x00000000FFFFFFFFFFFFFFFFFFFFFFFF
    318
    319.section	.rodata.cst16.bswap_mask, "aM", @progbits, 16
    320.align 16
    321.Lbswap_mask:
    322	.octa	0x000102030405060708090A0B0C0D0E0F
    323
    324.section	.rodata.cst32.byteshift_table, "aM", @progbits, 32
    325.align 16
    326# For 1 <= len <= 15, the 16-byte vector beginning at &byteshift_table[16 - len]
    327# is the index vector to shift left by 'len' bytes, and is also {0x80, ...,
    328# 0x80} XOR the index vector to shift right by '16 - len' bytes.
    329.Lbyteshift_table:
    330	.byte		 0x0, 0x81, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87
    331	.byte		0x88, 0x89, 0x8a, 0x8b, 0x8c, 0x8d, 0x8e, 0x8f
    332	.byte		 0x0,  0x1,  0x2,  0x3,  0x4,  0x5,  0x6,  0x7
    333	.byte		 0x8,  0x9,  0xa,  0xb,  0xc,  0xd,  0xe , 0x0