cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

sha512-avx-asm.S (12897B)


      1########################################################################
      2# Implement fast SHA-512 with AVX instructions. (x86_64)
      3#
      4# Copyright (C) 2013 Intel Corporation.
      5#
      6# Authors:
      7#     James Guilford <james.guilford@intel.com>
      8#     Kirk Yap <kirk.s.yap@intel.com>
      9#     David Cote <david.m.cote@intel.com>
     10#     Tim Chen <tim.c.chen@linux.intel.com>
     11#
     12# This software is available to you under a choice of one of two
     13# licenses.  You may choose to be licensed under the terms of the GNU
     14# General Public License (GPL) Version 2, available from the file
     15# COPYING in the main directory of this source tree, or the
     16# OpenIB.org BSD license below:
     17#
     18#     Redistribution and use in source and binary forms, with or
     19#     without modification, are permitted provided that the following
     20#     conditions are met:
     21#
     22#      - Redistributions of source code must retain the above
     23#        copyright notice, this list of conditions and the following
     24#        disclaimer.
     25#
     26#      - Redistributions in binary form must reproduce the above
     27#        copyright notice, this list of conditions and the following
     28#        disclaimer in the documentation and/or other materials
     29#        provided with the distribution.
     30#
     31# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
     32# EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
     33# MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
     34# NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
     35# BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
     36# ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
     37# CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
     38# SOFTWARE.
     39#
     40########################################################################
     41#
     42# This code is described in an Intel White-Paper:
     43# "Fast SHA-512 Implementations on Intel Architecture Processors"
     44#
     45# To find it, surf to http://www.intel.com/p/en_US/embedded
     46# and search for that title.
     47#
     48########################################################################
     49
     50#include <linux/linkage.h>
     51
     52.text
     53
     54# Virtual Registers
     55# ARG1
     56digest	= %rdi
     57# ARG2
     58msg	= %rsi
     59# ARG3
     60msglen	= %rdx
     61T1	= %rcx
     62T2	= %r8
     63a_64	= %r9
     64b_64	= %r10
     65c_64	= %r11
     66d_64	= %r12
     67e_64	= %r13
     68f_64	= %r14
     69g_64	= %r15
     70h_64	= %rbx
     71tmp0	= %rax
     72
     73# Local variables (stack frame)
     74
     75# Message Schedule
     76W_SIZE = 80*8
     77# W[t] + K[t] | W[t+1] + K[t+1]
     78WK_SIZE = 2*8
     79
     80frame_W = 0
     81frame_WK = frame_W + W_SIZE
     82frame_size = frame_WK + WK_SIZE
     83
     84# Useful QWORD "arrays" for simpler memory references
     85# MSG, DIGEST, K_t, W_t are arrays
     86# WK_2(t) points to 1 of 2 qwords at frame.WK depdending on t being odd/even
     87
     88# Input message (arg1)
     89#define MSG(i)    8*i(msg)
     90
     91# Output Digest (arg2)
     92#define DIGEST(i) 8*i(digest)
     93
     94# SHA Constants (static mem)
     95#define K_t(i)    8*i+K512(%rip)
     96
     97# Message Schedule (stack frame)
     98#define W_t(i)    8*i+frame_W(%rsp)
     99
    100# W[t]+K[t] (stack frame)
    101#define WK_2(i)   8*((i%2))+frame_WK(%rsp)
    102
    103.macro RotateState
    104	# Rotate symbols a..h right
    105	TMP   = h_64
    106	h_64  = g_64
    107	g_64  = f_64
    108	f_64  = e_64
    109	e_64  = d_64
    110	d_64  = c_64
    111	c_64  = b_64
    112	b_64  = a_64
    113	a_64  = TMP
    114.endm
    115
    116.macro RORQ p1 p2
    117	# shld is faster than ror on Sandybridge
    118	shld	$(64-\p2), \p1, \p1
    119.endm
    120
    121.macro SHA512_Round rnd
    122	# Compute Round %%t
    123	mov     f_64, T1          # T1 = f
    124	mov     e_64, tmp0        # tmp = e
    125	xor     g_64, T1          # T1 = f ^ g
    126	RORQ    tmp0, 23   # 41    # tmp = e ror 23
    127	and     e_64, T1          # T1 = (f ^ g) & e
    128	xor     e_64, tmp0        # tmp = (e ror 23) ^ e
    129	xor     g_64, T1          # T1 = ((f ^ g) & e) ^ g = CH(e,f,g)
    130	idx = \rnd
    131	add     WK_2(idx), T1     # W[t] + K[t] from message scheduler
    132	RORQ    tmp0, 4   # 18    # tmp = ((e ror 23) ^ e) ror 4
    133	xor     e_64, tmp0        # tmp = (((e ror 23) ^ e) ror 4) ^ e
    134	mov     a_64, T2          # T2 = a
    135	add     h_64, T1          # T1 = CH(e,f,g) + W[t] + K[t] + h
    136	RORQ    tmp0, 14  # 14    # tmp = ((((e ror23)^e)ror4)^e)ror14 = S1(e)
    137	add     tmp0, T1          # T1 = CH(e,f,g) + W[t] + K[t] + S1(e)
    138	mov     a_64, tmp0        # tmp = a
    139	xor     c_64, T2          # T2 = a ^ c
    140	and     c_64, tmp0        # tmp = a & c
    141	and     b_64, T2          # T2 = (a ^ c) & b
    142	xor     tmp0, T2          # T2 = ((a ^ c) & b) ^ (a & c) = Maj(a,b,c)
    143	mov     a_64, tmp0        # tmp = a
    144	RORQ    tmp0, 5  # 39     # tmp = a ror 5
    145	xor     a_64, tmp0        # tmp = (a ror 5) ^ a
    146	add     T1, d_64          # e(next_state) = d + T1
    147	RORQ    tmp0, 6  # 34     # tmp = ((a ror 5) ^ a) ror 6
    148	xor     a_64, tmp0        # tmp = (((a ror 5) ^ a) ror 6) ^ a
    149	lea     (T1, T2), h_64    # a(next_state) = T1 + Maj(a,b,c)
    150	RORQ    tmp0, 28  # 28    # tmp = ((((a ror5)^a)ror6)^a)ror28 = S0(a)
    151	add     tmp0, h_64        # a(next_state) = T1 + Maj(a,b,c) S0(a)
    152	RotateState
    153.endm
    154
    155.macro SHA512_2Sched_2Round_avx rnd
    156	# Compute rounds t-2 and t-1
    157	# Compute message schedule QWORDS t and t+1
    158
    159	#   Two rounds are computed based on the values for K[t-2]+W[t-2] and
    160	# K[t-1]+W[t-1] which were previously stored at WK_2 by the message
    161	# scheduler.
    162	#   The two new schedule QWORDS are stored at [W_t(t)] and [W_t(t+1)].
    163	# They are then added to their respective SHA512 constants at
    164	# [K_t(t)] and [K_t(t+1)] and stored at dqword [WK_2(t)]
    165	#   For brievity, the comments following vectored instructions only refer to
    166	# the first of a pair of QWORDS.
    167	# Eg. XMM4=W[t-2] really means XMM4={W[t-2]|W[t-1]}
    168	#   The computation of the message schedule and the rounds are tightly
    169	# stitched to take advantage of instruction-level parallelism.
    170
    171	idx = \rnd - 2
    172	vmovdqa	W_t(idx), %xmm4		# XMM4 = W[t-2]
    173	idx = \rnd - 15
    174	vmovdqu	W_t(idx), %xmm5		# XMM5 = W[t-15]
    175	mov	f_64, T1
    176	vpsrlq	$61, %xmm4, %xmm0	# XMM0 = W[t-2]>>61
    177	mov	e_64, tmp0
    178	vpsrlq	$1, %xmm5, %xmm6	# XMM6 = W[t-15]>>1
    179	xor	g_64, T1
    180	RORQ	tmp0, 23 # 41
    181	vpsrlq	$19, %xmm4, %xmm1	# XMM1 = W[t-2]>>19
    182	and	e_64, T1
    183	xor	e_64, tmp0
    184	vpxor	%xmm1, %xmm0, %xmm0	# XMM0 = W[t-2]>>61 ^ W[t-2]>>19
    185	xor	g_64, T1
    186	idx = \rnd
    187	add	WK_2(idx), T1#
    188	vpsrlq	$8, %xmm5, %xmm7	# XMM7 = W[t-15]>>8
    189	RORQ	tmp0, 4 # 18
    190	vpsrlq	$6, %xmm4, %xmm2	# XMM2 = W[t-2]>>6
    191	xor	e_64, tmp0
    192	mov	a_64, T2
    193	add	h_64, T1
    194	vpxor	%xmm7, %xmm6, %xmm6	# XMM6 = W[t-15]>>1 ^ W[t-15]>>8
    195	RORQ	tmp0, 14 # 14
    196	add	tmp0, T1
    197	vpsrlq	$7, %xmm5, %xmm8	# XMM8 = W[t-15]>>7
    198	mov	a_64, tmp0
    199	xor	c_64, T2
    200	vpsllq	$(64-61), %xmm4, %xmm3  # XMM3 = W[t-2]<<3
    201	and	c_64, tmp0
    202	and	b_64, T2
    203	vpxor	%xmm3, %xmm2, %xmm2	# XMM2 = W[t-2]>>6 ^ W[t-2]<<3
    204	xor	tmp0, T2
    205	mov	a_64, tmp0
    206	vpsllq	$(64-1), %xmm5, %xmm9	# XMM9 = W[t-15]<<63
    207	RORQ	tmp0, 5 # 39
    208	vpxor	%xmm9, %xmm8, %xmm8	# XMM8 = W[t-15]>>7 ^ W[t-15]<<63
    209	xor	a_64, tmp0
    210	add	T1, d_64
    211	RORQ	tmp0, 6 # 34
    212	xor	a_64, tmp0
    213	vpxor	%xmm8, %xmm6, %xmm6	# XMM6 = W[t-15]>>1 ^ W[t-15]>>8 ^
    214					#  W[t-15]>>7 ^ W[t-15]<<63
    215	lea	(T1, T2), h_64
    216	RORQ	tmp0, 28 # 28
    217	vpsllq	$(64-19), %xmm4, %xmm4  # XMM4 = W[t-2]<<25
    218	add	tmp0, h_64
    219	RotateState
    220	vpxor	%xmm4, %xmm0, %xmm0     # XMM0 = W[t-2]>>61 ^ W[t-2]>>19 ^
    221					#        W[t-2]<<25
    222	mov	f_64, T1
    223	vpxor	%xmm2, %xmm0, %xmm0     # XMM0 = s1(W[t-2])
    224	mov	e_64, tmp0
    225	xor	g_64, T1
    226	idx = \rnd - 16
    227	vpaddq	W_t(idx), %xmm0, %xmm0  # XMM0 = s1(W[t-2]) + W[t-16]
    228	idx = \rnd - 7
    229	vmovdqu	W_t(idx), %xmm1		# XMM1 = W[t-7]
    230	RORQ	tmp0, 23 # 41
    231	and	e_64, T1
    232	xor	e_64, tmp0
    233	xor	g_64, T1
    234	vpsllq	$(64-8), %xmm5, %xmm5   # XMM5 = W[t-15]<<56
    235	idx = \rnd + 1
    236	add	WK_2(idx), T1
    237	vpxor	%xmm5, %xmm6, %xmm6     # XMM6 = s0(W[t-15])
    238	RORQ	tmp0, 4 # 18
    239	vpaddq	%xmm6, %xmm0, %xmm0     # XMM0 = s1(W[t-2]) + W[t-16] + s0(W[t-15])
    240	xor	e_64, tmp0
    241	vpaddq	%xmm1, %xmm0, %xmm0     # XMM0 = W[t] = s1(W[t-2]) + W[t-7] +
    242					#               s0(W[t-15]) + W[t-16]
    243	mov	a_64, T2
    244	add	h_64, T1
    245	RORQ	tmp0, 14 # 14
    246	add	tmp0, T1
    247	idx = \rnd
    248	vmovdqa	%xmm0, W_t(idx)		# Store W[t]
    249	vpaddq	K_t(idx), %xmm0, %xmm0  # Compute W[t]+K[t]
    250	vmovdqa	%xmm0, WK_2(idx)	# Store W[t]+K[t] for next rounds
    251	mov	a_64, tmp0
    252	xor	c_64, T2
    253	and	c_64, tmp0
    254	and	b_64, T2
    255	xor	tmp0, T2
    256	mov	a_64, tmp0
    257	RORQ	tmp0, 5 # 39
    258	xor	a_64, tmp0
    259	add	T1, d_64
    260	RORQ	tmp0, 6 # 34
    261	xor	a_64, tmp0
    262	lea	(T1, T2), h_64
    263	RORQ	tmp0, 28 # 28
    264	add	tmp0, h_64
    265	RotateState
    266.endm
    267
    268########################################################################
    269# void sha512_transform_avx(sha512_state *state, const u8 *data, int blocks)
    270# Purpose: Updates the SHA512 digest stored at "state" with the message
    271# stored in "data".
    272# The size of the message pointed to by "data" must be an integer multiple
    273# of SHA512 message blocks.
    274# "blocks" is the message length in SHA512 blocks
    275########################################################################
    276SYM_FUNC_START(sha512_transform_avx)
    277	test msglen, msglen
    278	je nowork
    279
    280	# Save GPRs
    281	push	%rbx
    282	push	%r12
    283	push	%r13
    284	push	%r14
    285	push	%r15
    286
    287	# Allocate Stack Space
    288	push	%rbp
    289	mov	%rsp, %rbp
    290	sub     $frame_size, %rsp
    291	and	$~(0x20 - 1), %rsp
    292
    293updateblock:
    294
    295	# Load state variables
    296	mov     DIGEST(0), a_64
    297	mov     DIGEST(1), b_64
    298	mov     DIGEST(2), c_64
    299	mov     DIGEST(3), d_64
    300	mov     DIGEST(4), e_64
    301	mov     DIGEST(5), f_64
    302	mov     DIGEST(6), g_64
    303	mov     DIGEST(7), h_64
    304
    305	t = 0
    306	.rept 80/2 + 1
    307	# (80 rounds) / (2 rounds/iteration) + (1 iteration)
    308	# +1 iteration because the scheduler leads hashing by 1 iteration
    309		.if t < 2
    310			# BSWAP 2 QWORDS
    311			vmovdqa  XMM_QWORD_BSWAP(%rip), %xmm1
    312			vmovdqu  MSG(t), %xmm0
    313			vpshufb  %xmm1, %xmm0, %xmm0    # BSWAP
    314			vmovdqa  %xmm0, W_t(t) # Store Scheduled Pair
    315			vpaddq   K_t(t), %xmm0, %xmm0 # Compute W[t]+K[t]
    316			vmovdqa  %xmm0, WK_2(t) # Store into WK for rounds
    317		.elseif t < 16
    318			# BSWAP 2 QWORDS# Compute 2 Rounds
    319			vmovdqu  MSG(t), %xmm0
    320			vpshufb  %xmm1, %xmm0, %xmm0    # BSWAP
    321			SHA512_Round t-2    # Round t-2
    322			vmovdqa  %xmm0, W_t(t) # Store Scheduled Pair
    323			vpaddq   K_t(t), %xmm0, %xmm0 # Compute W[t]+K[t]
    324			SHA512_Round t-1    # Round t-1
    325			vmovdqa  %xmm0, WK_2(t)# Store W[t]+K[t] into WK
    326		.elseif t < 79
    327			# Schedule 2 QWORDS# Compute 2 Rounds
    328			SHA512_2Sched_2Round_avx t
    329		.else
    330			# Compute 2 Rounds
    331			SHA512_Round t-2
    332			SHA512_Round t-1
    333		.endif
    334		t = t+2
    335	.endr
    336
    337	# Update digest
    338	add     a_64, DIGEST(0)
    339	add     b_64, DIGEST(1)
    340	add     c_64, DIGEST(2)
    341	add     d_64, DIGEST(3)
    342	add     e_64, DIGEST(4)
    343	add     f_64, DIGEST(5)
    344	add     g_64, DIGEST(6)
    345	add     h_64, DIGEST(7)
    346
    347	# Advance to next message block
    348	add     $16*8, msg
    349	dec     msglen
    350	jnz     updateblock
    351
    352	# Restore Stack Pointer
    353	mov	%rbp, %rsp
    354	pop	%rbp
    355
    356	# Restore GPRs
    357	pop	%r15
    358	pop	%r14
    359	pop	%r13
    360	pop	%r12
    361	pop	%rbx
    362
    363nowork:
    364	RET
    365SYM_FUNC_END(sha512_transform_avx)
    366
    367########################################################################
    368### Binary Data
    369
    370.section	.rodata.cst16.XMM_QWORD_BSWAP, "aM", @progbits, 16
    371.align 16
    372# Mask for byte-swapping a couple of qwords in an XMM register using (v)pshufb.
    373XMM_QWORD_BSWAP:
    374	.octa 0x08090a0b0c0d0e0f0001020304050607
    375
    376# Mergeable 640-byte rodata section. This allows linker to merge the table
    377# with other, exactly the same 640-byte fragment of another rodata section
    378# (if such section exists).
    379.section	.rodata.cst640.K512, "aM", @progbits, 640
    380.align 64
    381# K[t] used in SHA512 hashing
    382K512:
    383	.quad 0x428a2f98d728ae22,0x7137449123ef65cd
    384	.quad 0xb5c0fbcfec4d3b2f,0xe9b5dba58189dbbc
    385	.quad 0x3956c25bf348b538,0x59f111f1b605d019
    386	.quad 0x923f82a4af194f9b,0xab1c5ed5da6d8118
    387	.quad 0xd807aa98a3030242,0x12835b0145706fbe
    388	.quad 0x243185be4ee4b28c,0x550c7dc3d5ffb4e2
    389	.quad 0x72be5d74f27b896f,0x80deb1fe3b1696b1
    390	.quad 0x9bdc06a725c71235,0xc19bf174cf692694
    391	.quad 0xe49b69c19ef14ad2,0xefbe4786384f25e3
    392	.quad 0x0fc19dc68b8cd5b5,0x240ca1cc77ac9c65
    393	.quad 0x2de92c6f592b0275,0x4a7484aa6ea6e483
    394	.quad 0x5cb0a9dcbd41fbd4,0x76f988da831153b5
    395	.quad 0x983e5152ee66dfab,0xa831c66d2db43210
    396	.quad 0xb00327c898fb213f,0xbf597fc7beef0ee4
    397	.quad 0xc6e00bf33da88fc2,0xd5a79147930aa725
    398	.quad 0x06ca6351e003826f,0x142929670a0e6e70
    399	.quad 0x27b70a8546d22ffc,0x2e1b21385c26c926
    400	.quad 0x4d2c6dfc5ac42aed,0x53380d139d95b3df
    401	.quad 0x650a73548baf63de,0x766a0abb3c77b2a8
    402	.quad 0x81c2c92e47edaee6,0x92722c851482353b
    403	.quad 0xa2bfe8a14cf10364,0xa81a664bbc423001
    404	.quad 0xc24b8b70d0f89791,0xc76c51a30654be30
    405	.quad 0xd192e819d6ef5218,0xd69906245565a910
    406	.quad 0xf40e35855771202a,0x106aa07032bbd1b8
    407	.quad 0x19a4c116b8d2d0c8,0x1e376c085141ab53
    408	.quad 0x2748774cdf8eeb99,0x34b0bcb5e19b48a8
    409	.quad 0x391c0cb3c5c95a63,0x4ed8aa4ae3418acb
    410	.quad 0x5b9cca4f7763e373,0x682e6ff3d6b2b8a3
    411	.quad 0x748f82ee5defb2fc,0x78a5636f43172f60
    412	.quad 0x84c87814a1f0ab72,0x8cc702081a6439ec
    413	.quad 0x90befffa23631e28,0xa4506cebde82bde9
    414	.quad 0xbef9a3f7b2c67915,0xc67178f2e372532b
    415	.quad 0xca273eceea26619c,0xd186b8c721c0c207
    416	.quad 0xeada7dd6cde0eb1e,0xf57d4f7fee6ed178
    417	.quad 0x06f067aa72176fba,0x0a637dc5a2c898a6
    418	.quad 0x113f9804bef90dae,0x1b710b35131c471b
    419	.quad 0x28db77f523047d84,0x32caab7b40c72493
    420	.quad 0x3c9ebe0a15c9bebc,0x431d67c49c100d4c
    421	.quad 0x4cc5d4becb3e42b6,0x597f299cfc657e2a
    422	.quad 0x5fcb6fab3ad6faec,0x6c44198c4a475817