cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

sha512-avx2-asm.S (24532B)


      1########################################################################
      2# Implement fast SHA-512 with AVX2 instructions. (x86_64)
      3#
      4# Copyright (C) 2013 Intel Corporation.
      5#
      6# Authors:
      7#     James Guilford <james.guilford@intel.com>
      8#     Kirk Yap <kirk.s.yap@intel.com>
      9#     David Cote <david.m.cote@intel.com>
     10#     Tim Chen <tim.c.chen@linux.intel.com>
     11#
     12# This software is available to you under a choice of one of two
     13# licenses.  You may choose to be licensed under the terms of the GNU
     14# General Public License (GPL) Version 2, available from the file
     15# COPYING in the main directory of this source tree, or the
     16# OpenIB.org BSD license below:
     17#
     18#     Redistribution and use in source and binary forms, with or
     19#     without modification, are permitted provided that the following
     20#     conditions are met:
     21#
     22#      - Redistributions of source code must retain the above
     23#        copyright notice, this list of conditions and the following
     24#        disclaimer.
     25#
     26#      - Redistributions in binary form must reproduce the above
     27#        copyright notice, this list of conditions and the following
     28#        disclaimer in the documentation and/or other materials
     29#        provided with the distribution.
     30#
     31# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
     32# EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
     33# MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
     34# NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
     35# BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
     36# ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
     37# CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
     38# SOFTWARE.
     39#
     40########################################################################
     41#
     42# This code is described in an Intel White-Paper:
     43# "Fast SHA-512 Implementations on Intel Architecture Processors"
     44#
     45# To find it, surf to http://www.intel.com/p/en_US/embedded
     46# and search for that title.
     47#
     48########################################################################
     49# This code schedules 1 blocks at a time, with 4 lanes per block
     50########################################################################
     51
     52#include <linux/linkage.h>
     53
     54.text
     55
     56# Virtual Registers
     57Y_0 = %ymm4
     58Y_1 = %ymm5
     59Y_2 = %ymm6
     60Y_3 = %ymm7
     61
     62YTMP0 = %ymm0
     63YTMP1 = %ymm1
     64YTMP2 = %ymm2
     65YTMP3 = %ymm3
     66YTMP4 = %ymm8
     67XFER  = YTMP0
     68
     69BYTE_FLIP_MASK  = %ymm9
     70
     71# 1st arg is %rdi, which is saved to the stack and accessed later via %r12
     72CTX1        = %rdi
     73CTX2        = %r12
     74# 2nd arg
     75INP         = %rsi
     76# 3rd arg
     77NUM_BLKS    = %rdx
     78
     79c           = %rcx
     80d           = %r8
     81e           = %rdx
     82y3          = %rsi
     83
     84TBL   = %rdi # clobbers CTX1
     85
     86a     = %rax
     87b     = %rbx
     88
     89f     = %r9
     90g     = %r10
     91h     = %r11
     92old_h = %r11
     93
     94T1    = %r12 # clobbers CTX2
     95y0    = %r13
     96y1    = %r14
     97y2    = %r15
     98
     99# Local variables (stack frame)
    100XFER_SIZE = 4*8
    101SRND_SIZE = 1*8
    102INP_SIZE = 1*8
    103INPEND_SIZE = 1*8
    104CTX_SIZE = 1*8
    105
    106frame_XFER = 0
    107frame_SRND = frame_XFER + XFER_SIZE
    108frame_INP = frame_SRND + SRND_SIZE
    109frame_INPEND = frame_INP + INP_SIZE
    110frame_CTX = frame_INPEND + INPEND_SIZE
    111frame_size = frame_CTX + CTX_SIZE
    112
    113## assume buffers not aligned
    114#define	VMOVDQ vmovdqu
    115
    116# addm [mem], reg
    117# Add reg to mem using reg-mem add and store
    118.macro addm p1 p2
    119	add	\p1, \p2
    120	mov	\p2, \p1
    121.endm
    122
    123
    124# COPY_YMM_AND_BSWAP ymm, [mem], byte_flip_mask
    125# Load ymm with mem and byte swap each dword
    126.macro COPY_YMM_AND_BSWAP p1 p2 p3
    127	VMOVDQ \p2, \p1
    128	vpshufb \p3, \p1, \p1
    129.endm
    130# rotate_Ys
    131# Rotate values of symbols Y0...Y3
    132.macro rotate_Ys
    133	Y_ = Y_0
    134	Y_0 = Y_1
    135	Y_1 = Y_2
    136	Y_2 = Y_3
    137	Y_3 = Y_
    138.endm
    139
    140# RotateState
    141.macro RotateState
    142	# Rotate symbols a..h right
    143	old_h  = h
    144	TMP_   = h
    145	h      = g
    146	g      = f
    147	f      = e
    148	e      = d
    149	d      = c
    150	c      = b
    151	b      = a
    152	a      = TMP_
    153.endm
    154
    155# macro MY_VPALIGNR	YDST, YSRC1, YSRC2, RVAL
    156# YDST = {YSRC1, YSRC2} >> RVAL*8
    157.macro MY_VPALIGNR YDST YSRC1 YSRC2 RVAL
    158	vperm2f128      $0x3, \YSRC2, \YSRC1, \YDST     # YDST = {YS1_LO, YS2_HI}
    159	vpalignr        $\RVAL, \YSRC2, \YDST, \YDST    # YDST = {YDS1, YS2} >> RVAL*8
    160.endm
    161
    162.macro FOUR_ROUNDS_AND_SCHED
    163################################### RND N + 0 #########################################
    164
    165	# Extract w[t-7]
    166	MY_VPALIGNR	YTMP0, Y_3, Y_2, 8		# YTMP0 = W[-7]
    167	# Calculate w[t-16] + w[t-7]
    168	vpaddq		Y_0, YTMP0, YTMP0		# YTMP0 = W[-7] + W[-16]
    169	# Extract w[t-15]
    170	MY_VPALIGNR	YTMP1, Y_1, Y_0, 8		# YTMP1 = W[-15]
    171
    172	# Calculate sigma0
    173
    174	# Calculate w[t-15] ror 1
    175	vpsrlq		$1, YTMP1, YTMP2
    176	vpsllq		$(64-1), YTMP1, YTMP3
    177	vpor		YTMP2, YTMP3, YTMP3		# YTMP3 = W[-15] ror 1
    178	# Calculate w[t-15] shr 7
    179	vpsrlq		$7, YTMP1, YTMP4		# YTMP4 = W[-15] >> 7
    180
    181	mov	a, y3		# y3 = a                                # MAJA
    182	rorx	$41, e, y0	# y0 = e >> 41				# S1A
    183	rorx	$18, e, y1	# y1 = e >> 18				# S1B
    184	add	frame_XFER(%rsp),h		# h = k + w + h         # --
    185	or	c, y3		# y3 = a|c                              # MAJA
    186	mov	f, y2		# y2 = f                                # CH
    187	rorx	$34, a, T1	# T1 = a >> 34				# S0B
    188
    189	xor	y1, y0		# y0 = (e>>41) ^ (e>>18)		# S1
    190	xor	g, y2		# y2 = f^g                              # CH
    191	rorx	$14, e, y1	# y1 = (e >> 14)			# S1
    192
    193	and	e, y2		# y2 = (f^g)&e                          # CH
    194	xor	y1, y0		# y0 = (e>>41) ^ (e>>18) ^ (e>>14)	# S1
    195	rorx	$39, a, y1	# y1 = a >> 39				# S0A
    196	add	h, d		# d = k + w + h + d                     # --
    197
    198	and	b, y3		# y3 = (a|c)&b                          # MAJA
    199	xor	T1, y1		# y1 = (a>>39) ^ (a>>34)		# S0
    200	rorx	$28, a, T1	# T1 = (a >> 28)			# S0
    201
    202	xor	g, y2		# y2 = CH = ((f^g)&e)^g                 # CH
    203	xor	T1, y1		# y1 = (a>>39) ^ (a>>34) ^ (a>>28)	# S0
    204	mov	a, T1		# T1 = a                                # MAJB
    205	and	c, T1		# T1 = a&c                              # MAJB
    206
    207	add	y0, y2		# y2 = S1 + CH                          # --
    208	or	T1, y3		# y3 = MAJ = (a|c)&b)|(a&c)             # MAJ
    209	add	y1, h		# h = k + w + h + S0                    # --
    210
    211	add	y2, d		# d = k + w + h + d + S1 + CH = d + t1  # --
    212
    213	add	y2, h		# h = k + w + h + S0 + S1 + CH = t1 + S0# --
    214	add	y3, h		# h = t1 + S0 + MAJ                     # --
    215
    216	RotateState
    217
    218################################### RND N + 1 #########################################
    219
    220	# Calculate w[t-15] ror 8
    221	vpsrlq		$8, YTMP1, YTMP2
    222	vpsllq		$(64-8), YTMP1, YTMP1
    223	vpor		YTMP2, YTMP1, YTMP1		# YTMP1 = W[-15] ror 8
    224	# XOR the three components
    225	vpxor		YTMP4, YTMP3, YTMP3		# YTMP3 = W[-15] ror 1 ^ W[-15] >> 7
    226	vpxor		YTMP1, YTMP3, YTMP1		# YTMP1 = s0
    227
    228
    229	# Add three components, w[t-16], w[t-7] and sigma0
    230	vpaddq		YTMP1, YTMP0, YTMP0		# YTMP0 = W[-16] + W[-7] + s0
    231	# Move to appropriate lanes for calculating w[16] and w[17]
    232	vperm2f128	$0x0, YTMP0, YTMP0, Y_0		# Y_0 = W[-16] + W[-7] + s0 {BABA}
    233	# Move to appropriate lanes for calculating w[18] and w[19]
    234	vpand		MASK_YMM_LO(%rip), YTMP0, YTMP0	# YTMP0 = W[-16] + W[-7] + s0 {DC00}
    235
    236	# Calculate w[16] and w[17] in both 128 bit lanes
    237
    238	# Calculate sigma1 for w[16] and w[17] on both 128 bit lanes
    239	vperm2f128	$0x11, Y_3, Y_3, YTMP2		# YTMP2 = W[-2] {BABA}
    240	vpsrlq		$6, YTMP2, YTMP4		# YTMP4 = W[-2] >> 6 {BABA}
    241
    242
    243	mov	a, y3		# y3 = a                                # MAJA
    244	rorx	$41, e, y0	# y0 = e >> 41				# S1A
    245	rorx	$18, e, y1	# y1 = e >> 18				# S1B
    246	add	1*8+frame_XFER(%rsp), h		# h = k + w + h         # --
    247	or	c, y3		# y3 = a|c                              # MAJA
    248
    249
    250	mov	f, y2		# y2 = f                                # CH
    251	rorx	$34, a, T1	# T1 = a >> 34				# S0B
    252	xor	y1, y0		# y0 = (e>>41) ^ (e>>18)		# S1
    253	xor	g, y2		# y2 = f^g                              # CH
    254
    255
    256	rorx	$14, e, y1	# y1 = (e >> 14)			# S1
    257	xor	y1, y0		# y0 = (e>>41) ^ (e>>18) ^ (e>>14)	# S1
    258	rorx	$39, a, y1	# y1 = a >> 39				# S0A
    259	and	e, y2		# y2 = (f^g)&e                          # CH
    260	add	h, d		# d = k + w + h + d                     # --
    261
    262	and	b, y3		# y3 = (a|c)&b                          # MAJA
    263	xor	T1, y1		# y1 = (a>>39) ^ (a>>34)		# S0
    264
    265	rorx	$28, a, T1	# T1 = (a >> 28)			# S0
    266	xor	g, y2		# y2 = CH = ((f^g)&e)^g                 # CH
    267
    268	xor	T1, y1		# y1 = (a>>39) ^ (a>>34) ^ (a>>28)	# S0
    269	mov	a, T1		# T1 = a                                # MAJB
    270	and	c, T1		# T1 = a&c                              # MAJB
    271	add	y0, y2		# y2 = S1 + CH                          # --
    272
    273	or	T1, y3		# y3 = MAJ = (a|c)&b)|(a&c)             # MAJ
    274	add	y1, h		# h = k + w + h + S0                    # --
    275
    276	add	y2, d		# d = k + w + h + d + S1 + CH = d + t1  # --
    277	add	y2, h		# h = k + w + h + S0 + S1 + CH = t1 + S0# --
    278	add	y3, h		# h = t1 + S0 + MAJ                     # --
    279
    280	RotateState
    281
    282
    283################################### RND N + 2 #########################################
    284
    285	vpsrlq		$19, YTMP2, YTMP3		# YTMP3 = W[-2] >> 19 {BABA}
    286	vpsllq		$(64-19), YTMP2, YTMP1		# YTMP1 = W[-2] << 19 {BABA}
    287	vpor		YTMP1, YTMP3, YTMP3		# YTMP3 = W[-2] ror 19 {BABA}
    288	vpxor		YTMP3, YTMP4, YTMP4		# YTMP4 = W[-2] ror 19 ^ W[-2] >> 6 {BABA}
    289	vpsrlq		$61, YTMP2, YTMP3		# YTMP3 = W[-2] >> 61 {BABA}
    290	vpsllq		$(64-61), YTMP2, YTMP1		# YTMP1 = W[-2] << 61 {BABA}
    291	vpor		YTMP1, YTMP3, YTMP3		# YTMP3 = W[-2] ror 61 {BABA}
    292	vpxor		YTMP3, YTMP4, YTMP4		# YTMP4 = s1 = (W[-2] ror 19) ^
    293							#  (W[-2] ror 61) ^ (W[-2] >> 6) {BABA}
    294
    295	# Add sigma1 to the other compunents to get w[16] and w[17]
    296	vpaddq		YTMP4, Y_0, Y_0			# Y_0 = {W[1], W[0], W[1], W[0]}
    297
    298	# Calculate sigma1 for w[18] and w[19] for upper 128 bit lane
    299	vpsrlq		$6, Y_0, YTMP4			# YTMP4 = W[-2] >> 6 {DC--}
    300
    301	mov	a, y3		# y3 = a                                # MAJA
    302	rorx	$41, e, y0	# y0 = e >> 41				# S1A
    303	add	2*8+frame_XFER(%rsp), h		# h = k + w + h         # --
    304
    305	rorx	$18, e, y1	# y1 = e >> 18				# S1B
    306	or	c, y3		# y3 = a|c                              # MAJA
    307	mov	f, y2		# y2 = f                                # CH
    308	xor	g, y2		# y2 = f^g                              # CH
    309
    310	rorx	$34, a, T1	# T1 = a >> 34				# S0B
    311	xor	y1, y0		# y0 = (e>>41) ^ (e>>18)		# S1
    312	and	e, y2		# y2 = (f^g)&e                          # CH
    313
    314	rorx	$14, e, y1	# y1 = (e >> 14)			# S1
    315	add	h, d		# d = k + w + h + d                     # --
    316	and	b, y3		# y3 = (a|c)&b                          # MAJA
    317
    318	xor	y1, y0		# y0 = (e>>41) ^ (e>>18) ^ (e>>14)	# S1
    319	rorx	$39, a, y1	# y1 = a >> 39				# S0A
    320	xor	g, y2		# y2 = CH = ((f^g)&e)^g                 # CH
    321
    322	xor	T1, y1		# y1 = (a>>39) ^ (a>>34)		# S0
    323	rorx	$28, a, T1	# T1 = (a >> 28)			# S0
    324
    325	xor	T1, y1		# y1 = (a>>39) ^ (a>>34) ^ (a>>28)	# S0
    326	mov	a, T1		# T1 = a                                # MAJB
    327	and	c, T1		# T1 = a&c                              # MAJB
    328	add	y0, y2		# y2 = S1 + CH                          # --
    329
    330	or	T1, y3		# y3 = MAJ = (a|c)&b)|(a&c)             # MAJ
    331	add	y1, h		# h = k + w + h + S0                    # --
    332	add	y2, d		# d = k + w + h + d + S1 + CH = d + t1  # --
    333	add	y2, h		# h = k + w + h + S0 + S1 + CH = t1 + S0# --
    334
    335	add	y3, h		# h = t1 + S0 + MAJ                     # --
    336
    337	RotateState
    338
    339################################### RND N + 3 #########################################
    340
    341	vpsrlq		$19, Y_0, YTMP3			# YTMP3 = W[-2] >> 19 {DC--}
    342	vpsllq		$(64-19), Y_0, YTMP1		# YTMP1 = W[-2] << 19 {DC--}
    343	vpor		YTMP1, YTMP3, YTMP3		# YTMP3 = W[-2] ror 19 {DC--}
    344	vpxor		YTMP3, YTMP4, YTMP4		# YTMP4 = W[-2] ror 19 ^ W[-2] >> 6 {DC--}
    345	vpsrlq		$61, Y_0, YTMP3			# YTMP3 = W[-2] >> 61 {DC--}
    346	vpsllq		$(64-61), Y_0, YTMP1		# YTMP1 = W[-2] << 61 {DC--}
    347	vpor		YTMP1, YTMP3, YTMP3		# YTMP3 = W[-2] ror 61 {DC--}
    348	vpxor		YTMP3, YTMP4, YTMP4		# YTMP4 = s1 = (W[-2] ror 19) ^
    349							#  (W[-2] ror 61) ^ (W[-2] >> 6) {DC--}
    350
    351	# Add the sigma0 + w[t-7] + w[t-16] for w[18] and w[19]
    352	# to newly calculated sigma1 to get w[18] and w[19]
    353	vpaddq		YTMP4, YTMP0, YTMP2		# YTMP2 = {W[3], W[2], --, --}
    354
    355	# Form w[19, w[18], w17], w[16]
    356	vpblendd		$0xF0, YTMP2, Y_0, Y_0		# Y_0 = {W[3], W[2], W[1], W[0]}
    357
    358	mov	a, y3		# y3 = a                                # MAJA
    359	rorx	$41, e, y0	# y0 = e >> 41				# S1A
    360	rorx	$18, e, y1	# y1 = e >> 18				# S1B
    361	add	3*8+frame_XFER(%rsp), h		# h = k + w + h         # --
    362	or	c, y3		# y3 = a|c                              # MAJA
    363
    364
    365	mov	f, y2		# y2 = f                                # CH
    366	rorx	$34, a, T1	# T1 = a >> 34				# S0B
    367	xor	y1, y0		# y0 = (e>>41) ^ (e>>18)		# S1
    368	xor	g, y2		# y2 = f^g                              # CH
    369
    370
    371	rorx	$14, e, y1	# y1 = (e >> 14)			# S1
    372	and	e, y2		# y2 = (f^g)&e                          # CH
    373	add	h, d		# d = k + w + h + d                     # --
    374	and	b, y3		# y3 = (a|c)&b                          # MAJA
    375
    376	xor	y1, y0		# y0 = (e>>41) ^ (e>>18) ^ (e>>14)	# S1
    377	xor	g, y2		# y2 = CH = ((f^g)&e)^g                 # CH
    378
    379	rorx	$39, a, y1	# y1 = a >> 39				# S0A
    380	add	y0, y2		# y2 = S1 + CH                          # --
    381
    382	xor	T1, y1		# y1 = (a>>39) ^ (a>>34)		# S0
    383	add	y2, d		# d = k + w + h + d + S1 + CH = d + t1  # --
    384
    385	rorx	$28, a, T1	# T1 = (a >> 28)			# S0
    386
    387	xor	T1, y1		# y1 = (a>>39) ^ (a>>34) ^ (a>>28)	# S0
    388	mov	a, T1		# T1 = a                                # MAJB
    389	and	c, T1		# T1 = a&c                              # MAJB
    390	or	T1, y3		# y3 = MAJ = (a|c)&b)|(a&c)             # MAJ
    391
    392	add	y1, h		# h = k + w + h + S0                    # --
    393	add	y2, h		# h = k + w + h + S0 + S1 + CH = t1 + S0# --
    394	add	y3, h		# h = t1 + S0 + MAJ                     # --
    395
    396	RotateState
    397
    398	rotate_Ys
    399.endm
    400
    401.macro DO_4ROUNDS
    402
    403################################### RND N + 0 #########################################
    404
    405	mov	f, y2		# y2 = f                                # CH
    406	rorx	$41, e, y0	# y0 = e >> 41				# S1A
    407	rorx	$18, e, y1	# y1 = e >> 18				# S1B
    408	xor	g, y2		# y2 = f^g                              # CH
    409
    410	xor	y1, y0		# y0 = (e>>41) ^ (e>>18)		# S1
    411	rorx	$14, e, y1	# y1 = (e >> 14)			# S1
    412	and	e, y2		# y2 = (f^g)&e                          # CH
    413
    414	xor	y1, y0		# y0 = (e>>41) ^ (e>>18) ^ (e>>14)	# S1
    415	rorx	$34, a, T1	# T1 = a >> 34				# S0B
    416	xor	g, y2		# y2 = CH = ((f^g)&e)^g                 # CH
    417	rorx	$39, a, y1	# y1 = a >> 39				# S0A
    418	mov	a, y3		# y3 = a                                # MAJA
    419
    420	xor	T1, y1		# y1 = (a>>39) ^ (a>>34)		# S0
    421	rorx	$28, a, T1	# T1 = (a >> 28)			# S0
    422	add	frame_XFER(%rsp), h		# h = k + w + h         # --
    423	or	c, y3		# y3 = a|c                              # MAJA
    424
    425	xor	T1, y1		# y1 = (a>>39) ^ (a>>34) ^ (a>>28)	# S0
    426	mov	a, T1		# T1 = a                                # MAJB
    427	and	b, y3		# y3 = (a|c)&b                          # MAJA
    428	and	c, T1		# T1 = a&c                              # MAJB
    429	add	y0, y2		# y2 = S1 + CH                          # --
    430
    431	add	h, d		# d = k + w + h + d                     # --
    432	or	T1, y3		# y3 = MAJ = (a|c)&b)|(a&c)             # MAJ
    433	add	y1, h		# h = k + w + h + S0                    # --
    434
    435	add	y2, d		# d = k + w + h + d + S1 + CH = d + t1  # --
    436
    437	RotateState
    438
    439################################### RND N + 1 #########################################
    440
    441	add	y2, old_h	# h = k + w + h + S0 + S1 + CH = t1 + S0# --
    442	mov	f, y2		# y2 = f                                # CH
    443	rorx	$41, e, y0	# y0 = e >> 41				# S1A
    444	rorx	$18, e, y1	# y1 = e >> 18				# S1B
    445	xor	g, y2		# y2 = f^g                              # CH
    446
    447	xor	y1, y0		# y0 = (e>>41) ^ (e>>18)		# S1
    448	rorx	$14, e, y1	# y1 = (e >> 14)			# S1
    449	and	e, y2		# y2 = (f^g)&e                          # CH
    450	add	y3, old_h	# h = t1 + S0 + MAJ                     # --
    451
    452	xor	y1, y0		# y0 = (e>>41) ^ (e>>18) ^ (e>>14)	# S1
    453	rorx	$34, a, T1	# T1 = a >> 34				# S0B
    454	xor	g, y2		# y2 = CH = ((f^g)&e)^g                 # CH
    455	rorx	$39, a, y1	# y1 = a >> 39				# S0A
    456	mov	a, y3		# y3 = a                                # MAJA
    457
    458	xor	T1, y1		# y1 = (a>>39) ^ (a>>34)		# S0
    459	rorx	$28, a, T1	# T1 = (a >> 28)			# S0
    460	add	8*1+frame_XFER(%rsp), h		# h = k + w + h         # --
    461	or	c, y3		# y3 = a|c                              # MAJA
    462
    463	xor	T1, y1		# y1 = (a>>39) ^ (a>>34) ^ (a>>28)	# S0
    464	mov	a, T1		# T1 = a                                # MAJB
    465	and	b, y3		# y3 = (a|c)&b                          # MAJA
    466	and	c, T1		# T1 = a&c                              # MAJB
    467	add	y0, y2		# y2 = S1 + CH                          # --
    468
    469	add	h, d		# d = k + w + h + d                     # --
    470	or	T1, y3		# y3 = MAJ = (a|c)&b)|(a&c)             # MAJ
    471	add	y1, h		# h = k + w + h + S0                    # --
    472
    473	add	y2, d		# d = k + w + h + d + S1 + CH = d + t1  # --
    474
    475	RotateState
    476
    477################################### RND N + 2 #########################################
    478
    479	add	y2, old_h	# h = k + w + h + S0 + S1 + CH = t1 + S0# --
    480	mov	f, y2		# y2 = f                                # CH
    481	rorx	$41, e, y0	# y0 = e >> 41				# S1A
    482	rorx	$18, e, y1	# y1 = e >> 18				# S1B
    483	xor	g, y2		# y2 = f^g                              # CH
    484
    485	xor	y1, y0		# y0 = (e>>41) ^ (e>>18)		# S1
    486	rorx	$14, e, y1	# y1 = (e >> 14)			# S1
    487	and	e, y2		# y2 = (f^g)&e                          # CH
    488	add	y3, old_h	# h = t1 + S0 + MAJ                     # --
    489
    490	xor	y1, y0		# y0 = (e>>41) ^ (e>>18) ^ (e>>14)	# S1
    491	rorx	$34, a, T1	# T1 = a >> 34				# S0B
    492	xor	g, y2		# y2 = CH = ((f^g)&e)^g                 # CH
    493	rorx	$39, a, y1	# y1 = a >> 39				# S0A
    494	mov	a, y3		# y3 = a                                # MAJA
    495
    496	xor	T1, y1		# y1 = (a>>39) ^ (a>>34)		# S0
    497	rorx	$28, a, T1	# T1 = (a >> 28)			# S0
    498	add	8*2+frame_XFER(%rsp), h		# h = k + w + h         # --
    499	or	c, y3		# y3 = a|c                              # MAJA
    500
    501	xor	T1, y1		# y1 = (a>>39) ^ (a>>34) ^ (a>>28)	# S0
    502	mov	a, T1		# T1 = a                                # MAJB
    503	and	b, y3		# y3 = (a|c)&b                          # MAJA
    504	and	c, T1		# T1 = a&c                              # MAJB
    505	add	y0, y2		# y2 = S1 + CH                          # --
    506
    507	add	h, d		# d = k + w + h + d                     # --
    508	or	T1, y3		# y3 = MAJ = (a|c)&b)|(a&c)             # MAJ
    509	add	y1, h		# h = k + w + h + S0                    # --
    510
    511	add	y2, d		# d = k + w + h + d + S1 + CH = d + t1  # --
    512
    513	RotateState
    514
    515################################### RND N + 3 #########################################
    516
    517	add	y2, old_h	# h = k + w + h + S0 + S1 + CH = t1 + S0# --
    518	mov	f, y2		# y2 = f                                # CH
    519	rorx	$41, e, y0	# y0 = e >> 41				# S1A
    520	rorx	$18, e, y1	# y1 = e >> 18				# S1B
    521	xor	g, y2		# y2 = f^g                              # CH
    522
    523	xor	y1, y0		# y0 = (e>>41) ^ (e>>18)		# S1
    524	rorx	$14, e, y1	# y1 = (e >> 14)			# S1
    525	and	e, y2		# y2 = (f^g)&e                          # CH
    526	add	y3, old_h	# h = t1 + S0 + MAJ                     # --
    527
    528	xor	y1, y0		# y0 = (e>>41) ^ (e>>18) ^ (e>>14)	# S1
    529	rorx	$34, a, T1	# T1 = a >> 34				# S0B
    530	xor	g, y2		# y2 = CH = ((f^g)&e)^g                 # CH
    531	rorx	$39, a, y1	# y1 = a >> 39				# S0A
    532	mov	a, y3		# y3 = a                                # MAJA
    533
    534	xor	T1, y1		# y1 = (a>>39) ^ (a>>34)		# S0
    535	rorx	$28, a, T1	# T1 = (a >> 28)			# S0
    536	add	8*3+frame_XFER(%rsp), h		# h = k + w + h         # --
    537	or	c, y3		# y3 = a|c                              # MAJA
    538
    539	xor	T1, y1		# y1 = (a>>39) ^ (a>>34) ^ (a>>28)	# S0
    540	mov	a, T1		# T1 = a                                # MAJB
    541	and	b, y3		# y3 = (a|c)&b                          # MAJA
    542	and	c, T1		# T1 = a&c                              # MAJB
    543	add	y0, y2		# y2 = S1 + CH                          # --
    544
    545
    546	add	h, d		# d = k + w + h + d                     # --
    547	or	T1, y3		# y3 = MAJ = (a|c)&b)|(a&c)             # MAJ
    548	add	y1, h		# h = k + w + h + S0                    # --
    549
    550	add	y2, d		# d = k + w + h + d + S1 + CH = d + t1  # --
    551
    552	add	y2, h		# h = k + w + h + S0 + S1 + CH = t1 + S0# --
    553
    554	add	y3, h		# h = t1 + S0 + MAJ                     # --
    555
    556	RotateState
    557
    558.endm
    559
    560########################################################################
    561# void sha512_transform_rorx(sha512_state *state, const u8 *data, int blocks)
    562# Purpose: Updates the SHA512 digest stored at "state" with the message
    563# stored in "data".
    564# The size of the message pointed to by "data" must be an integer multiple
    565# of SHA512 message blocks.
    566# "blocks" is the message length in SHA512 blocks
    567########################################################################
    568SYM_FUNC_START(sha512_transform_rorx)
    569	# Save GPRs
    570	push	%rbx
    571	push	%r12
    572	push	%r13
    573	push	%r14
    574	push	%r15
    575
    576	# Allocate Stack Space
    577	push	%rbp
    578	mov	%rsp, %rbp
    579	sub	$frame_size, %rsp
    580	and	$~(0x20 - 1), %rsp
    581
    582	shl	$7, NUM_BLKS	# convert to bytes
    583	jz	done_hash
    584	add	INP, NUM_BLKS	# pointer to end of data
    585	mov	NUM_BLKS, frame_INPEND(%rsp)
    586
    587	## load initial digest
    588	mov	8*0(CTX1), a
    589	mov	8*1(CTX1), b
    590	mov	8*2(CTX1), c
    591	mov	8*3(CTX1), d
    592	mov	8*4(CTX1), e
    593	mov	8*5(CTX1), f
    594	mov	8*6(CTX1), g
    595	mov	8*7(CTX1), h
    596
    597	# save %rdi (CTX) before it gets clobbered
    598	mov	%rdi, frame_CTX(%rsp)
    599
    600	vmovdqa	PSHUFFLE_BYTE_FLIP_MASK(%rip), BYTE_FLIP_MASK
    601
    602loop0:
    603	lea	K512(%rip), TBL
    604
    605	## byte swap first 16 dwords
    606	COPY_YMM_AND_BSWAP	Y_0, (INP), BYTE_FLIP_MASK
    607	COPY_YMM_AND_BSWAP	Y_1, 1*32(INP), BYTE_FLIP_MASK
    608	COPY_YMM_AND_BSWAP	Y_2, 2*32(INP), BYTE_FLIP_MASK
    609	COPY_YMM_AND_BSWAP	Y_3, 3*32(INP), BYTE_FLIP_MASK
    610
    611	mov	INP, frame_INP(%rsp)
    612
    613	## schedule 64 input dwords, by doing 12 rounds of 4 each
    614	movq	$4, frame_SRND(%rsp)
    615
    616.align 16
    617loop1:
    618	vpaddq	(TBL), Y_0, XFER
    619	vmovdqa XFER, frame_XFER(%rsp)
    620	FOUR_ROUNDS_AND_SCHED
    621
    622	vpaddq	1*32(TBL), Y_0, XFER
    623	vmovdqa XFER, frame_XFER(%rsp)
    624	FOUR_ROUNDS_AND_SCHED
    625
    626	vpaddq	2*32(TBL), Y_0, XFER
    627	vmovdqa XFER, frame_XFER(%rsp)
    628	FOUR_ROUNDS_AND_SCHED
    629
    630	vpaddq	3*32(TBL), Y_0, XFER
    631	vmovdqa XFER, frame_XFER(%rsp)
    632	add	$(4*32), TBL
    633	FOUR_ROUNDS_AND_SCHED
    634
    635	subq	$1, frame_SRND(%rsp)
    636	jne	loop1
    637
    638	movq	$2, frame_SRND(%rsp)
    639loop2:
    640	vpaddq	(TBL), Y_0, XFER
    641	vmovdqa XFER, frame_XFER(%rsp)
    642	DO_4ROUNDS
    643	vpaddq	1*32(TBL), Y_1, XFER
    644	vmovdqa XFER, frame_XFER(%rsp)
    645	add	$(2*32), TBL
    646	DO_4ROUNDS
    647
    648	vmovdqa	Y_2, Y_0
    649	vmovdqa	Y_3, Y_1
    650
    651	subq	$1, frame_SRND(%rsp)
    652	jne	loop2
    653
    654	mov	frame_CTX(%rsp), CTX2
    655	addm	8*0(CTX2), a
    656	addm	8*1(CTX2), b
    657	addm	8*2(CTX2), c
    658	addm	8*3(CTX2), d
    659	addm	8*4(CTX2), e
    660	addm	8*5(CTX2), f
    661	addm	8*6(CTX2), g
    662	addm	8*7(CTX2), h
    663
    664	mov	frame_INP(%rsp), INP
    665	add	$128, INP
    666	cmp	frame_INPEND(%rsp), INP
    667	jne	loop0
    668
    669done_hash:
    670
    671	# Restore Stack Pointer
    672	mov	%rbp, %rsp
    673	pop	%rbp
    674
    675	# Restore GPRs
    676	pop	%r15
    677	pop	%r14
    678	pop	%r13
    679	pop	%r12
    680	pop	%rbx
    681
    682	RET
    683SYM_FUNC_END(sha512_transform_rorx)
    684
    685########################################################################
    686### Binary Data
    687
    688
    689# Mergeable 640-byte rodata section. This allows linker to merge the table
    690# with other, exactly the same 640-byte fragment of another rodata section
    691# (if such section exists).
    692.section	.rodata.cst640.K512, "aM", @progbits, 640
    693.align 64
    694# K[t] used in SHA512 hashing
    695K512:
    696	.quad	0x428a2f98d728ae22,0x7137449123ef65cd
    697	.quad	0xb5c0fbcfec4d3b2f,0xe9b5dba58189dbbc
    698	.quad	0x3956c25bf348b538,0x59f111f1b605d019
    699	.quad	0x923f82a4af194f9b,0xab1c5ed5da6d8118
    700	.quad	0xd807aa98a3030242,0x12835b0145706fbe
    701	.quad	0x243185be4ee4b28c,0x550c7dc3d5ffb4e2
    702	.quad	0x72be5d74f27b896f,0x80deb1fe3b1696b1
    703	.quad	0x9bdc06a725c71235,0xc19bf174cf692694
    704	.quad	0xe49b69c19ef14ad2,0xefbe4786384f25e3
    705	.quad	0x0fc19dc68b8cd5b5,0x240ca1cc77ac9c65
    706	.quad	0x2de92c6f592b0275,0x4a7484aa6ea6e483
    707	.quad	0x5cb0a9dcbd41fbd4,0x76f988da831153b5
    708	.quad	0x983e5152ee66dfab,0xa831c66d2db43210
    709	.quad	0xb00327c898fb213f,0xbf597fc7beef0ee4
    710	.quad	0xc6e00bf33da88fc2,0xd5a79147930aa725
    711	.quad	0x06ca6351e003826f,0x142929670a0e6e70
    712	.quad	0x27b70a8546d22ffc,0x2e1b21385c26c926
    713	.quad	0x4d2c6dfc5ac42aed,0x53380d139d95b3df
    714	.quad	0x650a73548baf63de,0x766a0abb3c77b2a8
    715	.quad	0x81c2c92e47edaee6,0x92722c851482353b
    716	.quad	0xa2bfe8a14cf10364,0xa81a664bbc423001
    717	.quad	0xc24b8b70d0f89791,0xc76c51a30654be30
    718	.quad	0xd192e819d6ef5218,0xd69906245565a910
    719	.quad	0xf40e35855771202a,0x106aa07032bbd1b8
    720	.quad	0x19a4c116b8d2d0c8,0x1e376c085141ab53
    721	.quad	0x2748774cdf8eeb99,0x34b0bcb5e19b48a8
    722	.quad	0x391c0cb3c5c95a63,0x4ed8aa4ae3418acb
    723	.quad	0x5b9cca4f7763e373,0x682e6ff3d6b2b8a3
    724	.quad	0x748f82ee5defb2fc,0x78a5636f43172f60
    725	.quad	0x84c87814a1f0ab72,0x8cc702081a6439ec
    726	.quad	0x90befffa23631e28,0xa4506cebde82bde9
    727	.quad	0xbef9a3f7b2c67915,0xc67178f2e372532b
    728	.quad	0xca273eceea26619c,0xd186b8c721c0c207
    729	.quad	0xeada7dd6cde0eb1e,0xf57d4f7fee6ed178
    730	.quad	0x06f067aa72176fba,0x0a637dc5a2c898a6
    731	.quad	0x113f9804bef90dae,0x1b710b35131c471b
    732	.quad	0x28db77f523047d84,0x32caab7b40c72493
    733	.quad	0x3c9ebe0a15c9bebc,0x431d67c49c100d4c
    734	.quad	0x4cc5d4becb3e42b6,0x597f299cfc657e2a
    735	.quad	0x5fcb6fab3ad6faec,0x6c44198c4a475817
    736
    737.section	.rodata.cst32.PSHUFFLE_BYTE_FLIP_MASK, "aM", @progbits, 32
    738.align 32
    739# Mask for byte-swapping a couple of qwords in an XMM register using (v)pshufb.
    740PSHUFFLE_BYTE_FLIP_MASK:
    741	.octa 0x08090a0b0c0d0e0f0001020304050607
    742	.octa 0x18191a1b1c1d1e1f1011121314151617
    743
    744.section	.rodata.cst32.MASK_YMM_LO, "aM", @progbits, 32
    745.align 32
    746MASK_YMM_LO:
    747	.octa 0x00000000000000000000000000000000
    748	.octa 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF