cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

sha512-ssse3-asm.S (13072B)


      1########################################################################
      2# Implement fast SHA-512 with SSSE3 instructions. (x86_64)
      3#
      4# Copyright (C) 2013 Intel Corporation.
      5#
      6# Authors:
      7#     James Guilford <james.guilford@intel.com>
      8#     Kirk Yap <kirk.s.yap@intel.com>
      9#     David Cote <david.m.cote@intel.com>
     10#     Tim Chen <tim.c.chen@linux.intel.com>
     11#
     12# This software is available to you under a choice of one of two
     13# licenses.  You may choose to be licensed under the terms of the GNU
     14# General Public License (GPL) Version 2, available from the file
     15# COPYING in the main directory of this source tree, or the
     16# OpenIB.org BSD license below:
     17#
     18#     Redistribution and use in source and binary forms, with or
     19#     without modification, are permitted provided that the following
     20#     conditions are met:
     21#
     22#      - Redistributions of source code must retain the above
     23#        copyright notice, this list of conditions and the following
     24#        disclaimer.
     25#
     26#      - Redistributions in binary form must reproduce the above
     27#        copyright notice, this list of conditions and the following
     28#        disclaimer in the documentation and/or other materials
     29#        provided with the distribution.
     30#
     31# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
     32# EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
     33# MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
     34# NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
     35# BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
     36# ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
     37# CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
     38# SOFTWARE.
     39#
     40########################################################################
     41#
     42# This code is described in an Intel White-Paper:
     43# "Fast SHA-512 Implementations on Intel Architecture Processors"
     44#
     45# To find it, surf to http://www.intel.com/p/en_US/embedded
     46# and search for that title.
     47#
     48########################################################################
     49
     50#include <linux/linkage.h>
     51
     52.text
     53
     54# Virtual Registers
     55# ARG1
     56digest =	%rdi
     57# ARG2
     58msg =		%rsi
     59# ARG3
     60msglen =	%rdx
     61T1 =		%rcx
     62T2 =		%r8
     63a_64 =		%r9
     64b_64 =		%r10
     65c_64 =		%r11
     66d_64 =		%r12
     67e_64 =		%r13
     68f_64 =		%r14
     69g_64 =		%r15
     70h_64 =		%rbx
     71tmp0 =		%rax
     72
     73# Local variables (stack frame)
     74
     75W_SIZE = 80*8
     76WK_SIZE = 2*8
     77
     78frame_W = 0
     79frame_WK = frame_W + W_SIZE
     80frame_size = frame_WK + WK_SIZE
     81
     82# Useful QWORD "arrays" for simpler memory references
     83# MSG, DIGEST, K_t, W_t are arrays
     84# WK_2(t) points to 1 of 2 qwords at frame.WK depdending on t being odd/even
     85
     86# Input message (arg1)
     87#define MSG(i)    8*i(msg)
     88
     89# Output Digest (arg2)
     90#define DIGEST(i) 8*i(digest)
     91
     92# SHA Constants (static mem)
     93#define K_t(i)    8*i+K512(%rip)
     94
     95# Message Schedule (stack frame)
     96#define W_t(i)    8*i+frame_W(%rsp)
     97
     98# W[t]+K[t] (stack frame)
     99#define WK_2(i)   8*((i%2))+frame_WK(%rsp)
    100
    101.macro RotateState
    102	# Rotate symbols a..h right
    103	TMP   = h_64
    104	h_64  = g_64
    105	g_64  = f_64
    106	f_64  = e_64
    107	e_64  = d_64
    108	d_64  = c_64
    109	c_64  = b_64
    110	b_64  = a_64
    111	a_64  = TMP
    112.endm
    113
    114.macro SHA512_Round rnd
    115
    116	# Compute Round %%t
    117	mov	f_64, T1          # T1 = f
    118	mov	e_64, tmp0        # tmp = e
    119	xor	g_64, T1          # T1 = f ^ g
    120	ror	$23, tmp0 # 41    # tmp = e ror 23
    121	and	e_64, T1          # T1 = (f ^ g) & e
    122	xor	e_64, tmp0        # tmp = (e ror 23) ^ e
    123	xor	g_64, T1          # T1 = ((f ^ g) & e) ^ g = CH(e,f,g)
    124	idx = \rnd
    125	add	WK_2(idx), T1     # W[t] + K[t] from message scheduler
    126	ror	$4, tmp0  # 18    # tmp = ((e ror 23) ^ e) ror 4
    127	xor	e_64, tmp0        # tmp = (((e ror 23) ^ e) ror 4) ^ e
    128	mov	a_64, T2          # T2 = a
    129	add	h_64, T1          # T1 = CH(e,f,g) + W[t] + K[t] + h
    130	ror	$14, tmp0 # 14    # tmp = ((((e ror23)^e)ror4)^e)ror14 = S1(e)
    131	add	tmp0, T1          # T1 = CH(e,f,g) + W[t] + K[t] + S1(e)
    132	mov	a_64, tmp0        # tmp = a
    133	xor	c_64, T2          # T2 = a ^ c
    134	and	c_64, tmp0        # tmp = a & c
    135	and	b_64, T2          # T2 = (a ^ c) & b
    136	xor	tmp0, T2          # T2 = ((a ^ c) & b) ^ (a & c) = Maj(a,b,c)
    137	mov	a_64, tmp0        # tmp = a
    138	ror	$5, tmp0 # 39     # tmp = a ror 5
    139	xor	a_64, tmp0        # tmp = (a ror 5) ^ a
    140	add	T1, d_64          # e(next_state) = d + T1
    141	ror	$6, tmp0 # 34     # tmp = ((a ror 5) ^ a) ror 6
    142	xor	a_64, tmp0        # tmp = (((a ror 5) ^ a) ror 6) ^ a
    143	lea	(T1, T2), h_64    # a(next_state) = T1 + Maj(a,b,c)
    144	ror	$28, tmp0 # 28    # tmp = ((((a ror5)^a)ror6)^a)ror28 = S0(a)
    145	add	tmp0, h_64        # a(next_state) = T1 + Maj(a,b,c) S0(a)
    146	RotateState
    147.endm
    148
    149.macro SHA512_2Sched_2Round_sse rnd
    150
    151	# Compute rounds t-2 and t-1
    152	# Compute message schedule QWORDS t and t+1
    153
    154	#   Two rounds are computed based on the values for K[t-2]+W[t-2] and
    155	# K[t-1]+W[t-1] which were previously stored at WK_2 by the message
    156	# scheduler.
    157	#   The two new schedule QWORDS are stored at [W_t(%%t)] and [W_t(%%t+1)].
    158	# They are then added to their respective SHA512 constants at
    159	# [K_t(%%t)] and [K_t(%%t+1)] and stored at dqword [WK_2(%%t)]
    160	#   For brievity, the comments following vectored instructions only refer to
    161	# the first of a pair of QWORDS.
    162	# Eg. XMM2=W[t-2] really means XMM2={W[t-2]|W[t-1]}
    163	#   The computation of the message schedule and the rounds are tightly
    164	# stitched to take advantage of instruction-level parallelism.
    165	# For clarity, integer instructions (for the rounds calculation) are indented
    166	# by one tab. Vectored instructions (for the message scheduler) are indented
    167	# by two tabs.
    168
    169	mov	f_64, T1
    170	idx = \rnd -2
    171	movdqa	W_t(idx), %xmm2		    # XMM2 = W[t-2]
    172	xor	g_64, T1
    173	and	e_64, T1
    174	movdqa	%xmm2, %xmm0	            # XMM0 = W[t-2]
    175	xor	g_64, T1
    176	idx = \rnd
    177	add	WK_2(idx), T1
    178	idx = \rnd - 15
    179	movdqu	W_t(idx), %xmm5		    # XMM5 = W[t-15]
    180	mov	e_64, tmp0
    181	ror	$23, tmp0 # 41
    182	movdqa	%xmm5, %xmm3	            # XMM3 = W[t-15]
    183	xor	e_64, tmp0
    184	ror	$4, tmp0 # 18
    185	psrlq	$61-19, %xmm0		    # XMM0 = W[t-2] >> 42
    186	xor	e_64, tmp0
    187	ror	$14, tmp0 # 14
    188	psrlq	$(8-7), %xmm3		    # XMM3 = W[t-15] >> 1
    189	add	tmp0, T1
    190	add	h_64, T1
    191	pxor	%xmm2, %xmm0                # XMM0 = (W[t-2] >> 42) ^ W[t-2]
    192	mov	a_64, T2
    193	xor	c_64, T2
    194	pxor	%xmm5, %xmm3                # XMM3 = (W[t-15] >> 1) ^ W[t-15]
    195	and	b_64, T2
    196	mov	a_64, tmp0
    197	psrlq	$(19-6), %xmm0		    # XMM0 = ((W[t-2]>>42)^W[t-2])>>13
    198	and	c_64, tmp0
    199	xor	tmp0, T2
    200	psrlq	$(7-1), %xmm3		    # XMM3 = ((W[t-15]>>1)^W[t-15])>>6
    201	mov	a_64, tmp0
    202	ror	$5, tmp0 # 39
    203	pxor	%xmm2, %xmm0	            # XMM0 = (((W[t-2]>>42)^W[t-2])>>13)^W[t-2]
    204	xor	a_64, tmp0
    205	ror	$6, tmp0 # 34
    206	pxor	%xmm5, %xmm3                # XMM3 = (((W[t-15]>>1)^W[t-15])>>6)^W[t-15]
    207	xor	a_64, tmp0
    208	ror	$28, tmp0 # 28
    209	psrlq	$6, %xmm0                   # XMM0 = ((((W[t-2]>>42)^W[t-2])>>13)^W[t-2])>>6
    210	add	tmp0, T2
    211	add	T1, d_64
    212	psrlq	$1, %xmm3                   # XMM3 = (((W[t-15]>>1)^W[t-15])>>6)^W[t-15]>>1
    213	lea	(T1, T2), h_64
    214	RotateState
    215	movdqa	%xmm2, %xmm1	            # XMM1 = W[t-2]
    216	mov	f_64, T1
    217	xor	g_64, T1
    218	movdqa	%xmm5, %xmm4		    # XMM4 = W[t-15]
    219	and	e_64, T1
    220	xor	g_64, T1
    221	psllq	$(64-19)-(64-61) , %xmm1    # XMM1 = W[t-2] << 42
    222	idx = \rnd + 1
    223	add	WK_2(idx), T1
    224	mov	e_64, tmp0
    225	psllq	$(64-1)-(64-8), %xmm4	    # XMM4 = W[t-15] << 7
    226	ror	$23, tmp0 # 41
    227	xor	e_64, tmp0
    228	pxor	%xmm2, %xmm1		    # XMM1 = (W[t-2] << 42)^W[t-2]
    229	ror	$4, tmp0 # 18
    230	xor	e_64, tmp0
    231	pxor	%xmm5, %xmm4		    # XMM4 = (W[t-15]<<7)^W[t-15]
    232	ror	$14, tmp0 # 14
    233	add	tmp0, T1
    234	psllq	$(64-61), %xmm1		    # XMM1 = ((W[t-2] << 42)^W[t-2])<<3
    235	add	h_64, T1
    236	mov	a_64, T2
    237	psllq	$(64-8), %xmm4		    # XMM4 = ((W[t-15]<<7)^W[t-15])<<56
    238	xor	c_64, T2
    239	and	b_64, T2
    240	pxor	%xmm1, %xmm0		    # XMM0 = s1(W[t-2])
    241	mov	a_64, tmp0
    242	and	c_64, tmp0
    243	idx = \rnd - 7
    244	movdqu	W_t(idx), %xmm1		    # XMM1 = W[t-7]
    245	xor	tmp0, T2
    246	pxor	%xmm4, %xmm3                # XMM3 = s0(W[t-15])
    247	mov	a_64, tmp0
    248	paddq	%xmm3, %xmm0		    # XMM0 = s1(W[t-2]) + s0(W[t-15])
    249	ror	$5, tmp0 # 39
    250	idx =\rnd-16
    251	paddq	W_t(idx), %xmm0		    # XMM0 = s1(W[t-2]) + s0(W[t-15]) + W[t-16]
    252	xor	a_64, tmp0
    253	paddq	%xmm1, %xmm0	            # XMM0 = s1(W[t-2]) + W[t-7] + s0(W[t-15]) + W[t-16]
    254	ror	$6, tmp0 # 34
    255	movdqa	%xmm0, W_t(\rnd)	    # Store scheduled qwords
    256	xor	a_64, tmp0
    257	paddq	K_t(\rnd), %xmm0	    # Compute W[t]+K[t]
    258	ror	$28, tmp0 # 28
    259	idx = \rnd
    260	movdqa	%xmm0, WK_2(idx)	    # Store W[t]+K[t] for next rounds
    261	add	tmp0, T2
    262	add	T1, d_64
    263	lea	(T1, T2), h_64
    264	RotateState
    265.endm
    266
    267########################################################################
    268## void sha512_transform_ssse3(struct sha512_state *state, const u8 *data,
    269##			       int blocks);
    270# (struct sha512_state is assumed to begin with u64 state[8])
    271# Purpose: Updates the SHA512 digest stored at "state" with the message
    272# stored in "data".
    273# The size of the message pointed to by "data" must be an integer multiple
    274# of SHA512 message blocks.
    275# "blocks" is the message length in SHA512 blocks.
    276########################################################################
    277SYM_FUNC_START(sha512_transform_ssse3)
    278
    279	test msglen, msglen
    280	je nowork
    281
    282	# Save GPRs
    283	push	%rbx
    284	push	%r12
    285	push	%r13
    286	push	%r14
    287	push	%r15
    288
    289	# Allocate Stack Space
    290	push	%rbp
    291	mov	%rsp, %rbp
    292	sub	$frame_size, %rsp
    293	and	$~(0x20 - 1), %rsp
    294
    295updateblock:
    296
    297# Load state variables
    298	mov	DIGEST(0), a_64
    299	mov	DIGEST(1), b_64
    300	mov	DIGEST(2), c_64
    301	mov	DIGEST(3), d_64
    302	mov	DIGEST(4), e_64
    303	mov	DIGEST(5), f_64
    304	mov	DIGEST(6), g_64
    305	mov	DIGEST(7), h_64
    306
    307	t = 0
    308	.rept 80/2 + 1
    309	# (80 rounds) / (2 rounds/iteration) + (1 iteration)
    310	# +1 iteration because the scheduler leads hashing by 1 iteration
    311		.if t < 2
    312			# BSWAP 2 QWORDS
    313			movdqa	XMM_QWORD_BSWAP(%rip), %xmm1
    314			movdqu	MSG(t), %xmm0
    315			pshufb	%xmm1, %xmm0	# BSWAP
    316			movdqa	%xmm0, W_t(t)	# Store Scheduled Pair
    317			paddq	K_t(t), %xmm0	# Compute W[t]+K[t]
    318			movdqa	%xmm0, WK_2(t)	# Store into WK for rounds
    319		.elseif t < 16
    320			# BSWAP 2 QWORDS# Compute 2 Rounds
    321			movdqu	MSG(t), %xmm0
    322			pshufb	%xmm1, %xmm0	# BSWAP
    323			SHA512_Round t-2	# Round t-2
    324			movdqa	%xmm0, W_t(t)	# Store Scheduled Pair
    325			paddq	K_t(t), %xmm0	# Compute W[t]+K[t]
    326			SHA512_Round t-1	# Round t-1
    327			movdqa	%xmm0, WK_2(t)	# Store W[t]+K[t] into WK
    328		.elseif t < 79
    329			# Schedule 2 QWORDS# Compute 2 Rounds
    330			SHA512_2Sched_2Round_sse t
    331		.else
    332			# Compute 2 Rounds
    333			SHA512_Round t-2
    334			SHA512_Round t-1
    335		.endif
    336		t = t+2
    337	.endr
    338
    339	# Update digest
    340	add	a_64, DIGEST(0)
    341	add	b_64, DIGEST(1)
    342	add	c_64, DIGEST(2)
    343	add	d_64, DIGEST(3)
    344	add	e_64, DIGEST(4)
    345	add	f_64, DIGEST(5)
    346	add	g_64, DIGEST(6)
    347	add	h_64, DIGEST(7)
    348
    349	# Advance to next message block
    350	add	$16*8, msg
    351	dec	msglen
    352	jnz	updateblock
    353
    354	# Restore Stack Pointer
    355	mov	%rbp, %rsp
    356	pop	%rbp
    357
    358	# Restore GPRs
    359	pop	%r15
    360	pop	%r14
    361	pop	%r13
    362	pop	%r12
    363	pop	%rbx
    364
    365nowork:
    366	RET
    367SYM_FUNC_END(sha512_transform_ssse3)
    368
    369########################################################################
    370### Binary Data
    371
    372.section	.rodata.cst16.XMM_QWORD_BSWAP, "aM", @progbits, 16
    373.align 16
    374# Mask for byte-swapping a couple of qwords in an XMM register using (v)pshufb.
    375XMM_QWORD_BSWAP:
    376	.octa 0x08090a0b0c0d0e0f0001020304050607
    377
    378# Mergeable 640-byte rodata section. This allows linker to merge the table
    379# with other, exactly the same 640-byte fragment of another rodata section
    380# (if such section exists).
    381.section	.rodata.cst640.K512, "aM", @progbits, 640
    382.align 64
    383# K[t] used in SHA512 hashing
    384K512:
    385	.quad 0x428a2f98d728ae22,0x7137449123ef65cd
    386	.quad 0xb5c0fbcfec4d3b2f,0xe9b5dba58189dbbc
    387	.quad 0x3956c25bf348b538,0x59f111f1b605d019
    388	.quad 0x923f82a4af194f9b,0xab1c5ed5da6d8118
    389	.quad 0xd807aa98a3030242,0x12835b0145706fbe
    390	.quad 0x243185be4ee4b28c,0x550c7dc3d5ffb4e2
    391	.quad 0x72be5d74f27b896f,0x80deb1fe3b1696b1
    392	.quad 0x9bdc06a725c71235,0xc19bf174cf692694
    393	.quad 0xe49b69c19ef14ad2,0xefbe4786384f25e3
    394	.quad 0x0fc19dc68b8cd5b5,0x240ca1cc77ac9c65
    395	.quad 0x2de92c6f592b0275,0x4a7484aa6ea6e483
    396	.quad 0x5cb0a9dcbd41fbd4,0x76f988da831153b5
    397	.quad 0x983e5152ee66dfab,0xa831c66d2db43210
    398	.quad 0xb00327c898fb213f,0xbf597fc7beef0ee4
    399	.quad 0xc6e00bf33da88fc2,0xd5a79147930aa725
    400	.quad 0x06ca6351e003826f,0x142929670a0e6e70
    401	.quad 0x27b70a8546d22ffc,0x2e1b21385c26c926
    402	.quad 0x4d2c6dfc5ac42aed,0x53380d139d95b3df
    403	.quad 0x650a73548baf63de,0x766a0abb3c77b2a8
    404	.quad 0x81c2c92e47edaee6,0x92722c851482353b
    405	.quad 0xa2bfe8a14cf10364,0xa81a664bbc423001
    406	.quad 0xc24b8b70d0f89791,0xc76c51a30654be30
    407	.quad 0xd192e819d6ef5218,0xd69906245565a910
    408	.quad 0xf40e35855771202a,0x106aa07032bbd1b8
    409	.quad 0x19a4c116b8d2d0c8,0x1e376c085141ab53
    410	.quad 0x2748774cdf8eeb99,0x34b0bcb5e19b48a8
    411	.quad 0x391c0cb3c5c95a63,0x4ed8aa4ae3418acb
    412	.quad 0x5b9cca4f7763e373,0x682e6ff3d6b2b8a3
    413	.quad 0x748f82ee5defb2fc,0x78a5636f43172f60
    414	.quad 0x84c87814a1f0ab72,0x8cc702081a6439ec
    415	.quad 0x90befffa23631e28,0xa4506cebde82bde9
    416	.quad 0xbef9a3f7b2c67915,0xc67178f2e372532b
    417	.quad 0xca273eceea26619c,0xd186b8c721c0c207
    418	.quad 0xeada7dd6cde0eb1e,0xf57d4f7fee6ed178
    419	.quad 0x06f067aa72176fba,0x0a637dc5a2c898a6
    420	.quad 0x113f9804bef90dae,0x1b710b35131c471b
    421	.quad 0x28db77f523047d84,0x32caab7b40c72493
    422	.quad 0x3c9ebe0a15c9bebc,0x431d67c49c100d4c
    423	.quad 0x4cc5d4becb3e42b6,0x597f299cfc657e2a
    424	.quad 0x5fcb6fab3ad6faec,0x6c44198c4a475817