cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

entry_64.S (42902B)


      1/* SPDX-License-Identifier: GPL-2.0 */
      2/*
      3 *  linux/arch/x86_64/entry.S
      4 *
      5 *  Copyright (C) 1991, 1992  Linus Torvalds
      6 *  Copyright (C) 2000, 2001, 2002  Andi Kleen SuSE Labs
      7 *  Copyright (C) 2000  Pavel Machek <pavel@suse.cz>
      8 *
      9 * entry.S contains the system-call and fault low-level handling routines.
     10 *
     11 * Some of this is documented in Documentation/x86/entry_64.rst
     12 *
     13 * A note on terminology:
     14 * - iret frame:	Architecture defined interrupt frame from SS to RIP
     15 *			at the top of the kernel process stack.
     16 *
     17 * Some macro usage:
     18 * - SYM_FUNC_START/END:Define functions in the symbol table.
     19 * - idtentry:		Define exception entry points.
     20 */
     21#include <linux/linkage.h>
     22#include <asm/segment.h>
     23#include <asm/cache.h>
     24#include <asm/errno.h>
     25#include <asm/asm-offsets.h>
     26#include <asm/msr.h>
     27#include <asm/unistd.h>
     28#include <asm/thread_info.h>
     29#include <asm/hw_irq.h>
     30#include <asm/page_types.h>
     31#include <asm/irqflags.h>
     32#include <asm/paravirt.h>
     33#include <asm/percpu.h>
     34#include <asm/asm.h>
     35#include <asm/smap.h>
     36#include <asm/pgtable_types.h>
     37#include <asm/export.h>
     38#include <asm/frame.h>
     39#include <asm/trapnr.h>
     40#include <asm/nospec-branch.h>
     41#include <asm/fsgsbase.h>
     42#include <linux/err.h>
     43
     44#include "calling.h"
     45
     46.code64
     47.section .entry.text, "ax"
     48
     49/*
     50 * 64-bit SYSCALL instruction entry. Up to 6 arguments in registers.
     51 *
     52 * This is the only entry point used for 64-bit system calls.  The
     53 * hardware interface is reasonably well designed and the register to
     54 * argument mapping Linux uses fits well with the registers that are
     55 * available when SYSCALL is used.
     56 *
     57 * SYSCALL instructions can be found inlined in libc implementations as
     58 * well as some other programs and libraries.  There are also a handful
     59 * of SYSCALL instructions in the vDSO used, for example, as a
     60 * clock_gettimeofday fallback.
     61 *
     62 * 64-bit SYSCALL saves rip to rcx, clears rflags.RF, then saves rflags to r11,
     63 * then loads new ss, cs, and rip from previously programmed MSRs.
     64 * rflags gets masked by a value from another MSR (so CLD and CLAC
     65 * are not needed). SYSCALL does not save anything on the stack
     66 * and does not change rsp.
     67 *
     68 * Registers on entry:
     69 * rax  system call number
     70 * rcx  return address
     71 * r11  saved rflags (note: r11 is callee-clobbered register in C ABI)
     72 * rdi  arg0
     73 * rsi  arg1
     74 * rdx  arg2
     75 * r10  arg3 (needs to be moved to rcx to conform to C ABI)
     76 * r8   arg4
     77 * r9   arg5
     78 * (note: r12-r15, rbp, rbx are callee-preserved in C ABI)
     79 *
     80 * Only called from user space.
     81 *
     82 * When user can change pt_regs->foo always force IRET. That is because
     83 * it deals with uncanonical addresses better. SYSRET has trouble
     84 * with them due to bugs in both AMD and Intel CPUs.
     85 */
     86
     87SYM_CODE_START(entry_SYSCALL_64)
     88	UNWIND_HINT_EMPTY
     89	ENDBR
     90
     91	swapgs
     92	/* tss.sp2 is scratch space. */
     93	movq	%rsp, PER_CPU_VAR(cpu_tss_rw + TSS_sp2)
     94	SWITCH_TO_KERNEL_CR3 scratch_reg=%rsp
     95	movq	PER_CPU_VAR(cpu_current_top_of_stack), %rsp
     96
     97SYM_INNER_LABEL(entry_SYSCALL_64_safe_stack, SYM_L_GLOBAL)
     98	ANNOTATE_NOENDBR
     99
    100	/* Construct struct pt_regs on stack */
    101	pushq	$__USER_DS				/* pt_regs->ss */
    102	pushq	PER_CPU_VAR(cpu_tss_rw + TSS_sp2)	/* pt_regs->sp */
    103	pushq	%r11					/* pt_regs->flags */
    104	pushq	$__USER_CS				/* pt_regs->cs */
    105	pushq	%rcx					/* pt_regs->ip */
    106SYM_INNER_LABEL(entry_SYSCALL_64_after_hwframe, SYM_L_GLOBAL)
    107	pushq	%rax					/* pt_regs->orig_ax */
    108
    109	PUSH_AND_CLEAR_REGS rax=$-ENOSYS
    110
    111	/* IRQs are off. */
    112	movq	%rsp, %rdi
    113	/* Sign extend the lower 32bit as syscall numbers are treated as int */
    114	movslq	%eax, %rsi
    115	call	do_syscall_64		/* returns with IRQs disabled */
    116
    117	/*
    118	 * Try to use SYSRET instead of IRET if we're returning to
    119	 * a completely clean 64-bit userspace context.  If we're not,
    120	 * go to the slow exit path.
    121	 * In the Xen PV case we must use iret anyway.
    122	 */
    123
    124	ALTERNATIVE "", "jmp	swapgs_restore_regs_and_return_to_usermode", \
    125		X86_FEATURE_XENPV
    126
    127	movq	RCX(%rsp), %rcx
    128	movq	RIP(%rsp), %r11
    129
    130	cmpq	%rcx, %r11	/* SYSRET requires RCX == RIP */
    131	jne	swapgs_restore_regs_and_return_to_usermode
    132
    133	/*
    134	 * On Intel CPUs, SYSRET with non-canonical RCX/RIP will #GP
    135	 * in kernel space.  This essentially lets the user take over
    136	 * the kernel, since userspace controls RSP.
    137	 *
    138	 * If width of "canonical tail" ever becomes variable, this will need
    139	 * to be updated to remain correct on both old and new CPUs.
    140	 *
    141	 * Change top bits to match most significant bit (47th or 56th bit
    142	 * depending on paging mode) in the address.
    143	 */
    144#ifdef CONFIG_X86_5LEVEL
    145	ALTERNATIVE "shl $(64 - 48), %rcx; sar $(64 - 48), %rcx", \
    146		"shl $(64 - 57), %rcx; sar $(64 - 57), %rcx", X86_FEATURE_LA57
    147#else
    148	shl	$(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx
    149	sar	$(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx
    150#endif
    151
    152	/* If this changed %rcx, it was not canonical */
    153	cmpq	%rcx, %r11
    154	jne	swapgs_restore_regs_and_return_to_usermode
    155
    156	cmpq	$__USER_CS, CS(%rsp)		/* CS must match SYSRET */
    157	jne	swapgs_restore_regs_and_return_to_usermode
    158
    159	movq	R11(%rsp), %r11
    160	cmpq	%r11, EFLAGS(%rsp)		/* R11 == RFLAGS */
    161	jne	swapgs_restore_regs_and_return_to_usermode
    162
    163	/*
    164	 * SYSCALL clears RF when it saves RFLAGS in R11 and SYSRET cannot
    165	 * restore RF properly. If the slowpath sets it for whatever reason, we
    166	 * need to restore it correctly.
    167	 *
    168	 * SYSRET can restore TF, but unlike IRET, restoring TF results in a
    169	 * trap from userspace immediately after SYSRET.  This would cause an
    170	 * infinite loop whenever #DB happens with register state that satisfies
    171	 * the opportunistic SYSRET conditions.  For example, single-stepping
    172	 * this user code:
    173	 *
    174	 *           movq	$stuck_here, %rcx
    175	 *           pushfq
    176	 *           popq %r11
    177	 *   stuck_here:
    178	 *
    179	 * would never get past 'stuck_here'.
    180	 */
    181	testq	$(X86_EFLAGS_RF|X86_EFLAGS_TF), %r11
    182	jnz	swapgs_restore_regs_and_return_to_usermode
    183
    184	/* nothing to check for RSP */
    185
    186	cmpq	$__USER_DS, SS(%rsp)		/* SS must match SYSRET */
    187	jne	swapgs_restore_regs_and_return_to_usermode
    188
    189	/*
    190	 * We win! This label is here just for ease of understanding
    191	 * perf profiles. Nothing jumps here.
    192	 */
    193syscall_return_via_sysret:
    194	POP_REGS pop_rdi=0
    195
    196	/*
    197	 * Now all regs are restored except RSP and RDI.
    198	 * Save old stack pointer and switch to trampoline stack.
    199	 */
    200	movq	%rsp, %rdi
    201	movq	PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %rsp
    202	UNWIND_HINT_EMPTY
    203
    204	pushq	RSP-RDI(%rdi)	/* RSP */
    205	pushq	(%rdi)		/* RDI */
    206
    207	/*
    208	 * We are on the trampoline stack.  All regs except RDI are live.
    209	 * We can do future final exit work right here.
    210	 */
    211	STACKLEAK_ERASE_NOCLOBBER
    212
    213	SWITCH_TO_USER_CR3_STACK scratch_reg=%rdi
    214
    215	popq	%rdi
    216	popq	%rsp
    217SYM_INNER_LABEL(entry_SYSRETQ_unsafe_stack, SYM_L_GLOBAL)
    218	ANNOTATE_NOENDBR
    219	swapgs
    220	sysretq
    221SYM_INNER_LABEL(entry_SYSRETQ_end, SYM_L_GLOBAL)
    222	ANNOTATE_NOENDBR
    223	int3
    224SYM_CODE_END(entry_SYSCALL_64)
    225
    226/*
    227 * %rdi: prev task
    228 * %rsi: next task
    229 */
    230.pushsection .text, "ax"
    231SYM_FUNC_START(__switch_to_asm)
    232	/*
    233	 * Save callee-saved registers
    234	 * This must match the order in inactive_task_frame
    235	 */
    236	pushq	%rbp
    237	pushq	%rbx
    238	pushq	%r12
    239	pushq	%r13
    240	pushq	%r14
    241	pushq	%r15
    242
    243	/* switch stack */
    244	movq	%rsp, TASK_threadsp(%rdi)
    245	movq	TASK_threadsp(%rsi), %rsp
    246
    247#ifdef CONFIG_STACKPROTECTOR
    248	movq	TASK_stack_canary(%rsi), %rbx
    249	movq	%rbx, PER_CPU_VAR(fixed_percpu_data) + stack_canary_offset
    250#endif
    251
    252#ifdef CONFIG_RETPOLINE
    253	/*
    254	 * When switching from a shallower to a deeper call stack
    255	 * the RSB may either underflow or use entries populated
    256	 * with userspace addresses. On CPUs where those concerns
    257	 * exist, overwrite the RSB with entries which capture
    258	 * speculative execution to prevent attack.
    259	 */
    260	FILL_RETURN_BUFFER %r12, RSB_CLEAR_LOOPS, X86_FEATURE_RSB_CTXSW
    261#endif
    262
    263	/* restore callee-saved registers */
    264	popq	%r15
    265	popq	%r14
    266	popq	%r13
    267	popq	%r12
    268	popq	%rbx
    269	popq	%rbp
    270
    271	jmp	__switch_to
    272SYM_FUNC_END(__switch_to_asm)
    273.popsection
    274
    275/*
    276 * A newly forked process directly context switches into this address.
    277 *
    278 * rax: prev task we switched from
    279 * rbx: kernel thread func (NULL for user thread)
    280 * r12: kernel thread arg
    281 */
    282.pushsection .text, "ax"
    283SYM_CODE_START(ret_from_fork)
    284	UNWIND_HINT_EMPTY
    285	ANNOTATE_NOENDBR // copy_thread
    286	movq	%rax, %rdi
    287	call	schedule_tail			/* rdi: 'prev' task parameter */
    288
    289	testq	%rbx, %rbx			/* from kernel_thread? */
    290	jnz	1f				/* kernel threads are uncommon */
    291
    2922:
    293	UNWIND_HINT_REGS
    294	movq	%rsp, %rdi
    295	call	syscall_exit_to_user_mode	/* returns with IRQs disabled */
    296	jmp	swapgs_restore_regs_and_return_to_usermode
    297
    2981:
    299	/* kernel thread */
    300	UNWIND_HINT_EMPTY
    301	movq	%r12, %rdi
    302	CALL_NOSPEC rbx
    303	/*
    304	 * A kernel thread is allowed to return here after successfully
    305	 * calling kernel_execve().  Exit to userspace to complete the execve()
    306	 * syscall.
    307	 */
    308	movq	$0, RAX(%rsp)
    309	jmp	2b
    310SYM_CODE_END(ret_from_fork)
    311.popsection
    312
    313.macro DEBUG_ENTRY_ASSERT_IRQS_OFF
    314#ifdef CONFIG_DEBUG_ENTRY
    315	pushq %rax
    316	SAVE_FLAGS
    317	testl $X86_EFLAGS_IF, %eax
    318	jz .Lokay_\@
    319	ud2
    320.Lokay_\@:
    321	popq %rax
    322#endif
    323.endm
    324
    325/* Save all registers in pt_regs */
    326SYM_CODE_START_LOCAL(push_and_clear_regs)
    327	UNWIND_HINT_FUNC
    328	PUSH_AND_CLEAR_REGS save_ret=1
    329	ENCODE_FRAME_POINTER 8
    330	RET
    331SYM_CODE_END(push_and_clear_regs)
    332
    333/**
    334 * idtentry_body - Macro to emit code calling the C function
    335 * @cfunc:		C function to be called
    336 * @has_error_code:	Hardware pushed error code on stack
    337 */
    338.macro idtentry_body cfunc has_error_code:req
    339
    340	call push_and_clear_regs
    341	UNWIND_HINT_REGS
    342
    343	/*
    344	 * Call error_entry() and switch to the task stack if from userspace.
    345	 *
    346	 * When in XENPV, it is already in the task stack, and it can't fault
    347	 * for native_iret() nor native_load_gs_index() since XENPV uses its
    348	 * own pvops for IRET and load_gs_index().  And it doesn't need to
    349	 * switch the CR3.  So it can skip invoking error_entry().
    350	 */
    351	ALTERNATIVE "call error_entry; movq %rax, %rsp", \
    352		"", X86_FEATURE_XENPV
    353
    354	ENCODE_FRAME_POINTER
    355	UNWIND_HINT_REGS
    356
    357	movq	%rsp, %rdi			/* pt_regs pointer into 1st argument*/
    358
    359	.if \has_error_code == 1
    360		movq	ORIG_RAX(%rsp), %rsi	/* get error code into 2nd argument*/
    361		movq	$-1, ORIG_RAX(%rsp)	/* no syscall to restart */
    362	.endif
    363
    364	call	\cfunc
    365
    366	/* For some configurations \cfunc ends up being a noreturn. */
    367	REACHABLE
    368
    369	jmp	error_return
    370.endm
    371
    372/**
    373 * idtentry - Macro to generate entry stubs for simple IDT entries
    374 * @vector:		Vector number
    375 * @asmsym:		ASM symbol for the entry point
    376 * @cfunc:		C function to be called
    377 * @has_error_code:	Hardware pushed error code on stack
    378 *
    379 * The macro emits code to set up the kernel context for straight forward
    380 * and simple IDT entries. No IST stack, no paranoid entry checks.
    381 */
    382.macro idtentry vector asmsym cfunc has_error_code:req
    383SYM_CODE_START(\asmsym)
    384	UNWIND_HINT_IRET_REGS offset=\has_error_code*8
    385	ENDBR
    386	ASM_CLAC
    387	cld
    388
    389	.if \has_error_code == 0
    390		pushq	$-1			/* ORIG_RAX: no syscall to restart */
    391	.endif
    392
    393	.if \vector == X86_TRAP_BP
    394		/*
    395		 * If coming from kernel space, create a 6-word gap to allow the
    396		 * int3 handler to emulate a call instruction.
    397		 */
    398		testb	$3, CS-ORIG_RAX(%rsp)
    399		jnz	.Lfrom_usermode_no_gap_\@
    400		.rept	6
    401		pushq	5*8(%rsp)
    402		.endr
    403		UNWIND_HINT_IRET_REGS offset=8
    404.Lfrom_usermode_no_gap_\@:
    405	.endif
    406
    407	idtentry_body \cfunc \has_error_code
    408
    409_ASM_NOKPROBE(\asmsym)
    410SYM_CODE_END(\asmsym)
    411.endm
    412
    413/*
    414 * Interrupt entry/exit.
    415 *
    416 + The interrupt stubs push (vector) onto the stack, which is the error_code
    417 * position of idtentry exceptions, and jump to one of the two idtentry points
    418 * (common/spurious).
    419 *
    420 * common_interrupt is a hotpath, align it to a cache line
    421 */
    422.macro idtentry_irq vector cfunc
    423	.p2align CONFIG_X86_L1_CACHE_SHIFT
    424	idtentry \vector asm_\cfunc \cfunc has_error_code=1
    425.endm
    426
    427/*
    428 * System vectors which invoke their handlers directly and are not
    429 * going through the regular common device interrupt handling code.
    430 */
    431.macro idtentry_sysvec vector cfunc
    432	idtentry \vector asm_\cfunc \cfunc has_error_code=0
    433.endm
    434
    435/**
    436 * idtentry_mce_db - Macro to generate entry stubs for #MC and #DB
    437 * @vector:		Vector number
    438 * @asmsym:		ASM symbol for the entry point
    439 * @cfunc:		C function to be called
    440 *
    441 * The macro emits code to set up the kernel context for #MC and #DB
    442 *
    443 * If the entry comes from user space it uses the normal entry path
    444 * including the return to user space work and preemption checks on
    445 * exit.
    446 *
    447 * If hits in kernel mode then it needs to go through the paranoid
    448 * entry as the exception can hit any random state. No preemption
    449 * check on exit to keep the paranoid path simple.
    450 */
    451.macro idtentry_mce_db vector asmsym cfunc
    452SYM_CODE_START(\asmsym)
    453	UNWIND_HINT_IRET_REGS
    454	ENDBR
    455	ASM_CLAC
    456	cld
    457
    458	pushq	$-1			/* ORIG_RAX: no syscall to restart */
    459
    460	/*
    461	 * If the entry is from userspace, switch stacks and treat it as
    462	 * a normal entry.
    463	 */
    464	testb	$3, CS-ORIG_RAX(%rsp)
    465	jnz	.Lfrom_usermode_switch_stack_\@
    466
    467	/* paranoid_entry returns GS information for paranoid_exit in EBX. */
    468	call	paranoid_entry
    469
    470	UNWIND_HINT_REGS
    471
    472	movq	%rsp, %rdi		/* pt_regs pointer */
    473
    474	call	\cfunc
    475
    476	jmp	paranoid_exit
    477
    478	/* Switch to the regular task stack and use the noist entry point */
    479.Lfrom_usermode_switch_stack_\@:
    480	idtentry_body noist_\cfunc, has_error_code=0
    481
    482_ASM_NOKPROBE(\asmsym)
    483SYM_CODE_END(\asmsym)
    484.endm
    485
    486#ifdef CONFIG_AMD_MEM_ENCRYPT
    487/**
    488 * idtentry_vc - Macro to generate entry stub for #VC
    489 * @vector:		Vector number
    490 * @asmsym:		ASM symbol for the entry point
    491 * @cfunc:		C function to be called
    492 *
    493 * The macro emits code to set up the kernel context for #VC. The #VC handler
    494 * runs on an IST stack and needs to be able to cause nested #VC exceptions.
    495 *
    496 * To make this work the #VC entry code tries its best to pretend it doesn't use
    497 * an IST stack by switching to the task stack if coming from user-space (which
    498 * includes early SYSCALL entry path) or back to the stack in the IRET frame if
    499 * entered from kernel-mode.
    500 *
    501 * If entered from kernel-mode the return stack is validated first, and if it is
    502 * not safe to use (e.g. because it points to the entry stack) the #VC handler
    503 * will switch to a fall-back stack (VC2) and call a special handler function.
    504 *
    505 * The macro is only used for one vector, but it is planned to be extended in
    506 * the future for the #HV exception.
    507 */
    508.macro idtentry_vc vector asmsym cfunc
    509SYM_CODE_START(\asmsym)
    510	UNWIND_HINT_IRET_REGS
    511	ENDBR
    512	ASM_CLAC
    513	cld
    514
    515	/*
    516	 * If the entry is from userspace, switch stacks and treat it as
    517	 * a normal entry.
    518	 */
    519	testb	$3, CS-ORIG_RAX(%rsp)
    520	jnz	.Lfrom_usermode_switch_stack_\@
    521
    522	/*
    523	 * paranoid_entry returns SWAPGS flag for paranoid_exit in EBX.
    524	 * EBX == 0 -> SWAPGS, EBX == 1 -> no SWAPGS
    525	 */
    526	call	paranoid_entry
    527
    528	UNWIND_HINT_REGS
    529
    530	/*
    531	 * Switch off the IST stack to make it free for nested exceptions. The
    532	 * vc_switch_off_ist() function will switch back to the interrupted
    533	 * stack if it is safe to do so. If not it switches to the VC fall-back
    534	 * stack.
    535	 */
    536	movq	%rsp, %rdi		/* pt_regs pointer */
    537	call	vc_switch_off_ist
    538	movq	%rax, %rsp		/* Switch to new stack */
    539
    540	ENCODE_FRAME_POINTER
    541	UNWIND_HINT_REGS
    542
    543	/* Update pt_regs */
    544	movq	ORIG_RAX(%rsp), %rsi	/* get error code into 2nd argument*/
    545	movq	$-1, ORIG_RAX(%rsp)	/* no syscall to restart */
    546
    547	movq	%rsp, %rdi		/* pt_regs pointer */
    548
    549	call	kernel_\cfunc
    550
    551	/*
    552	 * No need to switch back to the IST stack. The current stack is either
    553	 * identical to the stack in the IRET frame or the VC fall-back stack,
    554	 * so it is definitely mapped even with PTI enabled.
    555	 */
    556	jmp	paranoid_exit
    557
    558	/* Switch to the regular task stack */
    559.Lfrom_usermode_switch_stack_\@:
    560	idtentry_body user_\cfunc, has_error_code=1
    561
    562_ASM_NOKPROBE(\asmsym)
    563SYM_CODE_END(\asmsym)
    564.endm
    565#endif
    566
    567/*
    568 * Double fault entry. Straight paranoid. No checks from which context
    569 * this comes because for the espfix induced #DF this would do the wrong
    570 * thing.
    571 */
    572.macro idtentry_df vector asmsym cfunc
    573SYM_CODE_START(\asmsym)
    574	UNWIND_HINT_IRET_REGS offset=8
    575	ENDBR
    576	ASM_CLAC
    577	cld
    578
    579	/* paranoid_entry returns GS information for paranoid_exit in EBX. */
    580	call	paranoid_entry
    581	UNWIND_HINT_REGS
    582
    583	movq	%rsp, %rdi		/* pt_regs pointer into first argument */
    584	movq	ORIG_RAX(%rsp), %rsi	/* get error code into 2nd argument*/
    585	movq	$-1, ORIG_RAX(%rsp)	/* no syscall to restart */
    586	call	\cfunc
    587
    588	/* For some configurations \cfunc ends up being a noreturn. */
    589	REACHABLE
    590
    591	jmp	paranoid_exit
    592
    593_ASM_NOKPROBE(\asmsym)
    594SYM_CODE_END(\asmsym)
    595.endm
    596
    597/*
    598 * Include the defines which emit the idt entries which are shared
    599 * shared between 32 and 64 bit and emit the __irqentry_text_* markers
    600 * so the stacktrace boundary checks work.
    601 */
    602	.align 16
    603	.globl __irqentry_text_start
    604__irqentry_text_start:
    605
    606#include <asm/idtentry.h>
    607
    608	.align 16
    609	.globl __irqentry_text_end
    610__irqentry_text_end:
    611	ANNOTATE_NOENDBR
    612
    613SYM_CODE_START_LOCAL(common_interrupt_return)
    614SYM_INNER_LABEL(swapgs_restore_regs_and_return_to_usermode, SYM_L_GLOBAL)
    615#ifdef CONFIG_DEBUG_ENTRY
    616	/* Assert that pt_regs indicates user mode. */
    617	testb	$3, CS(%rsp)
    618	jnz	1f
    619	ud2
    6201:
    621#endif
    622#ifdef CONFIG_XEN_PV
    623	ALTERNATIVE "", "jmp xenpv_restore_regs_and_return_to_usermode", X86_FEATURE_XENPV
    624#endif
    625
    626	POP_REGS pop_rdi=0
    627
    628	/*
    629	 * The stack is now user RDI, orig_ax, RIP, CS, EFLAGS, RSP, SS.
    630	 * Save old stack pointer and switch to trampoline stack.
    631	 */
    632	movq	%rsp, %rdi
    633	movq	PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %rsp
    634	UNWIND_HINT_EMPTY
    635
    636	/* Copy the IRET frame to the trampoline stack. */
    637	pushq	6*8(%rdi)	/* SS */
    638	pushq	5*8(%rdi)	/* RSP */
    639	pushq	4*8(%rdi)	/* EFLAGS */
    640	pushq	3*8(%rdi)	/* CS */
    641	pushq	2*8(%rdi)	/* RIP */
    642
    643	/* Push user RDI on the trampoline stack. */
    644	pushq	(%rdi)
    645
    646	/*
    647	 * We are on the trampoline stack.  All regs except RDI are live.
    648	 * We can do future final exit work right here.
    649	 */
    650	STACKLEAK_ERASE_NOCLOBBER
    651
    652	SWITCH_TO_USER_CR3_STACK scratch_reg=%rdi
    653
    654	/* Restore RDI. */
    655	popq	%rdi
    656	swapgs
    657	jmp	.Lnative_iret
    658
    659
    660SYM_INNER_LABEL(restore_regs_and_return_to_kernel, SYM_L_GLOBAL)
    661#ifdef CONFIG_DEBUG_ENTRY
    662	/* Assert that pt_regs indicates kernel mode. */
    663	testb	$3, CS(%rsp)
    664	jz	1f
    665	ud2
    6661:
    667#endif
    668	POP_REGS
    669	addq	$8, %rsp	/* skip regs->orig_ax */
    670	/*
    671	 * ARCH_HAS_MEMBARRIER_SYNC_CORE rely on IRET core serialization
    672	 * when returning from IPI handler.
    673	 */
    674#ifdef CONFIG_XEN_PV
    675SYM_INNER_LABEL(early_xen_iret_patch, SYM_L_GLOBAL)
    676	ANNOTATE_NOENDBR
    677	.byte 0xe9
    678	.long .Lnative_iret - (. + 4)
    679#endif
    680
    681.Lnative_iret:
    682	UNWIND_HINT_IRET_REGS
    683	/*
    684	 * Are we returning to a stack segment from the LDT?  Note: in
    685	 * 64-bit mode SS:RSP on the exception stack is always valid.
    686	 */
    687#ifdef CONFIG_X86_ESPFIX64
    688	testb	$4, (SS-RIP)(%rsp)
    689	jnz	native_irq_return_ldt
    690#endif
    691
    692SYM_INNER_LABEL(native_irq_return_iret, SYM_L_GLOBAL)
    693	ANNOTATE_NOENDBR // exc_double_fault
    694	/*
    695	 * This may fault.  Non-paranoid faults on return to userspace are
    696	 * handled by fixup_bad_iret.  These include #SS, #GP, and #NP.
    697	 * Double-faults due to espfix64 are handled in exc_double_fault.
    698	 * Other faults here are fatal.
    699	 */
    700	iretq
    701
    702#ifdef CONFIG_X86_ESPFIX64
    703native_irq_return_ldt:
    704	/*
    705	 * We are running with user GSBASE.  All GPRs contain their user
    706	 * values.  We have a percpu ESPFIX stack that is eight slots
    707	 * long (see ESPFIX_STACK_SIZE).  espfix_waddr points to the bottom
    708	 * of the ESPFIX stack.
    709	 *
    710	 * We clobber RAX and RDI in this code.  We stash RDI on the
    711	 * normal stack and RAX on the ESPFIX stack.
    712	 *
    713	 * The ESPFIX stack layout we set up looks like this:
    714	 *
    715	 * --- top of ESPFIX stack ---
    716	 * SS
    717	 * RSP
    718	 * RFLAGS
    719	 * CS
    720	 * RIP  <-- RSP points here when we're done
    721	 * RAX  <-- espfix_waddr points here
    722	 * --- bottom of ESPFIX stack ---
    723	 */
    724
    725	pushq	%rdi				/* Stash user RDI */
    726	swapgs					/* to kernel GS */
    727	SWITCH_TO_KERNEL_CR3 scratch_reg=%rdi	/* to kernel CR3 */
    728
    729	movq	PER_CPU_VAR(espfix_waddr), %rdi
    730	movq	%rax, (0*8)(%rdi)		/* user RAX */
    731	movq	(1*8)(%rsp), %rax		/* user RIP */
    732	movq	%rax, (1*8)(%rdi)
    733	movq	(2*8)(%rsp), %rax		/* user CS */
    734	movq	%rax, (2*8)(%rdi)
    735	movq	(3*8)(%rsp), %rax		/* user RFLAGS */
    736	movq	%rax, (3*8)(%rdi)
    737	movq	(5*8)(%rsp), %rax		/* user SS */
    738	movq	%rax, (5*8)(%rdi)
    739	movq	(4*8)(%rsp), %rax		/* user RSP */
    740	movq	%rax, (4*8)(%rdi)
    741	/* Now RAX == RSP. */
    742
    743	andl	$0xffff0000, %eax		/* RAX = (RSP & 0xffff0000) */
    744
    745	/*
    746	 * espfix_stack[31:16] == 0.  The page tables are set up such that
    747	 * (espfix_stack | (X & 0xffff0000)) points to a read-only alias of
    748	 * espfix_waddr for any X.  That is, there are 65536 RO aliases of
    749	 * the same page.  Set up RSP so that RSP[31:16] contains the
    750	 * respective 16 bits of the /userspace/ RSP and RSP nonetheless
    751	 * still points to an RO alias of the ESPFIX stack.
    752	 */
    753	orq	PER_CPU_VAR(espfix_stack), %rax
    754
    755	SWITCH_TO_USER_CR3_STACK scratch_reg=%rdi
    756	swapgs					/* to user GS */
    757	popq	%rdi				/* Restore user RDI */
    758
    759	movq	%rax, %rsp
    760	UNWIND_HINT_IRET_REGS offset=8
    761
    762	/*
    763	 * At this point, we cannot write to the stack any more, but we can
    764	 * still read.
    765	 */
    766	popq	%rax				/* Restore user RAX */
    767
    768	/*
    769	 * RSP now points to an ordinary IRET frame, except that the page
    770	 * is read-only and RSP[31:16] are preloaded with the userspace
    771	 * values.  We can now IRET back to userspace.
    772	 */
    773	jmp	native_irq_return_iret
    774#endif
    775SYM_CODE_END(common_interrupt_return)
    776_ASM_NOKPROBE(common_interrupt_return)
    777
    778/*
    779 * Reload gs selector with exception handling
    780 * edi:  new selector
    781 *
    782 * Is in entry.text as it shouldn't be instrumented.
    783 */
    784SYM_FUNC_START(asm_load_gs_index)
    785	FRAME_BEGIN
    786	swapgs
    787.Lgs_change:
    788	ANNOTATE_NOENDBR // error_entry
    789	movl	%edi, %gs
    7902:	ALTERNATIVE "", "mfence", X86_BUG_SWAPGS_FENCE
    791	swapgs
    792	FRAME_END
    793	RET
    794
    795	/* running with kernelgs */
    796.Lbad_gs:
    797	swapgs					/* switch back to user gs */
    798.macro ZAP_GS
    799	/* This can't be a string because the preprocessor needs to see it. */
    800	movl $__USER_DS, %eax
    801	movl %eax, %gs
    802.endm
    803	ALTERNATIVE "", "ZAP_GS", X86_BUG_NULL_SEG
    804	xorl	%eax, %eax
    805	movl	%eax, %gs
    806	jmp	2b
    807
    808	_ASM_EXTABLE(.Lgs_change, .Lbad_gs)
    809
    810SYM_FUNC_END(asm_load_gs_index)
    811EXPORT_SYMBOL(asm_load_gs_index)
    812
    813#ifdef CONFIG_XEN_PV
    814/*
    815 * A note on the "critical region" in our callback handler.
    816 * We want to avoid stacking callback handlers due to events occurring
    817 * during handling of the last event. To do this, we keep events disabled
    818 * until we've done all processing. HOWEVER, we must enable events before
    819 * popping the stack frame (can't be done atomically) and so it would still
    820 * be possible to get enough handler activations to overflow the stack.
    821 * Although unlikely, bugs of that kind are hard to track down, so we'd
    822 * like to avoid the possibility.
    823 * So, on entry to the handler we detect whether we interrupted an
    824 * existing activation in its critical region -- if so, we pop the current
    825 * activation and restart the handler using the previous one.
    826 *
    827 * C calling convention: exc_xen_hypervisor_callback(struct *pt_regs)
    828 */
    829SYM_CODE_START_LOCAL(exc_xen_hypervisor_callback)
    830
    831/*
    832 * Since we don't modify %rdi, evtchn_do_upall(struct *pt_regs) will
    833 * see the correct pointer to the pt_regs
    834 */
    835	UNWIND_HINT_FUNC
    836	movq	%rdi, %rsp			/* we don't return, adjust the stack frame */
    837	UNWIND_HINT_REGS
    838
    839	call	xen_pv_evtchn_do_upcall
    840
    841	jmp	error_return
    842SYM_CODE_END(exc_xen_hypervisor_callback)
    843
    844/*
    845 * Hypervisor uses this for application faults while it executes.
    846 * We get here for two reasons:
    847 *  1. Fault while reloading DS, ES, FS or GS
    848 *  2. Fault while executing IRET
    849 * Category 1 we do not need to fix up as Xen has already reloaded all segment
    850 * registers that could be reloaded and zeroed the others.
    851 * Category 2 we fix up by killing the current process. We cannot use the
    852 * normal Linux return path in this case because if we use the IRET hypercall
    853 * to pop the stack frame we end up in an infinite loop of failsafe callbacks.
    854 * We distinguish between categories by comparing each saved segment register
    855 * with its current contents: any discrepancy means we in category 1.
    856 */
    857SYM_CODE_START(xen_failsafe_callback)
    858	UNWIND_HINT_EMPTY
    859	ENDBR
    860	movl	%ds, %ecx
    861	cmpw	%cx, 0x10(%rsp)
    862	jne	1f
    863	movl	%es, %ecx
    864	cmpw	%cx, 0x18(%rsp)
    865	jne	1f
    866	movl	%fs, %ecx
    867	cmpw	%cx, 0x20(%rsp)
    868	jne	1f
    869	movl	%gs, %ecx
    870	cmpw	%cx, 0x28(%rsp)
    871	jne	1f
    872	/* All segments match their saved values => Category 2 (Bad IRET). */
    873	movq	(%rsp), %rcx
    874	movq	8(%rsp), %r11
    875	addq	$0x30, %rsp
    876	pushq	$0				/* RIP */
    877	UNWIND_HINT_IRET_REGS offset=8
    878	jmp	asm_exc_general_protection
    8791:	/* Segment mismatch => Category 1 (Bad segment). Retry the IRET. */
    880	movq	(%rsp), %rcx
    881	movq	8(%rsp), %r11
    882	addq	$0x30, %rsp
    883	UNWIND_HINT_IRET_REGS
    884	pushq	$-1 /* orig_ax = -1 => not a system call */
    885	PUSH_AND_CLEAR_REGS
    886	ENCODE_FRAME_POINTER
    887	jmp	error_return
    888SYM_CODE_END(xen_failsafe_callback)
    889#endif /* CONFIG_XEN_PV */
    890
    891/*
    892 * Save all registers in pt_regs. Return GSBASE related information
    893 * in EBX depending on the availability of the FSGSBASE instructions:
    894 *
    895 * FSGSBASE	R/EBX
    896 *     N        0 -> SWAPGS on exit
    897 *              1 -> no SWAPGS on exit
    898 *
    899 *     Y        GSBASE value at entry, must be restored in paranoid_exit
    900 */
    901SYM_CODE_START_LOCAL(paranoid_entry)
    902	UNWIND_HINT_FUNC
    903	PUSH_AND_CLEAR_REGS save_ret=1
    904	ENCODE_FRAME_POINTER 8
    905
    906	/*
    907	 * Always stash CR3 in %r14.  This value will be restored,
    908	 * verbatim, at exit.  Needed if paranoid_entry interrupted
    909	 * another entry that already switched to the user CR3 value
    910	 * but has not yet returned to userspace.
    911	 *
    912	 * This is also why CS (stashed in the "iret frame" by the
    913	 * hardware at entry) can not be used: this may be a return
    914	 * to kernel code, but with a user CR3 value.
    915	 *
    916	 * Switching CR3 does not depend on kernel GSBASE so it can
    917	 * be done before switching to the kernel GSBASE. This is
    918	 * required for FSGSBASE because the kernel GSBASE has to
    919	 * be retrieved from a kernel internal table.
    920	 */
    921	SAVE_AND_SWITCH_TO_KERNEL_CR3 scratch_reg=%rax save_reg=%r14
    922
    923	/*
    924	 * Handling GSBASE depends on the availability of FSGSBASE.
    925	 *
    926	 * Without FSGSBASE the kernel enforces that negative GSBASE
    927	 * values indicate kernel GSBASE. With FSGSBASE no assumptions
    928	 * can be made about the GSBASE value when entering from user
    929	 * space.
    930	 */
    931	ALTERNATIVE "jmp .Lparanoid_entry_checkgs", "", X86_FEATURE_FSGSBASE
    932
    933	/*
    934	 * Read the current GSBASE and store it in %rbx unconditionally,
    935	 * retrieve and set the current CPUs kernel GSBASE. The stored value
    936	 * has to be restored in paranoid_exit unconditionally.
    937	 *
    938	 * The unconditional write to GS base below ensures that no subsequent
    939	 * loads based on a mispredicted GS base can happen, therefore no LFENCE
    940	 * is needed here.
    941	 */
    942	SAVE_AND_SET_GSBASE scratch_reg=%rax save_reg=%rbx
    943	RET
    944
    945.Lparanoid_entry_checkgs:
    946	/* EBX = 1 -> kernel GSBASE active, no restore required */
    947	movl	$1, %ebx
    948
    949	/*
    950	 * The kernel-enforced convention is a negative GSBASE indicates
    951	 * a kernel value. No SWAPGS needed on entry and exit.
    952	 */
    953	movl	$MSR_GS_BASE, %ecx
    954	rdmsr
    955	testl	%edx, %edx
    956	js	.Lparanoid_kernel_gsbase
    957
    958	/* EBX = 0 -> SWAPGS required on exit */
    959	xorl	%ebx, %ebx
    960	swapgs
    961.Lparanoid_kernel_gsbase:
    962
    963	FENCE_SWAPGS_KERNEL_ENTRY
    964	RET
    965SYM_CODE_END(paranoid_entry)
    966
    967/*
    968 * "Paranoid" exit path from exception stack.  This is invoked
    969 * only on return from non-NMI IST interrupts that came
    970 * from kernel space.
    971 *
    972 * We may be returning to very strange contexts (e.g. very early
    973 * in syscall entry), so checking for preemption here would
    974 * be complicated.  Fortunately, there's no good reason to try
    975 * to handle preemption here.
    976 *
    977 * R/EBX contains the GSBASE related information depending on the
    978 * availability of the FSGSBASE instructions:
    979 *
    980 * FSGSBASE	R/EBX
    981 *     N        0 -> SWAPGS on exit
    982 *              1 -> no SWAPGS on exit
    983 *
    984 *     Y        User space GSBASE, must be restored unconditionally
    985 */
    986SYM_CODE_START_LOCAL(paranoid_exit)
    987	UNWIND_HINT_REGS
    988	/*
    989	 * The order of operations is important. RESTORE_CR3 requires
    990	 * kernel GSBASE.
    991	 *
    992	 * NB to anyone to try to optimize this code: this code does
    993	 * not execute at all for exceptions from user mode. Those
    994	 * exceptions go through error_exit instead.
    995	 */
    996	RESTORE_CR3	scratch_reg=%rax save_reg=%r14
    997
    998	/* Handle the three GSBASE cases */
    999	ALTERNATIVE "jmp .Lparanoid_exit_checkgs", "", X86_FEATURE_FSGSBASE
   1000
   1001	/* With FSGSBASE enabled, unconditionally restore GSBASE */
   1002	wrgsbase	%rbx
   1003	jmp		restore_regs_and_return_to_kernel
   1004
   1005.Lparanoid_exit_checkgs:
   1006	/* On non-FSGSBASE systems, conditionally do SWAPGS */
   1007	testl		%ebx, %ebx
   1008	jnz		restore_regs_and_return_to_kernel
   1009
   1010	/* We are returning to a context with user GSBASE */
   1011	swapgs
   1012	jmp		restore_regs_and_return_to_kernel
   1013SYM_CODE_END(paranoid_exit)
   1014
   1015/*
   1016 * Switch GS and CR3 if needed.
   1017 */
   1018SYM_CODE_START_LOCAL(error_entry)
   1019	UNWIND_HINT_FUNC
   1020	testb	$3, CS+8(%rsp)
   1021	jz	.Lerror_kernelspace
   1022
   1023	/*
   1024	 * We entered from user mode or we're pretending to have entered
   1025	 * from user mode due to an IRET fault.
   1026	 */
   1027	swapgs
   1028	FENCE_SWAPGS_USER_ENTRY
   1029	/* We have user CR3.  Change to kernel CR3. */
   1030	SWITCH_TO_KERNEL_CR3 scratch_reg=%rax
   1031
   1032	leaq	8(%rsp), %rdi			/* arg0 = pt_regs pointer */
   1033.Lerror_entry_from_usermode_after_swapgs:
   1034	/* Put us onto the real thread stack. */
   1035	call	sync_regs
   1036	RET
   1037
   1038	/*
   1039	 * There are two places in the kernel that can potentially fault with
   1040	 * usergs. Handle them here.  B stepping K8s sometimes report a
   1041	 * truncated RIP for IRET exceptions returning to compat mode. Check
   1042	 * for these here too.
   1043	 */
   1044.Lerror_kernelspace:
   1045	leaq	native_irq_return_iret(%rip), %rcx
   1046	cmpq	%rcx, RIP+8(%rsp)
   1047	je	.Lerror_bad_iret
   1048	movl	%ecx, %eax			/* zero extend */
   1049	cmpq	%rax, RIP+8(%rsp)
   1050	je	.Lbstep_iret
   1051	cmpq	$.Lgs_change, RIP+8(%rsp)
   1052	jne	.Lerror_entry_done_lfence
   1053
   1054	/*
   1055	 * hack: .Lgs_change can fail with user gsbase.  If this happens, fix up
   1056	 * gsbase and proceed.  We'll fix up the exception and land in
   1057	 * .Lgs_change's error handler with kernel gsbase.
   1058	 */
   1059	swapgs
   1060
   1061	/*
   1062	 * Issue an LFENCE to prevent GS speculation, regardless of whether it is a
   1063	 * kernel or user gsbase.
   1064	 */
   1065.Lerror_entry_done_lfence:
   1066	FENCE_SWAPGS_KERNEL_ENTRY
   1067	leaq	8(%rsp), %rax			/* return pt_regs pointer */
   1068	RET
   1069
   1070.Lbstep_iret:
   1071	/* Fix truncated RIP */
   1072	movq	%rcx, RIP+8(%rsp)
   1073	/* fall through */
   1074
   1075.Lerror_bad_iret:
   1076	/*
   1077	 * We came from an IRET to user mode, so we have user
   1078	 * gsbase and CR3.  Switch to kernel gsbase and CR3:
   1079	 */
   1080	swapgs
   1081	FENCE_SWAPGS_USER_ENTRY
   1082	SWITCH_TO_KERNEL_CR3 scratch_reg=%rax
   1083
   1084	/*
   1085	 * Pretend that the exception came from user mode: set up pt_regs
   1086	 * as if we faulted immediately after IRET.
   1087	 */
   1088	leaq	8(%rsp), %rdi			/* arg0 = pt_regs pointer */
   1089	call	fixup_bad_iret
   1090	mov	%rax, %rdi
   1091	jmp	.Lerror_entry_from_usermode_after_swapgs
   1092SYM_CODE_END(error_entry)
   1093
   1094SYM_CODE_START_LOCAL(error_return)
   1095	UNWIND_HINT_REGS
   1096	DEBUG_ENTRY_ASSERT_IRQS_OFF
   1097	testb	$3, CS(%rsp)
   1098	jz	restore_regs_and_return_to_kernel
   1099	jmp	swapgs_restore_regs_and_return_to_usermode
   1100SYM_CODE_END(error_return)
   1101
   1102/*
   1103 * Runs on exception stack.  Xen PV does not go through this path at all,
   1104 * so we can use real assembly here.
   1105 *
   1106 * Registers:
   1107 *	%r14: Used to save/restore the CR3 of the interrupted context
   1108 *	      when PAGE_TABLE_ISOLATION is in use.  Do not clobber.
   1109 */
   1110SYM_CODE_START(asm_exc_nmi)
   1111	UNWIND_HINT_IRET_REGS
   1112	ENDBR
   1113
   1114	/*
   1115	 * We allow breakpoints in NMIs. If a breakpoint occurs, then
   1116	 * the iretq it performs will take us out of NMI context.
   1117	 * This means that we can have nested NMIs where the next
   1118	 * NMI is using the top of the stack of the previous NMI. We
   1119	 * can't let it execute because the nested NMI will corrupt the
   1120	 * stack of the previous NMI. NMI handlers are not re-entrant
   1121	 * anyway.
   1122	 *
   1123	 * To handle this case we do the following:
   1124	 *  Check the a special location on the stack that contains
   1125	 *  a variable that is set when NMIs are executing.
   1126	 *  The interrupted task's stack is also checked to see if it
   1127	 *  is an NMI stack.
   1128	 *  If the variable is not set and the stack is not the NMI
   1129	 *  stack then:
   1130	 *    o Set the special variable on the stack
   1131	 *    o Copy the interrupt frame into an "outermost" location on the
   1132	 *      stack
   1133	 *    o Copy the interrupt frame into an "iret" location on the stack
   1134	 *    o Continue processing the NMI
   1135	 *  If the variable is set or the previous stack is the NMI stack:
   1136	 *    o Modify the "iret" location to jump to the repeat_nmi
   1137	 *    o return back to the first NMI
   1138	 *
   1139	 * Now on exit of the first NMI, we first clear the stack variable
   1140	 * The NMI stack will tell any nested NMIs at that point that it is
   1141	 * nested. Then we pop the stack normally with iret, and if there was
   1142	 * a nested NMI that updated the copy interrupt stack frame, a
   1143	 * jump will be made to the repeat_nmi code that will handle the second
   1144	 * NMI.
   1145	 *
   1146	 * However, espfix prevents us from directly returning to userspace
   1147	 * with a single IRET instruction.  Similarly, IRET to user mode
   1148	 * can fault.  We therefore handle NMIs from user space like
   1149	 * other IST entries.
   1150	 */
   1151
   1152	ASM_CLAC
   1153	cld
   1154
   1155	/* Use %rdx as our temp variable throughout */
   1156	pushq	%rdx
   1157
   1158	testb	$3, CS-RIP+8(%rsp)
   1159	jz	.Lnmi_from_kernel
   1160
   1161	/*
   1162	 * NMI from user mode.  We need to run on the thread stack, but we
   1163	 * can't go through the normal entry paths: NMIs are masked, and
   1164	 * we don't want to enable interrupts, because then we'll end
   1165	 * up in an awkward situation in which IRQs are on but NMIs
   1166	 * are off.
   1167	 *
   1168	 * We also must not push anything to the stack before switching
   1169	 * stacks lest we corrupt the "NMI executing" variable.
   1170	 */
   1171
   1172	swapgs
   1173	FENCE_SWAPGS_USER_ENTRY
   1174	SWITCH_TO_KERNEL_CR3 scratch_reg=%rdx
   1175	movq	%rsp, %rdx
   1176	movq	PER_CPU_VAR(cpu_current_top_of_stack), %rsp
   1177	UNWIND_HINT_IRET_REGS base=%rdx offset=8
   1178	pushq	5*8(%rdx)	/* pt_regs->ss */
   1179	pushq	4*8(%rdx)	/* pt_regs->rsp */
   1180	pushq	3*8(%rdx)	/* pt_regs->flags */
   1181	pushq	2*8(%rdx)	/* pt_regs->cs */
   1182	pushq	1*8(%rdx)	/* pt_regs->rip */
   1183	UNWIND_HINT_IRET_REGS
   1184	pushq   $-1		/* pt_regs->orig_ax */
   1185	PUSH_AND_CLEAR_REGS rdx=(%rdx)
   1186	ENCODE_FRAME_POINTER
   1187
   1188	/*
   1189	 * At this point we no longer need to worry about stack damage
   1190	 * due to nesting -- we're on the normal thread stack and we're
   1191	 * done with the NMI stack.
   1192	 */
   1193
   1194	movq	%rsp, %rdi
   1195	movq	$-1, %rsi
   1196	call	exc_nmi
   1197
   1198	/*
   1199	 * Return back to user mode.  We must *not* do the normal exit
   1200	 * work, because we don't want to enable interrupts.
   1201	 */
   1202	jmp	swapgs_restore_regs_and_return_to_usermode
   1203
   1204.Lnmi_from_kernel:
   1205	/*
   1206	 * Here's what our stack frame will look like:
   1207	 * +---------------------------------------------------------+
   1208	 * | original SS                                             |
   1209	 * | original Return RSP                                     |
   1210	 * | original RFLAGS                                         |
   1211	 * | original CS                                             |
   1212	 * | original RIP                                            |
   1213	 * +---------------------------------------------------------+
   1214	 * | temp storage for rdx                                    |
   1215	 * +---------------------------------------------------------+
   1216	 * | "NMI executing" variable                                |
   1217	 * +---------------------------------------------------------+
   1218	 * | iret SS          } Copied from "outermost" frame        |
   1219	 * | iret Return RSP  } on each loop iteration; overwritten  |
   1220	 * | iret RFLAGS      } by a nested NMI to force another     |
   1221	 * | iret CS          } iteration if needed.                 |
   1222	 * | iret RIP         }                                      |
   1223	 * +---------------------------------------------------------+
   1224	 * | outermost SS          } initialized in first_nmi;       |
   1225	 * | outermost Return RSP  } will not be changed before      |
   1226	 * | outermost RFLAGS      } NMI processing is done.         |
   1227	 * | outermost CS          } Copied to "iret" frame on each  |
   1228	 * | outermost RIP         } iteration.                      |
   1229	 * +---------------------------------------------------------+
   1230	 * | pt_regs                                                 |
   1231	 * +---------------------------------------------------------+
   1232	 *
   1233	 * The "original" frame is used by hardware.  Before re-enabling
   1234	 * NMIs, we need to be done with it, and we need to leave enough
   1235	 * space for the asm code here.
   1236	 *
   1237	 * We return by executing IRET while RSP points to the "iret" frame.
   1238	 * That will either return for real or it will loop back into NMI
   1239	 * processing.
   1240	 *
   1241	 * The "outermost" frame is copied to the "iret" frame on each
   1242	 * iteration of the loop, so each iteration starts with the "iret"
   1243	 * frame pointing to the final return target.
   1244	 */
   1245
   1246	/*
   1247	 * Determine whether we're a nested NMI.
   1248	 *
   1249	 * If we interrupted kernel code between repeat_nmi and
   1250	 * end_repeat_nmi, then we are a nested NMI.  We must not
   1251	 * modify the "iret" frame because it's being written by
   1252	 * the outer NMI.  That's okay; the outer NMI handler is
   1253	 * about to about to call exc_nmi() anyway, so we can just
   1254	 * resume the outer NMI.
   1255	 */
   1256
   1257	movq	$repeat_nmi, %rdx
   1258	cmpq	8(%rsp), %rdx
   1259	ja	1f
   1260	movq	$end_repeat_nmi, %rdx
   1261	cmpq	8(%rsp), %rdx
   1262	ja	nested_nmi_out
   12631:
   1264
   1265	/*
   1266	 * Now check "NMI executing".  If it's set, then we're nested.
   1267	 * This will not detect if we interrupted an outer NMI just
   1268	 * before IRET.
   1269	 */
   1270	cmpl	$1, -8(%rsp)
   1271	je	nested_nmi
   1272
   1273	/*
   1274	 * Now test if the previous stack was an NMI stack.  This covers
   1275	 * the case where we interrupt an outer NMI after it clears
   1276	 * "NMI executing" but before IRET.  We need to be careful, though:
   1277	 * there is one case in which RSP could point to the NMI stack
   1278	 * despite there being no NMI active: naughty userspace controls
   1279	 * RSP at the very beginning of the SYSCALL targets.  We can
   1280	 * pull a fast one on naughty userspace, though: we program
   1281	 * SYSCALL to mask DF, so userspace cannot cause DF to be set
   1282	 * if it controls the kernel's RSP.  We set DF before we clear
   1283	 * "NMI executing".
   1284	 */
   1285	lea	6*8(%rsp), %rdx
   1286	/* Compare the NMI stack (rdx) with the stack we came from (4*8(%rsp)) */
   1287	cmpq	%rdx, 4*8(%rsp)
   1288	/* If the stack pointer is above the NMI stack, this is a normal NMI */
   1289	ja	first_nmi
   1290
   1291	subq	$EXCEPTION_STKSZ, %rdx
   1292	cmpq	%rdx, 4*8(%rsp)
   1293	/* If it is below the NMI stack, it is a normal NMI */
   1294	jb	first_nmi
   1295
   1296	/* Ah, it is within the NMI stack. */
   1297
   1298	testb	$(X86_EFLAGS_DF >> 8), (3*8 + 1)(%rsp)
   1299	jz	first_nmi	/* RSP was user controlled. */
   1300
   1301	/* This is a nested NMI. */
   1302
   1303nested_nmi:
   1304	/*
   1305	 * Modify the "iret" frame to point to repeat_nmi, forcing another
   1306	 * iteration of NMI handling.
   1307	 */
   1308	subq	$8, %rsp
   1309	leaq	-10*8(%rsp), %rdx
   1310	pushq	$__KERNEL_DS
   1311	pushq	%rdx
   1312	pushfq
   1313	pushq	$__KERNEL_CS
   1314	pushq	$repeat_nmi
   1315
   1316	/* Put stack back */
   1317	addq	$(6*8), %rsp
   1318
   1319nested_nmi_out:
   1320	popq	%rdx
   1321
   1322	/* We are returning to kernel mode, so this cannot result in a fault. */
   1323	iretq
   1324
   1325first_nmi:
   1326	/* Restore rdx. */
   1327	movq	(%rsp), %rdx
   1328
   1329	/* Make room for "NMI executing". */
   1330	pushq	$0
   1331
   1332	/* Leave room for the "iret" frame */
   1333	subq	$(5*8), %rsp
   1334
   1335	/* Copy the "original" frame to the "outermost" frame */
   1336	.rept 5
   1337	pushq	11*8(%rsp)
   1338	.endr
   1339	UNWIND_HINT_IRET_REGS
   1340
   1341	/* Everything up to here is safe from nested NMIs */
   1342
   1343#ifdef CONFIG_DEBUG_ENTRY
   1344	/*
   1345	 * For ease of testing, unmask NMIs right away.  Disabled by
   1346	 * default because IRET is very expensive.
   1347	 */
   1348	pushq	$0		/* SS */
   1349	pushq	%rsp		/* RSP (minus 8 because of the previous push) */
   1350	addq	$8, (%rsp)	/* Fix up RSP */
   1351	pushfq			/* RFLAGS */
   1352	pushq	$__KERNEL_CS	/* CS */
   1353	pushq	$1f		/* RIP */
   1354	iretq			/* continues at repeat_nmi below */
   1355	UNWIND_HINT_IRET_REGS
   13561:
   1357#endif
   1358
   1359repeat_nmi:
   1360	ANNOTATE_NOENDBR // this code
   1361	/*
   1362	 * If there was a nested NMI, the first NMI's iret will return
   1363	 * here. But NMIs are still enabled and we can take another
   1364	 * nested NMI. The nested NMI checks the interrupted RIP to see
   1365	 * if it is between repeat_nmi and end_repeat_nmi, and if so
   1366	 * it will just return, as we are about to repeat an NMI anyway.
   1367	 * This makes it safe to copy to the stack frame that a nested
   1368	 * NMI will update.
   1369	 *
   1370	 * RSP is pointing to "outermost RIP".  gsbase is unknown, but, if
   1371	 * we're repeating an NMI, gsbase has the same value that it had on
   1372	 * the first iteration.  paranoid_entry will load the kernel
   1373	 * gsbase if needed before we call exc_nmi().  "NMI executing"
   1374	 * is zero.
   1375	 */
   1376	movq	$1, 10*8(%rsp)		/* Set "NMI executing". */
   1377
   1378	/*
   1379	 * Copy the "outermost" frame to the "iret" frame.  NMIs that nest
   1380	 * here must not modify the "iret" frame while we're writing to
   1381	 * it or it will end up containing garbage.
   1382	 */
   1383	addq	$(10*8), %rsp
   1384	.rept 5
   1385	pushq	-6*8(%rsp)
   1386	.endr
   1387	subq	$(5*8), %rsp
   1388end_repeat_nmi:
   1389	ANNOTATE_NOENDBR // this code
   1390
   1391	/*
   1392	 * Everything below this point can be preempted by a nested NMI.
   1393	 * If this happens, then the inner NMI will change the "iret"
   1394	 * frame to point back to repeat_nmi.
   1395	 */
   1396	pushq	$-1				/* ORIG_RAX: no syscall to restart */
   1397
   1398	/*
   1399	 * Use paranoid_entry to handle SWAPGS, but no need to use paranoid_exit
   1400	 * as we should not be calling schedule in NMI context.
   1401	 * Even with normal interrupts enabled. An NMI should not be
   1402	 * setting NEED_RESCHED or anything that normal interrupts and
   1403	 * exceptions might do.
   1404	 */
   1405	call	paranoid_entry
   1406	UNWIND_HINT_REGS
   1407
   1408	movq	%rsp, %rdi
   1409	movq	$-1, %rsi
   1410	call	exc_nmi
   1411
   1412	/* Always restore stashed CR3 value (see paranoid_entry) */
   1413	RESTORE_CR3 scratch_reg=%r15 save_reg=%r14
   1414
   1415	/*
   1416	 * The above invocation of paranoid_entry stored the GSBASE
   1417	 * related information in R/EBX depending on the availability
   1418	 * of FSGSBASE.
   1419	 *
   1420	 * If FSGSBASE is enabled, restore the saved GSBASE value
   1421	 * unconditionally, otherwise take the conditional SWAPGS path.
   1422	 */
   1423	ALTERNATIVE "jmp nmi_no_fsgsbase", "", X86_FEATURE_FSGSBASE
   1424
   1425	wrgsbase	%rbx
   1426	jmp	nmi_restore
   1427
   1428nmi_no_fsgsbase:
   1429	/* EBX == 0 -> invoke SWAPGS */
   1430	testl	%ebx, %ebx
   1431	jnz	nmi_restore
   1432
   1433nmi_swapgs:
   1434	swapgs
   1435
   1436nmi_restore:
   1437	POP_REGS
   1438
   1439	/*
   1440	 * Skip orig_ax and the "outermost" frame to point RSP at the "iret"
   1441	 * at the "iret" frame.
   1442	 */
   1443	addq	$6*8, %rsp
   1444
   1445	/*
   1446	 * Clear "NMI executing".  Set DF first so that we can easily
   1447	 * distinguish the remaining code between here and IRET from
   1448	 * the SYSCALL entry and exit paths.
   1449	 *
   1450	 * We arguably should just inspect RIP instead, but I (Andy) wrote
   1451	 * this code when I had the misapprehension that Xen PV supported
   1452	 * NMIs, and Xen PV would break that approach.
   1453	 */
   1454	std
   1455	movq	$0, 5*8(%rsp)		/* clear "NMI executing" */
   1456
   1457	/*
   1458	 * iretq reads the "iret" frame and exits the NMI stack in a
   1459	 * single instruction.  We are returning to kernel mode, so this
   1460	 * cannot result in a fault.  Similarly, we don't need to worry
   1461	 * about espfix64 on the way back to kernel mode.
   1462	 */
   1463	iretq
   1464SYM_CODE_END(asm_exc_nmi)
   1465
   1466#ifndef CONFIG_IA32_EMULATION
   1467/*
   1468 * This handles SYSCALL from 32-bit code.  There is no way to program
   1469 * MSRs to fully disable 32-bit SYSCALL.
   1470 */
   1471SYM_CODE_START(ignore_sysret)
   1472	UNWIND_HINT_EMPTY
   1473	ENDBR
   1474	mov	$-ENOSYS, %eax
   1475	sysretl
   1476SYM_CODE_END(ignore_sysret)
   1477#endif
   1478
   1479.pushsection .text, "ax"
   1480SYM_CODE_START(rewind_stack_and_make_dead)
   1481	UNWIND_HINT_FUNC
   1482	/* Prevent any naive code from trying to unwind to our caller. */
   1483	xorl	%ebp, %ebp
   1484
   1485	movq	PER_CPU_VAR(cpu_current_top_of_stack), %rax
   1486	leaq	-PTREGS_SIZE(%rax), %rsp
   1487	UNWIND_HINT_REGS
   1488
   1489	call	make_task_dead
   1490SYM_CODE_END(rewind_stack_and_make_dead)
   1491.popsection