cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

core.c (75073B)


      1/*
      2 * Performance events x86 architecture code
      3 *
      4 *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
      5 *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
      6 *  Copyright (C) 2009 Jaswinder Singh Rajput
      7 *  Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
      8 *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra
      9 *  Copyright (C) 2009 Intel Corporation, <markus.t.metzger@intel.com>
     10 *  Copyright (C) 2009 Google, Inc., Stephane Eranian
     11 *
     12 *  For licencing details see kernel-base/COPYING
     13 */
     14
     15#include <linux/perf_event.h>
     16#include <linux/capability.h>
     17#include <linux/notifier.h>
     18#include <linux/hardirq.h>
     19#include <linux/kprobes.h>
     20#include <linux/export.h>
     21#include <linux/init.h>
     22#include <linux/kdebug.h>
     23#include <linux/sched/mm.h>
     24#include <linux/sched/clock.h>
     25#include <linux/uaccess.h>
     26#include <linux/slab.h>
     27#include <linux/cpu.h>
     28#include <linux/bitops.h>
     29#include <linux/device.h>
     30#include <linux/nospec.h>
     31#include <linux/static_call.h>
     32
     33#include <asm/apic.h>
     34#include <asm/stacktrace.h>
     35#include <asm/nmi.h>
     36#include <asm/smp.h>
     37#include <asm/alternative.h>
     38#include <asm/mmu_context.h>
     39#include <asm/tlbflush.h>
     40#include <asm/timer.h>
     41#include <asm/desc.h>
     42#include <asm/ldt.h>
     43#include <asm/unwind.h>
     44
     45#include "perf_event.h"
     46
     47struct x86_pmu x86_pmu __read_mostly;
     48static struct pmu pmu;
     49
     50DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = {
     51	.enabled = 1,
     52	.pmu = &pmu,
     53};
     54
     55DEFINE_STATIC_KEY_FALSE(rdpmc_never_available_key);
     56DEFINE_STATIC_KEY_FALSE(rdpmc_always_available_key);
     57DEFINE_STATIC_KEY_FALSE(perf_is_hybrid);
     58
     59/*
     60 * This here uses DEFINE_STATIC_CALL_NULL() to get a static_call defined
     61 * from just a typename, as opposed to an actual function.
     62 */
     63DEFINE_STATIC_CALL_NULL(x86_pmu_handle_irq,  *x86_pmu.handle_irq);
     64DEFINE_STATIC_CALL_NULL(x86_pmu_disable_all, *x86_pmu.disable_all);
     65DEFINE_STATIC_CALL_NULL(x86_pmu_enable_all,  *x86_pmu.enable_all);
     66DEFINE_STATIC_CALL_NULL(x86_pmu_enable,	     *x86_pmu.enable);
     67DEFINE_STATIC_CALL_NULL(x86_pmu_disable,     *x86_pmu.disable);
     68
     69DEFINE_STATIC_CALL_NULL(x86_pmu_assign, *x86_pmu.assign);
     70
     71DEFINE_STATIC_CALL_NULL(x86_pmu_add,  *x86_pmu.add);
     72DEFINE_STATIC_CALL_NULL(x86_pmu_del,  *x86_pmu.del);
     73DEFINE_STATIC_CALL_NULL(x86_pmu_read, *x86_pmu.read);
     74
     75DEFINE_STATIC_CALL_NULL(x86_pmu_schedule_events,       *x86_pmu.schedule_events);
     76DEFINE_STATIC_CALL_NULL(x86_pmu_get_event_constraints, *x86_pmu.get_event_constraints);
     77DEFINE_STATIC_CALL_NULL(x86_pmu_put_event_constraints, *x86_pmu.put_event_constraints);
     78
     79DEFINE_STATIC_CALL_NULL(x86_pmu_start_scheduling,  *x86_pmu.start_scheduling);
     80DEFINE_STATIC_CALL_NULL(x86_pmu_commit_scheduling, *x86_pmu.commit_scheduling);
     81DEFINE_STATIC_CALL_NULL(x86_pmu_stop_scheduling,   *x86_pmu.stop_scheduling);
     82
     83DEFINE_STATIC_CALL_NULL(x86_pmu_sched_task,    *x86_pmu.sched_task);
     84DEFINE_STATIC_CALL_NULL(x86_pmu_swap_task_ctx, *x86_pmu.swap_task_ctx);
     85
     86DEFINE_STATIC_CALL_NULL(x86_pmu_drain_pebs,   *x86_pmu.drain_pebs);
     87DEFINE_STATIC_CALL_NULL(x86_pmu_pebs_aliases, *x86_pmu.pebs_aliases);
     88
     89/*
     90 * This one is magic, it will get called even when PMU init fails (because
     91 * there is no PMU), in which case it should simply return NULL.
     92 */
     93DEFINE_STATIC_CALL_RET0(x86_pmu_guest_get_msrs, *x86_pmu.guest_get_msrs);
     94
     95u64 __read_mostly hw_cache_event_ids
     96				[PERF_COUNT_HW_CACHE_MAX]
     97				[PERF_COUNT_HW_CACHE_OP_MAX]
     98				[PERF_COUNT_HW_CACHE_RESULT_MAX];
     99u64 __read_mostly hw_cache_extra_regs
    100				[PERF_COUNT_HW_CACHE_MAX]
    101				[PERF_COUNT_HW_CACHE_OP_MAX]
    102				[PERF_COUNT_HW_CACHE_RESULT_MAX];
    103
    104/*
    105 * Propagate event elapsed time into the generic event.
    106 * Can only be executed on the CPU where the event is active.
    107 * Returns the delta events processed.
    108 */
    109u64 x86_perf_event_update(struct perf_event *event)
    110{
    111	struct hw_perf_event *hwc = &event->hw;
    112	int shift = 64 - x86_pmu.cntval_bits;
    113	u64 prev_raw_count, new_raw_count;
    114	u64 delta;
    115
    116	if (unlikely(!hwc->event_base))
    117		return 0;
    118
    119	if (unlikely(is_topdown_count(event)) && x86_pmu.update_topdown_event)
    120		return x86_pmu.update_topdown_event(event);
    121
    122	/*
    123	 * Careful: an NMI might modify the previous event value.
    124	 *
    125	 * Our tactic to handle this is to first atomically read and
    126	 * exchange a new raw count - then add that new-prev delta
    127	 * count to the generic event atomically:
    128	 */
    129again:
    130	prev_raw_count = local64_read(&hwc->prev_count);
    131	rdpmcl(hwc->event_base_rdpmc, new_raw_count);
    132
    133	if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
    134					new_raw_count) != prev_raw_count)
    135		goto again;
    136
    137	/*
    138	 * Now we have the new raw value and have updated the prev
    139	 * timestamp already. We can now calculate the elapsed delta
    140	 * (event-)time and add that to the generic event.
    141	 *
    142	 * Careful, not all hw sign-extends above the physical width
    143	 * of the count.
    144	 */
    145	delta = (new_raw_count << shift) - (prev_raw_count << shift);
    146	delta >>= shift;
    147
    148	local64_add(delta, &event->count);
    149	local64_sub(delta, &hwc->period_left);
    150
    151	return new_raw_count;
    152}
    153
    154/*
    155 * Find and validate any extra registers to set up.
    156 */
    157static int x86_pmu_extra_regs(u64 config, struct perf_event *event)
    158{
    159	struct extra_reg *extra_regs = hybrid(event->pmu, extra_regs);
    160	struct hw_perf_event_extra *reg;
    161	struct extra_reg *er;
    162
    163	reg = &event->hw.extra_reg;
    164
    165	if (!extra_regs)
    166		return 0;
    167
    168	for (er = extra_regs; er->msr; er++) {
    169		if (er->event != (config & er->config_mask))
    170			continue;
    171		if (event->attr.config1 & ~er->valid_mask)
    172			return -EINVAL;
    173		/* Check if the extra msrs can be safely accessed*/
    174		if (!er->extra_msr_access)
    175			return -ENXIO;
    176
    177		reg->idx = er->idx;
    178		reg->config = event->attr.config1;
    179		reg->reg = er->msr;
    180		break;
    181	}
    182	return 0;
    183}
    184
    185static atomic_t active_events;
    186static atomic_t pmc_refcount;
    187static DEFINE_MUTEX(pmc_reserve_mutex);
    188
    189#ifdef CONFIG_X86_LOCAL_APIC
    190
    191static inline int get_possible_num_counters(void)
    192{
    193	int i, num_counters = x86_pmu.num_counters;
    194
    195	if (!is_hybrid())
    196		return num_counters;
    197
    198	for (i = 0; i < x86_pmu.num_hybrid_pmus; i++)
    199		num_counters = max_t(int, num_counters, x86_pmu.hybrid_pmu[i].num_counters);
    200
    201	return num_counters;
    202}
    203
    204static bool reserve_pmc_hardware(void)
    205{
    206	int i, num_counters = get_possible_num_counters();
    207
    208	for (i = 0; i < num_counters; i++) {
    209		if (!reserve_perfctr_nmi(x86_pmu_event_addr(i)))
    210			goto perfctr_fail;
    211	}
    212
    213	for (i = 0; i < num_counters; i++) {
    214		if (!reserve_evntsel_nmi(x86_pmu_config_addr(i)))
    215			goto eventsel_fail;
    216	}
    217
    218	return true;
    219
    220eventsel_fail:
    221	for (i--; i >= 0; i--)
    222		release_evntsel_nmi(x86_pmu_config_addr(i));
    223
    224	i = num_counters;
    225
    226perfctr_fail:
    227	for (i--; i >= 0; i--)
    228		release_perfctr_nmi(x86_pmu_event_addr(i));
    229
    230	return false;
    231}
    232
    233static void release_pmc_hardware(void)
    234{
    235	int i, num_counters = get_possible_num_counters();
    236
    237	for (i = 0; i < num_counters; i++) {
    238		release_perfctr_nmi(x86_pmu_event_addr(i));
    239		release_evntsel_nmi(x86_pmu_config_addr(i));
    240	}
    241}
    242
    243#else
    244
    245static bool reserve_pmc_hardware(void) { return true; }
    246static void release_pmc_hardware(void) {}
    247
    248#endif
    249
    250bool check_hw_exists(struct pmu *pmu, int num_counters, int num_counters_fixed)
    251{
    252	u64 val, val_fail = -1, val_new= ~0;
    253	int i, reg, reg_fail = -1, ret = 0;
    254	int bios_fail = 0;
    255	int reg_safe = -1;
    256
    257	/*
    258	 * Check to see if the BIOS enabled any of the counters, if so
    259	 * complain and bail.
    260	 */
    261	for (i = 0; i < num_counters; i++) {
    262		reg = x86_pmu_config_addr(i);
    263		ret = rdmsrl_safe(reg, &val);
    264		if (ret)
    265			goto msr_fail;
    266		if (val & ARCH_PERFMON_EVENTSEL_ENABLE) {
    267			bios_fail = 1;
    268			val_fail = val;
    269			reg_fail = reg;
    270		} else {
    271			reg_safe = i;
    272		}
    273	}
    274
    275	if (num_counters_fixed) {
    276		reg = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
    277		ret = rdmsrl_safe(reg, &val);
    278		if (ret)
    279			goto msr_fail;
    280		for (i = 0; i < num_counters_fixed; i++) {
    281			if (fixed_counter_disabled(i, pmu))
    282				continue;
    283			if (val & (0x03ULL << i*4)) {
    284				bios_fail = 1;
    285				val_fail = val;
    286				reg_fail = reg;
    287			}
    288		}
    289	}
    290
    291	/*
    292	 * If all the counters are enabled, the below test will always
    293	 * fail.  The tools will also become useless in this scenario.
    294	 * Just fail and disable the hardware counters.
    295	 */
    296
    297	if (reg_safe == -1) {
    298		reg = reg_safe;
    299		goto msr_fail;
    300	}
    301
    302	/*
    303	 * Read the current value, change it and read it back to see if it
    304	 * matches, this is needed to detect certain hardware emulators
    305	 * (qemu/kvm) that don't trap on the MSR access and always return 0s.
    306	 */
    307	reg = x86_pmu_event_addr(reg_safe);
    308	if (rdmsrl_safe(reg, &val))
    309		goto msr_fail;
    310	val ^= 0xffffUL;
    311	ret = wrmsrl_safe(reg, val);
    312	ret |= rdmsrl_safe(reg, &val_new);
    313	if (ret || val != val_new)
    314		goto msr_fail;
    315
    316	/*
    317	 * We still allow the PMU driver to operate:
    318	 */
    319	if (bios_fail) {
    320		pr_cont("Broken BIOS detected, complain to your hardware vendor.\n");
    321		pr_err(FW_BUG "the BIOS has corrupted hw-PMU resources (MSR %x is %Lx)\n",
    322			      reg_fail, val_fail);
    323	}
    324
    325	return true;
    326
    327msr_fail:
    328	if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) {
    329		pr_cont("PMU not available due to virtualization, using software events only.\n");
    330	} else {
    331		pr_cont("Broken PMU hardware detected, using software events only.\n");
    332		pr_err("Failed to access perfctr msr (MSR %x is %Lx)\n",
    333		       reg, val_new);
    334	}
    335
    336	return false;
    337}
    338
    339static void hw_perf_event_destroy(struct perf_event *event)
    340{
    341	x86_release_hardware();
    342	atomic_dec(&active_events);
    343}
    344
    345void hw_perf_lbr_event_destroy(struct perf_event *event)
    346{
    347	hw_perf_event_destroy(event);
    348
    349	/* undo the lbr/bts event accounting */
    350	x86_del_exclusive(x86_lbr_exclusive_lbr);
    351}
    352
    353static inline int x86_pmu_initialized(void)
    354{
    355	return x86_pmu.handle_irq != NULL;
    356}
    357
    358static inline int
    359set_ext_hw_attr(struct hw_perf_event *hwc, struct perf_event *event)
    360{
    361	struct perf_event_attr *attr = &event->attr;
    362	unsigned int cache_type, cache_op, cache_result;
    363	u64 config, val;
    364
    365	config = attr->config;
    366
    367	cache_type = (config >> 0) & 0xff;
    368	if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
    369		return -EINVAL;
    370	cache_type = array_index_nospec(cache_type, PERF_COUNT_HW_CACHE_MAX);
    371
    372	cache_op = (config >>  8) & 0xff;
    373	if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
    374		return -EINVAL;
    375	cache_op = array_index_nospec(cache_op, PERF_COUNT_HW_CACHE_OP_MAX);
    376
    377	cache_result = (config >> 16) & 0xff;
    378	if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
    379		return -EINVAL;
    380	cache_result = array_index_nospec(cache_result, PERF_COUNT_HW_CACHE_RESULT_MAX);
    381
    382	val = hybrid_var(event->pmu, hw_cache_event_ids)[cache_type][cache_op][cache_result];
    383	if (val == 0)
    384		return -ENOENT;
    385
    386	if (val == -1)
    387		return -EINVAL;
    388
    389	hwc->config |= val;
    390	attr->config1 = hybrid_var(event->pmu, hw_cache_extra_regs)[cache_type][cache_op][cache_result];
    391	return x86_pmu_extra_regs(val, event);
    392}
    393
    394int x86_reserve_hardware(void)
    395{
    396	int err = 0;
    397
    398	if (!atomic_inc_not_zero(&pmc_refcount)) {
    399		mutex_lock(&pmc_reserve_mutex);
    400		if (atomic_read(&pmc_refcount) == 0) {
    401			if (!reserve_pmc_hardware()) {
    402				err = -EBUSY;
    403			} else {
    404				reserve_ds_buffers();
    405				reserve_lbr_buffers();
    406			}
    407		}
    408		if (!err)
    409			atomic_inc(&pmc_refcount);
    410		mutex_unlock(&pmc_reserve_mutex);
    411	}
    412
    413	return err;
    414}
    415
    416void x86_release_hardware(void)
    417{
    418	if (atomic_dec_and_mutex_lock(&pmc_refcount, &pmc_reserve_mutex)) {
    419		release_pmc_hardware();
    420		release_ds_buffers();
    421		release_lbr_buffers();
    422		mutex_unlock(&pmc_reserve_mutex);
    423	}
    424}
    425
    426/*
    427 * Check if we can create event of a certain type (that no conflicting events
    428 * are present).
    429 */
    430int x86_add_exclusive(unsigned int what)
    431{
    432	int i;
    433
    434	/*
    435	 * When lbr_pt_coexist we allow PT to coexist with either LBR or BTS.
    436	 * LBR and BTS are still mutually exclusive.
    437	 */
    438	if (x86_pmu.lbr_pt_coexist && what == x86_lbr_exclusive_pt)
    439		goto out;
    440
    441	if (!atomic_inc_not_zero(&x86_pmu.lbr_exclusive[what])) {
    442		mutex_lock(&pmc_reserve_mutex);
    443		for (i = 0; i < ARRAY_SIZE(x86_pmu.lbr_exclusive); i++) {
    444			if (i != what && atomic_read(&x86_pmu.lbr_exclusive[i]))
    445				goto fail_unlock;
    446		}
    447		atomic_inc(&x86_pmu.lbr_exclusive[what]);
    448		mutex_unlock(&pmc_reserve_mutex);
    449	}
    450
    451out:
    452	atomic_inc(&active_events);
    453	return 0;
    454
    455fail_unlock:
    456	mutex_unlock(&pmc_reserve_mutex);
    457	return -EBUSY;
    458}
    459
    460void x86_del_exclusive(unsigned int what)
    461{
    462	atomic_dec(&active_events);
    463
    464	/*
    465	 * See the comment in x86_add_exclusive().
    466	 */
    467	if (x86_pmu.lbr_pt_coexist && what == x86_lbr_exclusive_pt)
    468		return;
    469
    470	atomic_dec(&x86_pmu.lbr_exclusive[what]);
    471}
    472
    473int x86_setup_perfctr(struct perf_event *event)
    474{
    475	struct perf_event_attr *attr = &event->attr;
    476	struct hw_perf_event *hwc = &event->hw;
    477	u64 config;
    478
    479	if (!is_sampling_event(event)) {
    480		hwc->sample_period = x86_pmu.max_period;
    481		hwc->last_period = hwc->sample_period;
    482		local64_set(&hwc->period_left, hwc->sample_period);
    483	}
    484
    485	if (attr->type == event->pmu->type)
    486		return x86_pmu_extra_regs(event->attr.config, event);
    487
    488	if (attr->type == PERF_TYPE_HW_CACHE)
    489		return set_ext_hw_attr(hwc, event);
    490
    491	if (attr->config >= x86_pmu.max_events)
    492		return -EINVAL;
    493
    494	attr->config = array_index_nospec((unsigned long)attr->config, x86_pmu.max_events);
    495
    496	/*
    497	 * The generic map:
    498	 */
    499	config = x86_pmu.event_map(attr->config);
    500
    501	if (config == 0)
    502		return -ENOENT;
    503
    504	if (config == -1LL)
    505		return -EINVAL;
    506
    507	hwc->config |= config;
    508
    509	return 0;
    510}
    511
    512/*
    513 * check that branch_sample_type is compatible with
    514 * settings needed for precise_ip > 1 which implies
    515 * using the LBR to capture ALL taken branches at the
    516 * priv levels of the measurement
    517 */
    518static inline int precise_br_compat(struct perf_event *event)
    519{
    520	u64 m = event->attr.branch_sample_type;
    521	u64 b = 0;
    522
    523	/* must capture all branches */
    524	if (!(m & PERF_SAMPLE_BRANCH_ANY))
    525		return 0;
    526
    527	m &= PERF_SAMPLE_BRANCH_KERNEL | PERF_SAMPLE_BRANCH_USER;
    528
    529	if (!event->attr.exclude_user)
    530		b |= PERF_SAMPLE_BRANCH_USER;
    531
    532	if (!event->attr.exclude_kernel)
    533		b |= PERF_SAMPLE_BRANCH_KERNEL;
    534
    535	/*
    536	 * ignore PERF_SAMPLE_BRANCH_HV, not supported on x86
    537	 */
    538
    539	return m == b;
    540}
    541
    542int x86_pmu_max_precise(void)
    543{
    544	int precise = 0;
    545
    546	/* Support for constant skid */
    547	if (x86_pmu.pebs_active && !x86_pmu.pebs_broken) {
    548		precise++;
    549
    550		/* Support for IP fixup */
    551		if (x86_pmu.lbr_nr || x86_pmu.intel_cap.pebs_format >= 2)
    552			precise++;
    553
    554		if (x86_pmu.pebs_prec_dist)
    555			precise++;
    556	}
    557	return precise;
    558}
    559
    560int x86_pmu_hw_config(struct perf_event *event)
    561{
    562	if (event->attr.precise_ip) {
    563		int precise = x86_pmu_max_precise();
    564
    565		if (event->attr.precise_ip > precise)
    566			return -EOPNOTSUPP;
    567
    568		/* There's no sense in having PEBS for non sampling events: */
    569		if (!is_sampling_event(event))
    570			return -EINVAL;
    571	}
    572	/*
    573	 * check that PEBS LBR correction does not conflict with
    574	 * whatever the user is asking with attr->branch_sample_type
    575	 */
    576	if (event->attr.precise_ip > 1 && x86_pmu.intel_cap.pebs_format < 2) {
    577		u64 *br_type = &event->attr.branch_sample_type;
    578
    579		if (has_branch_stack(event)) {
    580			if (!precise_br_compat(event))
    581				return -EOPNOTSUPP;
    582
    583			/* branch_sample_type is compatible */
    584
    585		} else {
    586			/*
    587			 * user did not specify  branch_sample_type
    588			 *
    589			 * For PEBS fixups, we capture all
    590			 * the branches at the priv level of the
    591			 * event.
    592			 */
    593			*br_type = PERF_SAMPLE_BRANCH_ANY;
    594
    595			if (!event->attr.exclude_user)
    596				*br_type |= PERF_SAMPLE_BRANCH_USER;
    597
    598			if (!event->attr.exclude_kernel)
    599				*br_type |= PERF_SAMPLE_BRANCH_KERNEL;
    600		}
    601	}
    602
    603	if (event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_CALL_STACK)
    604		event->attach_state |= PERF_ATTACH_TASK_DATA;
    605
    606	/*
    607	 * Generate PMC IRQs:
    608	 * (keep 'enabled' bit clear for now)
    609	 */
    610	event->hw.config = ARCH_PERFMON_EVENTSEL_INT;
    611
    612	/*
    613	 * Count user and OS events unless requested not to
    614	 */
    615	if (!event->attr.exclude_user)
    616		event->hw.config |= ARCH_PERFMON_EVENTSEL_USR;
    617	if (!event->attr.exclude_kernel)
    618		event->hw.config |= ARCH_PERFMON_EVENTSEL_OS;
    619
    620	if (event->attr.type == event->pmu->type)
    621		event->hw.config |= event->attr.config & X86_RAW_EVENT_MASK;
    622
    623	if (event->attr.sample_period && x86_pmu.limit_period) {
    624		if (x86_pmu.limit_period(event, event->attr.sample_period) >
    625				event->attr.sample_period)
    626			return -EINVAL;
    627	}
    628
    629	/* sample_regs_user never support XMM registers */
    630	if (unlikely(event->attr.sample_regs_user & PERF_REG_EXTENDED_MASK))
    631		return -EINVAL;
    632	/*
    633	 * Besides the general purpose registers, XMM registers may
    634	 * be collected in PEBS on some platforms, e.g. Icelake
    635	 */
    636	if (unlikely(event->attr.sample_regs_intr & PERF_REG_EXTENDED_MASK)) {
    637		if (!(event->pmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS))
    638			return -EINVAL;
    639
    640		if (!event->attr.precise_ip)
    641			return -EINVAL;
    642	}
    643
    644	return x86_setup_perfctr(event);
    645}
    646
    647/*
    648 * Setup the hardware configuration for a given attr_type
    649 */
    650static int __x86_pmu_event_init(struct perf_event *event)
    651{
    652	int err;
    653
    654	if (!x86_pmu_initialized())
    655		return -ENODEV;
    656
    657	err = x86_reserve_hardware();
    658	if (err)
    659		return err;
    660
    661	atomic_inc(&active_events);
    662	event->destroy = hw_perf_event_destroy;
    663
    664	event->hw.idx = -1;
    665	event->hw.last_cpu = -1;
    666	event->hw.last_tag = ~0ULL;
    667
    668	/* mark unused */
    669	event->hw.extra_reg.idx = EXTRA_REG_NONE;
    670	event->hw.branch_reg.idx = EXTRA_REG_NONE;
    671
    672	return x86_pmu.hw_config(event);
    673}
    674
    675void x86_pmu_disable_all(void)
    676{
    677	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
    678	int idx;
    679
    680	for (idx = 0; idx < x86_pmu.num_counters; idx++) {
    681		struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
    682		u64 val;
    683
    684		if (!test_bit(idx, cpuc->active_mask))
    685			continue;
    686		rdmsrl(x86_pmu_config_addr(idx), val);
    687		if (!(val & ARCH_PERFMON_EVENTSEL_ENABLE))
    688			continue;
    689		val &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
    690		wrmsrl(x86_pmu_config_addr(idx), val);
    691		if (is_counter_pair(hwc))
    692			wrmsrl(x86_pmu_config_addr(idx + 1), 0);
    693	}
    694}
    695
    696struct perf_guest_switch_msr *perf_guest_get_msrs(int *nr)
    697{
    698	return static_call(x86_pmu_guest_get_msrs)(nr);
    699}
    700EXPORT_SYMBOL_GPL(perf_guest_get_msrs);
    701
    702/*
    703 * There may be PMI landing after enabled=0. The PMI hitting could be before or
    704 * after disable_all.
    705 *
    706 * If PMI hits before disable_all, the PMU will be disabled in the NMI handler.
    707 * It will not be re-enabled in the NMI handler again, because enabled=0. After
    708 * handling the NMI, disable_all will be called, which will not change the
    709 * state either. If PMI hits after disable_all, the PMU is already disabled
    710 * before entering NMI handler. The NMI handler will not change the state
    711 * either.
    712 *
    713 * So either situation is harmless.
    714 */
    715static void x86_pmu_disable(struct pmu *pmu)
    716{
    717	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
    718
    719	if (!x86_pmu_initialized())
    720		return;
    721
    722	if (!cpuc->enabled)
    723		return;
    724
    725	cpuc->n_added = 0;
    726	cpuc->enabled = 0;
    727	barrier();
    728
    729	static_call(x86_pmu_disable_all)();
    730}
    731
    732void x86_pmu_enable_all(int added)
    733{
    734	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
    735	int idx;
    736
    737	for (idx = 0; idx < x86_pmu.num_counters; idx++) {
    738		struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
    739
    740		if (!test_bit(idx, cpuc->active_mask))
    741			continue;
    742
    743		__x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
    744	}
    745}
    746
    747static inline int is_x86_event(struct perf_event *event)
    748{
    749	int i;
    750
    751	if (!is_hybrid())
    752		return event->pmu == &pmu;
    753
    754	for (i = 0; i < x86_pmu.num_hybrid_pmus; i++) {
    755		if (event->pmu == &x86_pmu.hybrid_pmu[i].pmu)
    756			return true;
    757	}
    758
    759	return false;
    760}
    761
    762struct pmu *x86_get_pmu(unsigned int cpu)
    763{
    764	struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
    765
    766	/*
    767	 * All CPUs of the hybrid type have been offline.
    768	 * The x86_get_pmu() should not be invoked.
    769	 */
    770	if (WARN_ON_ONCE(!cpuc->pmu))
    771		return &pmu;
    772
    773	return cpuc->pmu;
    774}
    775/*
    776 * Event scheduler state:
    777 *
    778 * Assign events iterating over all events and counters, beginning
    779 * with events with least weights first. Keep the current iterator
    780 * state in struct sched_state.
    781 */
    782struct sched_state {
    783	int	weight;
    784	int	event;		/* event index */
    785	int	counter;	/* counter index */
    786	int	unassigned;	/* number of events to be assigned left */
    787	int	nr_gp;		/* number of GP counters used */
    788	u64	used;
    789};
    790
    791/* Total max is X86_PMC_IDX_MAX, but we are O(n!) limited */
    792#define	SCHED_STATES_MAX	2
    793
    794struct perf_sched {
    795	int			max_weight;
    796	int			max_events;
    797	int			max_gp;
    798	int			saved_states;
    799	struct event_constraint	**constraints;
    800	struct sched_state	state;
    801	struct sched_state	saved[SCHED_STATES_MAX];
    802};
    803
    804/*
    805 * Initialize iterator that runs through all events and counters.
    806 */
    807static void perf_sched_init(struct perf_sched *sched, struct event_constraint **constraints,
    808			    int num, int wmin, int wmax, int gpmax)
    809{
    810	int idx;
    811
    812	memset(sched, 0, sizeof(*sched));
    813	sched->max_events	= num;
    814	sched->max_weight	= wmax;
    815	sched->max_gp		= gpmax;
    816	sched->constraints	= constraints;
    817
    818	for (idx = 0; idx < num; idx++) {
    819		if (constraints[idx]->weight == wmin)
    820			break;
    821	}
    822
    823	sched->state.event	= idx;		/* start with min weight */
    824	sched->state.weight	= wmin;
    825	sched->state.unassigned	= num;
    826}
    827
    828static void perf_sched_save_state(struct perf_sched *sched)
    829{
    830	if (WARN_ON_ONCE(sched->saved_states >= SCHED_STATES_MAX))
    831		return;
    832
    833	sched->saved[sched->saved_states] = sched->state;
    834	sched->saved_states++;
    835}
    836
    837static bool perf_sched_restore_state(struct perf_sched *sched)
    838{
    839	if (!sched->saved_states)
    840		return false;
    841
    842	sched->saved_states--;
    843	sched->state = sched->saved[sched->saved_states];
    844
    845	/* this assignment didn't work out */
    846	/* XXX broken vs EVENT_PAIR */
    847	sched->state.used &= ~BIT_ULL(sched->state.counter);
    848
    849	/* try the next one */
    850	sched->state.counter++;
    851
    852	return true;
    853}
    854
    855/*
    856 * Select a counter for the current event to schedule. Return true on
    857 * success.
    858 */
    859static bool __perf_sched_find_counter(struct perf_sched *sched)
    860{
    861	struct event_constraint *c;
    862	int idx;
    863
    864	if (!sched->state.unassigned)
    865		return false;
    866
    867	if (sched->state.event >= sched->max_events)
    868		return false;
    869
    870	c = sched->constraints[sched->state.event];
    871	/* Prefer fixed purpose counters */
    872	if (c->idxmsk64 & (~0ULL << INTEL_PMC_IDX_FIXED)) {
    873		idx = INTEL_PMC_IDX_FIXED;
    874		for_each_set_bit_from(idx, c->idxmsk, X86_PMC_IDX_MAX) {
    875			u64 mask = BIT_ULL(idx);
    876
    877			if (sched->state.used & mask)
    878				continue;
    879
    880			sched->state.used |= mask;
    881			goto done;
    882		}
    883	}
    884
    885	/* Grab the first unused counter starting with idx */
    886	idx = sched->state.counter;
    887	for_each_set_bit_from(idx, c->idxmsk, INTEL_PMC_IDX_FIXED) {
    888		u64 mask = BIT_ULL(idx);
    889
    890		if (c->flags & PERF_X86_EVENT_PAIR)
    891			mask |= mask << 1;
    892
    893		if (sched->state.used & mask)
    894			continue;
    895
    896		if (sched->state.nr_gp++ >= sched->max_gp)
    897			return false;
    898
    899		sched->state.used |= mask;
    900		goto done;
    901	}
    902
    903	return false;
    904
    905done:
    906	sched->state.counter = idx;
    907
    908	if (c->overlap)
    909		perf_sched_save_state(sched);
    910
    911	return true;
    912}
    913
    914static bool perf_sched_find_counter(struct perf_sched *sched)
    915{
    916	while (!__perf_sched_find_counter(sched)) {
    917		if (!perf_sched_restore_state(sched))
    918			return false;
    919	}
    920
    921	return true;
    922}
    923
    924/*
    925 * Go through all unassigned events and find the next one to schedule.
    926 * Take events with the least weight first. Return true on success.
    927 */
    928static bool perf_sched_next_event(struct perf_sched *sched)
    929{
    930	struct event_constraint *c;
    931
    932	if (!sched->state.unassigned || !--sched->state.unassigned)
    933		return false;
    934
    935	do {
    936		/* next event */
    937		sched->state.event++;
    938		if (sched->state.event >= sched->max_events) {
    939			/* next weight */
    940			sched->state.event = 0;
    941			sched->state.weight++;
    942			if (sched->state.weight > sched->max_weight)
    943				return false;
    944		}
    945		c = sched->constraints[sched->state.event];
    946	} while (c->weight != sched->state.weight);
    947
    948	sched->state.counter = 0;	/* start with first counter */
    949
    950	return true;
    951}
    952
    953/*
    954 * Assign a counter for each event.
    955 */
    956int perf_assign_events(struct event_constraint **constraints, int n,
    957			int wmin, int wmax, int gpmax, int *assign)
    958{
    959	struct perf_sched sched;
    960
    961	perf_sched_init(&sched, constraints, n, wmin, wmax, gpmax);
    962
    963	do {
    964		if (!perf_sched_find_counter(&sched))
    965			break;	/* failed */
    966		if (assign)
    967			assign[sched.state.event] = sched.state.counter;
    968	} while (perf_sched_next_event(&sched));
    969
    970	return sched.state.unassigned;
    971}
    972EXPORT_SYMBOL_GPL(perf_assign_events);
    973
    974int x86_schedule_events(struct cpu_hw_events *cpuc, int n, int *assign)
    975{
    976	int num_counters = hybrid(cpuc->pmu, num_counters);
    977	struct event_constraint *c;
    978	struct perf_event *e;
    979	int n0, i, wmin, wmax, unsched = 0;
    980	struct hw_perf_event *hwc;
    981	u64 used_mask = 0;
    982
    983	/*
    984	 * Compute the number of events already present; see x86_pmu_add(),
    985	 * validate_group() and x86_pmu_commit_txn(). For the former two
    986	 * cpuc->n_events hasn't been updated yet, while for the latter
    987	 * cpuc->n_txn contains the number of events added in the current
    988	 * transaction.
    989	 */
    990	n0 = cpuc->n_events;
    991	if (cpuc->txn_flags & PERF_PMU_TXN_ADD)
    992		n0 -= cpuc->n_txn;
    993
    994	static_call_cond(x86_pmu_start_scheduling)(cpuc);
    995
    996	for (i = 0, wmin = X86_PMC_IDX_MAX, wmax = 0; i < n; i++) {
    997		c = cpuc->event_constraint[i];
    998
    999		/*
   1000		 * Previously scheduled events should have a cached constraint,
   1001		 * while new events should not have one.
   1002		 */
   1003		WARN_ON_ONCE((c && i >= n0) || (!c && i < n0));
   1004
   1005		/*
   1006		 * Request constraints for new events; or for those events that
   1007		 * have a dynamic constraint -- for those the constraint can
   1008		 * change due to external factors (sibling state, allow_tfa).
   1009		 */
   1010		if (!c || (c->flags & PERF_X86_EVENT_DYNAMIC)) {
   1011			c = static_call(x86_pmu_get_event_constraints)(cpuc, i, cpuc->event_list[i]);
   1012			cpuc->event_constraint[i] = c;
   1013		}
   1014
   1015		wmin = min(wmin, c->weight);
   1016		wmax = max(wmax, c->weight);
   1017	}
   1018
   1019	/*
   1020	 * fastpath, try to reuse previous register
   1021	 */
   1022	for (i = 0; i < n; i++) {
   1023		u64 mask;
   1024
   1025		hwc = &cpuc->event_list[i]->hw;
   1026		c = cpuc->event_constraint[i];
   1027
   1028		/* never assigned */
   1029		if (hwc->idx == -1)
   1030			break;
   1031
   1032		/* constraint still honored */
   1033		if (!test_bit(hwc->idx, c->idxmsk))
   1034			break;
   1035
   1036		mask = BIT_ULL(hwc->idx);
   1037		if (is_counter_pair(hwc))
   1038			mask |= mask << 1;
   1039
   1040		/* not already used */
   1041		if (used_mask & mask)
   1042			break;
   1043
   1044		used_mask |= mask;
   1045
   1046		if (assign)
   1047			assign[i] = hwc->idx;
   1048	}
   1049
   1050	/* slow path */
   1051	if (i != n) {
   1052		int gpmax = num_counters;
   1053
   1054		/*
   1055		 * Do not allow scheduling of more than half the available
   1056		 * generic counters.
   1057		 *
   1058		 * This helps avoid counter starvation of sibling thread by
   1059		 * ensuring at most half the counters cannot be in exclusive
   1060		 * mode. There is no designated counters for the limits. Any
   1061		 * N/2 counters can be used. This helps with events with
   1062		 * specific counter constraints.
   1063		 */
   1064		if (is_ht_workaround_enabled() && !cpuc->is_fake &&
   1065		    READ_ONCE(cpuc->excl_cntrs->exclusive_present))
   1066			gpmax /= 2;
   1067
   1068		/*
   1069		 * Reduce the amount of available counters to allow fitting
   1070		 * the extra Merge events needed by large increment events.
   1071		 */
   1072		if (x86_pmu.flags & PMU_FL_PAIR) {
   1073			gpmax = num_counters - cpuc->n_pair;
   1074			WARN_ON(gpmax <= 0);
   1075		}
   1076
   1077		unsched = perf_assign_events(cpuc->event_constraint, n, wmin,
   1078					     wmax, gpmax, assign);
   1079	}
   1080
   1081	/*
   1082	 * In case of success (unsched = 0), mark events as committed,
   1083	 * so we do not put_constraint() in case new events are added
   1084	 * and fail to be scheduled
   1085	 *
   1086	 * We invoke the lower level commit callback to lock the resource
   1087	 *
   1088	 * We do not need to do all of this in case we are called to
   1089	 * validate an event group (assign == NULL)
   1090	 */
   1091	if (!unsched && assign) {
   1092		for (i = 0; i < n; i++)
   1093			static_call_cond(x86_pmu_commit_scheduling)(cpuc, i, assign[i]);
   1094	} else {
   1095		for (i = n0; i < n; i++) {
   1096			e = cpuc->event_list[i];
   1097
   1098			/*
   1099			 * release events that failed scheduling
   1100			 */
   1101			static_call_cond(x86_pmu_put_event_constraints)(cpuc, e);
   1102
   1103			cpuc->event_constraint[i] = NULL;
   1104		}
   1105	}
   1106
   1107	static_call_cond(x86_pmu_stop_scheduling)(cpuc);
   1108
   1109	return unsched ? -EINVAL : 0;
   1110}
   1111
   1112static int add_nr_metric_event(struct cpu_hw_events *cpuc,
   1113			       struct perf_event *event)
   1114{
   1115	if (is_metric_event(event)) {
   1116		if (cpuc->n_metric == INTEL_TD_METRIC_NUM)
   1117			return -EINVAL;
   1118		cpuc->n_metric++;
   1119		cpuc->n_txn_metric++;
   1120	}
   1121
   1122	return 0;
   1123}
   1124
   1125static void del_nr_metric_event(struct cpu_hw_events *cpuc,
   1126				struct perf_event *event)
   1127{
   1128	if (is_metric_event(event))
   1129		cpuc->n_metric--;
   1130}
   1131
   1132static int collect_event(struct cpu_hw_events *cpuc, struct perf_event *event,
   1133			 int max_count, int n)
   1134{
   1135	union perf_capabilities intel_cap = hybrid(cpuc->pmu, intel_cap);
   1136
   1137	if (intel_cap.perf_metrics && add_nr_metric_event(cpuc, event))
   1138		return -EINVAL;
   1139
   1140	if (n >= max_count + cpuc->n_metric)
   1141		return -EINVAL;
   1142
   1143	cpuc->event_list[n] = event;
   1144	if (is_counter_pair(&event->hw)) {
   1145		cpuc->n_pair++;
   1146		cpuc->n_txn_pair++;
   1147	}
   1148
   1149	return 0;
   1150}
   1151
   1152/*
   1153 * dogrp: true if must collect siblings events (group)
   1154 * returns total number of events and error code
   1155 */
   1156static int collect_events(struct cpu_hw_events *cpuc, struct perf_event *leader, bool dogrp)
   1157{
   1158	int num_counters = hybrid(cpuc->pmu, num_counters);
   1159	int num_counters_fixed = hybrid(cpuc->pmu, num_counters_fixed);
   1160	struct perf_event *event;
   1161	int n, max_count;
   1162
   1163	max_count = num_counters + num_counters_fixed;
   1164
   1165	/* current number of events already accepted */
   1166	n = cpuc->n_events;
   1167	if (!cpuc->n_events)
   1168		cpuc->pebs_output = 0;
   1169
   1170	if (!cpuc->is_fake && leader->attr.precise_ip) {
   1171		/*
   1172		 * For PEBS->PT, if !aux_event, the group leader (PT) went
   1173		 * away, the group was broken down and this singleton event
   1174		 * can't schedule any more.
   1175		 */
   1176		if (is_pebs_pt(leader) && !leader->aux_event)
   1177			return -EINVAL;
   1178
   1179		/*
   1180		 * pebs_output: 0: no PEBS so far, 1: PT, 2: DS
   1181		 */
   1182		if (cpuc->pebs_output &&
   1183		    cpuc->pebs_output != is_pebs_pt(leader) + 1)
   1184			return -EINVAL;
   1185
   1186		cpuc->pebs_output = is_pebs_pt(leader) + 1;
   1187	}
   1188
   1189	if (is_x86_event(leader)) {
   1190		if (collect_event(cpuc, leader, max_count, n))
   1191			return -EINVAL;
   1192		n++;
   1193	}
   1194
   1195	if (!dogrp)
   1196		return n;
   1197
   1198	for_each_sibling_event(event, leader) {
   1199		if (!is_x86_event(event) || event->state <= PERF_EVENT_STATE_OFF)
   1200			continue;
   1201
   1202		if (collect_event(cpuc, event, max_count, n))
   1203			return -EINVAL;
   1204
   1205		n++;
   1206	}
   1207	return n;
   1208}
   1209
   1210static inline void x86_assign_hw_event(struct perf_event *event,
   1211				struct cpu_hw_events *cpuc, int i)
   1212{
   1213	struct hw_perf_event *hwc = &event->hw;
   1214	int idx;
   1215
   1216	idx = hwc->idx = cpuc->assign[i];
   1217	hwc->last_cpu = smp_processor_id();
   1218	hwc->last_tag = ++cpuc->tags[i];
   1219
   1220	static_call_cond(x86_pmu_assign)(event, idx);
   1221
   1222	switch (hwc->idx) {
   1223	case INTEL_PMC_IDX_FIXED_BTS:
   1224	case INTEL_PMC_IDX_FIXED_VLBR:
   1225		hwc->config_base = 0;
   1226		hwc->event_base	= 0;
   1227		break;
   1228
   1229	case INTEL_PMC_IDX_METRIC_BASE ... INTEL_PMC_IDX_METRIC_END:
   1230		/* All the metric events are mapped onto the fixed counter 3. */
   1231		idx = INTEL_PMC_IDX_FIXED_SLOTS;
   1232		fallthrough;
   1233	case INTEL_PMC_IDX_FIXED ... INTEL_PMC_IDX_FIXED_BTS-1:
   1234		hwc->config_base = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
   1235		hwc->event_base = MSR_ARCH_PERFMON_FIXED_CTR0 +
   1236				(idx - INTEL_PMC_IDX_FIXED);
   1237		hwc->event_base_rdpmc = (idx - INTEL_PMC_IDX_FIXED) |
   1238					INTEL_PMC_FIXED_RDPMC_BASE;
   1239		break;
   1240
   1241	default:
   1242		hwc->config_base = x86_pmu_config_addr(hwc->idx);
   1243		hwc->event_base  = x86_pmu_event_addr(hwc->idx);
   1244		hwc->event_base_rdpmc = x86_pmu_rdpmc_index(hwc->idx);
   1245		break;
   1246	}
   1247}
   1248
   1249/**
   1250 * x86_perf_rdpmc_index - Return PMC counter used for event
   1251 * @event: the perf_event to which the PMC counter was assigned
   1252 *
   1253 * The counter assigned to this performance event may change if interrupts
   1254 * are enabled. This counter should thus never be used while interrupts are
   1255 * enabled. Before this function is used to obtain the assigned counter the
   1256 * event should be checked for validity using, for example,
   1257 * perf_event_read_local(), within the same interrupt disabled section in
   1258 * which this counter is planned to be used.
   1259 *
   1260 * Return: The index of the performance monitoring counter assigned to
   1261 * @perf_event.
   1262 */
   1263int x86_perf_rdpmc_index(struct perf_event *event)
   1264{
   1265	lockdep_assert_irqs_disabled();
   1266
   1267	return event->hw.event_base_rdpmc;
   1268}
   1269
   1270static inline int match_prev_assignment(struct hw_perf_event *hwc,
   1271					struct cpu_hw_events *cpuc,
   1272					int i)
   1273{
   1274	return hwc->idx == cpuc->assign[i] &&
   1275		hwc->last_cpu == smp_processor_id() &&
   1276		hwc->last_tag == cpuc->tags[i];
   1277}
   1278
   1279static void x86_pmu_start(struct perf_event *event, int flags);
   1280
   1281static void x86_pmu_enable(struct pmu *pmu)
   1282{
   1283	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
   1284	struct perf_event *event;
   1285	struct hw_perf_event *hwc;
   1286	int i, added = cpuc->n_added;
   1287
   1288	if (!x86_pmu_initialized())
   1289		return;
   1290
   1291	if (cpuc->enabled)
   1292		return;
   1293
   1294	if (cpuc->n_added) {
   1295		int n_running = cpuc->n_events - cpuc->n_added;
   1296		/*
   1297		 * apply assignment obtained either from
   1298		 * hw_perf_group_sched_in() or x86_pmu_enable()
   1299		 *
   1300		 * step1: save events moving to new counters
   1301		 */
   1302		for (i = 0; i < n_running; i++) {
   1303			event = cpuc->event_list[i];
   1304			hwc = &event->hw;
   1305
   1306			/*
   1307			 * we can avoid reprogramming counter if:
   1308			 * - assigned same counter as last time
   1309			 * - running on same CPU as last time
   1310			 * - no other event has used the counter since
   1311			 */
   1312			if (hwc->idx == -1 ||
   1313			    match_prev_assignment(hwc, cpuc, i))
   1314				continue;
   1315
   1316			/*
   1317			 * Ensure we don't accidentally enable a stopped
   1318			 * counter simply because we rescheduled.
   1319			 */
   1320			if (hwc->state & PERF_HES_STOPPED)
   1321				hwc->state |= PERF_HES_ARCH;
   1322
   1323			x86_pmu_stop(event, PERF_EF_UPDATE);
   1324		}
   1325
   1326		/*
   1327		 * step2: reprogram moved events into new counters
   1328		 */
   1329		for (i = 0; i < cpuc->n_events; i++) {
   1330			event = cpuc->event_list[i];
   1331			hwc = &event->hw;
   1332
   1333			if (!match_prev_assignment(hwc, cpuc, i))
   1334				x86_assign_hw_event(event, cpuc, i);
   1335			else if (i < n_running)
   1336				continue;
   1337
   1338			if (hwc->state & PERF_HES_ARCH)
   1339				continue;
   1340
   1341			/*
   1342			 * if cpuc->enabled = 0, then no wrmsr as
   1343			 * per x86_pmu_enable_event()
   1344			 */
   1345			x86_pmu_start(event, PERF_EF_RELOAD);
   1346		}
   1347		cpuc->n_added = 0;
   1348		perf_events_lapic_init();
   1349	}
   1350
   1351	cpuc->enabled = 1;
   1352	barrier();
   1353
   1354	static_call(x86_pmu_enable_all)(added);
   1355}
   1356
   1357static DEFINE_PER_CPU(u64 [X86_PMC_IDX_MAX], pmc_prev_left);
   1358
   1359/*
   1360 * Set the next IRQ period, based on the hwc->period_left value.
   1361 * To be called with the event disabled in hw:
   1362 */
   1363int x86_perf_event_set_period(struct perf_event *event)
   1364{
   1365	struct hw_perf_event *hwc = &event->hw;
   1366	s64 left = local64_read(&hwc->period_left);
   1367	s64 period = hwc->sample_period;
   1368	int ret = 0, idx = hwc->idx;
   1369
   1370	if (unlikely(!hwc->event_base))
   1371		return 0;
   1372
   1373	if (unlikely(is_topdown_count(event)) &&
   1374	    x86_pmu.set_topdown_event_period)
   1375		return x86_pmu.set_topdown_event_period(event);
   1376
   1377	/*
   1378	 * If we are way outside a reasonable range then just skip forward:
   1379	 */
   1380	if (unlikely(left <= -period)) {
   1381		left = period;
   1382		local64_set(&hwc->period_left, left);
   1383		hwc->last_period = period;
   1384		ret = 1;
   1385	}
   1386
   1387	if (unlikely(left <= 0)) {
   1388		left += period;
   1389		local64_set(&hwc->period_left, left);
   1390		hwc->last_period = period;
   1391		ret = 1;
   1392	}
   1393	/*
   1394	 * Quirk: certain CPUs dont like it if just 1 hw_event is left:
   1395	 */
   1396	if (unlikely(left < 2))
   1397		left = 2;
   1398
   1399	if (left > x86_pmu.max_period)
   1400		left = x86_pmu.max_period;
   1401
   1402	if (x86_pmu.limit_period)
   1403		left = x86_pmu.limit_period(event, left);
   1404
   1405	per_cpu(pmc_prev_left[idx], smp_processor_id()) = left;
   1406
   1407	/*
   1408	 * The hw event starts counting from this event offset,
   1409	 * mark it to be able to extra future deltas:
   1410	 */
   1411	local64_set(&hwc->prev_count, (u64)-left);
   1412
   1413	wrmsrl(hwc->event_base, (u64)(-left) & x86_pmu.cntval_mask);
   1414
   1415	/*
   1416	 * Sign extend the Merge event counter's upper 16 bits since
   1417	 * we currently declare a 48-bit counter width
   1418	 */
   1419	if (is_counter_pair(hwc))
   1420		wrmsrl(x86_pmu_event_addr(idx + 1), 0xffff);
   1421
   1422	/*
   1423	 * Due to erratum on certan cpu we need
   1424	 * a second write to be sure the register
   1425	 * is updated properly
   1426	 */
   1427	if (x86_pmu.perfctr_second_write) {
   1428		wrmsrl(hwc->event_base,
   1429			(u64)(-left) & x86_pmu.cntval_mask);
   1430	}
   1431
   1432	perf_event_update_userpage(event);
   1433
   1434	return ret;
   1435}
   1436
   1437void x86_pmu_enable_event(struct perf_event *event)
   1438{
   1439	if (__this_cpu_read(cpu_hw_events.enabled))
   1440		__x86_pmu_enable_event(&event->hw,
   1441				       ARCH_PERFMON_EVENTSEL_ENABLE);
   1442}
   1443
   1444/*
   1445 * Add a single event to the PMU.
   1446 *
   1447 * The event is added to the group of enabled events
   1448 * but only if it can be scheduled with existing events.
   1449 */
   1450static int x86_pmu_add(struct perf_event *event, int flags)
   1451{
   1452	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
   1453	struct hw_perf_event *hwc;
   1454	int assign[X86_PMC_IDX_MAX];
   1455	int n, n0, ret;
   1456
   1457	hwc = &event->hw;
   1458
   1459	n0 = cpuc->n_events;
   1460	ret = n = collect_events(cpuc, event, false);
   1461	if (ret < 0)
   1462		goto out;
   1463
   1464	hwc->state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
   1465	if (!(flags & PERF_EF_START))
   1466		hwc->state |= PERF_HES_ARCH;
   1467
   1468	/*
   1469	 * If group events scheduling transaction was started,
   1470	 * skip the schedulability test here, it will be performed
   1471	 * at commit time (->commit_txn) as a whole.
   1472	 *
   1473	 * If commit fails, we'll call ->del() on all events
   1474	 * for which ->add() was called.
   1475	 */
   1476	if (cpuc->txn_flags & PERF_PMU_TXN_ADD)
   1477		goto done_collect;
   1478
   1479	ret = static_call(x86_pmu_schedule_events)(cpuc, n, assign);
   1480	if (ret)
   1481		goto out;
   1482	/*
   1483	 * copy new assignment, now we know it is possible
   1484	 * will be used by hw_perf_enable()
   1485	 */
   1486	memcpy(cpuc->assign, assign, n*sizeof(int));
   1487
   1488done_collect:
   1489	/*
   1490	 * Commit the collect_events() state. See x86_pmu_del() and
   1491	 * x86_pmu_*_txn().
   1492	 */
   1493	cpuc->n_events = n;
   1494	cpuc->n_added += n - n0;
   1495	cpuc->n_txn += n - n0;
   1496
   1497	/*
   1498	 * This is before x86_pmu_enable() will call x86_pmu_start(),
   1499	 * so we enable LBRs before an event needs them etc..
   1500	 */
   1501	static_call_cond(x86_pmu_add)(event);
   1502
   1503	ret = 0;
   1504out:
   1505	return ret;
   1506}
   1507
   1508static void x86_pmu_start(struct perf_event *event, int flags)
   1509{
   1510	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
   1511	int idx = event->hw.idx;
   1512
   1513	if (WARN_ON_ONCE(!(event->hw.state & PERF_HES_STOPPED)))
   1514		return;
   1515
   1516	if (WARN_ON_ONCE(idx == -1))
   1517		return;
   1518
   1519	if (flags & PERF_EF_RELOAD) {
   1520		WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
   1521		x86_perf_event_set_period(event);
   1522	}
   1523
   1524	event->hw.state = 0;
   1525
   1526	cpuc->events[idx] = event;
   1527	__set_bit(idx, cpuc->active_mask);
   1528	static_call(x86_pmu_enable)(event);
   1529	perf_event_update_userpage(event);
   1530}
   1531
   1532void perf_event_print_debug(void)
   1533{
   1534	u64 ctrl, status, overflow, pmc_ctrl, pmc_count, prev_left, fixed;
   1535	u64 pebs, debugctl;
   1536	int cpu = smp_processor_id();
   1537	struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
   1538	int num_counters = hybrid(cpuc->pmu, num_counters);
   1539	int num_counters_fixed = hybrid(cpuc->pmu, num_counters_fixed);
   1540	struct event_constraint *pebs_constraints = hybrid(cpuc->pmu, pebs_constraints);
   1541	unsigned long flags;
   1542	int idx;
   1543
   1544	if (!num_counters)
   1545		return;
   1546
   1547	local_irq_save(flags);
   1548
   1549	if (x86_pmu.version >= 2) {
   1550		rdmsrl(MSR_CORE_PERF_GLOBAL_CTRL, ctrl);
   1551		rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
   1552		rdmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, overflow);
   1553		rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR_CTRL, fixed);
   1554
   1555		pr_info("\n");
   1556		pr_info("CPU#%d: ctrl:       %016llx\n", cpu, ctrl);
   1557		pr_info("CPU#%d: status:     %016llx\n", cpu, status);
   1558		pr_info("CPU#%d: overflow:   %016llx\n", cpu, overflow);
   1559		pr_info("CPU#%d: fixed:      %016llx\n", cpu, fixed);
   1560		if (pebs_constraints) {
   1561			rdmsrl(MSR_IA32_PEBS_ENABLE, pebs);
   1562			pr_info("CPU#%d: pebs:       %016llx\n", cpu, pebs);
   1563		}
   1564		if (x86_pmu.lbr_nr) {
   1565			rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
   1566			pr_info("CPU#%d: debugctl:   %016llx\n", cpu, debugctl);
   1567		}
   1568	}
   1569	pr_info("CPU#%d: active:     %016llx\n", cpu, *(u64 *)cpuc->active_mask);
   1570
   1571	for (idx = 0; idx < num_counters; idx++) {
   1572		rdmsrl(x86_pmu_config_addr(idx), pmc_ctrl);
   1573		rdmsrl(x86_pmu_event_addr(idx), pmc_count);
   1574
   1575		prev_left = per_cpu(pmc_prev_left[idx], cpu);
   1576
   1577		pr_info("CPU#%d:   gen-PMC%d ctrl:  %016llx\n",
   1578			cpu, idx, pmc_ctrl);
   1579		pr_info("CPU#%d:   gen-PMC%d count: %016llx\n",
   1580			cpu, idx, pmc_count);
   1581		pr_info("CPU#%d:   gen-PMC%d left:  %016llx\n",
   1582			cpu, idx, prev_left);
   1583	}
   1584	for (idx = 0; idx < num_counters_fixed; idx++) {
   1585		if (fixed_counter_disabled(idx, cpuc->pmu))
   1586			continue;
   1587		rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, pmc_count);
   1588
   1589		pr_info("CPU#%d: fixed-PMC%d count: %016llx\n",
   1590			cpu, idx, pmc_count);
   1591	}
   1592	local_irq_restore(flags);
   1593}
   1594
   1595void x86_pmu_stop(struct perf_event *event, int flags)
   1596{
   1597	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
   1598	struct hw_perf_event *hwc = &event->hw;
   1599
   1600	if (test_bit(hwc->idx, cpuc->active_mask)) {
   1601		static_call(x86_pmu_disable)(event);
   1602		__clear_bit(hwc->idx, cpuc->active_mask);
   1603		cpuc->events[hwc->idx] = NULL;
   1604		WARN_ON_ONCE(hwc->state & PERF_HES_STOPPED);
   1605		hwc->state |= PERF_HES_STOPPED;
   1606	}
   1607
   1608	if ((flags & PERF_EF_UPDATE) && !(hwc->state & PERF_HES_UPTODATE)) {
   1609		/*
   1610		 * Drain the remaining delta count out of a event
   1611		 * that we are disabling:
   1612		 */
   1613		x86_perf_event_update(event);
   1614		hwc->state |= PERF_HES_UPTODATE;
   1615	}
   1616}
   1617
   1618static void x86_pmu_del(struct perf_event *event, int flags)
   1619{
   1620	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
   1621	union perf_capabilities intel_cap = hybrid(cpuc->pmu, intel_cap);
   1622	int i;
   1623
   1624	/*
   1625	 * If we're called during a txn, we only need to undo x86_pmu.add.
   1626	 * The events never got scheduled and ->cancel_txn will truncate
   1627	 * the event_list.
   1628	 *
   1629	 * XXX assumes any ->del() called during a TXN will only be on
   1630	 * an event added during that same TXN.
   1631	 */
   1632	if (cpuc->txn_flags & PERF_PMU_TXN_ADD)
   1633		goto do_del;
   1634
   1635	__set_bit(event->hw.idx, cpuc->dirty);
   1636
   1637	/*
   1638	 * Not a TXN, therefore cleanup properly.
   1639	 */
   1640	x86_pmu_stop(event, PERF_EF_UPDATE);
   1641
   1642	for (i = 0; i < cpuc->n_events; i++) {
   1643		if (event == cpuc->event_list[i])
   1644			break;
   1645	}
   1646
   1647	if (WARN_ON_ONCE(i == cpuc->n_events)) /* called ->del() without ->add() ? */
   1648		return;
   1649
   1650	/* If we have a newly added event; make sure to decrease n_added. */
   1651	if (i >= cpuc->n_events - cpuc->n_added)
   1652		--cpuc->n_added;
   1653
   1654	static_call_cond(x86_pmu_put_event_constraints)(cpuc, event);
   1655
   1656	/* Delete the array entry. */
   1657	while (++i < cpuc->n_events) {
   1658		cpuc->event_list[i-1] = cpuc->event_list[i];
   1659		cpuc->event_constraint[i-1] = cpuc->event_constraint[i];
   1660	}
   1661	cpuc->event_constraint[i-1] = NULL;
   1662	--cpuc->n_events;
   1663	if (intel_cap.perf_metrics)
   1664		del_nr_metric_event(cpuc, event);
   1665
   1666	perf_event_update_userpage(event);
   1667
   1668do_del:
   1669
   1670	/*
   1671	 * This is after x86_pmu_stop(); so we disable LBRs after any
   1672	 * event can need them etc..
   1673	 */
   1674	static_call_cond(x86_pmu_del)(event);
   1675}
   1676
   1677int x86_pmu_handle_irq(struct pt_regs *regs)
   1678{
   1679	struct perf_sample_data data;
   1680	struct cpu_hw_events *cpuc;
   1681	struct perf_event *event;
   1682	int idx, handled = 0;
   1683	u64 val;
   1684
   1685	cpuc = this_cpu_ptr(&cpu_hw_events);
   1686
   1687	/*
   1688	 * Some chipsets need to unmask the LVTPC in a particular spot
   1689	 * inside the nmi handler.  As a result, the unmasking was pushed
   1690	 * into all the nmi handlers.
   1691	 *
   1692	 * This generic handler doesn't seem to have any issues where the
   1693	 * unmasking occurs so it was left at the top.
   1694	 */
   1695	apic_write(APIC_LVTPC, APIC_DM_NMI);
   1696
   1697	for (idx = 0; idx < x86_pmu.num_counters; idx++) {
   1698		if (!test_bit(idx, cpuc->active_mask))
   1699			continue;
   1700
   1701		event = cpuc->events[idx];
   1702
   1703		val = x86_perf_event_update(event);
   1704		if (val & (1ULL << (x86_pmu.cntval_bits - 1)))
   1705			continue;
   1706
   1707		/*
   1708		 * event overflow
   1709		 */
   1710		handled++;
   1711
   1712		if (!x86_perf_event_set_period(event))
   1713			continue;
   1714
   1715		perf_sample_data_init(&data, 0, event->hw.last_period);
   1716
   1717		if (has_branch_stack(event))
   1718			data.br_stack = &cpuc->lbr_stack;
   1719
   1720		if (perf_event_overflow(event, &data, regs))
   1721			x86_pmu_stop(event, 0);
   1722	}
   1723
   1724	if (handled)
   1725		inc_irq_stat(apic_perf_irqs);
   1726
   1727	return handled;
   1728}
   1729
   1730void perf_events_lapic_init(void)
   1731{
   1732	if (!x86_pmu.apic || !x86_pmu_initialized())
   1733		return;
   1734
   1735	/*
   1736	 * Always use NMI for PMU
   1737	 */
   1738	apic_write(APIC_LVTPC, APIC_DM_NMI);
   1739}
   1740
   1741static int
   1742perf_event_nmi_handler(unsigned int cmd, struct pt_regs *regs)
   1743{
   1744	u64 start_clock;
   1745	u64 finish_clock;
   1746	int ret;
   1747
   1748	/*
   1749	 * All PMUs/events that share this PMI handler should make sure to
   1750	 * increment active_events for their events.
   1751	 */
   1752	if (!atomic_read(&active_events))
   1753		return NMI_DONE;
   1754
   1755	start_clock = sched_clock();
   1756	ret = static_call(x86_pmu_handle_irq)(regs);
   1757	finish_clock = sched_clock();
   1758
   1759	perf_sample_event_took(finish_clock - start_clock);
   1760
   1761	return ret;
   1762}
   1763NOKPROBE_SYMBOL(perf_event_nmi_handler);
   1764
   1765struct event_constraint emptyconstraint;
   1766struct event_constraint unconstrained;
   1767
   1768static int x86_pmu_prepare_cpu(unsigned int cpu)
   1769{
   1770	struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
   1771	int i;
   1772
   1773	for (i = 0 ; i < X86_PERF_KFREE_MAX; i++)
   1774		cpuc->kfree_on_online[i] = NULL;
   1775	if (x86_pmu.cpu_prepare)
   1776		return x86_pmu.cpu_prepare(cpu);
   1777	return 0;
   1778}
   1779
   1780static int x86_pmu_dead_cpu(unsigned int cpu)
   1781{
   1782	if (x86_pmu.cpu_dead)
   1783		x86_pmu.cpu_dead(cpu);
   1784	return 0;
   1785}
   1786
   1787static int x86_pmu_online_cpu(unsigned int cpu)
   1788{
   1789	struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
   1790	int i;
   1791
   1792	for (i = 0 ; i < X86_PERF_KFREE_MAX; i++) {
   1793		kfree(cpuc->kfree_on_online[i]);
   1794		cpuc->kfree_on_online[i] = NULL;
   1795	}
   1796	return 0;
   1797}
   1798
   1799static int x86_pmu_starting_cpu(unsigned int cpu)
   1800{
   1801	if (x86_pmu.cpu_starting)
   1802		x86_pmu.cpu_starting(cpu);
   1803	return 0;
   1804}
   1805
   1806static int x86_pmu_dying_cpu(unsigned int cpu)
   1807{
   1808	if (x86_pmu.cpu_dying)
   1809		x86_pmu.cpu_dying(cpu);
   1810	return 0;
   1811}
   1812
   1813static void __init pmu_check_apic(void)
   1814{
   1815	if (boot_cpu_has(X86_FEATURE_APIC))
   1816		return;
   1817
   1818	x86_pmu.apic = 0;
   1819	pr_info("no APIC, boot with the \"lapic\" boot parameter to force-enable it.\n");
   1820	pr_info("no hardware sampling interrupt available.\n");
   1821
   1822	/*
   1823	 * If we have a PMU initialized but no APIC
   1824	 * interrupts, we cannot sample hardware
   1825	 * events (user-space has to fall back and
   1826	 * sample via a hrtimer based software event):
   1827	 */
   1828	pmu.capabilities |= PERF_PMU_CAP_NO_INTERRUPT;
   1829
   1830}
   1831
   1832static struct attribute_group x86_pmu_format_group __ro_after_init = {
   1833	.name = "format",
   1834	.attrs = NULL,
   1835};
   1836
   1837ssize_t events_sysfs_show(struct device *dev, struct device_attribute *attr, char *page)
   1838{
   1839	struct perf_pmu_events_attr *pmu_attr =
   1840		container_of(attr, struct perf_pmu_events_attr, attr);
   1841	u64 config = 0;
   1842
   1843	if (pmu_attr->id < x86_pmu.max_events)
   1844		config = x86_pmu.event_map(pmu_attr->id);
   1845
   1846	/* string trumps id */
   1847	if (pmu_attr->event_str)
   1848		return sprintf(page, "%s\n", pmu_attr->event_str);
   1849
   1850	return x86_pmu.events_sysfs_show(page, config);
   1851}
   1852EXPORT_SYMBOL_GPL(events_sysfs_show);
   1853
   1854ssize_t events_ht_sysfs_show(struct device *dev, struct device_attribute *attr,
   1855			  char *page)
   1856{
   1857	struct perf_pmu_events_ht_attr *pmu_attr =
   1858		container_of(attr, struct perf_pmu_events_ht_attr, attr);
   1859
   1860	/*
   1861	 * Report conditional events depending on Hyper-Threading.
   1862	 *
   1863	 * This is overly conservative as usually the HT special
   1864	 * handling is not needed if the other CPU thread is idle.
   1865	 *
   1866	 * Note this does not (and cannot) handle the case when thread
   1867	 * siblings are invisible, for example with virtualization
   1868	 * if they are owned by some other guest.  The user tool
   1869	 * has to re-read when a thread sibling gets onlined later.
   1870	 */
   1871	return sprintf(page, "%s",
   1872			topology_max_smt_threads() > 1 ?
   1873			pmu_attr->event_str_ht :
   1874			pmu_attr->event_str_noht);
   1875}
   1876
   1877ssize_t events_hybrid_sysfs_show(struct device *dev,
   1878				 struct device_attribute *attr,
   1879				 char *page)
   1880{
   1881	struct perf_pmu_events_hybrid_attr *pmu_attr =
   1882		container_of(attr, struct perf_pmu_events_hybrid_attr, attr);
   1883	struct x86_hybrid_pmu *pmu;
   1884	const char *str, *next_str;
   1885	int i;
   1886
   1887	if (hweight64(pmu_attr->pmu_type) == 1)
   1888		return sprintf(page, "%s", pmu_attr->event_str);
   1889
   1890	/*
   1891	 * Hybrid PMUs may support the same event name, but with different
   1892	 * event encoding, e.g., the mem-loads event on an Atom PMU has
   1893	 * different event encoding from a Core PMU.
   1894	 *
   1895	 * The event_str includes all event encodings. Each event encoding
   1896	 * is divided by ";". The order of the event encodings must follow
   1897	 * the order of the hybrid PMU index.
   1898	 */
   1899	pmu = container_of(dev_get_drvdata(dev), struct x86_hybrid_pmu, pmu);
   1900
   1901	str = pmu_attr->event_str;
   1902	for (i = 0; i < x86_pmu.num_hybrid_pmus; i++) {
   1903		if (!(x86_pmu.hybrid_pmu[i].cpu_type & pmu_attr->pmu_type))
   1904			continue;
   1905		if (x86_pmu.hybrid_pmu[i].cpu_type & pmu->cpu_type) {
   1906			next_str = strchr(str, ';');
   1907			if (next_str)
   1908				return snprintf(page, next_str - str + 1, "%s", str);
   1909			else
   1910				return sprintf(page, "%s", str);
   1911		}
   1912		str = strchr(str, ';');
   1913		str++;
   1914	}
   1915
   1916	return 0;
   1917}
   1918EXPORT_SYMBOL_GPL(events_hybrid_sysfs_show);
   1919
   1920EVENT_ATTR(cpu-cycles,			CPU_CYCLES		);
   1921EVENT_ATTR(instructions,		INSTRUCTIONS		);
   1922EVENT_ATTR(cache-references,		CACHE_REFERENCES	);
   1923EVENT_ATTR(cache-misses, 		CACHE_MISSES		);
   1924EVENT_ATTR(branch-instructions,		BRANCH_INSTRUCTIONS	);
   1925EVENT_ATTR(branch-misses,		BRANCH_MISSES		);
   1926EVENT_ATTR(bus-cycles,			BUS_CYCLES		);
   1927EVENT_ATTR(stalled-cycles-frontend,	STALLED_CYCLES_FRONTEND	);
   1928EVENT_ATTR(stalled-cycles-backend,	STALLED_CYCLES_BACKEND	);
   1929EVENT_ATTR(ref-cycles,			REF_CPU_CYCLES		);
   1930
   1931static struct attribute *empty_attrs;
   1932
   1933static struct attribute *events_attr[] = {
   1934	EVENT_PTR(CPU_CYCLES),
   1935	EVENT_PTR(INSTRUCTIONS),
   1936	EVENT_PTR(CACHE_REFERENCES),
   1937	EVENT_PTR(CACHE_MISSES),
   1938	EVENT_PTR(BRANCH_INSTRUCTIONS),
   1939	EVENT_PTR(BRANCH_MISSES),
   1940	EVENT_PTR(BUS_CYCLES),
   1941	EVENT_PTR(STALLED_CYCLES_FRONTEND),
   1942	EVENT_PTR(STALLED_CYCLES_BACKEND),
   1943	EVENT_PTR(REF_CPU_CYCLES),
   1944	NULL,
   1945};
   1946
   1947/*
   1948 * Remove all undefined events (x86_pmu.event_map(id) == 0)
   1949 * out of events_attr attributes.
   1950 */
   1951static umode_t
   1952is_visible(struct kobject *kobj, struct attribute *attr, int idx)
   1953{
   1954	struct perf_pmu_events_attr *pmu_attr;
   1955
   1956	if (idx >= x86_pmu.max_events)
   1957		return 0;
   1958
   1959	pmu_attr = container_of(attr, struct perf_pmu_events_attr, attr.attr);
   1960	/* str trumps id */
   1961	return pmu_attr->event_str || x86_pmu.event_map(idx) ? attr->mode : 0;
   1962}
   1963
   1964static struct attribute_group x86_pmu_events_group __ro_after_init = {
   1965	.name = "events",
   1966	.attrs = events_attr,
   1967	.is_visible = is_visible,
   1968};
   1969
   1970ssize_t x86_event_sysfs_show(char *page, u64 config, u64 event)
   1971{
   1972	u64 umask  = (config & ARCH_PERFMON_EVENTSEL_UMASK) >> 8;
   1973	u64 cmask  = (config & ARCH_PERFMON_EVENTSEL_CMASK) >> 24;
   1974	bool edge  = (config & ARCH_PERFMON_EVENTSEL_EDGE);
   1975	bool pc    = (config & ARCH_PERFMON_EVENTSEL_PIN_CONTROL);
   1976	bool any   = (config & ARCH_PERFMON_EVENTSEL_ANY);
   1977	bool inv   = (config & ARCH_PERFMON_EVENTSEL_INV);
   1978	ssize_t ret;
   1979
   1980	/*
   1981	* We have whole page size to spend and just little data
   1982	* to write, so we can safely use sprintf.
   1983	*/
   1984	ret = sprintf(page, "event=0x%02llx", event);
   1985
   1986	if (umask)
   1987		ret += sprintf(page + ret, ",umask=0x%02llx", umask);
   1988
   1989	if (edge)
   1990		ret += sprintf(page + ret, ",edge");
   1991
   1992	if (pc)
   1993		ret += sprintf(page + ret, ",pc");
   1994
   1995	if (any)
   1996		ret += sprintf(page + ret, ",any");
   1997
   1998	if (inv)
   1999		ret += sprintf(page + ret, ",inv");
   2000
   2001	if (cmask)
   2002		ret += sprintf(page + ret, ",cmask=0x%02llx", cmask);
   2003
   2004	ret += sprintf(page + ret, "\n");
   2005
   2006	return ret;
   2007}
   2008
   2009static struct attribute_group x86_pmu_attr_group;
   2010static struct attribute_group x86_pmu_caps_group;
   2011
   2012static void x86_pmu_static_call_update(void)
   2013{
   2014	static_call_update(x86_pmu_handle_irq, x86_pmu.handle_irq);
   2015	static_call_update(x86_pmu_disable_all, x86_pmu.disable_all);
   2016	static_call_update(x86_pmu_enable_all, x86_pmu.enable_all);
   2017	static_call_update(x86_pmu_enable, x86_pmu.enable);
   2018	static_call_update(x86_pmu_disable, x86_pmu.disable);
   2019
   2020	static_call_update(x86_pmu_assign, x86_pmu.assign);
   2021
   2022	static_call_update(x86_pmu_add, x86_pmu.add);
   2023	static_call_update(x86_pmu_del, x86_pmu.del);
   2024	static_call_update(x86_pmu_read, x86_pmu.read);
   2025
   2026	static_call_update(x86_pmu_schedule_events, x86_pmu.schedule_events);
   2027	static_call_update(x86_pmu_get_event_constraints, x86_pmu.get_event_constraints);
   2028	static_call_update(x86_pmu_put_event_constraints, x86_pmu.put_event_constraints);
   2029
   2030	static_call_update(x86_pmu_start_scheduling, x86_pmu.start_scheduling);
   2031	static_call_update(x86_pmu_commit_scheduling, x86_pmu.commit_scheduling);
   2032	static_call_update(x86_pmu_stop_scheduling, x86_pmu.stop_scheduling);
   2033
   2034	static_call_update(x86_pmu_sched_task, x86_pmu.sched_task);
   2035	static_call_update(x86_pmu_swap_task_ctx, x86_pmu.swap_task_ctx);
   2036
   2037	static_call_update(x86_pmu_drain_pebs, x86_pmu.drain_pebs);
   2038	static_call_update(x86_pmu_pebs_aliases, x86_pmu.pebs_aliases);
   2039
   2040	static_call_update(x86_pmu_guest_get_msrs, x86_pmu.guest_get_msrs);
   2041}
   2042
   2043static void _x86_pmu_read(struct perf_event *event)
   2044{
   2045	x86_perf_event_update(event);
   2046}
   2047
   2048void x86_pmu_show_pmu_cap(int num_counters, int num_counters_fixed,
   2049			  u64 intel_ctrl)
   2050{
   2051	pr_info("... version:                %d\n",     x86_pmu.version);
   2052	pr_info("... bit width:              %d\n",     x86_pmu.cntval_bits);
   2053	pr_info("... generic registers:      %d\n",     num_counters);
   2054	pr_info("... value mask:             %016Lx\n", x86_pmu.cntval_mask);
   2055	pr_info("... max period:             %016Lx\n", x86_pmu.max_period);
   2056	pr_info("... fixed-purpose events:   %lu\n",
   2057			hweight64((((1ULL << num_counters_fixed) - 1)
   2058					<< INTEL_PMC_IDX_FIXED) & intel_ctrl));
   2059	pr_info("... event mask:             %016Lx\n", intel_ctrl);
   2060}
   2061
   2062/*
   2063 * The generic code is not hybrid friendly. The hybrid_pmu->pmu
   2064 * of the first registered PMU is unconditionally assigned to
   2065 * each possible cpuctx->ctx.pmu.
   2066 * Update the correct hybrid PMU to the cpuctx->ctx.pmu.
   2067 */
   2068void x86_pmu_update_cpu_context(struct pmu *pmu, int cpu)
   2069{
   2070	struct perf_cpu_context *cpuctx;
   2071
   2072	if (!pmu->pmu_cpu_context)
   2073		return;
   2074
   2075	cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
   2076	cpuctx->ctx.pmu = pmu;
   2077}
   2078
   2079static int __init init_hw_perf_events(void)
   2080{
   2081	struct x86_pmu_quirk *quirk;
   2082	int err;
   2083
   2084	pr_info("Performance Events: ");
   2085
   2086	switch (boot_cpu_data.x86_vendor) {
   2087	case X86_VENDOR_INTEL:
   2088		err = intel_pmu_init();
   2089		break;
   2090	case X86_VENDOR_AMD:
   2091		err = amd_pmu_init();
   2092		break;
   2093	case X86_VENDOR_HYGON:
   2094		err = amd_pmu_init();
   2095		x86_pmu.name = "HYGON";
   2096		break;
   2097	case X86_VENDOR_ZHAOXIN:
   2098	case X86_VENDOR_CENTAUR:
   2099		err = zhaoxin_pmu_init();
   2100		break;
   2101	default:
   2102		err = -ENOTSUPP;
   2103	}
   2104	if (err != 0) {
   2105		pr_cont("no PMU driver, software events only.\n");
   2106		return 0;
   2107	}
   2108
   2109	pmu_check_apic();
   2110
   2111	/* sanity check that the hardware exists or is emulated */
   2112	if (!check_hw_exists(&pmu, x86_pmu.num_counters, x86_pmu.num_counters_fixed))
   2113		return 0;
   2114
   2115	pr_cont("%s PMU driver.\n", x86_pmu.name);
   2116
   2117	x86_pmu.attr_rdpmc = 1; /* enable userspace RDPMC usage by default */
   2118
   2119	for (quirk = x86_pmu.quirks; quirk; quirk = quirk->next)
   2120		quirk->func();
   2121
   2122	if (!x86_pmu.intel_ctrl)
   2123		x86_pmu.intel_ctrl = (1 << x86_pmu.num_counters) - 1;
   2124
   2125	perf_events_lapic_init();
   2126	register_nmi_handler(NMI_LOCAL, perf_event_nmi_handler, 0, "PMI");
   2127
   2128	unconstrained = (struct event_constraint)
   2129		__EVENT_CONSTRAINT(0, (1ULL << x86_pmu.num_counters) - 1,
   2130				   0, x86_pmu.num_counters, 0, 0);
   2131
   2132	x86_pmu_format_group.attrs = x86_pmu.format_attrs;
   2133
   2134	if (!x86_pmu.events_sysfs_show)
   2135		x86_pmu_events_group.attrs = &empty_attrs;
   2136
   2137	pmu.attr_update = x86_pmu.attr_update;
   2138
   2139	if (!is_hybrid()) {
   2140		x86_pmu_show_pmu_cap(x86_pmu.num_counters,
   2141				     x86_pmu.num_counters_fixed,
   2142				     x86_pmu.intel_ctrl);
   2143	}
   2144
   2145	if (!x86_pmu.read)
   2146		x86_pmu.read = _x86_pmu_read;
   2147
   2148	if (!x86_pmu.guest_get_msrs)
   2149		x86_pmu.guest_get_msrs = (void *)&__static_call_return0;
   2150
   2151	x86_pmu_static_call_update();
   2152
   2153	/*
   2154	 * Install callbacks. Core will call them for each online
   2155	 * cpu.
   2156	 */
   2157	err = cpuhp_setup_state(CPUHP_PERF_X86_PREPARE, "perf/x86:prepare",
   2158				x86_pmu_prepare_cpu, x86_pmu_dead_cpu);
   2159	if (err)
   2160		return err;
   2161
   2162	err = cpuhp_setup_state(CPUHP_AP_PERF_X86_STARTING,
   2163				"perf/x86:starting", x86_pmu_starting_cpu,
   2164				x86_pmu_dying_cpu);
   2165	if (err)
   2166		goto out;
   2167
   2168	err = cpuhp_setup_state(CPUHP_AP_PERF_X86_ONLINE, "perf/x86:online",
   2169				x86_pmu_online_cpu, NULL);
   2170	if (err)
   2171		goto out1;
   2172
   2173	if (!is_hybrid()) {
   2174		err = perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
   2175		if (err)
   2176			goto out2;
   2177	} else {
   2178		u8 cpu_type = get_this_hybrid_cpu_type();
   2179		struct x86_hybrid_pmu *hybrid_pmu;
   2180		int i, j;
   2181
   2182		if (!cpu_type && x86_pmu.get_hybrid_cpu_type)
   2183			cpu_type = x86_pmu.get_hybrid_cpu_type();
   2184
   2185		for (i = 0; i < x86_pmu.num_hybrid_pmus; i++) {
   2186			hybrid_pmu = &x86_pmu.hybrid_pmu[i];
   2187
   2188			hybrid_pmu->pmu = pmu;
   2189			hybrid_pmu->pmu.type = -1;
   2190			hybrid_pmu->pmu.attr_update = x86_pmu.attr_update;
   2191			hybrid_pmu->pmu.capabilities |= PERF_PMU_CAP_HETEROGENEOUS_CPUS;
   2192			hybrid_pmu->pmu.capabilities |= PERF_PMU_CAP_EXTENDED_HW_TYPE;
   2193
   2194			err = perf_pmu_register(&hybrid_pmu->pmu, hybrid_pmu->name,
   2195						(hybrid_pmu->cpu_type == hybrid_big) ? PERF_TYPE_RAW : -1);
   2196			if (err)
   2197				break;
   2198
   2199			if (cpu_type == hybrid_pmu->cpu_type)
   2200				x86_pmu_update_cpu_context(&hybrid_pmu->pmu, raw_smp_processor_id());
   2201		}
   2202
   2203		if (i < x86_pmu.num_hybrid_pmus) {
   2204			for (j = 0; j < i; j++)
   2205				perf_pmu_unregister(&x86_pmu.hybrid_pmu[j].pmu);
   2206			pr_warn("Failed to register hybrid PMUs\n");
   2207			kfree(x86_pmu.hybrid_pmu);
   2208			x86_pmu.hybrid_pmu = NULL;
   2209			x86_pmu.num_hybrid_pmus = 0;
   2210			goto out2;
   2211		}
   2212	}
   2213
   2214	return 0;
   2215
   2216out2:
   2217	cpuhp_remove_state(CPUHP_AP_PERF_X86_ONLINE);
   2218out1:
   2219	cpuhp_remove_state(CPUHP_AP_PERF_X86_STARTING);
   2220out:
   2221	cpuhp_remove_state(CPUHP_PERF_X86_PREPARE);
   2222	return err;
   2223}
   2224early_initcall(init_hw_perf_events);
   2225
   2226static void x86_pmu_read(struct perf_event *event)
   2227{
   2228	static_call(x86_pmu_read)(event);
   2229}
   2230
   2231/*
   2232 * Start group events scheduling transaction
   2233 * Set the flag to make pmu::enable() not perform the
   2234 * schedulability test, it will be performed at commit time
   2235 *
   2236 * We only support PERF_PMU_TXN_ADD transactions. Save the
   2237 * transaction flags but otherwise ignore non-PERF_PMU_TXN_ADD
   2238 * transactions.
   2239 */
   2240static void x86_pmu_start_txn(struct pmu *pmu, unsigned int txn_flags)
   2241{
   2242	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
   2243
   2244	WARN_ON_ONCE(cpuc->txn_flags);		/* txn already in flight */
   2245
   2246	cpuc->txn_flags = txn_flags;
   2247	if (txn_flags & ~PERF_PMU_TXN_ADD)
   2248		return;
   2249
   2250	perf_pmu_disable(pmu);
   2251	__this_cpu_write(cpu_hw_events.n_txn, 0);
   2252	__this_cpu_write(cpu_hw_events.n_txn_pair, 0);
   2253	__this_cpu_write(cpu_hw_events.n_txn_metric, 0);
   2254}
   2255
   2256/*
   2257 * Stop group events scheduling transaction
   2258 * Clear the flag and pmu::enable() will perform the
   2259 * schedulability test.
   2260 */
   2261static void x86_pmu_cancel_txn(struct pmu *pmu)
   2262{
   2263	unsigned int txn_flags;
   2264	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
   2265
   2266	WARN_ON_ONCE(!cpuc->txn_flags);	/* no txn in flight */
   2267
   2268	txn_flags = cpuc->txn_flags;
   2269	cpuc->txn_flags = 0;
   2270	if (txn_flags & ~PERF_PMU_TXN_ADD)
   2271		return;
   2272
   2273	/*
   2274	 * Truncate collected array by the number of events added in this
   2275	 * transaction. See x86_pmu_add() and x86_pmu_*_txn().
   2276	 */
   2277	__this_cpu_sub(cpu_hw_events.n_added, __this_cpu_read(cpu_hw_events.n_txn));
   2278	__this_cpu_sub(cpu_hw_events.n_events, __this_cpu_read(cpu_hw_events.n_txn));
   2279	__this_cpu_sub(cpu_hw_events.n_pair, __this_cpu_read(cpu_hw_events.n_txn_pair));
   2280	__this_cpu_sub(cpu_hw_events.n_metric, __this_cpu_read(cpu_hw_events.n_txn_metric));
   2281	perf_pmu_enable(pmu);
   2282}
   2283
   2284/*
   2285 * Commit group events scheduling transaction
   2286 * Perform the group schedulability test as a whole
   2287 * Return 0 if success
   2288 *
   2289 * Does not cancel the transaction on failure; expects the caller to do this.
   2290 */
   2291static int x86_pmu_commit_txn(struct pmu *pmu)
   2292{
   2293	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
   2294	int assign[X86_PMC_IDX_MAX];
   2295	int n, ret;
   2296
   2297	WARN_ON_ONCE(!cpuc->txn_flags);	/* no txn in flight */
   2298
   2299	if (cpuc->txn_flags & ~PERF_PMU_TXN_ADD) {
   2300		cpuc->txn_flags = 0;
   2301		return 0;
   2302	}
   2303
   2304	n = cpuc->n_events;
   2305
   2306	if (!x86_pmu_initialized())
   2307		return -EAGAIN;
   2308
   2309	ret = static_call(x86_pmu_schedule_events)(cpuc, n, assign);
   2310	if (ret)
   2311		return ret;
   2312
   2313	/*
   2314	 * copy new assignment, now we know it is possible
   2315	 * will be used by hw_perf_enable()
   2316	 */
   2317	memcpy(cpuc->assign, assign, n*sizeof(int));
   2318
   2319	cpuc->txn_flags = 0;
   2320	perf_pmu_enable(pmu);
   2321	return 0;
   2322}
   2323/*
   2324 * a fake_cpuc is used to validate event groups. Due to
   2325 * the extra reg logic, we need to also allocate a fake
   2326 * per_core and per_cpu structure. Otherwise, group events
   2327 * using extra reg may conflict without the kernel being
   2328 * able to catch this when the last event gets added to
   2329 * the group.
   2330 */
   2331static void free_fake_cpuc(struct cpu_hw_events *cpuc)
   2332{
   2333	intel_cpuc_finish(cpuc);
   2334	kfree(cpuc);
   2335}
   2336
   2337static struct cpu_hw_events *allocate_fake_cpuc(struct pmu *event_pmu)
   2338{
   2339	struct cpu_hw_events *cpuc;
   2340	int cpu;
   2341
   2342	cpuc = kzalloc(sizeof(*cpuc), GFP_KERNEL);
   2343	if (!cpuc)
   2344		return ERR_PTR(-ENOMEM);
   2345	cpuc->is_fake = 1;
   2346
   2347	if (is_hybrid()) {
   2348		struct x86_hybrid_pmu *h_pmu;
   2349
   2350		h_pmu = hybrid_pmu(event_pmu);
   2351		if (cpumask_empty(&h_pmu->supported_cpus))
   2352			goto error;
   2353		cpu = cpumask_first(&h_pmu->supported_cpus);
   2354	} else
   2355		cpu = raw_smp_processor_id();
   2356	cpuc->pmu = event_pmu;
   2357
   2358	if (intel_cpuc_prepare(cpuc, cpu))
   2359		goto error;
   2360
   2361	return cpuc;
   2362error:
   2363	free_fake_cpuc(cpuc);
   2364	return ERR_PTR(-ENOMEM);
   2365}
   2366
   2367/*
   2368 * validate that we can schedule this event
   2369 */
   2370static int validate_event(struct perf_event *event)
   2371{
   2372	struct cpu_hw_events *fake_cpuc;
   2373	struct event_constraint *c;
   2374	int ret = 0;
   2375
   2376	fake_cpuc = allocate_fake_cpuc(event->pmu);
   2377	if (IS_ERR(fake_cpuc))
   2378		return PTR_ERR(fake_cpuc);
   2379
   2380	c = x86_pmu.get_event_constraints(fake_cpuc, 0, event);
   2381
   2382	if (!c || !c->weight)
   2383		ret = -EINVAL;
   2384
   2385	if (x86_pmu.put_event_constraints)
   2386		x86_pmu.put_event_constraints(fake_cpuc, event);
   2387
   2388	free_fake_cpuc(fake_cpuc);
   2389
   2390	return ret;
   2391}
   2392
   2393/*
   2394 * validate a single event group
   2395 *
   2396 * validation include:
   2397 *	- check events are compatible which each other
   2398 *	- events do not compete for the same counter
   2399 *	- number of events <= number of counters
   2400 *
   2401 * validation ensures the group can be loaded onto the
   2402 * PMU if it was the only group available.
   2403 */
   2404static int validate_group(struct perf_event *event)
   2405{
   2406	struct perf_event *leader = event->group_leader;
   2407	struct cpu_hw_events *fake_cpuc;
   2408	int ret = -EINVAL, n;
   2409
   2410	/*
   2411	 * Reject events from different hybrid PMUs.
   2412	 */
   2413	if (is_hybrid()) {
   2414		struct perf_event *sibling;
   2415		struct pmu *pmu = NULL;
   2416
   2417		if (is_x86_event(leader))
   2418			pmu = leader->pmu;
   2419
   2420		for_each_sibling_event(sibling, leader) {
   2421			if (!is_x86_event(sibling))
   2422				continue;
   2423			if (!pmu)
   2424				pmu = sibling->pmu;
   2425			else if (pmu != sibling->pmu)
   2426				return ret;
   2427		}
   2428	}
   2429
   2430	fake_cpuc = allocate_fake_cpuc(event->pmu);
   2431	if (IS_ERR(fake_cpuc))
   2432		return PTR_ERR(fake_cpuc);
   2433	/*
   2434	 * the event is not yet connected with its
   2435	 * siblings therefore we must first collect
   2436	 * existing siblings, then add the new event
   2437	 * before we can simulate the scheduling
   2438	 */
   2439	n = collect_events(fake_cpuc, leader, true);
   2440	if (n < 0)
   2441		goto out;
   2442
   2443	fake_cpuc->n_events = n;
   2444	n = collect_events(fake_cpuc, event, false);
   2445	if (n < 0)
   2446		goto out;
   2447
   2448	fake_cpuc->n_events = 0;
   2449	ret = x86_pmu.schedule_events(fake_cpuc, n, NULL);
   2450
   2451out:
   2452	free_fake_cpuc(fake_cpuc);
   2453	return ret;
   2454}
   2455
   2456static int x86_pmu_event_init(struct perf_event *event)
   2457{
   2458	struct x86_hybrid_pmu *pmu = NULL;
   2459	int err;
   2460
   2461	if ((event->attr.type != event->pmu->type) &&
   2462	    (event->attr.type != PERF_TYPE_HARDWARE) &&
   2463	    (event->attr.type != PERF_TYPE_HW_CACHE))
   2464		return -ENOENT;
   2465
   2466	if (is_hybrid() && (event->cpu != -1)) {
   2467		pmu = hybrid_pmu(event->pmu);
   2468		if (!cpumask_test_cpu(event->cpu, &pmu->supported_cpus))
   2469			return -ENOENT;
   2470	}
   2471
   2472	err = __x86_pmu_event_init(event);
   2473	if (!err) {
   2474		if (event->group_leader != event)
   2475			err = validate_group(event);
   2476		else
   2477			err = validate_event(event);
   2478	}
   2479	if (err) {
   2480		if (event->destroy)
   2481			event->destroy(event);
   2482		event->destroy = NULL;
   2483	}
   2484
   2485	if (READ_ONCE(x86_pmu.attr_rdpmc) &&
   2486	    !(event->hw.flags & PERF_X86_EVENT_LARGE_PEBS))
   2487		event->hw.flags |= PERF_EVENT_FLAG_USER_READ_CNT;
   2488
   2489	return err;
   2490}
   2491
   2492void perf_clear_dirty_counters(void)
   2493{
   2494	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
   2495	int i;
   2496
   2497	 /* Don't need to clear the assigned counter. */
   2498	for (i = 0; i < cpuc->n_events; i++)
   2499		__clear_bit(cpuc->assign[i], cpuc->dirty);
   2500
   2501	if (bitmap_empty(cpuc->dirty, X86_PMC_IDX_MAX))
   2502		return;
   2503
   2504	for_each_set_bit(i, cpuc->dirty, X86_PMC_IDX_MAX) {
   2505		if (i >= INTEL_PMC_IDX_FIXED) {
   2506			/* Metrics and fake events don't have corresponding HW counters. */
   2507			if ((i - INTEL_PMC_IDX_FIXED) >= hybrid(cpuc->pmu, num_counters_fixed))
   2508				continue;
   2509
   2510			wrmsrl(MSR_ARCH_PERFMON_FIXED_CTR0 + (i - INTEL_PMC_IDX_FIXED), 0);
   2511		} else {
   2512			wrmsrl(x86_pmu_event_addr(i), 0);
   2513		}
   2514	}
   2515
   2516	bitmap_zero(cpuc->dirty, X86_PMC_IDX_MAX);
   2517}
   2518
   2519static void x86_pmu_event_mapped(struct perf_event *event, struct mm_struct *mm)
   2520{
   2521	if (!(event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT))
   2522		return;
   2523
   2524	/*
   2525	 * This function relies on not being called concurrently in two
   2526	 * tasks in the same mm.  Otherwise one task could observe
   2527	 * perf_rdpmc_allowed > 1 and return all the way back to
   2528	 * userspace with CR4.PCE clear while another task is still
   2529	 * doing on_each_cpu_mask() to propagate CR4.PCE.
   2530	 *
   2531	 * For now, this can't happen because all callers hold mmap_lock
   2532	 * for write.  If this changes, we'll need a different solution.
   2533	 */
   2534	mmap_assert_write_locked(mm);
   2535
   2536	if (atomic_inc_return(&mm->context.perf_rdpmc_allowed) == 1)
   2537		on_each_cpu_mask(mm_cpumask(mm), cr4_update_pce, NULL, 1);
   2538}
   2539
   2540static void x86_pmu_event_unmapped(struct perf_event *event, struct mm_struct *mm)
   2541{
   2542	if (!(event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT))
   2543		return;
   2544
   2545	if (atomic_dec_and_test(&mm->context.perf_rdpmc_allowed))
   2546		on_each_cpu_mask(mm_cpumask(mm), cr4_update_pce, NULL, 1);
   2547}
   2548
   2549static int x86_pmu_event_idx(struct perf_event *event)
   2550{
   2551	struct hw_perf_event *hwc = &event->hw;
   2552
   2553	if (!(hwc->flags & PERF_EVENT_FLAG_USER_READ_CNT))
   2554		return 0;
   2555
   2556	if (is_metric_idx(hwc->idx))
   2557		return INTEL_PMC_FIXED_RDPMC_METRICS + 1;
   2558	else
   2559		return hwc->event_base_rdpmc + 1;
   2560}
   2561
   2562static ssize_t get_attr_rdpmc(struct device *cdev,
   2563			      struct device_attribute *attr,
   2564			      char *buf)
   2565{
   2566	return snprintf(buf, 40, "%d\n", x86_pmu.attr_rdpmc);
   2567}
   2568
   2569static ssize_t set_attr_rdpmc(struct device *cdev,
   2570			      struct device_attribute *attr,
   2571			      const char *buf, size_t count)
   2572{
   2573	unsigned long val;
   2574	ssize_t ret;
   2575
   2576	ret = kstrtoul(buf, 0, &val);
   2577	if (ret)
   2578		return ret;
   2579
   2580	if (val > 2)
   2581		return -EINVAL;
   2582
   2583	if (x86_pmu.attr_rdpmc_broken)
   2584		return -ENOTSUPP;
   2585
   2586	if (val != x86_pmu.attr_rdpmc) {
   2587		/*
   2588		 * Changing into or out of never available or always available,
   2589		 * aka perf-event-bypassing mode. This path is extremely slow,
   2590		 * but only root can trigger it, so it's okay.
   2591		 */
   2592		if (val == 0)
   2593			static_branch_inc(&rdpmc_never_available_key);
   2594		else if (x86_pmu.attr_rdpmc == 0)
   2595			static_branch_dec(&rdpmc_never_available_key);
   2596
   2597		if (val == 2)
   2598			static_branch_inc(&rdpmc_always_available_key);
   2599		else if (x86_pmu.attr_rdpmc == 2)
   2600			static_branch_dec(&rdpmc_always_available_key);
   2601
   2602		on_each_cpu(cr4_update_pce, NULL, 1);
   2603		x86_pmu.attr_rdpmc = val;
   2604	}
   2605
   2606	return count;
   2607}
   2608
   2609static DEVICE_ATTR(rdpmc, S_IRUSR | S_IWUSR, get_attr_rdpmc, set_attr_rdpmc);
   2610
   2611static struct attribute *x86_pmu_attrs[] = {
   2612	&dev_attr_rdpmc.attr,
   2613	NULL,
   2614};
   2615
   2616static struct attribute_group x86_pmu_attr_group __ro_after_init = {
   2617	.attrs = x86_pmu_attrs,
   2618};
   2619
   2620static ssize_t max_precise_show(struct device *cdev,
   2621				  struct device_attribute *attr,
   2622				  char *buf)
   2623{
   2624	return snprintf(buf, PAGE_SIZE, "%d\n", x86_pmu_max_precise());
   2625}
   2626
   2627static DEVICE_ATTR_RO(max_precise);
   2628
   2629static struct attribute *x86_pmu_caps_attrs[] = {
   2630	&dev_attr_max_precise.attr,
   2631	NULL
   2632};
   2633
   2634static struct attribute_group x86_pmu_caps_group __ro_after_init = {
   2635	.name = "caps",
   2636	.attrs = x86_pmu_caps_attrs,
   2637};
   2638
   2639static const struct attribute_group *x86_pmu_attr_groups[] = {
   2640	&x86_pmu_attr_group,
   2641	&x86_pmu_format_group,
   2642	&x86_pmu_events_group,
   2643	&x86_pmu_caps_group,
   2644	NULL,
   2645};
   2646
   2647static void x86_pmu_sched_task(struct perf_event_context *ctx, bool sched_in)
   2648{
   2649	static_call_cond(x86_pmu_sched_task)(ctx, sched_in);
   2650}
   2651
   2652static void x86_pmu_swap_task_ctx(struct perf_event_context *prev,
   2653				  struct perf_event_context *next)
   2654{
   2655	static_call_cond(x86_pmu_swap_task_ctx)(prev, next);
   2656}
   2657
   2658void perf_check_microcode(void)
   2659{
   2660	if (x86_pmu.check_microcode)
   2661		x86_pmu.check_microcode();
   2662}
   2663
   2664static int x86_pmu_check_period(struct perf_event *event, u64 value)
   2665{
   2666	if (x86_pmu.check_period && x86_pmu.check_period(event, value))
   2667		return -EINVAL;
   2668
   2669	if (value && x86_pmu.limit_period) {
   2670		if (x86_pmu.limit_period(event, value) > value)
   2671			return -EINVAL;
   2672	}
   2673
   2674	return 0;
   2675}
   2676
   2677static int x86_pmu_aux_output_match(struct perf_event *event)
   2678{
   2679	if (!(pmu.capabilities & PERF_PMU_CAP_AUX_OUTPUT))
   2680		return 0;
   2681
   2682	if (x86_pmu.aux_output_match)
   2683		return x86_pmu.aux_output_match(event);
   2684
   2685	return 0;
   2686}
   2687
   2688static int x86_pmu_filter_match(struct perf_event *event)
   2689{
   2690	if (x86_pmu.filter_match)
   2691		return x86_pmu.filter_match(event);
   2692
   2693	return 1;
   2694}
   2695
   2696static struct pmu pmu = {
   2697	.pmu_enable		= x86_pmu_enable,
   2698	.pmu_disable		= x86_pmu_disable,
   2699
   2700	.attr_groups		= x86_pmu_attr_groups,
   2701
   2702	.event_init		= x86_pmu_event_init,
   2703
   2704	.event_mapped		= x86_pmu_event_mapped,
   2705	.event_unmapped		= x86_pmu_event_unmapped,
   2706
   2707	.add			= x86_pmu_add,
   2708	.del			= x86_pmu_del,
   2709	.start			= x86_pmu_start,
   2710	.stop			= x86_pmu_stop,
   2711	.read			= x86_pmu_read,
   2712
   2713	.start_txn		= x86_pmu_start_txn,
   2714	.cancel_txn		= x86_pmu_cancel_txn,
   2715	.commit_txn		= x86_pmu_commit_txn,
   2716
   2717	.event_idx		= x86_pmu_event_idx,
   2718	.sched_task		= x86_pmu_sched_task,
   2719	.swap_task_ctx		= x86_pmu_swap_task_ctx,
   2720	.check_period		= x86_pmu_check_period,
   2721
   2722	.aux_output_match	= x86_pmu_aux_output_match,
   2723
   2724	.filter_match		= x86_pmu_filter_match,
   2725};
   2726
   2727void arch_perf_update_userpage(struct perf_event *event,
   2728			       struct perf_event_mmap_page *userpg, u64 now)
   2729{
   2730	struct cyc2ns_data data;
   2731	u64 offset;
   2732
   2733	userpg->cap_user_time = 0;
   2734	userpg->cap_user_time_zero = 0;
   2735	userpg->cap_user_rdpmc =
   2736		!!(event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT);
   2737	userpg->pmc_width = x86_pmu.cntval_bits;
   2738
   2739	if (!using_native_sched_clock() || !sched_clock_stable())
   2740		return;
   2741
   2742	cyc2ns_read_begin(&data);
   2743
   2744	offset = data.cyc2ns_offset + __sched_clock_offset;
   2745
   2746	/*
   2747	 * Internal timekeeping for enabled/running/stopped times
   2748	 * is always in the local_clock domain.
   2749	 */
   2750	userpg->cap_user_time = 1;
   2751	userpg->time_mult = data.cyc2ns_mul;
   2752	userpg->time_shift = data.cyc2ns_shift;
   2753	userpg->time_offset = offset - now;
   2754
   2755	/*
   2756	 * cap_user_time_zero doesn't make sense when we're using a different
   2757	 * time base for the records.
   2758	 */
   2759	if (!event->attr.use_clockid) {
   2760		userpg->cap_user_time_zero = 1;
   2761		userpg->time_zero = offset;
   2762	}
   2763
   2764	cyc2ns_read_end();
   2765}
   2766
   2767/*
   2768 * Determine whether the regs were taken from an irq/exception handler rather
   2769 * than from perf_arch_fetch_caller_regs().
   2770 */
   2771static bool perf_hw_regs(struct pt_regs *regs)
   2772{
   2773	return regs->flags & X86_EFLAGS_FIXED;
   2774}
   2775
   2776void
   2777perf_callchain_kernel(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs)
   2778{
   2779	struct unwind_state state;
   2780	unsigned long addr;
   2781
   2782	if (perf_guest_state()) {
   2783		/* TODO: We don't support guest os callchain now */
   2784		return;
   2785	}
   2786
   2787	if (perf_callchain_store(entry, regs->ip))
   2788		return;
   2789
   2790	if (perf_hw_regs(regs))
   2791		unwind_start(&state, current, regs, NULL);
   2792	else
   2793		unwind_start(&state, current, NULL, (void *)regs->sp);
   2794
   2795	for (; !unwind_done(&state); unwind_next_frame(&state)) {
   2796		addr = unwind_get_return_address(&state);
   2797		if (!addr || perf_callchain_store(entry, addr))
   2798			return;
   2799	}
   2800}
   2801
   2802static inline int
   2803valid_user_frame(const void __user *fp, unsigned long size)
   2804{
   2805	return __access_ok(fp, size);
   2806}
   2807
   2808static unsigned long get_segment_base(unsigned int segment)
   2809{
   2810	struct desc_struct *desc;
   2811	unsigned int idx = segment >> 3;
   2812
   2813	if ((segment & SEGMENT_TI_MASK) == SEGMENT_LDT) {
   2814#ifdef CONFIG_MODIFY_LDT_SYSCALL
   2815		struct ldt_struct *ldt;
   2816
   2817		/* IRQs are off, so this synchronizes with smp_store_release */
   2818		ldt = READ_ONCE(current->active_mm->context.ldt);
   2819		if (!ldt || idx >= ldt->nr_entries)
   2820			return 0;
   2821
   2822		desc = &ldt->entries[idx];
   2823#else
   2824		return 0;
   2825#endif
   2826	} else {
   2827		if (idx >= GDT_ENTRIES)
   2828			return 0;
   2829
   2830		desc = raw_cpu_ptr(gdt_page.gdt) + idx;
   2831	}
   2832
   2833	return get_desc_base(desc);
   2834}
   2835
   2836#ifdef CONFIG_IA32_EMULATION
   2837
   2838#include <linux/compat.h>
   2839
   2840static inline int
   2841perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry_ctx *entry)
   2842{
   2843	/* 32-bit process in 64-bit kernel. */
   2844	unsigned long ss_base, cs_base;
   2845	struct stack_frame_ia32 frame;
   2846	const struct stack_frame_ia32 __user *fp;
   2847
   2848	if (user_64bit_mode(regs))
   2849		return 0;
   2850
   2851	cs_base = get_segment_base(regs->cs);
   2852	ss_base = get_segment_base(regs->ss);
   2853
   2854	fp = compat_ptr(ss_base + regs->bp);
   2855	pagefault_disable();
   2856	while (entry->nr < entry->max_stack) {
   2857		if (!valid_user_frame(fp, sizeof(frame)))
   2858			break;
   2859
   2860		if (__get_user(frame.next_frame, &fp->next_frame))
   2861			break;
   2862		if (__get_user(frame.return_address, &fp->return_address))
   2863			break;
   2864
   2865		perf_callchain_store(entry, cs_base + frame.return_address);
   2866		fp = compat_ptr(ss_base + frame.next_frame);
   2867	}
   2868	pagefault_enable();
   2869	return 1;
   2870}
   2871#else
   2872static inline int
   2873perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry_ctx *entry)
   2874{
   2875    return 0;
   2876}
   2877#endif
   2878
   2879void
   2880perf_callchain_user(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs)
   2881{
   2882	struct stack_frame frame;
   2883	const struct stack_frame __user *fp;
   2884
   2885	if (perf_guest_state()) {
   2886		/* TODO: We don't support guest os callchain now */
   2887		return;
   2888	}
   2889
   2890	/*
   2891	 * We don't know what to do with VM86 stacks.. ignore them for now.
   2892	 */
   2893	if (regs->flags & (X86_VM_MASK | PERF_EFLAGS_VM))
   2894		return;
   2895
   2896	fp = (void __user *)regs->bp;
   2897
   2898	perf_callchain_store(entry, regs->ip);
   2899
   2900	if (!nmi_uaccess_okay())
   2901		return;
   2902
   2903	if (perf_callchain_user32(regs, entry))
   2904		return;
   2905
   2906	pagefault_disable();
   2907	while (entry->nr < entry->max_stack) {
   2908		if (!valid_user_frame(fp, sizeof(frame)))
   2909			break;
   2910
   2911		if (__get_user(frame.next_frame, &fp->next_frame))
   2912			break;
   2913		if (__get_user(frame.return_address, &fp->return_address))
   2914			break;
   2915
   2916		perf_callchain_store(entry, frame.return_address);
   2917		fp = (void __user *)frame.next_frame;
   2918	}
   2919	pagefault_enable();
   2920}
   2921
   2922/*
   2923 * Deal with code segment offsets for the various execution modes:
   2924 *
   2925 *   VM86 - the good olde 16 bit days, where the linear address is
   2926 *          20 bits and we use regs->ip + 0x10 * regs->cs.
   2927 *
   2928 *   IA32 - Where we need to look at GDT/LDT segment descriptor tables
   2929 *          to figure out what the 32bit base address is.
   2930 *
   2931 *    X32 - has TIF_X32 set, but is running in x86_64
   2932 *
   2933 * X86_64 - CS,DS,SS,ES are all zero based.
   2934 */
   2935static unsigned long code_segment_base(struct pt_regs *regs)
   2936{
   2937	/*
   2938	 * For IA32 we look at the GDT/LDT segment base to convert the
   2939	 * effective IP to a linear address.
   2940	 */
   2941
   2942#ifdef CONFIG_X86_32
   2943	/*
   2944	 * If we are in VM86 mode, add the segment offset to convert to a
   2945	 * linear address.
   2946	 */
   2947	if (regs->flags & X86_VM_MASK)
   2948		return 0x10 * regs->cs;
   2949
   2950	if (user_mode(regs) && regs->cs != __USER_CS)
   2951		return get_segment_base(regs->cs);
   2952#else
   2953	if (user_mode(regs) && !user_64bit_mode(regs) &&
   2954	    regs->cs != __USER32_CS)
   2955		return get_segment_base(regs->cs);
   2956#endif
   2957	return 0;
   2958}
   2959
   2960unsigned long perf_instruction_pointer(struct pt_regs *regs)
   2961{
   2962	if (perf_guest_state())
   2963		return perf_guest_get_ip();
   2964
   2965	return regs->ip + code_segment_base(regs);
   2966}
   2967
   2968unsigned long perf_misc_flags(struct pt_regs *regs)
   2969{
   2970	unsigned int guest_state = perf_guest_state();
   2971	int misc = 0;
   2972
   2973	if (guest_state) {
   2974		if (guest_state & PERF_GUEST_USER)
   2975			misc |= PERF_RECORD_MISC_GUEST_USER;
   2976		else
   2977			misc |= PERF_RECORD_MISC_GUEST_KERNEL;
   2978	} else {
   2979		if (user_mode(regs))
   2980			misc |= PERF_RECORD_MISC_USER;
   2981		else
   2982			misc |= PERF_RECORD_MISC_KERNEL;
   2983	}
   2984
   2985	if (regs->flags & PERF_EFLAGS_EXACT)
   2986		misc |= PERF_RECORD_MISC_EXACT_IP;
   2987
   2988	return misc;
   2989}
   2990
   2991void perf_get_x86_pmu_capability(struct x86_pmu_capability *cap)
   2992{
   2993	cap->version		= x86_pmu.version;
   2994	/*
   2995	 * KVM doesn't support the hybrid PMU yet.
   2996	 * Return the common value in global x86_pmu,
   2997	 * which available for all cores.
   2998	 */
   2999	cap->num_counters_gp	= x86_pmu.num_counters;
   3000	cap->num_counters_fixed	= x86_pmu.num_counters_fixed;
   3001	cap->bit_width_gp	= x86_pmu.cntval_bits;
   3002	cap->bit_width_fixed	= x86_pmu.cntval_bits;
   3003	cap->events_mask	= (unsigned int)x86_pmu.events_maskl;
   3004	cap->events_mask_len	= x86_pmu.events_mask_len;
   3005}
   3006EXPORT_SYMBOL_GPL(perf_get_x86_pmu_capability);