cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

bts.c (15230B)


      1// SPDX-License-Identifier: GPL-2.0-only
      2/*
      3 * BTS PMU driver for perf
      4 * Copyright (c) 2013-2014, Intel Corporation.
      5 */
      6
      7#undef DEBUG
      8
      9#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
     10
     11#include <linux/bitops.h>
     12#include <linux/types.h>
     13#include <linux/slab.h>
     14#include <linux/debugfs.h>
     15#include <linux/device.h>
     16#include <linux/coredump.h>
     17
     18#include <linux/sizes.h>
     19#include <asm/perf_event.h>
     20
     21#include "../perf_event.h"
     22
     23struct bts_ctx {
     24	struct perf_output_handle	handle;
     25	struct debug_store		ds_back;
     26	int				state;
     27};
     28
     29/* BTS context states: */
     30enum {
     31	/* no ongoing AUX transactions */
     32	BTS_STATE_STOPPED = 0,
     33	/* AUX transaction is on, BTS tracing is disabled */
     34	BTS_STATE_INACTIVE,
     35	/* AUX transaction is on, BTS tracing is running */
     36	BTS_STATE_ACTIVE,
     37};
     38
     39static DEFINE_PER_CPU(struct bts_ctx, bts_ctx);
     40
     41#define BTS_RECORD_SIZE		24
     42#define BTS_SAFETY_MARGIN	4080
     43
     44struct bts_phys {
     45	struct page	*page;
     46	unsigned long	size;
     47	unsigned long	offset;
     48	unsigned long	displacement;
     49};
     50
     51struct bts_buffer {
     52	size_t		real_size;	/* multiple of BTS_RECORD_SIZE */
     53	unsigned int	nr_pages;
     54	unsigned int	nr_bufs;
     55	unsigned int	cur_buf;
     56	bool		snapshot;
     57	local_t		data_size;
     58	local_t		head;
     59	unsigned long	end;
     60	void		**data_pages;
     61	struct bts_phys	buf[];
     62};
     63
     64static struct pmu bts_pmu;
     65
     66static int buf_nr_pages(struct page *page)
     67{
     68	if (!PagePrivate(page))
     69		return 1;
     70
     71	return 1 << page_private(page);
     72}
     73
     74static size_t buf_size(struct page *page)
     75{
     76	return buf_nr_pages(page) * PAGE_SIZE;
     77}
     78
     79static void *
     80bts_buffer_setup_aux(struct perf_event *event, void **pages,
     81		     int nr_pages, bool overwrite)
     82{
     83	struct bts_buffer *buf;
     84	struct page *page;
     85	int cpu = event->cpu;
     86	int node = (cpu == -1) ? cpu : cpu_to_node(cpu);
     87	unsigned long offset;
     88	size_t size = nr_pages << PAGE_SHIFT;
     89	int pg, nbuf, pad;
     90
     91	/* count all the high order buffers */
     92	for (pg = 0, nbuf = 0; pg < nr_pages;) {
     93		page = virt_to_page(pages[pg]);
     94		pg += buf_nr_pages(page);
     95		nbuf++;
     96	}
     97
     98	/*
     99	 * to avoid interrupts in overwrite mode, only allow one physical
    100	 */
    101	if (overwrite && nbuf > 1)
    102		return NULL;
    103
    104	buf = kzalloc_node(offsetof(struct bts_buffer, buf[nbuf]), GFP_KERNEL, node);
    105	if (!buf)
    106		return NULL;
    107
    108	buf->nr_pages = nr_pages;
    109	buf->nr_bufs = nbuf;
    110	buf->snapshot = overwrite;
    111	buf->data_pages = pages;
    112	buf->real_size = size - size % BTS_RECORD_SIZE;
    113
    114	for (pg = 0, nbuf = 0, offset = 0, pad = 0; nbuf < buf->nr_bufs; nbuf++) {
    115		unsigned int __nr_pages;
    116
    117		page = virt_to_page(pages[pg]);
    118		__nr_pages = buf_nr_pages(page);
    119		buf->buf[nbuf].page = page;
    120		buf->buf[nbuf].offset = offset;
    121		buf->buf[nbuf].displacement = (pad ? BTS_RECORD_SIZE - pad : 0);
    122		buf->buf[nbuf].size = buf_size(page) - buf->buf[nbuf].displacement;
    123		pad = buf->buf[nbuf].size % BTS_RECORD_SIZE;
    124		buf->buf[nbuf].size -= pad;
    125
    126		pg += __nr_pages;
    127		offset += __nr_pages << PAGE_SHIFT;
    128	}
    129
    130	return buf;
    131}
    132
    133static void bts_buffer_free_aux(void *data)
    134{
    135	kfree(data);
    136}
    137
    138static unsigned long bts_buffer_offset(struct bts_buffer *buf, unsigned int idx)
    139{
    140	return buf->buf[idx].offset + buf->buf[idx].displacement;
    141}
    142
    143static void
    144bts_config_buffer(struct bts_buffer *buf)
    145{
    146	int cpu = raw_smp_processor_id();
    147	struct debug_store *ds = per_cpu(cpu_hw_events, cpu).ds;
    148	struct bts_phys *phys = &buf->buf[buf->cur_buf];
    149	unsigned long index, thresh = 0, end = phys->size;
    150	struct page *page = phys->page;
    151
    152	index = local_read(&buf->head);
    153
    154	if (!buf->snapshot) {
    155		if (buf->end < phys->offset + buf_size(page))
    156			end = buf->end - phys->offset - phys->displacement;
    157
    158		index -= phys->offset + phys->displacement;
    159
    160		if (end - index > BTS_SAFETY_MARGIN)
    161			thresh = end - BTS_SAFETY_MARGIN;
    162		else if (end - index > BTS_RECORD_SIZE)
    163			thresh = end - BTS_RECORD_SIZE;
    164		else
    165			thresh = end;
    166	}
    167
    168	ds->bts_buffer_base = (u64)(long)page_address(page) + phys->displacement;
    169	ds->bts_index = ds->bts_buffer_base + index;
    170	ds->bts_absolute_maximum = ds->bts_buffer_base + end;
    171	ds->bts_interrupt_threshold = !buf->snapshot
    172		? ds->bts_buffer_base + thresh
    173		: ds->bts_absolute_maximum + BTS_RECORD_SIZE;
    174}
    175
    176static void bts_buffer_pad_out(struct bts_phys *phys, unsigned long head)
    177{
    178	unsigned long index = head - phys->offset;
    179
    180	memset(page_address(phys->page) + index, 0, phys->size - index);
    181}
    182
    183static void bts_update(struct bts_ctx *bts)
    184{
    185	int cpu = raw_smp_processor_id();
    186	struct debug_store *ds = per_cpu(cpu_hw_events, cpu).ds;
    187	struct bts_buffer *buf = perf_get_aux(&bts->handle);
    188	unsigned long index = ds->bts_index - ds->bts_buffer_base, old, head;
    189
    190	if (!buf)
    191		return;
    192
    193	head = index + bts_buffer_offset(buf, buf->cur_buf);
    194	old = local_xchg(&buf->head, head);
    195
    196	if (!buf->snapshot) {
    197		if (old == head)
    198			return;
    199
    200		if (ds->bts_index >= ds->bts_absolute_maximum)
    201			perf_aux_output_flag(&bts->handle,
    202			                     PERF_AUX_FLAG_TRUNCATED);
    203
    204		/*
    205		 * old and head are always in the same physical buffer, so we
    206		 * can subtract them to get the data size.
    207		 */
    208		local_add(head - old, &buf->data_size);
    209	} else {
    210		local_set(&buf->data_size, head);
    211	}
    212
    213	/*
    214	 * Since BTS is coherent, just add compiler barrier to ensure
    215	 * BTS updating is ordered against bts::handle::event.
    216	 */
    217	barrier();
    218}
    219
    220static int
    221bts_buffer_reset(struct bts_buffer *buf, struct perf_output_handle *handle);
    222
    223/*
    224 * Ordering PMU callbacks wrt themselves and the PMI is done by means
    225 * of bts::state, which:
    226 *  - is set when bts::handle::event is valid, that is, between
    227 *    perf_aux_output_begin() and perf_aux_output_end();
    228 *  - is zero otherwise;
    229 *  - is ordered against bts::handle::event with a compiler barrier.
    230 */
    231
    232static void __bts_event_start(struct perf_event *event)
    233{
    234	struct bts_ctx *bts = this_cpu_ptr(&bts_ctx);
    235	struct bts_buffer *buf = perf_get_aux(&bts->handle);
    236	u64 config = 0;
    237
    238	if (!buf->snapshot)
    239		config |= ARCH_PERFMON_EVENTSEL_INT;
    240	if (!event->attr.exclude_kernel)
    241		config |= ARCH_PERFMON_EVENTSEL_OS;
    242	if (!event->attr.exclude_user)
    243		config |= ARCH_PERFMON_EVENTSEL_USR;
    244
    245	bts_config_buffer(buf);
    246
    247	/*
    248	 * local barrier to make sure that ds configuration made it
    249	 * before we enable BTS and bts::state goes ACTIVE
    250	 */
    251	wmb();
    252
    253	/* INACTIVE/STOPPED -> ACTIVE */
    254	WRITE_ONCE(bts->state, BTS_STATE_ACTIVE);
    255
    256	intel_pmu_enable_bts(config);
    257
    258}
    259
    260static void bts_event_start(struct perf_event *event, int flags)
    261{
    262	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
    263	struct bts_ctx *bts = this_cpu_ptr(&bts_ctx);
    264	struct bts_buffer *buf;
    265
    266	buf = perf_aux_output_begin(&bts->handle, event);
    267	if (!buf)
    268		goto fail_stop;
    269
    270	if (bts_buffer_reset(buf, &bts->handle))
    271		goto fail_end_stop;
    272
    273	bts->ds_back.bts_buffer_base = cpuc->ds->bts_buffer_base;
    274	bts->ds_back.bts_absolute_maximum = cpuc->ds->bts_absolute_maximum;
    275	bts->ds_back.bts_interrupt_threshold = cpuc->ds->bts_interrupt_threshold;
    276
    277	perf_event_itrace_started(event);
    278	event->hw.state = 0;
    279
    280	__bts_event_start(event);
    281
    282	return;
    283
    284fail_end_stop:
    285	perf_aux_output_end(&bts->handle, 0);
    286
    287fail_stop:
    288	event->hw.state = PERF_HES_STOPPED;
    289}
    290
    291static void __bts_event_stop(struct perf_event *event, int state)
    292{
    293	struct bts_ctx *bts = this_cpu_ptr(&bts_ctx);
    294
    295	/* ACTIVE -> INACTIVE(PMI)/STOPPED(->stop()) */
    296	WRITE_ONCE(bts->state, state);
    297
    298	/*
    299	 * No extra synchronization is mandated by the documentation to have
    300	 * BTS data stores globally visible.
    301	 */
    302	intel_pmu_disable_bts();
    303}
    304
    305static void bts_event_stop(struct perf_event *event, int flags)
    306{
    307	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
    308	struct bts_ctx *bts = this_cpu_ptr(&bts_ctx);
    309	struct bts_buffer *buf = NULL;
    310	int state = READ_ONCE(bts->state);
    311
    312	if (state == BTS_STATE_ACTIVE)
    313		__bts_event_stop(event, BTS_STATE_STOPPED);
    314
    315	if (state != BTS_STATE_STOPPED)
    316		buf = perf_get_aux(&bts->handle);
    317
    318	event->hw.state |= PERF_HES_STOPPED;
    319
    320	if (flags & PERF_EF_UPDATE) {
    321		bts_update(bts);
    322
    323		if (buf) {
    324			if (buf->snapshot)
    325				bts->handle.head =
    326					local_xchg(&buf->data_size,
    327						   buf->nr_pages << PAGE_SHIFT);
    328			perf_aux_output_end(&bts->handle,
    329			                    local_xchg(&buf->data_size, 0));
    330		}
    331
    332		cpuc->ds->bts_index = bts->ds_back.bts_buffer_base;
    333		cpuc->ds->bts_buffer_base = bts->ds_back.bts_buffer_base;
    334		cpuc->ds->bts_absolute_maximum = bts->ds_back.bts_absolute_maximum;
    335		cpuc->ds->bts_interrupt_threshold = bts->ds_back.bts_interrupt_threshold;
    336	}
    337}
    338
    339void intel_bts_enable_local(void)
    340{
    341	struct bts_ctx *bts = this_cpu_ptr(&bts_ctx);
    342	int state = READ_ONCE(bts->state);
    343
    344	/*
    345	 * Here we transition from INACTIVE to ACTIVE;
    346	 * if we instead are STOPPED from the interrupt handler,
    347	 * stay that way. Can't be ACTIVE here though.
    348	 */
    349	if (WARN_ON_ONCE(state == BTS_STATE_ACTIVE))
    350		return;
    351
    352	if (state == BTS_STATE_STOPPED)
    353		return;
    354
    355	if (bts->handle.event)
    356		__bts_event_start(bts->handle.event);
    357}
    358
    359void intel_bts_disable_local(void)
    360{
    361	struct bts_ctx *bts = this_cpu_ptr(&bts_ctx);
    362
    363	/*
    364	 * Here we transition from ACTIVE to INACTIVE;
    365	 * do nothing for STOPPED or INACTIVE.
    366	 */
    367	if (READ_ONCE(bts->state) != BTS_STATE_ACTIVE)
    368		return;
    369
    370	if (bts->handle.event)
    371		__bts_event_stop(bts->handle.event, BTS_STATE_INACTIVE);
    372}
    373
    374static int
    375bts_buffer_reset(struct bts_buffer *buf, struct perf_output_handle *handle)
    376{
    377	unsigned long head, space, next_space, pad, gap, skip, wakeup;
    378	unsigned int next_buf;
    379	struct bts_phys *phys, *next_phys;
    380	int ret;
    381
    382	if (buf->snapshot)
    383		return 0;
    384
    385	head = handle->head & ((buf->nr_pages << PAGE_SHIFT) - 1);
    386
    387	phys = &buf->buf[buf->cur_buf];
    388	space = phys->offset + phys->displacement + phys->size - head;
    389	pad = space;
    390	if (space > handle->size) {
    391		space = handle->size;
    392		space -= space % BTS_RECORD_SIZE;
    393	}
    394	if (space <= BTS_SAFETY_MARGIN) {
    395		/* See if next phys buffer has more space */
    396		next_buf = buf->cur_buf + 1;
    397		if (next_buf >= buf->nr_bufs)
    398			next_buf = 0;
    399		next_phys = &buf->buf[next_buf];
    400		gap = buf_size(phys->page) - phys->displacement - phys->size +
    401		      next_phys->displacement;
    402		skip = pad + gap;
    403		if (handle->size >= skip) {
    404			next_space = next_phys->size;
    405			if (next_space + skip > handle->size) {
    406				next_space = handle->size - skip;
    407				next_space -= next_space % BTS_RECORD_SIZE;
    408			}
    409			if (next_space > space || !space) {
    410				if (pad)
    411					bts_buffer_pad_out(phys, head);
    412				ret = perf_aux_output_skip(handle, skip);
    413				if (ret)
    414					return ret;
    415				/* Advance to next phys buffer */
    416				phys = next_phys;
    417				space = next_space;
    418				head = phys->offset + phys->displacement;
    419				/*
    420				 * After this, cur_buf and head won't match ds
    421				 * anymore, so we must not be racing with
    422				 * bts_update().
    423				 */
    424				buf->cur_buf = next_buf;
    425				local_set(&buf->head, head);
    426			}
    427		}
    428	}
    429
    430	/* Don't go far beyond wakeup watermark */
    431	wakeup = BTS_SAFETY_MARGIN + BTS_RECORD_SIZE + handle->wakeup -
    432		 handle->head;
    433	if (space > wakeup) {
    434		space = wakeup;
    435		space -= space % BTS_RECORD_SIZE;
    436	}
    437
    438	buf->end = head + space;
    439
    440	/*
    441	 * If we have no space, the lost notification would have been sent when
    442	 * we hit absolute_maximum - see bts_update()
    443	 */
    444	if (!space)
    445		return -ENOSPC;
    446
    447	return 0;
    448}
    449
    450int intel_bts_interrupt(void)
    451{
    452	struct debug_store *ds = this_cpu_ptr(&cpu_hw_events)->ds;
    453	struct bts_ctx *bts = this_cpu_ptr(&bts_ctx);
    454	struct perf_event *event = bts->handle.event;
    455	struct bts_buffer *buf;
    456	s64 old_head;
    457	int err = -ENOSPC, handled = 0;
    458
    459	/*
    460	 * The only surefire way of knowing if this NMI is ours is by checking
    461	 * the write ptr against the PMI threshold.
    462	 */
    463	if (ds && (ds->bts_index >= ds->bts_interrupt_threshold))
    464		handled = 1;
    465
    466	/*
    467	 * this is wrapped in intel_bts_enable_local/intel_bts_disable_local,
    468	 * so we can only be INACTIVE or STOPPED
    469	 */
    470	if (READ_ONCE(bts->state) == BTS_STATE_STOPPED)
    471		return handled;
    472
    473	buf = perf_get_aux(&bts->handle);
    474	if (!buf)
    475		return handled;
    476
    477	/*
    478	 * Skip snapshot counters: they don't use the interrupt, but
    479	 * there's no other way of telling, because the pointer will
    480	 * keep moving
    481	 */
    482	if (buf->snapshot)
    483		return 0;
    484
    485	old_head = local_read(&buf->head);
    486	bts_update(bts);
    487
    488	/* no new data */
    489	if (old_head == local_read(&buf->head))
    490		return handled;
    491
    492	perf_aux_output_end(&bts->handle, local_xchg(&buf->data_size, 0));
    493
    494	buf = perf_aux_output_begin(&bts->handle, event);
    495	if (buf)
    496		err = bts_buffer_reset(buf, &bts->handle);
    497
    498	if (err) {
    499		WRITE_ONCE(bts->state, BTS_STATE_STOPPED);
    500
    501		if (buf) {
    502			/*
    503			 * BTS_STATE_STOPPED should be visible before
    504			 * cleared handle::event
    505			 */
    506			barrier();
    507			perf_aux_output_end(&bts->handle, 0);
    508		}
    509	}
    510
    511	return 1;
    512}
    513
    514static void bts_event_del(struct perf_event *event, int mode)
    515{
    516	bts_event_stop(event, PERF_EF_UPDATE);
    517}
    518
    519static int bts_event_add(struct perf_event *event, int mode)
    520{
    521	struct bts_ctx *bts = this_cpu_ptr(&bts_ctx);
    522	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
    523	struct hw_perf_event *hwc = &event->hw;
    524
    525	event->hw.state = PERF_HES_STOPPED;
    526
    527	if (test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask))
    528		return -EBUSY;
    529
    530	if (bts->handle.event)
    531		return -EBUSY;
    532
    533	if (mode & PERF_EF_START) {
    534		bts_event_start(event, 0);
    535		if (hwc->state & PERF_HES_STOPPED)
    536			return -EINVAL;
    537	}
    538
    539	return 0;
    540}
    541
    542static void bts_event_destroy(struct perf_event *event)
    543{
    544	x86_release_hardware();
    545	x86_del_exclusive(x86_lbr_exclusive_bts);
    546}
    547
    548static int bts_event_init(struct perf_event *event)
    549{
    550	int ret;
    551
    552	if (event->attr.type != bts_pmu.type)
    553		return -ENOENT;
    554
    555	/*
    556	 * BTS leaks kernel addresses even when CPL0 tracing is
    557	 * disabled, so disallow intel_bts driver for unprivileged
    558	 * users on paranoid systems since it provides trace data
    559	 * to the user in a zero-copy fashion.
    560	 *
    561	 * Note that the default paranoia setting permits unprivileged
    562	 * users to profile the kernel.
    563	 */
    564	if (event->attr.exclude_kernel) {
    565		ret = perf_allow_kernel(&event->attr);
    566		if (ret)
    567			return ret;
    568	}
    569
    570	if (x86_add_exclusive(x86_lbr_exclusive_bts))
    571		return -EBUSY;
    572
    573	ret = x86_reserve_hardware();
    574	if (ret) {
    575		x86_del_exclusive(x86_lbr_exclusive_bts);
    576		return ret;
    577	}
    578
    579	event->destroy = bts_event_destroy;
    580
    581	return 0;
    582}
    583
    584static void bts_event_read(struct perf_event *event)
    585{
    586}
    587
    588static __init int bts_init(void)
    589{
    590	if (!boot_cpu_has(X86_FEATURE_DTES64) || !x86_pmu.bts)
    591		return -ENODEV;
    592
    593	if (boot_cpu_has(X86_FEATURE_PTI)) {
    594		/*
    595		 * BTS hardware writes through a virtual memory map we must
    596		 * either use the kernel physical map, or the user mapping of
    597		 * the AUX buffer.
    598		 *
    599		 * However, since this driver supports per-CPU and per-task inherit
    600		 * we cannot use the user mapping since it will not be available
    601		 * if we're not running the owning process.
    602		 *
    603		 * With PTI we can't use the kernel map either, because its not
    604		 * there when we run userspace.
    605		 *
    606		 * For now, disable this driver when using PTI.
    607		 */
    608		return -ENODEV;
    609	}
    610
    611	bts_pmu.capabilities	= PERF_PMU_CAP_AUX_NO_SG | PERF_PMU_CAP_ITRACE |
    612				  PERF_PMU_CAP_EXCLUSIVE;
    613	bts_pmu.task_ctx_nr	= perf_sw_context;
    614	bts_pmu.event_init	= bts_event_init;
    615	bts_pmu.add		= bts_event_add;
    616	bts_pmu.del		= bts_event_del;
    617	bts_pmu.start		= bts_event_start;
    618	bts_pmu.stop		= bts_event_stop;
    619	bts_pmu.read		= bts_event_read;
    620	bts_pmu.setup_aux	= bts_buffer_setup_aux;
    621	bts_pmu.free_aux	= bts_buffer_free_aux;
    622
    623	return perf_pmu_register(&bts_pmu, "intel_bts", -1);
    624}
    625arch_initcall(bts_init);