cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

ds.c (63309B)


      1// SPDX-License-Identifier: GPL-2.0
      2#include <linux/bitops.h>
      3#include <linux/types.h>
      4#include <linux/slab.h>
      5
      6#include <asm/cpu_entry_area.h>
      7#include <asm/perf_event.h>
      8#include <asm/tlbflush.h>
      9#include <asm/insn.h>
     10#include <asm/io.h>
     11
     12#include "../perf_event.h"
     13
     14/* Waste a full page so it can be mapped into the cpu_entry_area */
     15DEFINE_PER_CPU_PAGE_ALIGNED(struct debug_store, cpu_debug_store);
     16
     17/* The size of a BTS record in bytes: */
     18#define BTS_RECORD_SIZE		24
     19
     20#define PEBS_FIXUP_SIZE		PAGE_SIZE
     21
     22/*
     23 * pebs_record_32 for p4 and core not supported
     24
     25struct pebs_record_32 {
     26	u32 flags, ip;
     27	u32 ax, bc, cx, dx;
     28	u32 si, di, bp, sp;
     29};
     30
     31 */
     32
     33union intel_x86_pebs_dse {
     34	u64 val;
     35	struct {
     36		unsigned int ld_dse:4;
     37		unsigned int ld_stlb_miss:1;
     38		unsigned int ld_locked:1;
     39		unsigned int ld_data_blk:1;
     40		unsigned int ld_addr_blk:1;
     41		unsigned int ld_reserved:24;
     42	};
     43	struct {
     44		unsigned int st_l1d_hit:1;
     45		unsigned int st_reserved1:3;
     46		unsigned int st_stlb_miss:1;
     47		unsigned int st_locked:1;
     48		unsigned int st_reserved2:26;
     49	};
     50	struct {
     51		unsigned int st_lat_dse:4;
     52		unsigned int st_lat_stlb_miss:1;
     53		unsigned int st_lat_locked:1;
     54		unsigned int ld_reserved3:26;
     55	};
     56};
     57
     58
     59/*
     60 * Map PEBS Load Latency Data Source encodings to generic
     61 * memory data source information
     62 */
     63#define P(a, b) PERF_MEM_S(a, b)
     64#define OP_LH (P(OP, LOAD) | P(LVL, HIT))
     65#define LEVEL(x) P(LVLNUM, x)
     66#define REM P(REMOTE, REMOTE)
     67#define SNOOP_NONE_MISS (P(SNOOP, NONE) | P(SNOOP, MISS))
     68
     69/* Version for Sandy Bridge and later */
     70static u64 pebs_data_source[] = {
     71	P(OP, LOAD) | P(LVL, MISS) | LEVEL(L3) | P(SNOOP, NA),/* 0x00:ukn L3 */
     72	OP_LH | P(LVL, L1)  | LEVEL(L1) | P(SNOOP, NONE),  /* 0x01: L1 local */
     73	OP_LH | P(LVL, LFB) | LEVEL(LFB) | P(SNOOP, NONE), /* 0x02: LFB hit */
     74	OP_LH | P(LVL, L2)  | LEVEL(L2) | P(SNOOP, NONE),  /* 0x03: L2 hit */
     75	OP_LH | P(LVL, L3)  | LEVEL(L3) | P(SNOOP, NONE),  /* 0x04: L3 hit */
     76	OP_LH | P(LVL, L3)  | LEVEL(L3) | P(SNOOP, MISS),  /* 0x05: L3 hit, snoop miss */
     77	OP_LH | P(LVL, L3)  | LEVEL(L3) | P(SNOOP, HIT),   /* 0x06: L3 hit, snoop hit */
     78	OP_LH | P(LVL, L3)  | LEVEL(L3) | P(SNOOP, HITM),  /* 0x07: L3 hit, snoop hitm */
     79	OP_LH | P(LVL, REM_CCE1) | REM | LEVEL(L3) | P(SNOOP, HIT),  /* 0x08: L3 miss snoop hit */
     80	OP_LH | P(LVL, REM_CCE1) | REM | LEVEL(L3) | P(SNOOP, HITM), /* 0x09: L3 miss snoop hitm*/
     81	OP_LH | P(LVL, LOC_RAM)  | LEVEL(RAM) | P(SNOOP, HIT),       /* 0x0a: L3 miss, shared */
     82	OP_LH | P(LVL, REM_RAM1) | REM | LEVEL(L3) | P(SNOOP, HIT),  /* 0x0b: L3 miss, shared */
     83	OP_LH | P(LVL, LOC_RAM)  | LEVEL(RAM) | SNOOP_NONE_MISS,     /* 0x0c: L3 miss, excl */
     84	OP_LH | P(LVL, REM_RAM1) | LEVEL(RAM) | REM | SNOOP_NONE_MISS, /* 0x0d: L3 miss, excl */
     85	OP_LH | P(LVL, IO)  | LEVEL(NA) | P(SNOOP, NONE), /* 0x0e: I/O */
     86	OP_LH | P(LVL, UNC) | LEVEL(NA) | P(SNOOP, NONE), /* 0x0f: uncached */
     87};
     88
     89/* Patch up minor differences in the bits */
     90void __init intel_pmu_pebs_data_source_nhm(void)
     91{
     92	pebs_data_source[0x05] = OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, HIT);
     93	pebs_data_source[0x06] = OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, HITM);
     94	pebs_data_source[0x07] = OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, HITM);
     95}
     96
     97void __init intel_pmu_pebs_data_source_skl(bool pmem)
     98{
     99	u64 pmem_or_l4 = pmem ? LEVEL(PMEM) : LEVEL(L4);
    100
    101	pebs_data_source[0x08] = OP_LH | pmem_or_l4 | P(SNOOP, HIT);
    102	pebs_data_source[0x09] = OP_LH | pmem_or_l4 | REM | P(SNOOP, HIT);
    103	pebs_data_source[0x0b] = OP_LH | LEVEL(RAM) | REM | P(SNOOP, NONE);
    104	pebs_data_source[0x0c] = OP_LH | LEVEL(ANY_CACHE) | REM | P(SNOOPX, FWD);
    105	pebs_data_source[0x0d] = OP_LH | LEVEL(ANY_CACHE) | REM | P(SNOOP, HITM);
    106}
    107
    108static u64 precise_store_data(u64 status)
    109{
    110	union intel_x86_pebs_dse dse;
    111	u64 val = P(OP, STORE) | P(SNOOP, NA) | P(LVL, L1) | P(TLB, L2);
    112
    113	dse.val = status;
    114
    115	/*
    116	 * bit 4: TLB access
    117	 * 1 = stored missed 2nd level TLB
    118	 *
    119	 * so it either hit the walker or the OS
    120	 * otherwise hit 2nd level TLB
    121	 */
    122	if (dse.st_stlb_miss)
    123		val |= P(TLB, MISS);
    124	else
    125		val |= P(TLB, HIT);
    126
    127	/*
    128	 * bit 0: hit L1 data cache
    129	 * if not set, then all we know is that
    130	 * it missed L1D
    131	 */
    132	if (dse.st_l1d_hit)
    133		val |= P(LVL, HIT);
    134	else
    135		val |= P(LVL, MISS);
    136
    137	/*
    138	 * bit 5: Locked prefix
    139	 */
    140	if (dse.st_locked)
    141		val |= P(LOCK, LOCKED);
    142
    143	return val;
    144}
    145
    146static u64 precise_datala_hsw(struct perf_event *event, u64 status)
    147{
    148	union perf_mem_data_src dse;
    149
    150	dse.val = PERF_MEM_NA;
    151
    152	if (event->hw.flags & PERF_X86_EVENT_PEBS_ST_HSW)
    153		dse.mem_op = PERF_MEM_OP_STORE;
    154	else if (event->hw.flags & PERF_X86_EVENT_PEBS_LD_HSW)
    155		dse.mem_op = PERF_MEM_OP_LOAD;
    156
    157	/*
    158	 * L1 info only valid for following events:
    159	 *
    160	 * MEM_UOPS_RETIRED.STLB_MISS_STORES
    161	 * MEM_UOPS_RETIRED.LOCK_STORES
    162	 * MEM_UOPS_RETIRED.SPLIT_STORES
    163	 * MEM_UOPS_RETIRED.ALL_STORES
    164	 */
    165	if (event->hw.flags & PERF_X86_EVENT_PEBS_ST_HSW) {
    166		if (status & 1)
    167			dse.mem_lvl = PERF_MEM_LVL_L1 | PERF_MEM_LVL_HIT;
    168		else
    169			dse.mem_lvl = PERF_MEM_LVL_L1 | PERF_MEM_LVL_MISS;
    170	}
    171	return dse.val;
    172}
    173
    174static u64 load_latency_data(u64 status)
    175{
    176	union intel_x86_pebs_dse dse;
    177	u64 val;
    178
    179	dse.val = status;
    180
    181	/*
    182	 * use the mapping table for bit 0-3
    183	 */
    184	val = pebs_data_source[dse.ld_dse];
    185
    186	/*
    187	 * Nehalem models do not support TLB, Lock infos
    188	 */
    189	if (x86_pmu.pebs_no_tlb) {
    190		val |= P(TLB, NA) | P(LOCK, NA);
    191		return val;
    192	}
    193	/*
    194	 * bit 4: TLB access
    195	 * 0 = did not miss 2nd level TLB
    196	 * 1 = missed 2nd level TLB
    197	 */
    198	if (dse.ld_stlb_miss)
    199		val |= P(TLB, MISS) | P(TLB, L2);
    200	else
    201		val |= P(TLB, HIT) | P(TLB, L1) | P(TLB, L2);
    202
    203	/*
    204	 * bit 5: locked prefix
    205	 */
    206	if (dse.ld_locked)
    207		val |= P(LOCK, LOCKED);
    208
    209	/*
    210	 * Ice Lake and earlier models do not support block infos.
    211	 */
    212	if (!x86_pmu.pebs_block) {
    213		val |= P(BLK, NA);
    214		return val;
    215	}
    216	/*
    217	 * bit 6: load was blocked since its data could not be forwarded
    218	 *        from a preceding store
    219	 */
    220	if (dse.ld_data_blk)
    221		val |= P(BLK, DATA);
    222
    223	/*
    224	 * bit 7: load was blocked due to potential address conflict with
    225	 *        a preceding store
    226	 */
    227	if (dse.ld_addr_blk)
    228		val |= P(BLK, ADDR);
    229
    230	if (!dse.ld_data_blk && !dse.ld_addr_blk)
    231		val |= P(BLK, NA);
    232
    233	return val;
    234}
    235
    236static u64 store_latency_data(u64 status)
    237{
    238	union intel_x86_pebs_dse dse;
    239	u64 val;
    240
    241	dse.val = status;
    242
    243	/*
    244	 * use the mapping table for bit 0-3
    245	 */
    246	val = pebs_data_source[dse.st_lat_dse];
    247
    248	/*
    249	 * bit 4: TLB access
    250	 * 0 = did not miss 2nd level TLB
    251	 * 1 = missed 2nd level TLB
    252	 */
    253	if (dse.st_lat_stlb_miss)
    254		val |= P(TLB, MISS) | P(TLB, L2);
    255	else
    256		val |= P(TLB, HIT) | P(TLB, L1) | P(TLB, L2);
    257
    258	/*
    259	 * bit 5: locked prefix
    260	 */
    261	if (dse.st_lat_locked)
    262		val |= P(LOCK, LOCKED);
    263
    264	val |= P(BLK, NA);
    265
    266	return val;
    267}
    268
    269struct pebs_record_core {
    270	u64 flags, ip;
    271	u64 ax, bx, cx, dx;
    272	u64 si, di, bp, sp;
    273	u64 r8,  r9,  r10, r11;
    274	u64 r12, r13, r14, r15;
    275};
    276
    277struct pebs_record_nhm {
    278	u64 flags, ip;
    279	u64 ax, bx, cx, dx;
    280	u64 si, di, bp, sp;
    281	u64 r8,  r9,  r10, r11;
    282	u64 r12, r13, r14, r15;
    283	u64 status, dla, dse, lat;
    284};
    285
    286/*
    287 * Same as pebs_record_nhm, with two additional fields.
    288 */
    289struct pebs_record_hsw {
    290	u64 flags, ip;
    291	u64 ax, bx, cx, dx;
    292	u64 si, di, bp, sp;
    293	u64 r8,  r9,  r10, r11;
    294	u64 r12, r13, r14, r15;
    295	u64 status, dla, dse, lat;
    296	u64 real_ip, tsx_tuning;
    297};
    298
    299union hsw_tsx_tuning {
    300	struct {
    301		u32 cycles_last_block     : 32,
    302		    hle_abort		  : 1,
    303		    rtm_abort		  : 1,
    304		    instruction_abort     : 1,
    305		    non_instruction_abort : 1,
    306		    retry		  : 1,
    307		    data_conflict	  : 1,
    308		    capacity_writes	  : 1,
    309		    capacity_reads	  : 1;
    310	};
    311	u64	    value;
    312};
    313
    314#define PEBS_HSW_TSX_FLAGS	0xff00000000ULL
    315
    316/* Same as HSW, plus TSC */
    317
    318struct pebs_record_skl {
    319	u64 flags, ip;
    320	u64 ax, bx, cx, dx;
    321	u64 si, di, bp, sp;
    322	u64 r8,  r9,  r10, r11;
    323	u64 r12, r13, r14, r15;
    324	u64 status, dla, dse, lat;
    325	u64 real_ip, tsx_tuning;
    326	u64 tsc;
    327};
    328
    329void init_debug_store_on_cpu(int cpu)
    330{
    331	struct debug_store *ds = per_cpu(cpu_hw_events, cpu).ds;
    332
    333	if (!ds)
    334		return;
    335
    336	wrmsr_on_cpu(cpu, MSR_IA32_DS_AREA,
    337		     (u32)((u64)(unsigned long)ds),
    338		     (u32)((u64)(unsigned long)ds >> 32));
    339}
    340
    341void fini_debug_store_on_cpu(int cpu)
    342{
    343	if (!per_cpu(cpu_hw_events, cpu).ds)
    344		return;
    345
    346	wrmsr_on_cpu(cpu, MSR_IA32_DS_AREA, 0, 0);
    347}
    348
    349static DEFINE_PER_CPU(void *, insn_buffer);
    350
    351static void ds_update_cea(void *cea, void *addr, size_t size, pgprot_t prot)
    352{
    353	unsigned long start = (unsigned long)cea;
    354	phys_addr_t pa;
    355	size_t msz = 0;
    356
    357	pa = virt_to_phys(addr);
    358
    359	preempt_disable();
    360	for (; msz < size; msz += PAGE_SIZE, pa += PAGE_SIZE, cea += PAGE_SIZE)
    361		cea_set_pte(cea, pa, prot);
    362
    363	/*
    364	 * This is a cross-CPU update of the cpu_entry_area, we must shoot down
    365	 * all TLB entries for it.
    366	 */
    367	flush_tlb_kernel_range(start, start + size);
    368	preempt_enable();
    369}
    370
    371static void ds_clear_cea(void *cea, size_t size)
    372{
    373	unsigned long start = (unsigned long)cea;
    374	size_t msz = 0;
    375
    376	preempt_disable();
    377	for (; msz < size; msz += PAGE_SIZE, cea += PAGE_SIZE)
    378		cea_set_pte(cea, 0, PAGE_NONE);
    379
    380	flush_tlb_kernel_range(start, start + size);
    381	preempt_enable();
    382}
    383
    384static void *dsalloc_pages(size_t size, gfp_t flags, int cpu)
    385{
    386	unsigned int order = get_order(size);
    387	int node = cpu_to_node(cpu);
    388	struct page *page;
    389
    390	page = __alloc_pages_node(node, flags | __GFP_ZERO, order);
    391	return page ? page_address(page) : NULL;
    392}
    393
    394static void dsfree_pages(const void *buffer, size_t size)
    395{
    396	if (buffer)
    397		free_pages((unsigned long)buffer, get_order(size));
    398}
    399
    400static int alloc_pebs_buffer(int cpu)
    401{
    402	struct cpu_hw_events *hwev = per_cpu_ptr(&cpu_hw_events, cpu);
    403	struct debug_store *ds = hwev->ds;
    404	size_t bsiz = x86_pmu.pebs_buffer_size;
    405	int max, node = cpu_to_node(cpu);
    406	void *buffer, *insn_buff, *cea;
    407
    408	if (!x86_pmu.pebs)
    409		return 0;
    410
    411	buffer = dsalloc_pages(bsiz, GFP_KERNEL, cpu);
    412	if (unlikely(!buffer))
    413		return -ENOMEM;
    414
    415	/*
    416	 * HSW+ already provides us the eventing ip; no need to allocate this
    417	 * buffer then.
    418	 */
    419	if (x86_pmu.intel_cap.pebs_format < 2) {
    420		insn_buff = kzalloc_node(PEBS_FIXUP_SIZE, GFP_KERNEL, node);
    421		if (!insn_buff) {
    422			dsfree_pages(buffer, bsiz);
    423			return -ENOMEM;
    424		}
    425		per_cpu(insn_buffer, cpu) = insn_buff;
    426	}
    427	hwev->ds_pebs_vaddr = buffer;
    428	/* Update the cpu entry area mapping */
    429	cea = &get_cpu_entry_area(cpu)->cpu_debug_buffers.pebs_buffer;
    430	ds->pebs_buffer_base = (unsigned long) cea;
    431	ds_update_cea(cea, buffer, bsiz, PAGE_KERNEL);
    432	ds->pebs_index = ds->pebs_buffer_base;
    433	max = x86_pmu.pebs_record_size * (bsiz / x86_pmu.pebs_record_size);
    434	ds->pebs_absolute_maximum = ds->pebs_buffer_base + max;
    435	return 0;
    436}
    437
    438static void release_pebs_buffer(int cpu)
    439{
    440	struct cpu_hw_events *hwev = per_cpu_ptr(&cpu_hw_events, cpu);
    441	void *cea;
    442
    443	if (!x86_pmu.pebs)
    444		return;
    445
    446	kfree(per_cpu(insn_buffer, cpu));
    447	per_cpu(insn_buffer, cpu) = NULL;
    448
    449	/* Clear the fixmap */
    450	cea = &get_cpu_entry_area(cpu)->cpu_debug_buffers.pebs_buffer;
    451	ds_clear_cea(cea, x86_pmu.pebs_buffer_size);
    452	dsfree_pages(hwev->ds_pebs_vaddr, x86_pmu.pebs_buffer_size);
    453	hwev->ds_pebs_vaddr = NULL;
    454}
    455
    456static int alloc_bts_buffer(int cpu)
    457{
    458	struct cpu_hw_events *hwev = per_cpu_ptr(&cpu_hw_events, cpu);
    459	struct debug_store *ds = hwev->ds;
    460	void *buffer, *cea;
    461	int max;
    462
    463	if (!x86_pmu.bts)
    464		return 0;
    465
    466	buffer = dsalloc_pages(BTS_BUFFER_SIZE, GFP_KERNEL | __GFP_NOWARN, cpu);
    467	if (unlikely(!buffer)) {
    468		WARN_ONCE(1, "%s: BTS buffer allocation failure\n", __func__);
    469		return -ENOMEM;
    470	}
    471	hwev->ds_bts_vaddr = buffer;
    472	/* Update the fixmap */
    473	cea = &get_cpu_entry_area(cpu)->cpu_debug_buffers.bts_buffer;
    474	ds->bts_buffer_base = (unsigned long) cea;
    475	ds_update_cea(cea, buffer, BTS_BUFFER_SIZE, PAGE_KERNEL);
    476	ds->bts_index = ds->bts_buffer_base;
    477	max = BTS_BUFFER_SIZE / BTS_RECORD_SIZE;
    478	ds->bts_absolute_maximum = ds->bts_buffer_base +
    479					max * BTS_RECORD_SIZE;
    480	ds->bts_interrupt_threshold = ds->bts_absolute_maximum -
    481					(max / 16) * BTS_RECORD_SIZE;
    482	return 0;
    483}
    484
    485static void release_bts_buffer(int cpu)
    486{
    487	struct cpu_hw_events *hwev = per_cpu_ptr(&cpu_hw_events, cpu);
    488	void *cea;
    489
    490	if (!x86_pmu.bts)
    491		return;
    492
    493	/* Clear the fixmap */
    494	cea = &get_cpu_entry_area(cpu)->cpu_debug_buffers.bts_buffer;
    495	ds_clear_cea(cea, BTS_BUFFER_SIZE);
    496	dsfree_pages(hwev->ds_bts_vaddr, BTS_BUFFER_SIZE);
    497	hwev->ds_bts_vaddr = NULL;
    498}
    499
    500static int alloc_ds_buffer(int cpu)
    501{
    502	struct debug_store *ds = &get_cpu_entry_area(cpu)->cpu_debug_store;
    503
    504	memset(ds, 0, sizeof(*ds));
    505	per_cpu(cpu_hw_events, cpu).ds = ds;
    506	return 0;
    507}
    508
    509static void release_ds_buffer(int cpu)
    510{
    511	per_cpu(cpu_hw_events, cpu).ds = NULL;
    512}
    513
    514void release_ds_buffers(void)
    515{
    516	int cpu;
    517
    518	if (!x86_pmu.bts && !x86_pmu.pebs)
    519		return;
    520
    521	for_each_possible_cpu(cpu)
    522		release_ds_buffer(cpu);
    523
    524	for_each_possible_cpu(cpu) {
    525		/*
    526		 * Again, ignore errors from offline CPUs, they will no longer
    527		 * observe cpu_hw_events.ds and not program the DS_AREA when
    528		 * they come up.
    529		 */
    530		fini_debug_store_on_cpu(cpu);
    531	}
    532
    533	for_each_possible_cpu(cpu) {
    534		release_pebs_buffer(cpu);
    535		release_bts_buffer(cpu);
    536	}
    537}
    538
    539void reserve_ds_buffers(void)
    540{
    541	int bts_err = 0, pebs_err = 0;
    542	int cpu;
    543
    544	x86_pmu.bts_active = 0;
    545	x86_pmu.pebs_active = 0;
    546
    547	if (!x86_pmu.bts && !x86_pmu.pebs)
    548		return;
    549
    550	if (!x86_pmu.bts)
    551		bts_err = 1;
    552
    553	if (!x86_pmu.pebs)
    554		pebs_err = 1;
    555
    556	for_each_possible_cpu(cpu) {
    557		if (alloc_ds_buffer(cpu)) {
    558			bts_err = 1;
    559			pebs_err = 1;
    560		}
    561
    562		if (!bts_err && alloc_bts_buffer(cpu))
    563			bts_err = 1;
    564
    565		if (!pebs_err && alloc_pebs_buffer(cpu))
    566			pebs_err = 1;
    567
    568		if (bts_err && pebs_err)
    569			break;
    570	}
    571
    572	if (bts_err) {
    573		for_each_possible_cpu(cpu)
    574			release_bts_buffer(cpu);
    575	}
    576
    577	if (pebs_err) {
    578		for_each_possible_cpu(cpu)
    579			release_pebs_buffer(cpu);
    580	}
    581
    582	if (bts_err && pebs_err) {
    583		for_each_possible_cpu(cpu)
    584			release_ds_buffer(cpu);
    585	} else {
    586		if (x86_pmu.bts && !bts_err)
    587			x86_pmu.bts_active = 1;
    588
    589		if (x86_pmu.pebs && !pebs_err)
    590			x86_pmu.pebs_active = 1;
    591
    592		for_each_possible_cpu(cpu) {
    593			/*
    594			 * Ignores wrmsr_on_cpu() errors for offline CPUs they
    595			 * will get this call through intel_pmu_cpu_starting().
    596			 */
    597			init_debug_store_on_cpu(cpu);
    598		}
    599	}
    600}
    601
    602/*
    603 * BTS
    604 */
    605
    606struct event_constraint bts_constraint =
    607	EVENT_CONSTRAINT(0, 1ULL << INTEL_PMC_IDX_FIXED_BTS, 0);
    608
    609void intel_pmu_enable_bts(u64 config)
    610{
    611	unsigned long debugctlmsr;
    612
    613	debugctlmsr = get_debugctlmsr();
    614
    615	debugctlmsr |= DEBUGCTLMSR_TR;
    616	debugctlmsr |= DEBUGCTLMSR_BTS;
    617	if (config & ARCH_PERFMON_EVENTSEL_INT)
    618		debugctlmsr |= DEBUGCTLMSR_BTINT;
    619
    620	if (!(config & ARCH_PERFMON_EVENTSEL_OS))
    621		debugctlmsr |= DEBUGCTLMSR_BTS_OFF_OS;
    622
    623	if (!(config & ARCH_PERFMON_EVENTSEL_USR))
    624		debugctlmsr |= DEBUGCTLMSR_BTS_OFF_USR;
    625
    626	update_debugctlmsr(debugctlmsr);
    627}
    628
    629void intel_pmu_disable_bts(void)
    630{
    631	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
    632	unsigned long debugctlmsr;
    633
    634	if (!cpuc->ds)
    635		return;
    636
    637	debugctlmsr = get_debugctlmsr();
    638
    639	debugctlmsr &=
    640		~(DEBUGCTLMSR_TR | DEBUGCTLMSR_BTS | DEBUGCTLMSR_BTINT |
    641		  DEBUGCTLMSR_BTS_OFF_OS | DEBUGCTLMSR_BTS_OFF_USR);
    642
    643	update_debugctlmsr(debugctlmsr);
    644}
    645
    646int intel_pmu_drain_bts_buffer(void)
    647{
    648	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
    649	struct debug_store *ds = cpuc->ds;
    650	struct bts_record {
    651		u64	from;
    652		u64	to;
    653		u64	flags;
    654	};
    655	struct perf_event *event = cpuc->events[INTEL_PMC_IDX_FIXED_BTS];
    656	struct bts_record *at, *base, *top;
    657	struct perf_output_handle handle;
    658	struct perf_event_header header;
    659	struct perf_sample_data data;
    660	unsigned long skip = 0;
    661	struct pt_regs regs;
    662
    663	if (!event)
    664		return 0;
    665
    666	if (!x86_pmu.bts_active)
    667		return 0;
    668
    669	base = (struct bts_record *)(unsigned long)ds->bts_buffer_base;
    670	top  = (struct bts_record *)(unsigned long)ds->bts_index;
    671
    672	if (top <= base)
    673		return 0;
    674
    675	memset(&regs, 0, sizeof(regs));
    676
    677	ds->bts_index = ds->bts_buffer_base;
    678
    679	perf_sample_data_init(&data, 0, event->hw.last_period);
    680
    681	/*
    682	 * BTS leaks kernel addresses in branches across the cpl boundary,
    683	 * such as traps or system calls, so unless the user is asking for
    684	 * kernel tracing (and right now it's not possible), we'd need to
    685	 * filter them out. But first we need to count how many of those we
    686	 * have in the current batch. This is an extra O(n) pass, however,
    687	 * it's much faster than the other one especially considering that
    688	 * n <= 2560 (BTS_BUFFER_SIZE / BTS_RECORD_SIZE * 15/16; see the
    689	 * alloc_bts_buffer()).
    690	 */
    691	for (at = base; at < top; at++) {
    692		/*
    693		 * Note that right now *this* BTS code only works if
    694		 * attr::exclude_kernel is set, but let's keep this extra
    695		 * check here in case that changes.
    696		 */
    697		if (event->attr.exclude_kernel &&
    698		    (kernel_ip(at->from) || kernel_ip(at->to)))
    699			skip++;
    700	}
    701
    702	/*
    703	 * Prepare a generic sample, i.e. fill in the invariant fields.
    704	 * We will overwrite the from and to address before we output
    705	 * the sample.
    706	 */
    707	rcu_read_lock();
    708	perf_prepare_sample(&header, &data, event, &regs);
    709
    710	if (perf_output_begin(&handle, &data, event,
    711			      header.size * (top - base - skip)))
    712		goto unlock;
    713
    714	for (at = base; at < top; at++) {
    715		/* Filter out any records that contain kernel addresses. */
    716		if (event->attr.exclude_kernel &&
    717		    (kernel_ip(at->from) || kernel_ip(at->to)))
    718			continue;
    719
    720		data.ip		= at->from;
    721		data.addr	= at->to;
    722
    723		perf_output_sample(&handle, &header, &data, event);
    724	}
    725
    726	perf_output_end(&handle);
    727
    728	/* There's new data available. */
    729	event->hw.interrupts++;
    730	event->pending_kill = POLL_IN;
    731unlock:
    732	rcu_read_unlock();
    733	return 1;
    734}
    735
    736static inline void intel_pmu_drain_pebs_buffer(void)
    737{
    738	struct perf_sample_data data;
    739
    740	x86_pmu.drain_pebs(NULL, &data);
    741}
    742
    743/*
    744 * PEBS
    745 */
    746struct event_constraint intel_core2_pebs_event_constraints[] = {
    747	INTEL_FLAGS_UEVENT_CONSTRAINT(0x00c0, 0x1), /* INST_RETIRED.ANY */
    748	INTEL_FLAGS_UEVENT_CONSTRAINT(0xfec1, 0x1), /* X87_OPS_RETIRED.ANY */
    749	INTEL_FLAGS_UEVENT_CONSTRAINT(0x00c5, 0x1), /* BR_INST_RETIRED.MISPRED */
    750	INTEL_FLAGS_UEVENT_CONSTRAINT(0x1fc7, 0x1), /* SIMD_INST_RETURED.ANY */
    751	INTEL_FLAGS_EVENT_CONSTRAINT(0xcb, 0x1),    /* MEM_LOAD_RETIRED.* */
    752	/* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */
    753	INTEL_FLAGS_UEVENT_CONSTRAINT(0x108000c0, 0x01),
    754	EVENT_CONSTRAINT_END
    755};
    756
    757struct event_constraint intel_atom_pebs_event_constraints[] = {
    758	INTEL_FLAGS_UEVENT_CONSTRAINT(0x00c0, 0x1), /* INST_RETIRED.ANY */
    759	INTEL_FLAGS_UEVENT_CONSTRAINT(0x00c5, 0x1), /* MISPREDICTED_BRANCH_RETIRED */
    760	INTEL_FLAGS_EVENT_CONSTRAINT(0xcb, 0x1),    /* MEM_LOAD_RETIRED.* */
    761	/* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */
    762	INTEL_FLAGS_UEVENT_CONSTRAINT(0x108000c0, 0x01),
    763	/* Allow all events as PEBS with no flags */
    764	INTEL_ALL_EVENT_CONSTRAINT(0, 0x1),
    765	EVENT_CONSTRAINT_END
    766};
    767
    768struct event_constraint intel_slm_pebs_event_constraints[] = {
    769	/* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */
    770	INTEL_FLAGS_UEVENT_CONSTRAINT(0x108000c0, 0x1),
    771	/* Allow all events as PEBS with no flags */
    772	INTEL_ALL_EVENT_CONSTRAINT(0, 0x1),
    773	EVENT_CONSTRAINT_END
    774};
    775
    776struct event_constraint intel_glm_pebs_event_constraints[] = {
    777	/* Allow all events as PEBS with no flags */
    778	INTEL_ALL_EVENT_CONSTRAINT(0, 0x1),
    779	EVENT_CONSTRAINT_END
    780};
    781
    782struct event_constraint intel_grt_pebs_event_constraints[] = {
    783	/* Allow all events as PEBS with no flags */
    784	INTEL_PLD_CONSTRAINT(0x5d0, 0xf),
    785	INTEL_PSD_CONSTRAINT(0x6d0, 0xf),
    786	EVENT_CONSTRAINT_END
    787};
    788
    789struct event_constraint intel_nehalem_pebs_event_constraints[] = {
    790	INTEL_PLD_CONSTRAINT(0x100b, 0xf),      /* MEM_INST_RETIRED.* */
    791	INTEL_FLAGS_EVENT_CONSTRAINT(0x0f, 0xf),    /* MEM_UNCORE_RETIRED.* */
    792	INTEL_FLAGS_UEVENT_CONSTRAINT(0x010c, 0xf), /* MEM_STORE_RETIRED.DTLB_MISS */
    793	INTEL_FLAGS_EVENT_CONSTRAINT(0xc0, 0xf),    /* INST_RETIRED.ANY */
    794	INTEL_EVENT_CONSTRAINT(0xc2, 0xf),    /* UOPS_RETIRED.* */
    795	INTEL_FLAGS_EVENT_CONSTRAINT(0xc4, 0xf),    /* BR_INST_RETIRED.* */
    796	INTEL_FLAGS_UEVENT_CONSTRAINT(0x02c5, 0xf), /* BR_MISP_RETIRED.NEAR_CALL */
    797	INTEL_FLAGS_EVENT_CONSTRAINT(0xc7, 0xf),    /* SSEX_UOPS_RETIRED.* */
    798	INTEL_FLAGS_UEVENT_CONSTRAINT(0x20c8, 0xf), /* ITLB_MISS_RETIRED */
    799	INTEL_FLAGS_EVENT_CONSTRAINT(0xcb, 0xf),    /* MEM_LOAD_RETIRED.* */
    800	INTEL_FLAGS_EVENT_CONSTRAINT(0xf7, 0xf),    /* FP_ASSIST.* */
    801	/* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */
    802	INTEL_FLAGS_UEVENT_CONSTRAINT(0x108000c0, 0x0f),
    803	EVENT_CONSTRAINT_END
    804};
    805
    806struct event_constraint intel_westmere_pebs_event_constraints[] = {
    807	INTEL_PLD_CONSTRAINT(0x100b, 0xf),      /* MEM_INST_RETIRED.* */
    808	INTEL_FLAGS_EVENT_CONSTRAINT(0x0f, 0xf),    /* MEM_UNCORE_RETIRED.* */
    809	INTEL_FLAGS_UEVENT_CONSTRAINT(0x010c, 0xf), /* MEM_STORE_RETIRED.DTLB_MISS */
    810	INTEL_FLAGS_EVENT_CONSTRAINT(0xc0, 0xf),    /* INSTR_RETIRED.* */
    811	INTEL_EVENT_CONSTRAINT(0xc2, 0xf),    /* UOPS_RETIRED.* */
    812	INTEL_FLAGS_EVENT_CONSTRAINT(0xc4, 0xf),    /* BR_INST_RETIRED.* */
    813	INTEL_FLAGS_EVENT_CONSTRAINT(0xc5, 0xf),    /* BR_MISP_RETIRED.* */
    814	INTEL_FLAGS_EVENT_CONSTRAINT(0xc7, 0xf),    /* SSEX_UOPS_RETIRED.* */
    815	INTEL_FLAGS_UEVENT_CONSTRAINT(0x20c8, 0xf), /* ITLB_MISS_RETIRED */
    816	INTEL_FLAGS_EVENT_CONSTRAINT(0xcb, 0xf),    /* MEM_LOAD_RETIRED.* */
    817	INTEL_FLAGS_EVENT_CONSTRAINT(0xf7, 0xf),    /* FP_ASSIST.* */
    818	/* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */
    819	INTEL_FLAGS_UEVENT_CONSTRAINT(0x108000c0, 0x0f),
    820	EVENT_CONSTRAINT_END
    821};
    822
    823struct event_constraint intel_snb_pebs_event_constraints[] = {
    824	INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PRECDIST */
    825	INTEL_PLD_CONSTRAINT(0x01cd, 0x8),    /* MEM_TRANS_RETIRED.LAT_ABOVE_THR */
    826	INTEL_PST_CONSTRAINT(0x02cd, 0x8),    /* MEM_TRANS_RETIRED.PRECISE_STORES */
    827	/* UOPS_RETIRED.ALL, inv=1, cmask=16 (cycles:p). */
    828	INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c2, 0xf),
    829        INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf),    /* MEM_UOP_RETIRED.* */
    830        INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf),    /* MEM_LOAD_UOPS_RETIRED.* */
    831        INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf),    /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
    832        INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf),    /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
    833	/* Allow all events as PEBS with no flags */
    834	INTEL_ALL_EVENT_CONSTRAINT(0, 0xf),
    835	EVENT_CONSTRAINT_END
    836};
    837
    838struct event_constraint intel_ivb_pebs_event_constraints[] = {
    839        INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PRECDIST */
    840        INTEL_PLD_CONSTRAINT(0x01cd, 0x8),    /* MEM_TRANS_RETIRED.LAT_ABOVE_THR */
    841	INTEL_PST_CONSTRAINT(0x02cd, 0x8),    /* MEM_TRANS_RETIRED.PRECISE_STORES */
    842	/* UOPS_RETIRED.ALL, inv=1, cmask=16 (cycles:p). */
    843	INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c2, 0xf),
    844	/* INST_RETIRED.PREC_DIST, inv=1, cmask=16 (cycles:ppp). */
    845	INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c0, 0x2),
    846	INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf),    /* MEM_UOP_RETIRED.* */
    847	INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf),    /* MEM_LOAD_UOPS_RETIRED.* */
    848	INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf),    /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
    849	INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf),    /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
    850	/* Allow all events as PEBS with no flags */
    851	INTEL_ALL_EVENT_CONSTRAINT(0, 0xf),
    852        EVENT_CONSTRAINT_END
    853};
    854
    855struct event_constraint intel_hsw_pebs_event_constraints[] = {
    856	INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PRECDIST */
    857	INTEL_PLD_CONSTRAINT(0x01cd, 0xf),    /* MEM_TRANS_RETIRED.* */
    858	/* UOPS_RETIRED.ALL, inv=1, cmask=16 (cycles:p). */
    859	INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c2, 0xf),
    860	/* INST_RETIRED.PREC_DIST, inv=1, cmask=16 (cycles:ppp). */
    861	INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c0, 0x2),
    862	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_NA(0x01c2, 0xf), /* UOPS_RETIRED.ALL */
    863	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XLD(0x11d0, 0xf), /* MEM_UOPS_RETIRED.STLB_MISS_LOADS */
    864	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XLD(0x21d0, 0xf), /* MEM_UOPS_RETIRED.LOCK_LOADS */
    865	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XLD(0x41d0, 0xf), /* MEM_UOPS_RETIRED.SPLIT_LOADS */
    866	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XLD(0x81d0, 0xf), /* MEM_UOPS_RETIRED.ALL_LOADS */
    867	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XST(0x12d0, 0xf), /* MEM_UOPS_RETIRED.STLB_MISS_STORES */
    868	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XST(0x42d0, 0xf), /* MEM_UOPS_RETIRED.SPLIT_STORES */
    869	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XST(0x82d0, 0xf), /* MEM_UOPS_RETIRED.ALL_STORES */
    870	INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_XLD(0xd1, 0xf),    /* MEM_LOAD_UOPS_RETIRED.* */
    871	INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_XLD(0xd2, 0xf),    /* MEM_LOAD_UOPS_L3_HIT_RETIRED.* */
    872	INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_XLD(0xd3, 0xf),    /* MEM_LOAD_UOPS_L3_MISS_RETIRED.* */
    873	/* Allow all events as PEBS with no flags */
    874	INTEL_ALL_EVENT_CONSTRAINT(0, 0xf),
    875	EVENT_CONSTRAINT_END
    876};
    877
    878struct event_constraint intel_bdw_pebs_event_constraints[] = {
    879	INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PRECDIST */
    880	INTEL_PLD_CONSTRAINT(0x01cd, 0xf),    /* MEM_TRANS_RETIRED.* */
    881	/* UOPS_RETIRED.ALL, inv=1, cmask=16 (cycles:p). */
    882	INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c2, 0xf),
    883	/* INST_RETIRED.PREC_DIST, inv=1, cmask=16 (cycles:ppp). */
    884	INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c0, 0x2),
    885	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_NA(0x01c2, 0xf), /* UOPS_RETIRED.ALL */
    886	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x11d0, 0xf), /* MEM_UOPS_RETIRED.STLB_MISS_LOADS */
    887	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x21d0, 0xf), /* MEM_UOPS_RETIRED.LOCK_LOADS */
    888	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x41d0, 0xf), /* MEM_UOPS_RETIRED.SPLIT_LOADS */
    889	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x81d0, 0xf), /* MEM_UOPS_RETIRED.ALL_LOADS */
    890	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x12d0, 0xf), /* MEM_UOPS_RETIRED.STLB_MISS_STORES */
    891	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x42d0, 0xf), /* MEM_UOPS_RETIRED.SPLIT_STORES */
    892	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x82d0, 0xf), /* MEM_UOPS_RETIRED.ALL_STORES */
    893	INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd1, 0xf),    /* MEM_LOAD_UOPS_RETIRED.* */
    894	INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd2, 0xf),    /* MEM_LOAD_UOPS_L3_HIT_RETIRED.* */
    895	INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd3, 0xf),    /* MEM_LOAD_UOPS_L3_MISS_RETIRED.* */
    896	/* Allow all events as PEBS with no flags */
    897	INTEL_ALL_EVENT_CONSTRAINT(0, 0xf),
    898	EVENT_CONSTRAINT_END
    899};
    900
    901
    902struct event_constraint intel_skl_pebs_event_constraints[] = {
    903	INTEL_FLAGS_UEVENT_CONSTRAINT(0x1c0, 0x2),	/* INST_RETIRED.PREC_DIST */
    904	/* INST_RETIRED.PREC_DIST, inv=1, cmask=16 (cycles:ppp). */
    905	INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c0, 0x2),
    906	/* INST_RETIRED.TOTAL_CYCLES_PS (inv=1, cmask=16) (cycles:p). */
    907	INTEL_FLAGS_UEVENT_CONSTRAINT(0x108000c0, 0x0f),
    908	INTEL_PLD_CONSTRAINT(0x1cd, 0xf),		      /* MEM_TRANS_RETIRED.* */
    909	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x11d0, 0xf), /* MEM_INST_RETIRED.STLB_MISS_LOADS */
    910	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x12d0, 0xf), /* MEM_INST_RETIRED.STLB_MISS_STORES */
    911	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x21d0, 0xf), /* MEM_INST_RETIRED.LOCK_LOADS */
    912	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x22d0, 0xf), /* MEM_INST_RETIRED.LOCK_STORES */
    913	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x41d0, 0xf), /* MEM_INST_RETIRED.SPLIT_LOADS */
    914	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x42d0, 0xf), /* MEM_INST_RETIRED.SPLIT_STORES */
    915	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x81d0, 0xf), /* MEM_INST_RETIRED.ALL_LOADS */
    916	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x82d0, 0xf), /* MEM_INST_RETIRED.ALL_STORES */
    917	INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd1, 0xf),    /* MEM_LOAD_RETIRED.* */
    918	INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd2, 0xf),    /* MEM_LOAD_L3_HIT_RETIRED.* */
    919	INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd3, 0xf),    /* MEM_LOAD_L3_MISS_RETIRED.* */
    920	/* Allow all events as PEBS with no flags */
    921	INTEL_ALL_EVENT_CONSTRAINT(0, 0xf),
    922	EVENT_CONSTRAINT_END
    923};
    924
    925struct event_constraint intel_icl_pebs_event_constraints[] = {
    926	INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x100000000ULL),	/* old INST_RETIRED.PREC_DIST */
    927	INTEL_FLAGS_UEVENT_CONSTRAINT(0x0100, 0x100000000ULL),	/* INST_RETIRED.PREC_DIST */
    928	INTEL_FLAGS_UEVENT_CONSTRAINT(0x0400, 0x800000000ULL),	/* SLOTS */
    929
    930	INTEL_PLD_CONSTRAINT(0x1cd, 0xff),			/* MEM_TRANS_RETIRED.LOAD_LATENCY */
    931	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x1d0, 0xf),	/* MEM_INST_RETIRED.LOAD */
    932	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x2d0, 0xf),	/* MEM_INST_RETIRED.STORE */
    933
    934	INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD_RANGE(0xd1, 0xd4, 0xf), /* MEM_LOAD_*_RETIRED.* */
    935
    936	INTEL_FLAGS_EVENT_CONSTRAINT(0xd0, 0xf),		/* MEM_INST_RETIRED.* */
    937
    938	/*
    939	 * Everything else is handled by PMU_FL_PEBS_ALL, because we
    940	 * need the full constraints from the main table.
    941	 */
    942
    943	EVENT_CONSTRAINT_END
    944};
    945
    946struct event_constraint intel_spr_pebs_event_constraints[] = {
    947	INTEL_FLAGS_UEVENT_CONSTRAINT(0x100, 0x100000000ULL),	/* INST_RETIRED.PREC_DIST */
    948	INTEL_FLAGS_UEVENT_CONSTRAINT(0x0400, 0x800000000ULL),
    949
    950	INTEL_FLAGS_EVENT_CONSTRAINT(0xc0, 0xfe),
    951	INTEL_PLD_CONSTRAINT(0x1cd, 0xfe),
    952	INTEL_PSD_CONSTRAINT(0x2cd, 0x1),
    953	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x1d0, 0xf),
    954	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x2d0, 0xf),
    955
    956	INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD_RANGE(0xd1, 0xd4, 0xf),
    957
    958	INTEL_FLAGS_EVENT_CONSTRAINT(0xd0, 0xf),
    959
    960	/*
    961	 * Everything else is handled by PMU_FL_PEBS_ALL, because we
    962	 * need the full constraints from the main table.
    963	 */
    964
    965	EVENT_CONSTRAINT_END
    966};
    967
    968struct event_constraint *intel_pebs_constraints(struct perf_event *event)
    969{
    970	struct event_constraint *pebs_constraints = hybrid(event->pmu, pebs_constraints);
    971	struct event_constraint *c;
    972
    973	if (!event->attr.precise_ip)
    974		return NULL;
    975
    976	if (pebs_constraints) {
    977		for_each_event_constraint(c, pebs_constraints) {
    978			if (constraint_match(c, event->hw.config)) {
    979				event->hw.flags |= c->flags;
    980				return c;
    981			}
    982		}
    983	}
    984
    985	/*
    986	 * Extended PEBS support
    987	 * Makes the PEBS code search the normal constraints.
    988	 */
    989	if (x86_pmu.flags & PMU_FL_PEBS_ALL)
    990		return NULL;
    991
    992	return &emptyconstraint;
    993}
    994
    995/*
    996 * We need the sched_task callback even for per-cpu events when we use
    997 * the large interrupt threshold, such that we can provide PID and TID
    998 * to PEBS samples.
    999 */
   1000static inline bool pebs_needs_sched_cb(struct cpu_hw_events *cpuc)
   1001{
   1002	if (cpuc->n_pebs == cpuc->n_pebs_via_pt)
   1003		return false;
   1004
   1005	return cpuc->n_pebs && (cpuc->n_pebs == cpuc->n_large_pebs);
   1006}
   1007
   1008void intel_pmu_pebs_sched_task(struct perf_event_context *ctx, bool sched_in)
   1009{
   1010	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
   1011
   1012	if (!sched_in && pebs_needs_sched_cb(cpuc))
   1013		intel_pmu_drain_pebs_buffer();
   1014}
   1015
   1016static inline void pebs_update_threshold(struct cpu_hw_events *cpuc)
   1017{
   1018	struct debug_store *ds = cpuc->ds;
   1019	int max_pebs_events = hybrid(cpuc->pmu, max_pebs_events);
   1020	int num_counters_fixed = hybrid(cpuc->pmu, num_counters_fixed);
   1021	u64 threshold;
   1022	int reserved;
   1023
   1024	if (cpuc->n_pebs_via_pt)
   1025		return;
   1026
   1027	if (x86_pmu.flags & PMU_FL_PEBS_ALL)
   1028		reserved = max_pebs_events + num_counters_fixed;
   1029	else
   1030		reserved = max_pebs_events;
   1031
   1032	if (cpuc->n_pebs == cpuc->n_large_pebs) {
   1033		threshold = ds->pebs_absolute_maximum -
   1034			reserved * cpuc->pebs_record_size;
   1035	} else {
   1036		threshold = ds->pebs_buffer_base + cpuc->pebs_record_size;
   1037	}
   1038
   1039	ds->pebs_interrupt_threshold = threshold;
   1040}
   1041
   1042static void adaptive_pebs_record_size_update(void)
   1043{
   1044	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
   1045	u64 pebs_data_cfg = cpuc->pebs_data_cfg;
   1046	int sz = sizeof(struct pebs_basic);
   1047
   1048	if (pebs_data_cfg & PEBS_DATACFG_MEMINFO)
   1049		sz += sizeof(struct pebs_meminfo);
   1050	if (pebs_data_cfg & PEBS_DATACFG_GP)
   1051		sz += sizeof(struct pebs_gprs);
   1052	if (pebs_data_cfg & PEBS_DATACFG_XMMS)
   1053		sz += sizeof(struct pebs_xmm);
   1054	if (pebs_data_cfg & PEBS_DATACFG_LBRS)
   1055		sz += x86_pmu.lbr_nr * sizeof(struct lbr_entry);
   1056
   1057	cpuc->pebs_record_size = sz;
   1058}
   1059
   1060#define PERF_PEBS_MEMINFO_TYPE	(PERF_SAMPLE_ADDR | PERF_SAMPLE_DATA_SRC |   \
   1061				PERF_SAMPLE_PHYS_ADDR |			     \
   1062				PERF_SAMPLE_WEIGHT_TYPE |		     \
   1063				PERF_SAMPLE_TRANSACTION |		     \
   1064				PERF_SAMPLE_DATA_PAGE_SIZE)
   1065
   1066static u64 pebs_update_adaptive_cfg(struct perf_event *event)
   1067{
   1068	struct perf_event_attr *attr = &event->attr;
   1069	u64 sample_type = attr->sample_type;
   1070	u64 pebs_data_cfg = 0;
   1071	bool gprs, tsx_weight;
   1072
   1073	if (!(sample_type & ~(PERF_SAMPLE_IP|PERF_SAMPLE_TIME)) &&
   1074	    attr->precise_ip > 1)
   1075		return pebs_data_cfg;
   1076
   1077	if (sample_type & PERF_PEBS_MEMINFO_TYPE)
   1078		pebs_data_cfg |= PEBS_DATACFG_MEMINFO;
   1079
   1080	/*
   1081	 * We need GPRs when:
   1082	 * + user requested them
   1083	 * + precise_ip < 2 for the non event IP
   1084	 * + For RTM TSX weight we need GPRs for the abort code.
   1085	 */
   1086	gprs = (sample_type & PERF_SAMPLE_REGS_INTR) &&
   1087	       (attr->sample_regs_intr & PEBS_GP_REGS);
   1088
   1089	tsx_weight = (sample_type & PERF_SAMPLE_WEIGHT_TYPE) &&
   1090		     ((attr->config & INTEL_ARCH_EVENT_MASK) ==
   1091		      x86_pmu.rtm_abort_event);
   1092
   1093	if (gprs || (attr->precise_ip < 2) || tsx_weight)
   1094		pebs_data_cfg |= PEBS_DATACFG_GP;
   1095
   1096	if ((sample_type & PERF_SAMPLE_REGS_INTR) &&
   1097	    (attr->sample_regs_intr & PERF_REG_EXTENDED_MASK))
   1098		pebs_data_cfg |= PEBS_DATACFG_XMMS;
   1099
   1100	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
   1101		/*
   1102		 * For now always log all LBRs. Could configure this
   1103		 * later.
   1104		 */
   1105		pebs_data_cfg |= PEBS_DATACFG_LBRS |
   1106			((x86_pmu.lbr_nr-1) << PEBS_DATACFG_LBR_SHIFT);
   1107	}
   1108
   1109	return pebs_data_cfg;
   1110}
   1111
   1112static void
   1113pebs_update_state(bool needed_cb, struct cpu_hw_events *cpuc,
   1114		  struct perf_event *event, bool add)
   1115{
   1116	struct pmu *pmu = event->ctx->pmu;
   1117	/*
   1118	 * Make sure we get updated with the first PEBS
   1119	 * event. It will trigger also during removal, but
   1120	 * that does not hurt:
   1121	 */
   1122	bool update = cpuc->n_pebs == 1;
   1123
   1124	if (needed_cb != pebs_needs_sched_cb(cpuc)) {
   1125		if (!needed_cb)
   1126			perf_sched_cb_inc(pmu);
   1127		else
   1128			perf_sched_cb_dec(pmu);
   1129
   1130		update = true;
   1131	}
   1132
   1133	/*
   1134	 * The PEBS record doesn't shrink on pmu::del(). Doing so would require
   1135	 * iterating all remaining PEBS events to reconstruct the config.
   1136	 */
   1137	if (x86_pmu.intel_cap.pebs_baseline && add) {
   1138		u64 pebs_data_cfg;
   1139
   1140		/* Clear pebs_data_cfg and pebs_record_size for first PEBS. */
   1141		if (cpuc->n_pebs == 1) {
   1142			cpuc->pebs_data_cfg = 0;
   1143			cpuc->pebs_record_size = sizeof(struct pebs_basic);
   1144		}
   1145
   1146		pebs_data_cfg = pebs_update_adaptive_cfg(event);
   1147
   1148		/* Update pebs_record_size if new event requires more data. */
   1149		if (pebs_data_cfg & ~cpuc->pebs_data_cfg) {
   1150			cpuc->pebs_data_cfg |= pebs_data_cfg;
   1151			adaptive_pebs_record_size_update();
   1152			update = true;
   1153		}
   1154	}
   1155
   1156	if (update)
   1157		pebs_update_threshold(cpuc);
   1158}
   1159
   1160void intel_pmu_pebs_add(struct perf_event *event)
   1161{
   1162	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
   1163	struct hw_perf_event *hwc = &event->hw;
   1164	bool needed_cb = pebs_needs_sched_cb(cpuc);
   1165
   1166	cpuc->n_pebs++;
   1167	if (hwc->flags & PERF_X86_EVENT_LARGE_PEBS)
   1168		cpuc->n_large_pebs++;
   1169	if (hwc->flags & PERF_X86_EVENT_PEBS_VIA_PT)
   1170		cpuc->n_pebs_via_pt++;
   1171
   1172	pebs_update_state(needed_cb, cpuc, event, true);
   1173}
   1174
   1175static void intel_pmu_pebs_via_pt_disable(struct perf_event *event)
   1176{
   1177	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
   1178
   1179	if (!is_pebs_pt(event))
   1180		return;
   1181
   1182	if (!(cpuc->pebs_enabled & ~PEBS_VIA_PT_MASK))
   1183		cpuc->pebs_enabled &= ~PEBS_VIA_PT_MASK;
   1184}
   1185
   1186static void intel_pmu_pebs_via_pt_enable(struct perf_event *event)
   1187{
   1188	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
   1189	struct hw_perf_event *hwc = &event->hw;
   1190	struct debug_store *ds = cpuc->ds;
   1191	u64 value = ds->pebs_event_reset[hwc->idx];
   1192	u32 base = MSR_RELOAD_PMC0;
   1193	unsigned int idx = hwc->idx;
   1194
   1195	if (!is_pebs_pt(event))
   1196		return;
   1197
   1198	if (!(event->hw.flags & PERF_X86_EVENT_LARGE_PEBS))
   1199		cpuc->pebs_enabled |= PEBS_PMI_AFTER_EACH_RECORD;
   1200
   1201	cpuc->pebs_enabled |= PEBS_OUTPUT_PT;
   1202
   1203	if (hwc->idx >= INTEL_PMC_IDX_FIXED) {
   1204		base = MSR_RELOAD_FIXED_CTR0;
   1205		idx = hwc->idx - INTEL_PMC_IDX_FIXED;
   1206		if (x86_pmu.intel_cap.pebs_format < 5)
   1207			value = ds->pebs_event_reset[MAX_PEBS_EVENTS_FMT4 + idx];
   1208		else
   1209			value = ds->pebs_event_reset[MAX_PEBS_EVENTS + idx];
   1210	}
   1211	wrmsrl(base + idx, value);
   1212}
   1213
   1214void intel_pmu_pebs_enable(struct perf_event *event)
   1215{
   1216	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
   1217	struct hw_perf_event *hwc = &event->hw;
   1218	struct debug_store *ds = cpuc->ds;
   1219	unsigned int idx = hwc->idx;
   1220
   1221	hwc->config &= ~ARCH_PERFMON_EVENTSEL_INT;
   1222
   1223	cpuc->pebs_enabled |= 1ULL << hwc->idx;
   1224
   1225	if ((event->hw.flags & PERF_X86_EVENT_PEBS_LDLAT) && (x86_pmu.version < 5))
   1226		cpuc->pebs_enabled |= 1ULL << (hwc->idx + 32);
   1227	else if (event->hw.flags & PERF_X86_EVENT_PEBS_ST)
   1228		cpuc->pebs_enabled |= 1ULL << 63;
   1229
   1230	if (x86_pmu.intel_cap.pebs_baseline) {
   1231		hwc->config |= ICL_EVENTSEL_ADAPTIVE;
   1232		if (cpuc->pebs_data_cfg != cpuc->active_pebs_data_cfg) {
   1233			wrmsrl(MSR_PEBS_DATA_CFG, cpuc->pebs_data_cfg);
   1234			cpuc->active_pebs_data_cfg = cpuc->pebs_data_cfg;
   1235		}
   1236	}
   1237
   1238	if (idx >= INTEL_PMC_IDX_FIXED) {
   1239		if (x86_pmu.intel_cap.pebs_format < 5)
   1240			idx = MAX_PEBS_EVENTS_FMT4 + (idx - INTEL_PMC_IDX_FIXED);
   1241		else
   1242			idx = MAX_PEBS_EVENTS + (idx - INTEL_PMC_IDX_FIXED);
   1243	}
   1244
   1245	/*
   1246	 * Use auto-reload if possible to save a MSR write in the PMI.
   1247	 * This must be done in pmu::start(), because PERF_EVENT_IOC_PERIOD.
   1248	 */
   1249	if (hwc->flags & PERF_X86_EVENT_AUTO_RELOAD) {
   1250		ds->pebs_event_reset[idx] =
   1251			(u64)(-hwc->sample_period) & x86_pmu.cntval_mask;
   1252	} else {
   1253		ds->pebs_event_reset[idx] = 0;
   1254	}
   1255
   1256	intel_pmu_pebs_via_pt_enable(event);
   1257}
   1258
   1259void intel_pmu_pebs_del(struct perf_event *event)
   1260{
   1261	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
   1262	struct hw_perf_event *hwc = &event->hw;
   1263	bool needed_cb = pebs_needs_sched_cb(cpuc);
   1264
   1265	cpuc->n_pebs--;
   1266	if (hwc->flags & PERF_X86_EVENT_LARGE_PEBS)
   1267		cpuc->n_large_pebs--;
   1268	if (hwc->flags & PERF_X86_EVENT_PEBS_VIA_PT)
   1269		cpuc->n_pebs_via_pt--;
   1270
   1271	pebs_update_state(needed_cb, cpuc, event, false);
   1272}
   1273
   1274void intel_pmu_pebs_disable(struct perf_event *event)
   1275{
   1276	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
   1277	struct hw_perf_event *hwc = &event->hw;
   1278
   1279	if (cpuc->n_pebs == cpuc->n_large_pebs &&
   1280	    cpuc->n_pebs != cpuc->n_pebs_via_pt)
   1281		intel_pmu_drain_pebs_buffer();
   1282
   1283	cpuc->pebs_enabled &= ~(1ULL << hwc->idx);
   1284
   1285	if ((event->hw.flags & PERF_X86_EVENT_PEBS_LDLAT) &&
   1286	    (x86_pmu.version < 5))
   1287		cpuc->pebs_enabled &= ~(1ULL << (hwc->idx + 32));
   1288	else if (event->hw.flags & PERF_X86_EVENT_PEBS_ST)
   1289		cpuc->pebs_enabled &= ~(1ULL << 63);
   1290
   1291	intel_pmu_pebs_via_pt_disable(event);
   1292
   1293	if (cpuc->enabled)
   1294		wrmsrl(MSR_IA32_PEBS_ENABLE, cpuc->pebs_enabled);
   1295
   1296	hwc->config |= ARCH_PERFMON_EVENTSEL_INT;
   1297}
   1298
   1299void intel_pmu_pebs_enable_all(void)
   1300{
   1301	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
   1302
   1303	if (cpuc->pebs_enabled)
   1304		wrmsrl(MSR_IA32_PEBS_ENABLE, cpuc->pebs_enabled);
   1305}
   1306
   1307void intel_pmu_pebs_disable_all(void)
   1308{
   1309	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
   1310
   1311	if (cpuc->pebs_enabled)
   1312		__intel_pmu_pebs_disable_all();
   1313}
   1314
   1315static int intel_pmu_pebs_fixup_ip(struct pt_regs *regs)
   1316{
   1317	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
   1318	unsigned long from = cpuc->lbr_entries[0].from;
   1319	unsigned long old_to, to = cpuc->lbr_entries[0].to;
   1320	unsigned long ip = regs->ip;
   1321	int is_64bit = 0;
   1322	void *kaddr;
   1323	int size;
   1324
   1325	/*
   1326	 * We don't need to fixup if the PEBS assist is fault like
   1327	 */
   1328	if (!x86_pmu.intel_cap.pebs_trap)
   1329		return 1;
   1330
   1331	/*
   1332	 * No LBR entry, no basic block, no rewinding
   1333	 */
   1334	if (!cpuc->lbr_stack.nr || !from || !to)
   1335		return 0;
   1336
   1337	/*
   1338	 * Basic blocks should never cross user/kernel boundaries
   1339	 */
   1340	if (kernel_ip(ip) != kernel_ip(to))
   1341		return 0;
   1342
   1343	/*
   1344	 * unsigned math, either ip is before the start (impossible) or
   1345	 * the basic block is larger than 1 page (sanity)
   1346	 */
   1347	if ((ip - to) > PEBS_FIXUP_SIZE)
   1348		return 0;
   1349
   1350	/*
   1351	 * We sampled a branch insn, rewind using the LBR stack
   1352	 */
   1353	if (ip == to) {
   1354		set_linear_ip(regs, from);
   1355		return 1;
   1356	}
   1357
   1358	size = ip - to;
   1359	if (!kernel_ip(ip)) {
   1360		int bytes;
   1361		u8 *buf = this_cpu_read(insn_buffer);
   1362
   1363		/* 'size' must fit our buffer, see above */
   1364		bytes = copy_from_user_nmi(buf, (void __user *)to, size);
   1365		if (bytes != 0)
   1366			return 0;
   1367
   1368		kaddr = buf;
   1369	} else {
   1370		kaddr = (void *)to;
   1371	}
   1372
   1373	do {
   1374		struct insn insn;
   1375
   1376		old_to = to;
   1377
   1378#ifdef CONFIG_X86_64
   1379		is_64bit = kernel_ip(to) || any_64bit_mode(regs);
   1380#endif
   1381		insn_init(&insn, kaddr, size, is_64bit);
   1382
   1383		/*
   1384		 * Make sure there was not a problem decoding the instruction.
   1385		 * This is doubly important because we have an infinite loop if
   1386		 * insn.length=0.
   1387		 */
   1388		if (insn_get_length(&insn))
   1389			break;
   1390
   1391		to += insn.length;
   1392		kaddr += insn.length;
   1393		size -= insn.length;
   1394	} while (to < ip);
   1395
   1396	if (to == ip) {
   1397		set_linear_ip(regs, old_to);
   1398		return 1;
   1399	}
   1400
   1401	/*
   1402	 * Even though we decoded the basic block, the instruction stream
   1403	 * never matched the given IP, either the TO or the IP got corrupted.
   1404	 */
   1405	return 0;
   1406}
   1407
   1408static inline u64 intel_get_tsx_weight(u64 tsx_tuning)
   1409{
   1410	if (tsx_tuning) {
   1411		union hsw_tsx_tuning tsx = { .value = tsx_tuning };
   1412		return tsx.cycles_last_block;
   1413	}
   1414	return 0;
   1415}
   1416
   1417static inline u64 intel_get_tsx_transaction(u64 tsx_tuning, u64 ax)
   1418{
   1419	u64 txn = (tsx_tuning & PEBS_HSW_TSX_FLAGS) >> 32;
   1420
   1421	/* For RTM XABORTs also log the abort code from AX */
   1422	if ((txn & PERF_TXN_TRANSACTION) && (ax & 1))
   1423		txn |= ((ax >> 24) & 0xff) << PERF_TXN_ABORT_SHIFT;
   1424	return txn;
   1425}
   1426
   1427static inline u64 get_pebs_status(void *n)
   1428{
   1429	if (x86_pmu.intel_cap.pebs_format < 4)
   1430		return ((struct pebs_record_nhm *)n)->status;
   1431	return ((struct pebs_basic *)n)->applicable_counters;
   1432}
   1433
   1434#define PERF_X86_EVENT_PEBS_HSW_PREC \
   1435		(PERF_X86_EVENT_PEBS_ST_HSW | \
   1436		 PERF_X86_EVENT_PEBS_LD_HSW | \
   1437		 PERF_X86_EVENT_PEBS_NA_HSW)
   1438
   1439static u64 get_data_src(struct perf_event *event, u64 aux)
   1440{
   1441	u64 val = PERF_MEM_NA;
   1442	int fl = event->hw.flags;
   1443	bool fst = fl & (PERF_X86_EVENT_PEBS_ST | PERF_X86_EVENT_PEBS_HSW_PREC);
   1444
   1445	if (fl & PERF_X86_EVENT_PEBS_LDLAT)
   1446		val = load_latency_data(aux);
   1447	else if (fl & PERF_X86_EVENT_PEBS_STLAT)
   1448		val = store_latency_data(aux);
   1449	else if (fst && (fl & PERF_X86_EVENT_PEBS_HSW_PREC))
   1450		val = precise_datala_hsw(event, aux);
   1451	else if (fst)
   1452		val = precise_store_data(aux);
   1453	return val;
   1454}
   1455
   1456#define PERF_SAMPLE_ADDR_TYPE	(PERF_SAMPLE_ADDR |		\
   1457				 PERF_SAMPLE_PHYS_ADDR |	\
   1458				 PERF_SAMPLE_DATA_PAGE_SIZE)
   1459
   1460static void setup_pebs_fixed_sample_data(struct perf_event *event,
   1461				   struct pt_regs *iregs, void *__pebs,
   1462				   struct perf_sample_data *data,
   1463				   struct pt_regs *regs)
   1464{
   1465	/*
   1466	 * We cast to the biggest pebs_record but are careful not to
   1467	 * unconditionally access the 'extra' entries.
   1468	 */
   1469	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
   1470	struct pebs_record_skl *pebs = __pebs;
   1471	u64 sample_type;
   1472	int fll;
   1473
   1474	if (pebs == NULL)
   1475		return;
   1476
   1477	sample_type = event->attr.sample_type;
   1478	fll = event->hw.flags & PERF_X86_EVENT_PEBS_LDLAT;
   1479
   1480	perf_sample_data_init(data, 0, event->hw.last_period);
   1481
   1482	data->period = event->hw.last_period;
   1483
   1484	/*
   1485	 * Use latency for weight (only avail with PEBS-LL)
   1486	 */
   1487	if (fll && (sample_type & PERF_SAMPLE_WEIGHT_TYPE))
   1488		data->weight.full = pebs->lat;
   1489
   1490	/*
   1491	 * data.data_src encodes the data source
   1492	 */
   1493	if (sample_type & PERF_SAMPLE_DATA_SRC)
   1494		data->data_src.val = get_data_src(event, pebs->dse);
   1495
   1496	/*
   1497	 * We must however always use iregs for the unwinder to stay sane; the
   1498	 * record BP,SP,IP can point into thin air when the record is from a
   1499	 * previous PMI context or an (I)RET happened between the record and
   1500	 * PMI.
   1501	 */
   1502	if (sample_type & PERF_SAMPLE_CALLCHAIN)
   1503		data->callchain = perf_callchain(event, iregs);
   1504
   1505	/*
   1506	 * We use the interrupt regs as a base because the PEBS record does not
   1507	 * contain a full regs set, specifically it seems to lack segment
   1508	 * descriptors, which get used by things like user_mode().
   1509	 *
   1510	 * In the simple case fix up only the IP for PERF_SAMPLE_IP.
   1511	 */
   1512	*regs = *iregs;
   1513
   1514	/*
   1515	 * Initialize regs_>flags from PEBS,
   1516	 * Clear exact bit (which uses x86 EFLAGS Reserved bit 3),
   1517	 * i.e., do not rely on it being zero:
   1518	 */
   1519	regs->flags = pebs->flags & ~PERF_EFLAGS_EXACT;
   1520
   1521	if (sample_type & PERF_SAMPLE_REGS_INTR) {
   1522		regs->ax = pebs->ax;
   1523		regs->bx = pebs->bx;
   1524		regs->cx = pebs->cx;
   1525		regs->dx = pebs->dx;
   1526		regs->si = pebs->si;
   1527		regs->di = pebs->di;
   1528
   1529		regs->bp = pebs->bp;
   1530		regs->sp = pebs->sp;
   1531
   1532#ifndef CONFIG_X86_32
   1533		regs->r8 = pebs->r8;
   1534		regs->r9 = pebs->r9;
   1535		regs->r10 = pebs->r10;
   1536		regs->r11 = pebs->r11;
   1537		regs->r12 = pebs->r12;
   1538		regs->r13 = pebs->r13;
   1539		regs->r14 = pebs->r14;
   1540		regs->r15 = pebs->r15;
   1541#endif
   1542	}
   1543
   1544	if (event->attr.precise_ip > 1) {
   1545		/*
   1546		 * Haswell and later processors have an 'eventing IP'
   1547		 * (real IP) which fixes the off-by-1 skid in hardware.
   1548		 * Use it when precise_ip >= 2 :
   1549		 */
   1550		if (x86_pmu.intel_cap.pebs_format >= 2) {
   1551			set_linear_ip(regs, pebs->real_ip);
   1552			regs->flags |= PERF_EFLAGS_EXACT;
   1553		} else {
   1554			/* Otherwise, use PEBS off-by-1 IP: */
   1555			set_linear_ip(regs, pebs->ip);
   1556
   1557			/*
   1558			 * With precise_ip >= 2, try to fix up the off-by-1 IP
   1559			 * using the LBR. If successful, the fixup function
   1560			 * corrects regs->ip and calls set_linear_ip() on regs:
   1561			 */
   1562			if (intel_pmu_pebs_fixup_ip(regs))
   1563				regs->flags |= PERF_EFLAGS_EXACT;
   1564		}
   1565	} else {
   1566		/*
   1567		 * When precise_ip == 1, return the PEBS off-by-1 IP,
   1568		 * no fixup attempted:
   1569		 */
   1570		set_linear_ip(regs, pebs->ip);
   1571	}
   1572
   1573
   1574	if ((sample_type & PERF_SAMPLE_ADDR_TYPE) &&
   1575	    x86_pmu.intel_cap.pebs_format >= 1)
   1576		data->addr = pebs->dla;
   1577
   1578	if (x86_pmu.intel_cap.pebs_format >= 2) {
   1579		/* Only set the TSX weight when no memory weight. */
   1580		if ((sample_type & PERF_SAMPLE_WEIGHT_TYPE) && !fll)
   1581			data->weight.full = intel_get_tsx_weight(pebs->tsx_tuning);
   1582
   1583		if (sample_type & PERF_SAMPLE_TRANSACTION)
   1584			data->txn = intel_get_tsx_transaction(pebs->tsx_tuning,
   1585							      pebs->ax);
   1586	}
   1587
   1588	/*
   1589	 * v3 supplies an accurate time stamp, so we use that
   1590	 * for the time stamp.
   1591	 *
   1592	 * We can only do this for the default trace clock.
   1593	 */
   1594	if (x86_pmu.intel_cap.pebs_format >= 3 &&
   1595		event->attr.use_clockid == 0)
   1596		data->time = native_sched_clock_from_tsc(pebs->tsc);
   1597
   1598	if (has_branch_stack(event))
   1599		data->br_stack = &cpuc->lbr_stack;
   1600}
   1601
   1602static void adaptive_pebs_save_regs(struct pt_regs *regs,
   1603				    struct pebs_gprs *gprs)
   1604{
   1605	regs->ax = gprs->ax;
   1606	regs->bx = gprs->bx;
   1607	regs->cx = gprs->cx;
   1608	regs->dx = gprs->dx;
   1609	regs->si = gprs->si;
   1610	regs->di = gprs->di;
   1611	regs->bp = gprs->bp;
   1612	regs->sp = gprs->sp;
   1613#ifndef CONFIG_X86_32
   1614	regs->r8 = gprs->r8;
   1615	regs->r9 = gprs->r9;
   1616	regs->r10 = gprs->r10;
   1617	regs->r11 = gprs->r11;
   1618	regs->r12 = gprs->r12;
   1619	regs->r13 = gprs->r13;
   1620	regs->r14 = gprs->r14;
   1621	regs->r15 = gprs->r15;
   1622#endif
   1623}
   1624
   1625#define PEBS_LATENCY_MASK			0xffff
   1626#define PEBS_CACHE_LATENCY_OFFSET		32
   1627
   1628/*
   1629 * With adaptive PEBS the layout depends on what fields are configured.
   1630 */
   1631
   1632static void setup_pebs_adaptive_sample_data(struct perf_event *event,
   1633					    struct pt_regs *iregs, void *__pebs,
   1634					    struct perf_sample_data *data,
   1635					    struct pt_regs *regs)
   1636{
   1637	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
   1638	struct pebs_basic *basic = __pebs;
   1639	void *next_record = basic + 1;
   1640	u64 sample_type;
   1641	u64 format_size;
   1642	struct pebs_meminfo *meminfo = NULL;
   1643	struct pebs_gprs *gprs = NULL;
   1644	struct x86_perf_regs *perf_regs;
   1645
   1646	if (basic == NULL)
   1647		return;
   1648
   1649	perf_regs = container_of(regs, struct x86_perf_regs, regs);
   1650	perf_regs->xmm_regs = NULL;
   1651
   1652	sample_type = event->attr.sample_type;
   1653	format_size = basic->format_size;
   1654	perf_sample_data_init(data, 0, event->hw.last_period);
   1655	data->period = event->hw.last_period;
   1656
   1657	if (event->attr.use_clockid == 0)
   1658		data->time = native_sched_clock_from_tsc(basic->tsc);
   1659
   1660	/*
   1661	 * We must however always use iregs for the unwinder to stay sane; the
   1662	 * record BP,SP,IP can point into thin air when the record is from a
   1663	 * previous PMI context or an (I)RET happened between the record and
   1664	 * PMI.
   1665	 */
   1666	if (sample_type & PERF_SAMPLE_CALLCHAIN)
   1667		data->callchain = perf_callchain(event, iregs);
   1668
   1669	*regs = *iregs;
   1670	/* The ip in basic is EventingIP */
   1671	set_linear_ip(regs, basic->ip);
   1672	regs->flags = PERF_EFLAGS_EXACT;
   1673
   1674	/*
   1675	 * The record for MEMINFO is in front of GP
   1676	 * But PERF_SAMPLE_TRANSACTION needs gprs->ax.
   1677	 * Save the pointer here but process later.
   1678	 */
   1679	if (format_size & PEBS_DATACFG_MEMINFO) {
   1680		meminfo = next_record;
   1681		next_record = meminfo + 1;
   1682	}
   1683
   1684	if (format_size & PEBS_DATACFG_GP) {
   1685		gprs = next_record;
   1686		next_record = gprs + 1;
   1687
   1688		if (event->attr.precise_ip < 2) {
   1689			set_linear_ip(regs, gprs->ip);
   1690			regs->flags &= ~PERF_EFLAGS_EXACT;
   1691		}
   1692
   1693		if (sample_type & PERF_SAMPLE_REGS_INTR)
   1694			adaptive_pebs_save_regs(regs, gprs);
   1695	}
   1696
   1697	if (format_size & PEBS_DATACFG_MEMINFO) {
   1698		if (sample_type & PERF_SAMPLE_WEIGHT_TYPE) {
   1699			u64 weight = meminfo->latency;
   1700
   1701			if (x86_pmu.flags & PMU_FL_INSTR_LATENCY) {
   1702				data->weight.var2_w = weight & PEBS_LATENCY_MASK;
   1703				weight >>= PEBS_CACHE_LATENCY_OFFSET;
   1704			}
   1705
   1706			/*
   1707			 * Although meminfo::latency is defined as a u64,
   1708			 * only the lower 32 bits include the valid data
   1709			 * in practice on Ice Lake and earlier platforms.
   1710			 */
   1711			if (sample_type & PERF_SAMPLE_WEIGHT) {
   1712				data->weight.full = weight ?:
   1713					intel_get_tsx_weight(meminfo->tsx_tuning);
   1714			} else {
   1715				data->weight.var1_dw = (u32)(weight & PEBS_LATENCY_MASK) ?:
   1716					intel_get_tsx_weight(meminfo->tsx_tuning);
   1717			}
   1718		}
   1719
   1720		if (sample_type & PERF_SAMPLE_DATA_SRC)
   1721			data->data_src.val = get_data_src(event, meminfo->aux);
   1722
   1723		if (sample_type & PERF_SAMPLE_ADDR_TYPE)
   1724			data->addr = meminfo->address;
   1725
   1726		if (sample_type & PERF_SAMPLE_TRANSACTION)
   1727			data->txn = intel_get_tsx_transaction(meminfo->tsx_tuning,
   1728							  gprs ? gprs->ax : 0);
   1729	}
   1730
   1731	if (format_size & PEBS_DATACFG_XMMS) {
   1732		struct pebs_xmm *xmm = next_record;
   1733
   1734		next_record = xmm + 1;
   1735		perf_regs->xmm_regs = xmm->xmm;
   1736	}
   1737
   1738	if (format_size & PEBS_DATACFG_LBRS) {
   1739		struct lbr_entry *lbr = next_record;
   1740		int num_lbr = ((format_size >> PEBS_DATACFG_LBR_SHIFT)
   1741					& 0xff) + 1;
   1742		next_record = next_record + num_lbr * sizeof(struct lbr_entry);
   1743
   1744		if (has_branch_stack(event)) {
   1745			intel_pmu_store_pebs_lbrs(lbr);
   1746			data->br_stack = &cpuc->lbr_stack;
   1747		}
   1748	}
   1749
   1750	WARN_ONCE(next_record != __pebs + (format_size >> 48),
   1751			"PEBS record size %llu, expected %llu, config %llx\n",
   1752			format_size >> 48,
   1753			(u64)(next_record - __pebs),
   1754			basic->format_size);
   1755}
   1756
   1757static inline void *
   1758get_next_pebs_record_by_bit(void *base, void *top, int bit)
   1759{
   1760	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
   1761	void *at;
   1762	u64 pebs_status;
   1763
   1764	/*
   1765	 * fmt0 does not have a status bitfield (does not use
   1766	 * perf_record_nhm format)
   1767	 */
   1768	if (x86_pmu.intel_cap.pebs_format < 1)
   1769		return base;
   1770
   1771	if (base == NULL)
   1772		return NULL;
   1773
   1774	for (at = base; at < top; at += cpuc->pebs_record_size) {
   1775		unsigned long status = get_pebs_status(at);
   1776
   1777		if (test_bit(bit, (unsigned long *)&status)) {
   1778			/* PEBS v3 has accurate status bits */
   1779			if (x86_pmu.intel_cap.pebs_format >= 3)
   1780				return at;
   1781
   1782			if (status == (1 << bit))
   1783				return at;
   1784
   1785			/* clear non-PEBS bit and re-check */
   1786			pebs_status = status & cpuc->pebs_enabled;
   1787			pebs_status &= PEBS_COUNTER_MASK;
   1788			if (pebs_status == (1 << bit))
   1789				return at;
   1790		}
   1791	}
   1792	return NULL;
   1793}
   1794
   1795void intel_pmu_auto_reload_read(struct perf_event *event)
   1796{
   1797	WARN_ON(!(event->hw.flags & PERF_X86_EVENT_AUTO_RELOAD));
   1798
   1799	perf_pmu_disable(event->pmu);
   1800	intel_pmu_drain_pebs_buffer();
   1801	perf_pmu_enable(event->pmu);
   1802}
   1803
   1804/*
   1805 * Special variant of intel_pmu_save_and_restart() for auto-reload.
   1806 */
   1807static int
   1808intel_pmu_save_and_restart_reload(struct perf_event *event, int count)
   1809{
   1810	struct hw_perf_event *hwc = &event->hw;
   1811	int shift = 64 - x86_pmu.cntval_bits;
   1812	u64 period = hwc->sample_period;
   1813	u64 prev_raw_count, new_raw_count;
   1814	s64 new, old;
   1815
   1816	WARN_ON(!period);
   1817
   1818	/*
   1819	 * drain_pebs() only happens when the PMU is disabled.
   1820	 */
   1821	WARN_ON(this_cpu_read(cpu_hw_events.enabled));
   1822
   1823	prev_raw_count = local64_read(&hwc->prev_count);
   1824	rdpmcl(hwc->event_base_rdpmc, new_raw_count);
   1825	local64_set(&hwc->prev_count, new_raw_count);
   1826
   1827	/*
   1828	 * Since the counter increments a negative counter value and
   1829	 * overflows on the sign switch, giving the interval:
   1830	 *
   1831	 *   [-period, 0]
   1832	 *
   1833	 * the difference between two consecutive reads is:
   1834	 *
   1835	 *   A) value2 - value1;
   1836	 *      when no overflows have happened in between,
   1837	 *
   1838	 *   B) (0 - value1) + (value2 - (-period));
   1839	 *      when one overflow happened in between,
   1840	 *
   1841	 *   C) (0 - value1) + (n - 1) * (period) + (value2 - (-period));
   1842	 *      when @n overflows happened in between.
   1843	 *
   1844	 * Here A) is the obvious difference, B) is the extension to the
   1845	 * discrete interval, where the first term is to the top of the
   1846	 * interval and the second term is from the bottom of the next
   1847	 * interval and C) the extension to multiple intervals, where the
   1848	 * middle term is the whole intervals covered.
   1849	 *
   1850	 * An equivalent of C, by reduction, is:
   1851	 *
   1852	 *   value2 - value1 + n * period
   1853	 */
   1854	new = ((s64)(new_raw_count << shift) >> shift);
   1855	old = ((s64)(prev_raw_count << shift) >> shift);
   1856	local64_add(new - old + count * period, &event->count);
   1857
   1858	local64_set(&hwc->period_left, -new);
   1859
   1860	perf_event_update_userpage(event);
   1861
   1862	return 0;
   1863}
   1864
   1865static __always_inline void
   1866__intel_pmu_pebs_event(struct perf_event *event,
   1867		       struct pt_regs *iregs,
   1868		       struct perf_sample_data *data,
   1869		       void *base, void *top,
   1870		       int bit, int count,
   1871		       void (*setup_sample)(struct perf_event *,
   1872					    struct pt_regs *,
   1873					    void *,
   1874					    struct perf_sample_data *,
   1875					    struct pt_regs *))
   1876{
   1877	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
   1878	struct hw_perf_event *hwc = &event->hw;
   1879	struct x86_perf_regs perf_regs;
   1880	struct pt_regs *regs = &perf_regs.regs;
   1881	void *at = get_next_pebs_record_by_bit(base, top, bit);
   1882	static struct pt_regs dummy_iregs;
   1883
   1884	if (hwc->flags & PERF_X86_EVENT_AUTO_RELOAD) {
   1885		/*
   1886		 * Now, auto-reload is only enabled in fixed period mode.
   1887		 * The reload value is always hwc->sample_period.
   1888		 * May need to change it, if auto-reload is enabled in
   1889		 * freq mode later.
   1890		 */
   1891		intel_pmu_save_and_restart_reload(event, count);
   1892	} else if (!intel_pmu_save_and_restart(event))
   1893		return;
   1894
   1895	if (!iregs)
   1896		iregs = &dummy_iregs;
   1897
   1898	while (count > 1) {
   1899		setup_sample(event, iregs, at, data, regs);
   1900		perf_event_output(event, data, regs);
   1901		at += cpuc->pebs_record_size;
   1902		at = get_next_pebs_record_by_bit(at, top, bit);
   1903		count--;
   1904	}
   1905
   1906	setup_sample(event, iregs, at, data, regs);
   1907	if (iregs == &dummy_iregs) {
   1908		/*
   1909		 * The PEBS records may be drained in the non-overflow context,
   1910		 * e.g., large PEBS + context switch. Perf should treat the
   1911		 * last record the same as other PEBS records, and doesn't
   1912		 * invoke the generic overflow handler.
   1913		 */
   1914		perf_event_output(event, data, regs);
   1915	} else {
   1916		/*
   1917		 * All but the last records are processed.
   1918		 * The last one is left to be able to call the overflow handler.
   1919		 */
   1920		if (perf_event_overflow(event, data, regs))
   1921			x86_pmu_stop(event, 0);
   1922	}
   1923}
   1924
   1925static void intel_pmu_drain_pebs_core(struct pt_regs *iregs, struct perf_sample_data *data)
   1926{
   1927	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
   1928	struct debug_store *ds = cpuc->ds;
   1929	struct perf_event *event = cpuc->events[0]; /* PMC0 only */
   1930	struct pebs_record_core *at, *top;
   1931	int n;
   1932
   1933	if (!x86_pmu.pebs_active)
   1934		return;
   1935
   1936	at  = (struct pebs_record_core *)(unsigned long)ds->pebs_buffer_base;
   1937	top = (struct pebs_record_core *)(unsigned long)ds->pebs_index;
   1938
   1939	/*
   1940	 * Whatever else happens, drain the thing
   1941	 */
   1942	ds->pebs_index = ds->pebs_buffer_base;
   1943
   1944	if (!test_bit(0, cpuc->active_mask))
   1945		return;
   1946
   1947	WARN_ON_ONCE(!event);
   1948
   1949	if (!event->attr.precise_ip)
   1950		return;
   1951
   1952	n = top - at;
   1953	if (n <= 0) {
   1954		if (event->hw.flags & PERF_X86_EVENT_AUTO_RELOAD)
   1955			intel_pmu_save_and_restart_reload(event, 0);
   1956		return;
   1957	}
   1958
   1959	__intel_pmu_pebs_event(event, iregs, data, at, top, 0, n,
   1960			       setup_pebs_fixed_sample_data);
   1961}
   1962
   1963static void intel_pmu_pebs_event_update_no_drain(struct cpu_hw_events *cpuc, int size)
   1964{
   1965	struct perf_event *event;
   1966	int bit;
   1967
   1968	/*
   1969	 * The drain_pebs() could be called twice in a short period
   1970	 * for auto-reload event in pmu::read(). There are no
   1971	 * overflows have happened in between.
   1972	 * It needs to call intel_pmu_save_and_restart_reload() to
   1973	 * update the event->count for this case.
   1974	 */
   1975	for_each_set_bit(bit, (unsigned long *)&cpuc->pebs_enabled, size) {
   1976		event = cpuc->events[bit];
   1977		if (event->hw.flags & PERF_X86_EVENT_AUTO_RELOAD)
   1978			intel_pmu_save_and_restart_reload(event, 0);
   1979	}
   1980}
   1981
   1982static void intel_pmu_drain_pebs_nhm(struct pt_regs *iregs, struct perf_sample_data *data)
   1983{
   1984	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
   1985	struct debug_store *ds = cpuc->ds;
   1986	struct perf_event *event;
   1987	void *base, *at, *top;
   1988	short counts[INTEL_PMC_IDX_FIXED + MAX_FIXED_PEBS_EVENTS] = {};
   1989	short error[INTEL_PMC_IDX_FIXED + MAX_FIXED_PEBS_EVENTS] = {};
   1990	int bit, i, size;
   1991	u64 mask;
   1992
   1993	if (!x86_pmu.pebs_active)
   1994		return;
   1995
   1996	base = (struct pebs_record_nhm *)(unsigned long)ds->pebs_buffer_base;
   1997	top = (struct pebs_record_nhm *)(unsigned long)ds->pebs_index;
   1998
   1999	ds->pebs_index = ds->pebs_buffer_base;
   2000
   2001	mask = (1ULL << x86_pmu.max_pebs_events) - 1;
   2002	size = x86_pmu.max_pebs_events;
   2003	if (x86_pmu.flags & PMU_FL_PEBS_ALL) {
   2004		mask |= ((1ULL << x86_pmu.num_counters_fixed) - 1) << INTEL_PMC_IDX_FIXED;
   2005		size = INTEL_PMC_IDX_FIXED + x86_pmu.num_counters_fixed;
   2006	}
   2007
   2008	if (unlikely(base >= top)) {
   2009		intel_pmu_pebs_event_update_no_drain(cpuc, size);
   2010		return;
   2011	}
   2012
   2013	for (at = base; at < top; at += x86_pmu.pebs_record_size) {
   2014		struct pebs_record_nhm *p = at;
   2015		u64 pebs_status;
   2016
   2017		pebs_status = p->status & cpuc->pebs_enabled;
   2018		pebs_status &= mask;
   2019
   2020		/* PEBS v3 has more accurate status bits */
   2021		if (x86_pmu.intel_cap.pebs_format >= 3) {
   2022			for_each_set_bit(bit, (unsigned long *)&pebs_status, size)
   2023				counts[bit]++;
   2024
   2025			continue;
   2026		}
   2027
   2028		/*
   2029		 * On some CPUs the PEBS status can be zero when PEBS is
   2030		 * racing with clearing of GLOBAL_STATUS.
   2031		 *
   2032		 * Normally we would drop that record, but in the
   2033		 * case when there is only a single active PEBS event
   2034		 * we can assume it's for that event.
   2035		 */
   2036		if (!pebs_status && cpuc->pebs_enabled &&
   2037			!(cpuc->pebs_enabled & (cpuc->pebs_enabled-1)))
   2038			pebs_status = p->status = cpuc->pebs_enabled;
   2039
   2040		bit = find_first_bit((unsigned long *)&pebs_status,
   2041					x86_pmu.max_pebs_events);
   2042		if (bit >= x86_pmu.max_pebs_events)
   2043			continue;
   2044
   2045		/*
   2046		 * The PEBS hardware does not deal well with the situation
   2047		 * when events happen near to each other and multiple bits
   2048		 * are set. But it should happen rarely.
   2049		 *
   2050		 * If these events include one PEBS and multiple non-PEBS
   2051		 * events, it doesn't impact PEBS record. The record will
   2052		 * be handled normally. (slow path)
   2053		 *
   2054		 * If these events include two or more PEBS events, the
   2055		 * records for the events can be collapsed into a single
   2056		 * one, and it's not possible to reconstruct all events
   2057		 * that caused the PEBS record. It's called collision.
   2058		 * If collision happened, the record will be dropped.
   2059		 */
   2060		if (pebs_status != (1ULL << bit)) {
   2061			for_each_set_bit(i, (unsigned long *)&pebs_status, size)
   2062				error[i]++;
   2063			continue;
   2064		}
   2065
   2066		counts[bit]++;
   2067	}
   2068
   2069	for_each_set_bit(bit, (unsigned long *)&mask, size) {
   2070		if ((counts[bit] == 0) && (error[bit] == 0))
   2071			continue;
   2072
   2073		event = cpuc->events[bit];
   2074		if (WARN_ON_ONCE(!event))
   2075			continue;
   2076
   2077		if (WARN_ON_ONCE(!event->attr.precise_ip))
   2078			continue;
   2079
   2080		/* log dropped samples number */
   2081		if (error[bit]) {
   2082			perf_log_lost_samples(event, error[bit]);
   2083
   2084			if (iregs && perf_event_account_interrupt(event))
   2085				x86_pmu_stop(event, 0);
   2086		}
   2087
   2088		if (counts[bit]) {
   2089			__intel_pmu_pebs_event(event, iregs, data, base,
   2090					       top, bit, counts[bit],
   2091					       setup_pebs_fixed_sample_data);
   2092		}
   2093	}
   2094}
   2095
   2096static void intel_pmu_drain_pebs_icl(struct pt_regs *iregs, struct perf_sample_data *data)
   2097{
   2098	short counts[INTEL_PMC_IDX_FIXED + MAX_FIXED_PEBS_EVENTS] = {};
   2099	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
   2100	int max_pebs_events = hybrid(cpuc->pmu, max_pebs_events);
   2101	int num_counters_fixed = hybrid(cpuc->pmu, num_counters_fixed);
   2102	struct debug_store *ds = cpuc->ds;
   2103	struct perf_event *event;
   2104	void *base, *at, *top;
   2105	int bit, size;
   2106	u64 mask;
   2107
   2108	if (!x86_pmu.pebs_active)
   2109		return;
   2110
   2111	base = (struct pebs_basic *)(unsigned long)ds->pebs_buffer_base;
   2112	top = (struct pebs_basic *)(unsigned long)ds->pebs_index;
   2113
   2114	ds->pebs_index = ds->pebs_buffer_base;
   2115
   2116	mask = ((1ULL << max_pebs_events) - 1) |
   2117	       (((1ULL << num_counters_fixed) - 1) << INTEL_PMC_IDX_FIXED);
   2118	size = INTEL_PMC_IDX_FIXED + num_counters_fixed;
   2119
   2120	if (unlikely(base >= top)) {
   2121		intel_pmu_pebs_event_update_no_drain(cpuc, size);
   2122		return;
   2123	}
   2124
   2125	for (at = base; at < top; at += cpuc->pebs_record_size) {
   2126		u64 pebs_status;
   2127
   2128		pebs_status = get_pebs_status(at) & cpuc->pebs_enabled;
   2129		pebs_status &= mask;
   2130
   2131		for_each_set_bit(bit, (unsigned long *)&pebs_status, size)
   2132			counts[bit]++;
   2133	}
   2134
   2135	for_each_set_bit(bit, (unsigned long *)&mask, size) {
   2136		if (counts[bit] == 0)
   2137			continue;
   2138
   2139		event = cpuc->events[bit];
   2140		if (WARN_ON_ONCE(!event))
   2141			continue;
   2142
   2143		if (WARN_ON_ONCE(!event->attr.precise_ip))
   2144			continue;
   2145
   2146		__intel_pmu_pebs_event(event, iregs, data, base,
   2147				       top, bit, counts[bit],
   2148				       setup_pebs_adaptive_sample_data);
   2149	}
   2150}
   2151
   2152/*
   2153 * BTS, PEBS probe and setup
   2154 */
   2155
   2156void __init intel_ds_init(void)
   2157{
   2158	/*
   2159	 * No support for 32bit formats
   2160	 */
   2161	if (!boot_cpu_has(X86_FEATURE_DTES64))
   2162		return;
   2163
   2164	x86_pmu.bts  = boot_cpu_has(X86_FEATURE_BTS);
   2165	x86_pmu.pebs = boot_cpu_has(X86_FEATURE_PEBS);
   2166	x86_pmu.pebs_buffer_size = PEBS_BUFFER_SIZE;
   2167	if (x86_pmu.version <= 4)
   2168		x86_pmu.pebs_no_isolation = 1;
   2169
   2170	if (x86_pmu.pebs) {
   2171		char pebs_type = x86_pmu.intel_cap.pebs_trap ?  '+' : '-';
   2172		char *pebs_qual = "";
   2173		int format = x86_pmu.intel_cap.pebs_format;
   2174
   2175		if (format < 4)
   2176			x86_pmu.intel_cap.pebs_baseline = 0;
   2177
   2178		switch (format) {
   2179		case 0:
   2180			pr_cont("PEBS fmt0%c, ", pebs_type);
   2181			x86_pmu.pebs_record_size = sizeof(struct pebs_record_core);
   2182			/*
   2183			 * Using >PAGE_SIZE buffers makes the WRMSR to
   2184			 * PERF_GLOBAL_CTRL in intel_pmu_enable_all()
   2185			 * mysteriously hang on Core2.
   2186			 *
   2187			 * As a workaround, we don't do this.
   2188			 */
   2189			x86_pmu.pebs_buffer_size = PAGE_SIZE;
   2190			x86_pmu.drain_pebs = intel_pmu_drain_pebs_core;
   2191			break;
   2192
   2193		case 1:
   2194			pr_cont("PEBS fmt1%c, ", pebs_type);
   2195			x86_pmu.pebs_record_size = sizeof(struct pebs_record_nhm);
   2196			x86_pmu.drain_pebs = intel_pmu_drain_pebs_nhm;
   2197			break;
   2198
   2199		case 2:
   2200			pr_cont("PEBS fmt2%c, ", pebs_type);
   2201			x86_pmu.pebs_record_size = sizeof(struct pebs_record_hsw);
   2202			x86_pmu.drain_pebs = intel_pmu_drain_pebs_nhm;
   2203			break;
   2204
   2205		case 3:
   2206			pr_cont("PEBS fmt3%c, ", pebs_type);
   2207			x86_pmu.pebs_record_size =
   2208						sizeof(struct pebs_record_skl);
   2209			x86_pmu.drain_pebs = intel_pmu_drain_pebs_nhm;
   2210			x86_pmu.large_pebs_flags |= PERF_SAMPLE_TIME;
   2211			break;
   2212
   2213		case 4:
   2214		case 5:
   2215			x86_pmu.drain_pebs = intel_pmu_drain_pebs_icl;
   2216			x86_pmu.pebs_record_size = sizeof(struct pebs_basic);
   2217			if (x86_pmu.intel_cap.pebs_baseline) {
   2218				x86_pmu.large_pebs_flags |=
   2219					PERF_SAMPLE_BRANCH_STACK |
   2220					PERF_SAMPLE_TIME;
   2221				x86_pmu.flags |= PMU_FL_PEBS_ALL;
   2222				pebs_qual = "-baseline";
   2223				x86_get_pmu(smp_processor_id())->capabilities |= PERF_PMU_CAP_EXTENDED_REGS;
   2224			} else {
   2225				/* Only basic record supported */
   2226				x86_pmu.large_pebs_flags &=
   2227					~(PERF_SAMPLE_ADDR |
   2228					  PERF_SAMPLE_TIME |
   2229					  PERF_SAMPLE_DATA_SRC |
   2230					  PERF_SAMPLE_TRANSACTION |
   2231					  PERF_SAMPLE_REGS_USER |
   2232					  PERF_SAMPLE_REGS_INTR);
   2233			}
   2234			pr_cont("PEBS fmt4%c%s, ", pebs_type, pebs_qual);
   2235
   2236			if (!is_hybrid() && x86_pmu.intel_cap.pebs_output_pt_available) {
   2237				pr_cont("PEBS-via-PT, ");
   2238				x86_get_pmu(smp_processor_id())->capabilities |= PERF_PMU_CAP_AUX_OUTPUT;
   2239			}
   2240
   2241			break;
   2242
   2243		default:
   2244			pr_cont("no PEBS fmt%d%c, ", format, pebs_type);
   2245			x86_pmu.pebs = 0;
   2246		}
   2247	}
   2248}
   2249
   2250void perf_restore_debug_store(void)
   2251{
   2252	struct debug_store *ds = __this_cpu_read(cpu_hw_events.ds);
   2253
   2254	if (!x86_pmu.bts && !x86_pmu.pebs)
   2255		return;
   2256
   2257	wrmsrl(MSR_IA32_DS_AREA, (unsigned long)ds);
   2258}