cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

p4.c (45621B)


      1/*
      2 * Netburst Performance Events (P4, old Xeon)
      3 *
      4 *  Copyright (C) 2010 Parallels, Inc., Cyrill Gorcunov <gorcunov@openvz.org>
      5 *  Copyright (C) 2010 Intel Corporation, Lin Ming <ming.m.lin@intel.com>
      6 *
      7 *  For licencing details see kernel-base/COPYING
      8 */
      9
     10#include <linux/perf_event.h>
     11
     12#include <asm/perf_event_p4.h>
     13#include <asm/hardirq.h>
     14#include <asm/apic.h>
     15
     16#include "../perf_event.h"
     17
     18#define P4_CNTR_LIMIT 3
     19/*
     20 * array indices: 0,1 - HT threads, used with HT enabled cpu
     21 */
     22struct p4_event_bind {
     23	unsigned int opcode;			/* Event code and ESCR selector */
     24	unsigned int escr_msr[2];		/* ESCR MSR for this event */
     25	unsigned int escr_emask;		/* valid ESCR EventMask bits */
     26	unsigned int shared;			/* event is shared across threads */
     27	char cntr[2][P4_CNTR_LIMIT];		/* counter index (offset), -1 on absence */
     28};
     29
     30struct p4_pebs_bind {
     31	unsigned int metric_pebs;
     32	unsigned int metric_vert;
     33};
     34
     35/* it sets P4_PEBS_ENABLE_UOP_TAG as well */
     36#define P4_GEN_PEBS_BIND(name, pebs, vert)			\
     37	[P4_PEBS_METRIC__##name] = {				\
     38		.metric_pebs = pebs | P4_PEBS_ENABLE_UOP_TAG,	\
     39		.metric_vert = vert,				\
     40	}
     41
     42/*
     43 * note we have P4_PEBS_ENABLE_UOP_TAG always set here
     44 *
     45 * it's needed for mapping P4_PEBS_CONFIG_METRIC_MASK bits of
     46 * event configuration to find out which values are to be
     47 * written into MSR_IA32_PEBS_ENABLE and MSR_P4_PEBS_MATRIX_VERT
     48 * registers
     49 */
     50static struct p4_pebs_bind p4_pebs_bind_map[] = {
     51	P4_GEN_PEBS_BIND(1stl_cache_load_miss_retired,	0x0000001, 0x0000001),
     52	P4_GEN_PEBS_BIND(2ndl_cache_load_miss_retired,	0x0000002, 0x0000001),
     53	P4_GEN_PEBS_BIND(dtlb_load_miss_retired,	0x0000004, 0x0000001),
     54	P4_GEN_PEBS_BIND(dtlb_store_miss_retired,	0x0000004, 0x0000002),
     55	P4_GEN_PEBS_BIND(dtlb_all_miss_retired,		0x0000004, 0x0000003),
     56	P4_GEN_PEBS_BIND(tagged_mispred_branch,		0x0018000, 0x0000010),
     57	P4_GEN_PEBS_BIND(mob_load_replay_retired,	0x0000200, 0x0000001),
     58	P4_GEN_PEBS_BIND(split_load_retired,		0x0000400, 0x0000001),
     59	P4_GEN_PEBS_BIND(split_store_retired,		0x0000400, 0x0000002),
     60};
     61
     62/*
     63 * Note that we don't use CCCR1 here, there is an
     64 * exception for P4_BSQ_ALLOCATION but we just have
     65 * no workaround
     66 *
     67 * consider this binding as resources which particular
     68 * event may borrow, it doesn't contain EventMask,
     69 * Tags and friends -- they are left to a caller
     70 */
     71static struct p4_event_bind p4_event_bind_map[] = {
     72	[P4_EVENT_TC_DELIVER_MODE] = {
     73		.opcode		= P4_OPCODE(P4_EVENT_TC_DELIVER_MODE),
     74		.escr_msr	= { MSR_P4_TC_ESCR0, MSR_P4_TC_ESCR1 },
     75		.escr_emask	=
     76			P4_ESCR_EMASK_BIT(P4_EVENT_TC_DELIVER_MODE, DD)			|
     77			P4_ESCR_EMASK_BIT(P4_EVENT_TC_DELIVER_MODE, DB)			|
     78			P4_ESCR_EMASK_BIT(P4_EVENT_TC_DELIVER_MODE, DI)			|
     79			P4_ESCR_EMASK_BIT(P4_EVENT_TC_DELIVER_MODE, BD)			|
     80			P4_ESCR_EMASK_BIT(P4_EVENT_TC_DELIVER_MODE, BB)			|
     81			P4_ESCR_EMASK_BIT(P4_EVENT_TC_DELIVER_MODE, BI)			|
     82			P4_ESCR_EMASK_BIT(P4_EVENT_TC_DELIVER_MODE, ID),
     83		.shared		= 1,
     84		.cntr		= { {4, 5, -1}, {6, 7, -1} },
     85	},
     86	[P4_EVENT_BPU_FETCH_REQUEST] = {
     87		.opcode		= P4_OPCODE(P4_EVENT_BPU_FETCH_REQUEST),
     88		.escr_msr	= { MSR_P4_BPU_ESCR0, MSR_P4_BPU_ESCR1 },
     89		.escr_emask	=
     90			P4_ESCR_EMASK_BIT(P4_EVENT_BPU_FETCH_REQUEST, TCMISS),
     91		.cntr		= { {0, -1, -1}, {2, -1, -1} },
     92	},
     93	[P4_EVENT_ITLB_REFERENCE] = {
     94		.opcode		= P4_OPCODE(P4_EVENT_ITLB_REFERENCE),
     95		.escr_msr	= { MSR_P4_ITLB_ESCR0, MSR_P4_ITLB_ESCR1 },
     96		.escr_emask	=
     97			P4_ESCR_EMASK_BIT(P4_EVENT_ITLB_REFERENCE, HIT)			|
     98			P4_ESCR_EMASK_BIT(P4_EVENT_ITLB_REFERENCE, MISS)		|
     99			P4_ESCR_EMASK_BIT(P4_EVENT_ITLB_REFERENCE, HIT_UK),
    100		.cntr		= { {0, -1, -1}, {2, -1, -1} },
    101	},
    102	[P4_EVENT_MEMORY_CANCEL] = {
    103		.opcode		= P4_OPCODE(P4_EVENT_MEMORY_CANCEL),
    104		.escr_msr	= { MSR_P4_DAC_ESCR0, MSR_P4_DAC_ESCR1 },
    105		.escr_emask	=
    106			P4_ESCR_EMASK_BIT(P4_EVENT_MEMORY_CANCEL, ST_RB_FULL)		|
    107			P4_ESCR_EMASK_BIT(P4_EVENT_MEMORY_CANCEL, 64K_CONF),
    108		.cntr		= { {8, 9, -1}, {10, 11, -1} },
    109	},
    110	[P4_EVENT_MEMORY_COMPLETE] = {
    111		.opcode		= P4_OPCODE(P4_EVENT_MEMORY_COMPLETE),
    112		.escr_msr	= { MSR_P4_SAAT_ESCR0 , MSR_P4_SAAT_ESCR1 },
    113		.escr_emask	=
    114			P4_ESCR_EMASK_BIT(P4_EVENT_MEMORY_COMPLETE, LSC)		|
    115			P4_ESCR_EMASK_BIT(P4_EVENT_MEMORY_COMPLETE, SSC),
    116		.cntr		= { {8, 9, -1}, {10, 11, -1} },
    117	},
    118	[P4_EVENT_LOAD_PORT_REPLAY] = {
    119		.opcode		= P4_OPCODE(P4_EVENT_LOAD_PORT_REPLAY),
    120		.escr_msr	= { MSR_P4_SAAT_ESCR0, MSR_P4_SAAT_ESCR1 },
    121		.escr_emask	=
    122			P4_ESCR_EMASK_BIT(P4_EVENT_LOAD_PORT_REPLAY, SPLIT_LD),
    123		.cntr		= { {8, 9, -1}, {10, 11, -1} },
    124	},
    125	[P4_EVENT_STORE_PORT_REPLAY] = {
    126		.opcode		= P4_OPCODE(P4_EVENT_STORE_PORT_REPLAY),
    127		.escr_msr	= { MSR_P4_SAAT_ESCR0 ,  MSR_P4_SAAT_ESCR1 },
    128		.escr_emask	=
    129			P4_ESCR_EMASK_BIT(P4_EVENT_STORE_PORT_REPLAY, SPLIT_ST),
    130		.cntr		= { {8, 9, -1}, {10, 11, -1} },
    131	},
    132	[P4_EVENT_MOB_LOAD_REPLAY] = {
    133		.opcode		= P4_OPCODE(P4_EVENT_MOB_LOAD_REPLAY),
    134		.escr_msr	= { MSR_P4_MOB_ESCR0, MSR_P4_MOB_ESCR1 },
    135		.escr_emask	=
    136			P4_ESCR_EMASK_BIT(P4_EVENT_MOB_LOAD_REPLAY, NO_STA)		|
    137			P4_ESCR_EMASK_BIT(P4_EVENT_MOB_LOAD_REPLAY, NO_STD)		|
    138			P4_ESCR_EMASK_BIT(P4_EVENT_MOB_LOAD_REPLAY, PARTIAL_DATA)	|
    139			P4_ESCR_EMASK_BIT(P4_EVENT_MOB_LOAD_REPLAY, UNALGN_ADDR),
    140		.cntr		= { {0, -1, -1}, {2, -1, -1} },
    141	},
    142	[P4_EVENT_PAGE_WALK_TYPE] = {
    143		.opcode		= P4_OPCODE(P4_EVENT_PAGE_WALK_TYPE),
    144		.escr_msr	= { MSR_P4_PMH_ESCR0, MSR_P4_PMH_ESCR1 },
    145		.escr_emask	=
    146			P4_ESCR_EMASK_BIT(P4_EVENT_PAGE_WALK_TYPE, DTMISS)		|
    147			P4_ESCR_EMASK_BIT(P4_EVENT_PAGE_WALK_TYPE, ITMISS),
    148		.shared		= 1,
    149		.cntr		= { {0, -1, -1}, {2, -1, -1} },
    150	},
    151	[P4_EVENT_BSQ_CACHE_REFERENCE] = {
    152		.opcode		= P4_OPCODE(P4_EVENT_BSQ_CACHE_REFERENCE),
    153		.escr_msr	= { MSR_P4_BSU_ESCR0, MSR_P4_BSU_ESCR1 },
    154		.escr_emask	=
    155			P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_CACHE_REFERENCE, RD_2ndL_HITS)	|
    156			P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_CACHE_REFERENCE, RD_2ndL_HITE)	|
    157			P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_CACHE_REFERENCE, RD_2ndL_HITM)	|
    158			P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_CACHE_REFERENCE, RD_3rdL_HITS)	|
    159			P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_CACHE_REFERENCE, RD_3rdL_HITE)	|
    160			P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_CACHE_REFERENCE, RD_3rdL_HITM)	|
    161			P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_CACHE_REFERENCE, RD_2ndL_MISS)	|
    162			P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_CACHE_REFERENCE, RD_3rdL_MISS)	|
    163			P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_CACHE_REFERENCE, WR_2ndL_MISS),
    164		.cntr		= { {0, -1, -1}, {2, -1, -1} },
    165	},
    166	[P4_EVENT_IOQ_ALLOCATION] = {
    167		.opcode		= P4_OPCODE(P4_EVENT_IOQ_ALLOCATION),
    168		.escr_msr	= { MSR_P4_FSB_ESCR0, MSR_P4_FSB_ESCR1 },
    169		.escr_emask	=
    170			P4_ESCR_EMASK_BIT(P4_EVENT_IOQ_ALLOCATION, DEFAULT)		|
    171			P4_ESCR_EMASK_BIT(P4_EVENT_IOQ_ALLOCATION, ALL_READ)		|
    172			P4_ESCR_EMASK_BIT(P4_EVENT_IOQ_ALLOCATION, ALL_WRITE)		|
    173			P4_ESCR_EMASK_BIT(P4_EVENT_IOQ_ALLOCATION, MEM_UC)		|
    174			P4_ESCR_EMASK_BIT(P4_EVENT_IOQ_ALLOCATION, MEM_WC)		|
    175			P4_ESCR_EMASK_BIT(P4_EVENT_IOQ_ALLOCATION, MEM_WT)		|
    176			P4_ESCR_EMASK_BIT(P4_EVENT_IOQ_ALLOCATION, MEM_WP)		|
    177			P4_ESCR_EMASK_BIT(P4_EVENT_IOQ_ALLOCATION, MEM_WB)		|
    178			P4_ESCR_EMASK_BIT(P4_EVENT_IOQ_ALLOCATION, OWN)			|
    179			P4_ESCR_EMASK_BIT(P4_EVENT_IOQ_ALLOCATION, OTHER)		|
    180			P4_ESCR_EMASK_BIT(P4_EVENT_IOQ_ALLOCATION, PREFETCH),
    181		.cntr		= { {0, -1, -1}, {2, -1, -1} },
    182	},
    183	[P4_EVENT_IOQ_ACTIVE_ENTRIES] = {	/* shared ESCR */
    184		.opcode		= P4_OPCODE(P4_EVENT_IOQ_ACTIVE_ENTRIES),
    185		.escr_msr	= { MSR_P4_FSB_ESCR1,  MSR_P4_FSB_ESCR1 },
    186		.escr_emask	=
    187			P4_ESCR_EMASK_BIT(P4_EVENT_IOQ_ACTIVE_ENTRIES, DEFAULT)		|
    188			P4_ESCR_EMASK_BIT(P4_EVENT_IOQ_ACTIVE_ENTRIES, ALL_READ)	|
    189			P4_ESCR_EMASK_BIT(P4_EVENT_IOQ_ACTIVE_ENTRIES, ALL_WRITE)	|
    190			P4_ESCR_EMASK_BIT(P4_EVENT_IOQ_ACTIVE_ENTRIES, MEM_UC)		|
    191			P4_ESCR_EMASK_BIT(P4_EVENT_IOQ_ACTIVE_ENTRIES, MEM_WC)		|
    192			P4_ESCR_EMASK_BIT(P4_EVENT_IOQ_ACTIVE_ENTRIES, MEM_WT)		|
    193			P4_ESCR_EMASK_BIT(P4_EVENT_IOQ_ACTIVE_ENTRIES, MEM_WP)		|
    194			P4_ESCR_EMASK_BIT(P4_EVENT_IOQ_ACTIVE_ENTRIES, MEM_WB)		|
    195			P4_ESCR_EMASK_BIT(P4_EVENT_IOQ_ACTIVE_ENTRIES, OWN)		|
    196			P4_ESCR_EMASK_BIT(P4_EVENT_IOQ_ACTIVE_ENTRIES, OTHER)		|
    197			P4_ESCR_EMASK_BIT(P4_EVENT_IOQ_ACTIVE_ENTRIES, PREFETCH),
    198		.cntr		= { {2, -1, -1}, {3, -1, -1} },
    199	},
    200	[P4_EVENT_FSB_DATA_ACTIVITY] = {
    201		.opcode		= P4_OPCODE(P4_EVENT_FSB_DATA_ACTIVITY),
    202		.escr_msr	= { MSR_P4_FSB_ESCR0, MSR_P4_FSB_ESCR1 },
    203		.escr_emask	=
    204			P4_ESCR_EMASK_BIT(P4_EVENT_FSB_DATA_ACTIVITY, DRDY_DRV)		|
    205			P4_ESCR_EMASK_BIT(P4_EVENT_FSB_DATA_ACTIVITY, DRDY_OWN)		|
    206			P4_ESCR_EMASK_BIT(P4_EVENT_FSB_DATA_ACTIVITY, DRDY_OTHER)	|
    207			P4_ESCR_EMASK_BIT(P4_EVENT_FSB_DATA_ACTIVITY, DBSY_DRV)		|
    208			P4_ESCR_EMASK_BIT(P4_EVENT_FSB_DATA_ACTIVITY, DBSY_OWN)		|
    209			P4_ESCR_EMASK_BIT(P4_EVENT_FSB_DATA_ACTIVITY, DBSY_OTHER),
    210		.shared		= 1,
    211		.cntr		= { {0, -1, -1}, {2, -1, -1} },
    212	},
    213	[P4_EVENT_BSQ_ALLOCATION] = {		/* shared ESCR, broken CCCR1 */
    214		.opcode		= P4_OPCODE(P4_EVENT_BSQ_ALLOCATION),
    215		.escr_msr	= { MSR_P4_BSU_ESCR0, MSR_P4_BSU_ESCR0 },
    216		.escr_emask	=
    217			P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_ALLOCATION, REQ_TYPE0)		|
    218			P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_ALLOCATION, REQ_TYPE1)		|
    219			P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_ALLOCATION, REQ_LEN0)		|
    220			P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_ALLOCATION, REQ_LEN1)		|
    221			P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_ALLOCATION, REQ_IO_TYPE)		|
    222			P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_ALLOCATION, REQ_LOCK_TYPE)	|
    223			P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_ALLOCATION, REQ_CACHE_TYPE)	|
    224			P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_ALLOCATION, REQ_SPLIT_TYPE)	|
    225			P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_ALLOCATION, REQ_DEM_TYPE)	|
    226			P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_ALLOCATION, REQ_ORD_TYPE)	|
    227			P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_ALLOCATION, MEM_TYPE0)		|
    228			P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_ALLOCATION, MEM_TYPE1)		|
    229			P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_ALLOCATION, MEM_TYPE2),
    230		.cntr		= { {0, -1, -1}, {1, -1, -1} },
    231	},
    232	[P4_EVENT_BSQ_ACTIVE_ENTRIES] = {	/* shared ESCR */
    233		.opcode		= P4_OPCODE(P4_EVENT_BSQ_ACTIVE_ENTRIES),
    234		.escr_msr	= { MSR_P4_BSU_ESCR1 , MSR_P4_BSU_ESCR1 },
    235		.escr_emask	=
    236			P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_ACTIVE_ENTRIES, REQ_TYPE0)	|
    237			P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_ACTIVE_ENTRIES, REQ_TYPE1)	|
    238			P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_ACTIVE_ENTRIES, REQ_LEN0)	|
    239			P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_ACTIVE_ENTRIES, REQ_LEN1)	|
    240			P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_ACTIVE_ENTRIES, REQ_IO_TYPE)	|
    241			P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_ACTIVE_ENTRIES, REQ_LOCK_TYPE)	|
    242			P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_ACTIVE_ENTRIES, REQ_CACHE_TYPE)	|
    243			P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_ACTIVE_ENTRIES, REQ_SPLIT_TYPE)	|
    244			P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_ACTIVE_ENTRIES, REQ_DEM_TYPE)	|
    245			P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_ACTIVE_ENTRIES, REQ_ORD_TYPE)	|
    246			P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_ACTIVE_ENTRIES, MEM_TYPE0)	|
    247			P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_ACTIVE_ENTRIES, MEM_TYPE1)	|
    248			P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_ACTIVE_ENTRIES, MEM_TYPE2),
    249		.cntr		= { {2, -1, -1}, {3, -1, -1} },
    250	},
    251	[P4_EVENT_SSE_INPUT_ASSIST] = {
    252		.opcode		= P4_OPCODE(P4_EVENT_SSE_INPUT_ASSIST),
    253		.escr_msr	= { MSR_P4_FIRM_ESCR0, MSR_P4_FIRM_ESCR1 },
    254		.escr_emask	=
    255			P4_ESCR_EMASK_BIT(P4_EVENT_SSE_INPUT_ASSIST, ALL),
    256		.shared		= 1,
    257		.cntr		= { {8, 9, -1}, {10, 11, -1} },
    258	},
    259	[P4_EVENT_PACKED_SP_UOP] = {
    260		.opcode		= P4_OPCODE(P4_EVENT_PACKED_SP_UOP),
    261		.escr_msr	= { MSR_P4_FIRM_ESCR0, MSR_P4_FIRM_ESCR1 },
    262		.escr_emask	=
    263			P4_ESCR_EMASK_BIT(P4_EVENT_PACKED_SP_UOP, ALL),
    264		.shared		= 1,
    265		.cntr		= { {8, 9, -1}, {10, 11, -1} },
    266	},
    267	[P4_EVENT_PACKED_DP_UOP] = {
    268		.opcode		= P4_OPCODE(P4_EVENT_PACKED_DP_UOP),
    269		.escr_msr	= { MSR_P4_FIRM_ESCR0, MSR_P4_FIRM_ESCR1 },
    270		.escr_emask	=
    271			P4_ESCR_EMASK_BIT(P4_EVENT_PACKED_DP_UOP, ALL),
    272		.shared		= 1,
    273		.cntr		= { {8, 9, -1}, {10, 11, -1} },
    274	},
    275	[P4_EVENT_SCALAR_SP_UOP] = {
    276		.opcode		= P4_OPCODE(P4_EVENT_SCALAR_SP_UOP),
    277		.escr_msr	= { MSR_P4_FIRM_ESCR0, MSR_P4_FIRM_ESCR1 },
    278		.escr_emask	=
    279			P4_ESCR_EMASK_BIT(P4_EVENT_SCALAR_SP_UOP, ALL),
    280		.shared		= 1,
    281		.cntr		= { {8, 9, -1}, {10, 11, -1} },
    282	},
    283	[P4_EVENT_SCALAR_DP_UOP] = {
    284		.opcode		= P4_OPCODE(P4_EVENT_SCALAR_DP_UOP),
    285		.escr_msr	= { MSR_P4_FIRM_ESCR0, MSR_P4_FIRM_ESCR1 },
    286		.escr_emask	=
    287			P4_ESCR_EMASK_BIT(P4_EVENT_SCALAR_DP_UOP, ALL),
    288		.shared		= 1,
    289		.cntr		= { {8, 9, -1}, {10, 11, -1} },
    290	},
    291	[P4_EVENT_64BIT_MMX_UOP] = {
    292		.opcode		= P4_OPCODE(P4_EVENT_64BIT_MMX_UOP),
    293		.escr_msr	= { MSR_P4_FIRM_ESCR0, MSR_P4_FIRM_ESCR1 },
    294		.escr_emask	=
    295			P4_ESCR_EMASK_BIT(P4_EVENT_64BIT_MMX_UOP, ALL),
    296		.shared		= 1,
    297		.cntr		= { {8, 9, -1}, {10, 11, -1} },
    298	},
    299	[P4_EVENT_128BIT_MMX_UOP] = {
    300		.opcode		= P4_OPCODE(P4_EVENT_128BIT_MMX_UOP),
    301		.escr_msr	= { MSR_P4_FIRM_ESCR0, MSR_P4_FIRM_ESCR1 },
    302		.escr_emask	=
    303			P4_ESCR_EMASK_BIT(P4_EVENT_128BIT_MMX_UOP, ALL),
    304		.shared		= 1,
    305		.cntr		= { {8, 9, -1}, {10, 11, -1} },
    306	},
    307	[P4_EVENT_X87_FP_UOP] = {
    308		.opcode		= P4_OPCODE(P4_EVENT_X87_FP_UOP),
    309		.escr_msr	= { MSR_P4_FIRM_ESCR0, MSR_P4_FIRM_ESCR1 },
    310		.escr_emask	=
    311			P4_ESCR_EMASK_BIT(P4_EVENT_X87_FP_UOP, ALL),
    312		.shared		= 1,
    313		.cntr		= { {8, 9, -1}, {10, 11, -1} },
    314	},
    315	[P4_EVENT_TC_MISC] = {
    316		.opcode		= P4_OPCODE(P4_EVENT_TC_MISC),
    317		.escr_msr	= { MSR_P4_TC_ESCR0, MSR_P4_TC_ESCR1 },
    318		.escr_emask	=
    319			P4_ESCR_EMASK_BIT(P4_EVENT_TC_MISC, FLUSH),
    320		.cntr		= { {4, 5, -1}, {6, 7, -1} },
    321	},
    322	[P4_EVENT_GLOBAL_POWER_EVENTS] = {
    323		.opcode		= P4_OPCODE(P4_EVENT_GLOBAL_POWER_EVENTS),
    324		.escr_msr	= { MSR_P4_FSB_ESCR0, MSR_P4_FSB_ESCR1 },
    325		.escr_emask	=
    326			P4_ESCR_EMASK_BIT(P4_EVENT_GLOBAL_POWER_EVENTS, RUNNING),
    327		.cntr		= { {0, -1, -1}, {2, -1, -1} },
    328	},
    329	[P4_EVENT_TC_MS_XFER] = {
    330		.opcode		= P4_OPCODE(P4_EVENT_TC_MS_XFER),
    331		.escr_msr	= { MSR_P4_MS_ESCR0, MSR_P4_MS_ESCR1 },
    332		.escr_emask	=
    333			P4_ESCR_EMASK_BIT(P4_EVENT_TC_MS_XFER, CISC),
    334		.cntr		= { {4, 5, -1}, {6, 7, -1} },
    335	},
    336	[P4_EVENT_UOP_QUEUE_WRITES] = {
    337		.opcode		= P4_OPCODE(P4_EVENT_UOP_QUEUE_WRITES),
    338		.escr_msr	= { MSR_P4_MS_ESCR0, MSR_P4_MS_ESCR1 },
    339		.escr_emask	=
    340			P4_ESCR_EMASK_BIT(P4_EVENT_UOP_QUEUE_WRITES, FROM_TC_BUILD)	|
    341			P4_ESCR_EMASK_BIT(P4_EVENT_UOP_QUEUE_WRITES, FROM_TC_DELIVER)	|
    342			P4_ESCR_EMASK_BIT(P4_EVENT_UOP_QUEUE_WRITES, FROM_ROM),
    343		.cntr		= { {4, 5, -1}, {6, 7, -1} },
    344	},
    345	[P4_EVENT_RETIRED_MISPRED_BRANCH_TYPE] = {
    346		.opcode		= P4_OPCODE(P4_EVENT_RETIRED_MISPRED_BRANCH_TYPE),
    347		.escr_msr	= { MSR_P4_TBPU_ESCR0 , MSR_P4_TBPU_ESCR0 },
    348		.escr_emask	=
    349			P4_ESCR_EMASK_BIT(P4_EVENT_RETIRED_MISPRED_BRANCH_TYPE, CONDITIONAL)	|
    350			P4_ESCR_EMASK_BIT(P4_EVENT_RETIRED_MISPRED_BRANCH_TYPE, CALL)		|
    351			P4_ESCR_EMASK_BIT(P4_EVENT_RETIRED_MISPRED_BRANCH_TYPE, RETURN)		|
    352			P4_ESCR_EMASK_BIT(P4_EVENT_RETIRED_MISPRED_BRANCH_TYPE, INDIRECT),
    353		.cntr		= { {4, 5, -1}, {6, 7, -1} },
    354	},
    355	[P4_EVENT_RETIRED_BRANCH_TYPE] = {
    356		.opcode		= P4_OPCODE(P4_EVENT_RETIRED_BRANCH_TYPE),
    357		.escr_msr	= { MSR_P4_TBPU_ESCR0 , MSR_P4_TBPU_ESCR1 },
    358		.escr_emask	=
    359			P4_ESCR_EMASK_BIT(P4_EVENT_RETIRED_BRANCH_TYPE, CONDITIONAL)	|
    360			P4_ESCR_EMASK_BIT(P4_EVENT_RETIRED_BRANCH_TYPE, CALL)		|
    361			P4_ESCR_EMASK_BIT(P4_EVENT_RETIRED_BRANCH_TYPE, RETURN)		|
    362			P4_ESCR_EMASK_BIT(P4_EVENT_RETIRED_BRANCH_TYPE, INDIRECT),
    363		.cntr		= { {4, 5, -1}, {6, 7, -1} },
    364	},
    365	[P4_EVENT_RESOURCE_STALL] = {
    366		.opcode		= P4_OPCODE(P4_EVENT_RESOURCE_STALL),
    367		.escr_msr	= { MSR_P4_ALF_ESCR0, MSR_P4_ALF_ESCR1 },
    368		.escr_emask	=
    369			P4_ESCR_EMASK_BIT(P4_EVENT_RESOURCE_STALL, SBFULL),
    370		.cntr		= { {12, 13, 16}, {14, 15, 17} },
    371	},
    372	[P4_EVENT_WC_BUFFER] = {
    373		.opcode		= P4_OPCODE(P4_EVENT_WC_BUFFER),
    374		.escr_msr	= { MSR_P4_DAC_ESCR0, MSR_P4_DAC_ESCR1 },
    375		.escr_emask	=
    376			P4_ESCR_EMASK_BIT(P4_EVENT_WC_BUFFER, WCB_EVICTS)		|
    377			P4_ESCR_EMASK_BIT(P4_EVENT_WC_BUFFER, WCB_FULL_EVICTS),
    378		.shared		= 1,
    379		.cntr		= { {8, 9, -1}, {10, 11, -1} },
    380	},
    381	[P4_EVENT_B2B_CYCLES] = {
    382		.opcode		= P4_OPCODE(P4_EVENT_B2B_CYCLES),
    383		.escr_msr	= { MSR_P4_FSB_ESCR0, MSR_P4_FSB_ESCR1 },
    384		.escr_emask	= 0,
    385		.cntr		= { {0, -1, -1}, {2, -1, -1} },
    386	},
    387	[P4_EVENT_BNR] = {
    388		.opcode		= P4_OPCODE(P4_EVENT_BNR),
    389		.escr_msr	= { MSR_P4_FSB_ESCR0, MSR_P4_FSB_ESCR1 },
    390		.escr_emask	= 0,
    391		.cntr		= { {0, -1, -1}, {2, -1, -1} },
    392	},
    393	[P4_EVENT_SNOOP] = {
    394		.opcode		= P4_OPCODE(P4_EVENT_SNOOP),
    395		.escr_msr	= { MSR_P4_FSB_ESCR0, MSR_P4_FSB_ESCR1 },
    396		.escr_emask	= 0,
    397		.cntr		= { {0, -1, -1}, {2, -1, -1} },
    398	},
    399	[P4_EVENT_RESPONSE] = {
    400		.opcode		= P4_OPCODE(P4_EVENT_RESPONSE),
    401		.escr_msr	= { MSR_P4_FSB_ESCR0, MSR_P4_FSB_ESCR1 },
    402		.escr_emask	= 0,
    403		.cntr		= { {0, -1, -1}, {2, -1, -1} },
    404	},
    405	[P4_EVENT_FRONT_END_EVENT] = {
    406		.opcode		= P4_OPCODE(P4_EVENT_FRONT_END_EVENT),
    407		.escr_msr	= { MSR_P4_CRU_ESCR2, MSR_P4_CRU_ESCR3 },
    408		.escr_emask	=
    409			P4_ESCR_EMASK_BIT(P4_EVENT_FRONT_END_EVENT, NBOGUS)		|
    410			P4_ESCR_EMASK_BIT(P4_EVENT_FRONT_END_EVENT, BOGUS),
    411		.cntr		= { {12, 13, 16}, {14, 15, 17} },
    412	},
    413	[P4_EVENT_EXECUTION_EVENT] = {
    414		.opcode		= P4_OPCODE(P4_EVENT_EXECUTION_EVENT),
    415		.escr_msr	= { MSR_P4_CRU_ESCR2, MSR_P4_CRU_ESCR3 },
    416		.escr_emask	=
    417			P4_ESCR_EMASK_BIT(P4_EVENT_EXECUTION_EVENT, NBOGUS0)		|
    418			P4_ESCR_EMASK_BIT(P4_EVENT_EXECUTION_EVENT, NBOGUS1)		|
    419			P4_ESCR_EMASK_BIT(P4_EVENT_EXECUTION_EVENT, NBOGUS2)		|
    420			P4_ESCR_EMASK_BIT(P4_EVENT_EXECUTION_EVENT, NBOGUS3)		|
    421			P4_ESCR_EMASK_BIT(P4_EVENT_EXECUTION_EVENT, BOGUS0)		|
    422			P4_ESCR_EMASK_BIT(P4_EVENT_EXECUTION_EVENT, BOGUS1)		|
    423			P4_ESCR_EMASK_BIT(P4_EVENT_EXECUTION_EVENT, BOGUS2)		|
    424			P4_ESCR_EMASK_BIT(P4_EVENT_EXECUTION_EVENT, BOGUS3),
    425		.cntr		= { {12, 13, 16}, {14, 15, 17} },
    426	},
    427	[P4_EVENT_REPLAY_EVENT] = {
    428		.opcode		= P4_OPCODE(P4_EVENT_REPLAY_EVENT),
    429		.escr_msr	= { MSR_P4_CRU_ESCR2, MSR_P4_CRU_ESCR3 },
    430		.escr_emask	=
    431			P4_ESCR_EMASK_BIT(P4_EVENT_REPLAY_EVENT, NBOGUS)		|
    432			P4_ESCR_EMASK_BIT(P4_EVENT_REPLAY_EVENT, BOGUS),
    433		.cntr		= { {12, 13, 16}, {14, 15, 17} },
    434	},
    435	[P4_EVENT_INSTR_RETIRED] = {
    436		.opcode		= P4_OPCODE(P4_EVENT_INSTR_RETIRED),
    437		.escr_msr	= { MSR_P4_CRU_ESCR0, MSR_P4_CRU_ESCR1 },
    438		.escr_emask	=
    439			P4_ESCR_EMASK_BIT(P4_EVENT_INSTR_RETIRED, NBOGUSNTAG)		|
    440			P4_ESCR_EMASK_BIT(P4_EVENT_INSTR_RETIRED, NBOGUSTAG)		|
    441			P4_ESCR_EMASK_BIT(P4_EVENT_INSTR_RETIRED, BOGUSNTAG)		|
    442			P4_ESCR_EMASK_BIT(P4_EVENT_INSTR_RETIRED, BOGUSTAG),
    443		.cntr		= { {12, 13, 16}, {14, 15, 17} },
    444	},
    445	[P4_EVENT_UOPS_RETIRED] = {
    446		.opcode		= P4_OPCODE(P4_EVENT_UOPS_RETIRED),
    447		.escr_msr	= { MSR_P4_CRU_ESCR0, MSR_P4_CRU_ESCR1 },
    448		.escr_emask	=
    449			P4_ESCR_EMASK_BIT(P4_EVENT_UOPS_RETIRED, NBOGUS)		|
    450			P4_ESCR_EMASK_BIT(P4_EVENT_UOPS_RETIRED, BOGUS),
    451		.cntr		= { {12, 13, 16}, {14, 15, 17} },
    452	},
    453	[P4_EVENT_UOP_TYPE] = {
    454		.opcode		= P4_OPCODE(P4_EVENT_UOP_TYPE),
    455		.escr_msr	= { MSR_P4_RAT_ESCR0, MSR_P4_RAT_ESCR1 },
    456		.escr_emask	=
    457			P4_ESCR_EMASK_BIT(P4_EVENT_UOP_TYPE, TAGLOADS)			|
    458			P4_ESCR_EMASK_BIT(P4_EVENT_UOP_TYPE, TAGSTORES),
    459		.cntr		= { {12, 13, 16}, {14, 15, 17} },
    460	},
    461	[P4_EVENT_BRANCH_RETIRED] = {
    462		.opcode		= P4_OPCODE(P4_EVENT_BRANCH_RETIRED),
    463		.escr_msr	= { MSR_P4_CRU_ESCR2, MSR_P4_CRU_ESCR3 },
    464		.escr_emask	=
    465			P4_ESCR_EMASK_BIT(P4_EVENT_BRANCH_RETIRED, MMNP)		|
    466			P4_ESCR_EMASK_BIT(P4_EVENT_BRANCH_RETIRED, MMNM)		|
    467			P4_ESCR_EMASK_BIT(P4_EVENT_BRANCH_RETIRED, MMTP)		|
    468			P4_ESCR_EMASK_BIT(P4_EVENT_BRANCH_RETIRED, MMTM),
    469		.cntr		= { {12, 13, 16}, {14, 15, 17} },
    470	},
    471	[P4_EVENT_MISPRED_BRANCH_RETIRED] = {
    472		.opcode		= P4_OPCODE(P4_EVENT_MISPRED_BRANCH_RETIRED),
    473		.escr_msr	= { MSR_P4_CRU_ESCR0, MSR_P4_CRU_ESCR1 },
    474		.escr_emask	=
    475			P4_ESCR_EMASK_BIT(P4_EVENT_MISPRED_BRANCH_RETIRED, NBOGUS),
    476		.cntr		= { {12, 13, 16}, {14, 15, 17} },
    477	},
    478	[P4_EVENT_X87_ASSIST] = {
    479		.opcode		= P4_OPCODE(P4_EVENT_X87_ASSIST),
    480		.escr_msr	= { MSR_P4_CRU_ESCR2, MSR_P4_CRU_ESCR3 },
    481		.escr_emask	=
    482			P4_ESCR_EMASK_BIT(P4_EVENT_X87_ASSIST, FPSU)			|
    483			P4_ESCR_EMASK_BIT(P4_EVENT_X87_ASSIST, FPSO)			|
    484			P4_ESCR_EMASK_BIT(P4_EVENT_X87_ASSIST, POAO)			|
    485			P4_ESCR_EMASK_BIT(P4_EVENT_X87_ASSIST, POAU)			|
    486			P4_ESCR_EMASK_BIT(P4_EVENT_X87_ASSIST, PREA),
    487		.cntr		= { {12, 13, 16}, {14, 15, 17} },
    488	},
    489	[P4_EVENT_MACHINE_CLEAR] = {
    490		.opcode		= P4_OPCODE(P4_EVENT_MACHINE_CLEAR),
    491		.escr_msr	= { MSR_P4_CRU_ESCR2, MSR_P4_CRU_ESCR3 },
    492		.escr_emask	=
    493			P4_ESCR_EMASK_BIT(P4_EVENT_MACHINE_CLEAR, CLEAR)		|
    494			P4_ESCR_EMASK_BIT(P4_EVENT_MACHINE_CLEAR, MOCLEAR)		|
    495			P4_ESCR_EMASK_BIT(P4_EVENT_MACHINE_CLEAR, SMCLEAR),
    496		.cntr		= { {12, 13, 16}, {14, 15, 17} },
    497	},
    498	[P4_EVENT_INSTR_COMPLETED] = {
    499		.opcode		= P4_OPCODE(P4_EVENT_INSTR_COMPLETED),
    500		.escr_msr	= { MSR_P4_CRU_ESCR0, MSR_P4_CRU_ESCR1 },
    501		.escr_emask	=
    502			P4_ESCR_EMASK_BIT(P4_EVENT_INSTR_COMPLETED, NBOGUS)		|
    503			P4_ESCR_EMASK_BIT(P4_EVENT_INSTR_COMPLETED, BOGUS),
    504		.cntr		= { {12, 13, 16}, {14, 15, 17} },
    505	},
    506};
    507
    508#define P4_GEN_CACHE_EVENT(event, bit, metric)				  \
    509	p4_config_pack_escr(P4_ESCR_EVENT(event)			| \
    510			    P4_ESCR_EMASK_BIT(event, bit))		| \
    511	p4_config_pack_cccr(metric					| \
    512			    P4_CCCR_ESEL(P4_OPCODE_ESEL(P4_OPCODE(event))))
    513
    514static __initconst const u64 p4_hw_cache_event_ids
    515				[PERF_COUNT_HW_CACHE_MAX]
    516				[PERF_COUNT_HW_CACHE_OP_MAX]
    517				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
    518{
    519 [ C(L1D ) ] = {
    520	[ C(OP_READ) ] = {
    521		[ C(RESULT_ACCESS) ] = 0x0,
    522		[ C(RESULT_MISS)   ] = P4_GEN_CACHE_EVENT(P4_EVENT_REPLAY_EVENT, NBOGUS,
    523						P4_PEBS_METRIC__1stl_cache_load_miss_retired),
    524	},
    525 },
    526 [ C(LL  ) ] = {
    527	[ C(OP_READ) ] = {
    528		[ C(RESULT_ACCESS) ] = 0x0,
    529		[ C(RESULT_MISS)   ] = P4_GEN_CACHE_EVENT(P4_EVENT_REPLAY_EVENT, NBOGUS,
    530						P4_PEBS_METRIC__2ndl_cache_load_miss_retired),
    531	},
    532},
    533 [ C(DTLB) ] = {
    534	[ C(OP_READ) ] = {
    535		[ C(RESULT_ACCESS) ] = 0x0,
    536		[ C(RESULT_MISS)   ] = P4_GEN_CACHE_EVENT(P4_EVENT_REPLAY_EVENT, NBOGUS,
    537						P4_PEBS_METRIC__dtlb_load_miss_retired),
    538	},
    539	[ C(OP_WRITE) ] = {
    540		[ C(RESULT_ACCESS) ] = 0x0,
    541		[ C(RESULT_MISS)   ] = P4_GEN_CACHE_EVENT(P4_EVENT_REPLAY_EVENT, NBOGUS,
    542						P4_PEBS_METRIC__dtlb_store_miss_retired),
    543	},
    544 },
    545 [ C(ITLB) ] = {
    546	[ C(OP_READ) ] = {
    547		[ C(RESULT_ACCESS) ] = P4_GEN_CACHE_EVENT(P4_EVENT_ITLB_REFERENCE, HIT,
    548						P4_PEBS_METRIC__none),
    549		[ C(RESULT_MISS)   ] = P4_GEN_CACHE_EVENT(P4_EVENT_ITLB_REFERENCE, MISS,
    550						P4_PEBS_METRIC__none),
    551	},
    552	[ C(OP_WRITE) ] = {
    553		[ C(RESULT_ACCESS) ] = -1,
    554		[ C(RESULT_MISS)   ] = -1,
    555	},
    556	[ C(OP_PREFETCH) ] = {
    557		[ C(RESULT_ACCESS) ] = -1,
    558		[ C(RESULT_MISS)   ] = -1,
    559	},
    560 },
    561 [ C(NODE) ] = {
    562	[ C(OP_READ) ] = {
    563		[ C(RESULT_ACCESS) ] = -1,
    564		[ C(RESULT_MISS)   ] = -1,
    565	},
    566	[ C(OP_WRITE) ] = {
    567		[ C(RESULT_ACCESS) ] = -1,
    568		[ C(RESULT_MISS)   ] = -1,
    569	},
    570	[ C(OP_PREFETCH) ] = {
    571		[ C(RESULT_ACCESS) ] = -1,
    572		[ C(RESULT_MISS)   ] = -1,
    573	},
    574 },
    575};
    576
    577/*
    578 * Because of Netburst being quite restricted in how many
    579 * identical events may run simultaneously, we introduce event aliases,
    580 * ie the different events which have the same functionality but
    581 * utilize non-intersected resources (ESCR/CCCR/counter registers).
    582 *
    583 * This allow us to relax restrictions a bit and run two or more
    584 * identical events together.
    585 *
    586 * Never set any custom internal bits such as P4_CONFIG_HT,
    587 * P4_CONFIG_ALIASABLE or bits for P4_PEBS_METRIC, they are
    588 * either up to date automatically or not applicable at all.
    589 */
    590static struct p4_event_alias {
    591	u64 original;
    592	u64 alternative;
    593} p4_event_aliases[] = {
    594	{
    595		/*
    596		 * Non-halted cycles can be substituted with non-sleeping cycles (see
    597		 * Intel SDM Vol3b for details). We need this alias to be able
    598		 * to run nmi-watchdog and 'perf top' (or any other user space tool
    599		 * which is interested in running PERF_COUNT_HW_CPU_CYCLES)
    600		 * simultaneously.
    601		 */
    602	.original	=
    603		p4_config_pack_escr(P4_ESCR_EVENT(P4_EVENT_GLOBAL_POWER_EVENTS)		|
    604				    P4_ESCR_EMASK_BIT(P4_EVENT_GLOBAL_POWER_EVENTS, RUNNING)),
    605	.alternative	=
    606		p4_config_pack_escr(P4_ESCR_EVENT(P4_EVENT_EXECUTION_EVENT)		|
    607				    P4_ESCR_EMASK_BIT(P4_EVENT_EXECUTION_EVENT, NBOGUS0)|
    608				    P4_ESCR_EMASK_BIT(P4_EVENT_EXECUTION_EVENT, NBOGUS1)|
    609				    P4_ESCR_EMASK_BIT(P4_EVENT_EXECUTION_EVENT, NBOGUS2)|
    610				    P4_ESCR_EMASK_BIT(P4_EVENT_EXECUTION_EVENT, NBOGUS3)|
    611				    P4_ESCR_EMASK_BIT(P4_EVENT_EXECUTION_EVENT, BOGUS0)	|
    612				    P4_ESCR_EMASK_BIT(P4_EVENT_EXECUTION_EVENT, BOGUS1)	|
    613				    P4_ESCR_EMASK_BIT(P4_EVENT_EXECUTION_EVENT, BOGUS2)	|
    614				    P4_ESCR_EMASK_BIT(P4_EVENT_EXECUTION_EVENT, BOGUS3))|
    615		p4_config_pack_cccr(P4_CCCR_THRESHOLD(15) | P4_CCCR_COMPLEMENT		|
    616				    P4_CCCR_COMPARE),
    617	},
    618};
    619
    620static u64 p4_get_alias_event(u64 config)
    621{
    622	u64 config_match;
    623	int i;
    624
    625	/*
    626	 * Only event with special mark is allowed,
    627	 * we're to be sure it didn't come as malformed
    628	 * RAW event.
    629	 */
    630	if (!(config & P4_CONFIG_ALIASABLE))
    631		return 0;
    632
    633	config_match = config & P4_CONFIG_EVENT_ALIAS_MASK;
    634
    635	for (i = 0; i < ARRAY_SIZE(p4_event_aliases); i++) {
    636		if (config_match == p4_event_aliases[i].original) {
    637			config_match = p4_event_aliases[i].alternative;
    638			break;
    639		} else if (config_match == p4_event_aliases[i].alternative) {
    640			config_match = p4_event_aliases[i].original;
    641			break;
    642		}
    643	}
    644
    645	if (i >= ARRAY_SIZE(p4_event_aliases))
    646		return 0;
    647
    648	return config_match | (config & P4_CONFIG_EVENT_ALIAS_IMMUTABLE_BITS);
    649}
    650
    651static u64 p4_general_events[PERF_COUNT_HW_MAX] = {
    652  /* non-halted CPU clocks */
    653  [PERF_COUNT_HW_CPU_CYCLES] =
    654	p4_config_pack_escr(P4_ESCR_EVENT(P4_EVENT_GLOBAL_POWER_EVENTS)		|
    655		P4_ESCR_EMASK_BIT(P4_EVENT_GLOBAL_POWER_EVENTS, RUNNING))	|
    656		P4_CONFIG_ALIASABLE,
    657
    658  /*
    659   * retired instructions
    660   * in a sake of simplicity we don't use the FSB tagging
    661   */
    662  [PERF_COUNT_HW_INSTRUCTIONS] =
    663	p4_config_pack_escr(P4_ESCR_EVENT(P4_EVENT_INSTR_RETIRED)		|
    664		P4_ESCR_EMASK_BIT(P4_EVENT_INSTR_RETIRED, NBOGUSNTAG)		|
    665		P4_ESCR_EMASK_BIT(P4_EVENT_INSTR_RETIRED, BOGUSNTAG)),
    666
    667  /* cache hits */
    668  [PERF_COUNT_HW_CACHE_REFERENCES] =
    669	p4_config_pack_escr(P4_ESCR_EVENT(P4_EVENT_BSQ_CACHE_REFERENCE)		|
    670		P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_CACHE_REFERENCE, RD_2ndL_HITS)	|
    671		P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_CACHE_REFERENCE, RD_2ndL_HITE)	|
    672		P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_CACHE_REFERENCE, RD_2ndL_HITM)	|
    673		P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_CACHE_REFERENCE, RD_3rdL_HITS)	|
    674		P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_CACHE_REFERENCE, RD_3rdL_HITE)	|
    675		P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_CACHE_REFERENCE, RD_3rdL_HITM)),
    676
    677  /* cache misses */
    678  [PERF_COUNT_HW_CACHE_MISSES] =
    679	p4_config_pack_escr(P4_ESCR_EVENT(P4_EVENT_BSQ_CACHE_REFERENCE)		|
    680		P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_CACHE_REFERENCE, RD_2ndL_MISS)	|
    681		P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_CACHE_REFERENCE, RD_3rdL_MISS)	|
    682		P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_CACHE_REFERENCE, WR_2ndL_MISS)),
    683
    684  /* branch instructions retired */
    685  [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] =
    686	p4_config_pack_escr(P4_ESCR_EVENT(P4_EVENT_RETIRED_BRANCH_TYPE)		|
    687		P4_ESCR_EMASK_BIT(P4_EVENT_RETIRED_BRANCH_TYPE, CONDITIONAL)	|
    688		P4_ESCR_EMASK_BIT(P4_EVENT_RETIRED_BRANCH_TYPE, CALL)		|
    689		P4_ESCR_EMASK_BIT(P4_EVENT_RETIRED_BRANCH_TYPE, RETURN)		|
    690		P4_ESCR_EMASK_BIT(P4_EVENT_RETIRED_BRANCH_TYPE, INDIRECT)),
    691
    692  /* mispredicted branches retired */
    693  [PERF_COUNT_HW_BRANCH_MISSES]	=
    694	p4_config_pack_escr(P4_ESCR_EVENT(P4_EVENT_MISPRED_BRANCH_RETIRED)	|
    695		P4_ESCR_EMASK_BIT(P4_EVENT_MISPRED_BRANCH_RETIRED, NBOGUS)),
    696
    697  /* bus ready clocks (cpu is driving #DRDY_DRV\#DRDY_OWN):  */
    698  [PERF_COUNT_HW_BUS_CYCLES] =
    699	p4_config_pack_escr(P4_ESCR_EVENT(P4_EVENT_FSB_DATA_ACTIVITY)		|
    700		P4_ESCR_EMASK_BIT(P4_EVENT_FSB_DATA_ACTIVITY, DRDY_DRV)		|
    701		P4_ESCR_EMASK_BIT(P4_EVENT_FSB_DATA_ACTIVITY, DRDY_OWN))	|
    702	p4_config_pack_cccr(P4_CCCR_EDGE | P4_CCCR_COMPARE),
    703};
    704
    705static struct p4_event_bind *p4_config_get_bind(u64 config)
    706{
    707	unsigned int evnt = p4_config_unpack_event(config);
    708	struct p4_event_bind *bind = NULL;
    709
    710	if (evnt < ARRAY_SIZE(p4_event_bind_map))
    711		bind = &p4_event_bind_map[evnt];
    712
    713	return bind;
    714}
    715
    716static u64 p4_pmu_event_map(int hw_event)
    717{
    718	struct p4_event_bind *bind;
    719	unsigned int esel;
    720	u64 config;
    721
    722	config = p4_general_events[hw_event];
    723	bind = p4_config_get_bind(config);
    724	esel = P4_OPCODE_ESEL(bind->opcode);
    725	config |= p4_config_pack_cccr(P4_CCCR_ESEL(esel));
    726
    727	return config;
    728}
    729
    730/* check cpu model specifics */
    731static bool p4_event_match_cpu_model(unsigned int event_idx)
    732{
    733	/* INSTR_COMPLETED event only exist for model 3, 4, 6 (Prescott) */
    734	if (event_idx == P4_EVENT_INSTR_COMPLETED) {
    735		if (boot_cpu_data.x86_model != 3 &&
    736			boot_cpu_data.x86_model != 4 &&
    737			boot_cpu_data.x86_model != 6)
    738			return false;
    739	}
    740
    741	/*
    742	 * For info
    743	 * - IQ_ESCR0, IQ_ESCR1 only for models 1 and 2
    744	 */
    745
    746	return true;
    747}
    748
    749static int p4_validate_raw_event(struct perf_event *event)
    750{
    751	unsigned int v, emask;
    752
    753	/* User data may have out-of-bound event index */
    754	v = p4_config_unpack_event(event->attr.config);
    755	if (v >= ARRAY_SIZE(p4_event_bind_map))
    756		return -EINVAL;
    757
    758	/* It may be unsupported: */
    759	if (!p4_event_match_cpu_model(v))
    760		return -EINVAL;
    761
    762	/*
    763	 * NOTE: P4_CCCR_THREAD_ANY has not the same meaning as
    764	 * in Architectural Performance Monitoring, it means not
    765	 * on _which_ logical cpu to count but rather _when_, ie it
    766	 * depends on logical cpu state -- count event if one cpu active,
    767	 * none, both or any, so we just allow user to pass any value
    768	 * desired.
    769	 *
    770	 * In turn we always set Tx_OS/Tx_USR bits bound to logical
    771	 * cpu without their propagation to another cpu
    772	 */
    773
    774	/*
    775	 * if an event is shared across the logical threads
    776	 * the user needs special permissions to be able to use it
    777	 */
    778	if (p4_ht_active() && p4_event_bind_map[v].shared) {
    779		v = perf_allow_cpu(&event->attr);
    780		if (v)
    781			return v;
    782	}
    783
    784	/* ESCR EventMask bits may be invalid */
    785	emask = p4_config_unpack_escr(event->attr.config) & P4_ESCR_EVENTMASK_MASK;
    786	if (emask & ~p4_event_bind_map[v].escr_emask)
    787		return -EINVAL;
    788
    789	/*
    790	 * it may have some invalid PEBS bits
    791	 */
    792	if (p4_config_pebs_has(event->attr.config, P4_PEBS_CONFIG_ENABLE))
    793		return -EINVAL;
    794
    795	v = p4_config_unpack_metric(event->attr.config);
    796	if (v >= ARRAY_SIZE(p4_pebs_bind_map))
    797		return -EINVAL;
    798
    799	return 0;
    800}
    801
    802static int p4_hw_config(struct perf_event *event)
    803{
    804	int cpu = get_cpu();
    805	int rc = 0;
    806	u32 escr, cccr;
    807
    808	/*
    809	 * the reason we use cpu that early is that: if we get scheduled
    810	 * first time on the same cpu -- we will not need swap thread
    811	 * specific flags in config (and will save some cpu cycles)
    812	 */
    813
    814	cccr = p4_default_cccr_conf(cpu);
    815	escr = p4_default_escr_conf(cpu, event->attr.exclude_kernel,
    816					 event->attr.exclude_user);
    817	event->hw.config = p4_config_pack_escr(escr) |
    818			   p4_config_pack_cccr(cccr);
    819
    820	if (p4_ht_active() && p4_ht_thread(cpu))
    821		event->hw.config = p4_set_ht_bit(event->hw.config);
    822
    823	if (event->attr.type == PERF_TYPE_RAW) {
    824		struct p4_event_bind *bind;
    825		unsigned int esel;
    826		/*
    827		 * Clear bits we reserve to be managed by kernel itself
    828		 * and never allowed from a user space
    829		 */
    830		event->attr.config &= P4_CONFIG_MASK;
    831
    832		rc = p4_validate_raw_event(event);
    833		if (rc)
    834			goto out;
    835
    836		/*
    837		 * Note that for RAW events we allow user to use P4_CCCR_RESERVED
    838		 * bits since we keep additional info here (for cache events and etc)
    839		 */
    840		event->hw.config |= event->attr.config;
    841		bind = p4_config_get_bind(event->attr.config);
    842		if (!bind) {
    843			rc = -EINVAL;
    844			goto out;
    845		}
    846		esel = P4_OPCODE_ESEL(bind->opcode);
    847		event->hw.config |= p4_config_pack_cccr(P4_CCCR_ESEL(esel));
    848	}
    849
    850	rc = x86_setup_perfctr(event);
    851out:
    852	put_cpu();
    853	return rc;
    854}
    855
    856static inline int p4_pmu_clear_cccr_ovf(struct hw_perf_event *hwc)
    857{
    858	u64 v;
    859
    860	/* an official way for overflow indication */
    861	rdmsrl(hwc->config_base, v);
    862	if (v & P4_CCCR_OVF) {
    863		wrmsrl(hwc->config_base, v & ~P4_CCCR_OVF);
    864		return 1;
    865	}
    866
    867	/*
    868	 * In some circumstances the overflow might issue an NMI but did
    869	 * not set P4_CCCR_OVF bit. Because a counter holds a negative value
    870	 * we simply check for high bit being set, if it's cleared it means
    871	 * the counter has reached zero value and continued counting before
    872	 * real NMI signal was received:
    873	 */
    874	rdmsrl(hwc->event_base, v);
    875	if (!(v & ARCH_P4_UNFLAGGED_BIT))
    876		return 1;
    877
    878	return 0;
    879}
    880
    881static void p4_pmu_disable_pebs(void)
    882{
    883	/*
    884	 * FIXME
    885	 *
    886	 * It's still allowed that two threads setup same cache
    887	 * events so we can't simply clear metrics until we knew
    888	 * no one is depending on us, so we need kind of counter
    889	 * for "ReplayEvent" users.
    890	 *
    891	 * What is more complex -- RAW events, if user (for some
    892	 * reason) will pass some cache event metric with improper
    893	 * event opcode -- it's fine from hardware point of view
    894	 * but completely nonsense from "meaning" of such action.
    895	 *
    896	 * So at moment let leave metrics turned on forever -- it's
    897	 * ok for now but need to be revisited!
    898	 *
    899	 * (void)wrmsrl_safe(MSR_IA32_PEBS_ENABLE, 0);
    900	 * (void)wrmsrl_safe(MSR_P4_PEBS_MATRIX_VERT, 0);
    901	 */
    902}
    903
    904static inline void p4_pmu_disable_event(struct perf_event *event)
    905{
    906	struct hw_perf_event *hwc = &event->hw;
    907
    908	/*
    909	 * If event gets disabled while counter is in overflowed
    910	 * state we need to clear P4_CCCR_OVF, otherwise interrupt get
    911	 * asserted again and again
    912	 */
    913	(void)wrmsrl_safe(hwc->config_base,
    914		p4_config_unpack_cccr(hwc->config) & ~P4_CCCR_ENABLE & ~P4_CCCR_OVF & ~P4_CCCR_RESERVED);
    915}
    916
    917static void p4_pmu_disable_all(void)
    918{
    919	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
    920	int idx;
    921
    922	for (idx = 0; idx < x86_pmu.num_counters; idx++) {
    923		struct perf_event *event = cpuc->events[idx];
    924		if (!test_bit(idx, cpuc->active_mask))
    925			continue;
    926		p4_pmu_disable_event(event);
    927	}
    928
    929	p4_pmu_disable_pebs();
    930}
    931
    932/* configuration must be valid */
    933static void p4_pmu_enable_pebs(u64 config)
    934{
    935	struct p4_pebs_bind *bind;
    936	unsigned int idx;
    937
    938	BUILD_BUG_ON(P4_PEBS_METRIC__max > P4_PEBS_CONFIG_METRIC_MASK);
    939
    940	idx = p4_config_unpack_metric(config);
    941	if (idx == P4_PEBS_METRIC__none)
    942		return;
    943
    944	bind = &p4_pebs_bind_map[idx];
    945
    946	(void)wrmsrl_safe(MSR_IA32_PEBS_ENABLE,	(u64)bind->metric_pebs);
    947	(void)wrmsrl_safe(MSR_P4_PEBS_MATRIX_VERT,	(u64)bind->metric_vert);
    948}
    949
    950static void __p4_pmu_enable_event(struct perf_event *event)
    951{
    952	struct hw_perf_event *hwc = &event->hw;
    953	int thread = p4_ht_config_thread(hwc->config);
    954	u64 escr_conf = p4_config_unpack_escr(p4_clear_ht_bit(hwc->config));
    955	unsigned int idx = p4_config_unpack_event(hwc->config);
    956	struct p4_event_bind *bind;
    957	u64 escr_addr, cccr;
    958
    959	bind = &p4_event_bind_map[idx];
    960	escr_addr = bind->escr_msr[thread];
    961
    962	/*
    963	 * - we dont support cascaded counters yet
    964	 * - and counter 1 is broken (erratum)
    965	 */
    966	WARN_ON_ONCE(p4_is_event_cascaded(hwc->config));
    967	WARN_ON_ONCE(hwc->idx == 1);
    968
    969	/* we need a real Event value */
    970	escr_conf &= ~P4_ESCR_EVENT_MASK;
    971	escr_conf |= P4_ESCR_EVENT(P4_OPCODE_EVNT(bind->opcode));
    972
    973	cccr = p4_config_unpack_cccr(hwc->config);
    974
    975	/*
    976	 * it could be Cache event so we need to write metrics
    977	 * into additional MSRs
    978	 */
    979	p4_pmu_enable_pebs(hwc->config);
    980
    981	(void)wrmsrl_safe(escr_addr, escr_conf);
    982	(void)wrmsrl_safe(hwc->config_base,
    983				(cccr & ~P4_CCCR_RESERVED) | P4_CCCR_ENABLE);
    984}
    985
    986static DEFINE_PER_CPU(unsigned long [BITS_TO_LONGS(X86_PMC_IDX_MAX)], p4_running);
    987
    988static void p4_pmu_enable_event(struct perf_event *event)
    989{
    990	int idx = event->hw.idx;
    991
    992	__set_bit(idx, per_cpu(p4_running, smp_processor_id()));
    993	__p4_pmu_enable_event(event);
    994}
    995
    996static void p4_pmu_enable_all(int added)
    997{
    998	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
    999	int idx;
   1000
   1001	for (idx = 0; idx < x86_pmu.num_counters; idx++) {
   1002		struct perf_event *event = cpuc->events[idx];
   1003		if (!test_bit(idx, cpuc->active_mask))
   1004			continue;
   1005		__p4_pmu_enable_event(event);
   1006	}
   1007}
   1008
   1009static int p4_pmu_handle_irq(struct pt_regs *regs)
   1010{
   1011	struct perf_sample_data data;
   1012	struct cpu_hw_events *cpuc;
   1013	struct perf_event *event;
   1014	struct hw_perf_event *hwc;
   1015	int idx, handled = 0;
   1016	u64 val;
   1017
   1018	cpuc = this_cpu_ptr(&cpu_hw_events);
   1019
   1020	for (idx = 0; idx < x86_pmu.num_counters; idx++) {
   1021		int overflow;
   1022
   1023		if (!test_bit(idx, cpuc->active_mask)) {
   1024			/* catch in-flight IRQs */
   1025			if (__test_and_clear_bit(idx, per_cpu(p4_running, smp_processor_id())))
   1026				handled++;
   1027			continue;
   1028		}
   1029
   1030		event = cpuc->events[idx];
   1031		hwc = &event->hw;
   1032
   1033		WARN_ON_ONCE(hwc->idx != idx);
   1034
   1035		/* it might be unflagged overflow */
   1036		overflow = p4_pmu_clear_cccr_ovf(hwc);
   1037
   1038		val = x86_perf_event_update(event);
   1039		if (!overflow && (val & (1ULL << (x86_pmu.cntval_bits - 1))))
   1040			continue;
   1041
   1042		handled += overflow;
   1043
   1044		/* event overflow for sure */
   1045		perf_sample_data_init(&data, 0, hwc->last_period);
   1046
   1047		if (!x86_perf_event_set_period(event))
   1048			continue;
   1049
   1050
   1051		if (perf_event_overflow(event, &data, regs))
   1052			x86_pmu_stop(event, 0);
   1053	}
   1054
   1055	if (handled)
   1056		inc_irq_stat(apic_perf_irqs);
   1057
   1058	/*
   1059	 * When dealing with the unmasking of the LVTPC on P4 perf hw, it has
   1060	 * been observed that the OVF bit flag has to be cleared first _before_
   1061	 * the LVTPC can be unmasked.
   1062	 *
   1063	 * The reason is the NMI line will continue to be asserted while the OVF
   1064	 * bit is set.  This causes a second NMI to generate if the LVTPC is
   1065	 * unmasked before the OVF bit is cleared, leading to unknown NMI
   1066	 * messages.
   1067	 */
   1068	apic_write(APIC_LVTPC, APIC_DM_NMI);
   1069
   1070	return handled;
   1071}
   1072
   1073/*
   1074 * swap thread specific fields according to a thread
   1075 * we are going to run on
   1076 */
   1077static void p4_pmu_swap_config_ts(struct hw_perf_event *hwc, int cpu)
   1078{
   1079	u32 escr, cccr;
   1080
   1081	/*
   1082	 * we either lucky and continue on same cpu or no HT support
   1083	 */
   1084	if (!p4_should_swap_ts(hwc->config, cpu))
   1085		return;
   1086
   1087	/*
   1088	 * the event is migrated from an another logical
   1089	 * cpu, so we need to swap thread specific flags
   1090	 */
   1091
   1092	escr = p4_config_unpack_escr(hwc->config);
   1093	cccr = p4_config_unpack_cccr(hwc->config);
   1094
   1095	if (p4_ht_thread(cpu)) {
   1096		cccr &= ~P4_CCCR_OVF_PMI_T0;
   1097		cccr |= P4_CCCR_OVF_PMI_T1;
   1098		if (escr & P4_ESCR_T0_OS) {
   1099			escr &= ~P4_ESCR_T0_OS;
   1100			escr |= P4_ESCR_T1_OS;
   1101		}
   1102		if (escr & P4_ESCR_T0_USR) {
   1103			escr &= ~P4_ESCR_T0_USR;
   1104			escr |= P4_ESCR_T1_USR;
   1105		}
   1106		hwc->config  = p4_config_pack_escr(escr);
   1107		hwc->config |= p4_config_pack_cccr(cccr);
   1108		hwc->config |= P4_CONFIG_HT;
   1109	} else {
   1110		cccr &= ~P4_CCCR_OVF_PMI_T1;
   1111		cccr |= P4_CCCR_OVF_PMI_T0;
   1112		if (escr & P4_ESCR_T1_OS) {
   1113			escr &= ~P4_ESCR_T1_OS;
   1114			escr |= P4_ESCR_T0_OS;
   1115		}
   1116		if (escr & P4_ESCR_T1_USR) {
   1117			escr &= ~P4_ESCR_T1_USR;
   1118			escr |= P4_ESCR_T0_USR;
   1119		}
   1120		hwc->config  = p4_config_pack_escr(escr);
   1121		hwc->config |= p4_config_pack_cccr(cccr);
   1122		hwc->config &= ~P4_CONFIG_HT;
   1123	}
   1124}
   1125
   1126/*
   1127 * ESCR address hashing is tricky, ESCRs are not sequential
   1128 * in memory but all starts from MSR_P4_BSU_ESCR0 (0x03a0) and
   1129 * the metric between any ESCRs is laid in range [0xa0,0xe1]
   1130 *
   1131 * so we make ~70% filled hashtable
   1132 */
   1133
   1134#define P4_ESCR_MSR_BASE		0x000003a0
   1135#define P4_ESCR_MSR_MAX			0x000003e1
   1136#define P4_ESCR_MSR_TABLE_SIZE		(P4_ESCR_MSR_MAX - P4_ESCR_MSR_BASE + 1)
   1137#define P4_ESCR_MSR_IDX(msr)		(msr - P4_ESCR_MSR_BASE)
   1138#define P4_ESCR_MSR_TABLE_ENTRY(msr)	[P4_ESCR_MSR_IDX(msr)] = msr
   1139
   1140static const unsigned int p4_escr_table[P4_ESCR_MSR_TABLE_SIZE] = {
   1141	P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_ALF_ESCR0),
   1142	P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_ALF_ESCR1),
   1143	P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_BPU_ESCR0),
   1144	P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_BPU_ESCR1),
   1145	P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_BSU_ESCR0),
   1146	P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_BSU_ESCR1),
   1147	P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_CRU_ESCR0),
   1148	P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_CRU_ESCR1),
   1149	P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_CRU_ESCR2),
   1150	P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_CRU_ESCR3),
   1151	P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_CRU_ESCR4),
   1152	P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_CRU_ESCR5),
   1153	P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_DAC_ESCR0),
   1154	P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_DAC_ESCR1),
   1155	P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_FIRM_ESCR0),
   1156	P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_FIRM_ESCR1),
   1157	P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_FLAME_ESCR0),
   1158	P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_FLAME_ESCR1),
   1159	P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_FSB_ESCR0),
   1160	P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_FSB_ESCR1),
   1161	P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_IQ_ESCR0),
   1162	P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_IQ_ESCR1),
   1163	P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_IS_ESCR0),
   1164	P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_IS_ESCR1),
   1165	P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_ITLB_ESCR0),
   1166	P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_ITLB_ESCR1),
   1167	P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_IX_ESCR0),
   1168	P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_IX_ESCR1),
   1169	P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_MOB_ESCR0),
   1170	P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_MOB_ESCR1),
   1171	P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_MS_ESCR0),
   1172	P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_MS_ESCR1),
   1173	P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_PMH_ESCR0),
   1174	P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_PMH_ESCR1),
   1175	P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_RAT_ESCR0),
   1176	P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_RAT_ESCR1),
   1177	P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_SAAT_ESCR0),
   1178	P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_SAAT_ESCR1),
   1179	P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_SSU_ESCR0),
   1180	P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_SSU_ESCR1),
   1181	P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_TBPU_ESCR0),
   1182	P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_TBPU_ESCR1),
   1183	P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_TC_ESCR0),
   1184	P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_TC_ESCR1),
   1185	P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_U2L_ESCR0),
   1186	P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_U2L_ESCR1),
   1187};
   1188
   1189static int p4_get_escr_idx(unsigned int addr)
   1190{
   1191	unsigned int idx = P4_ESCR_MSR_IDX(addr);
   1192
   1193	if (unlikely(idx >= P4_ESCR_MSR_TABLE_SIZE	||
   1194			!p4_escr_table[idx]		||
   1195			p4_escr_table[idx] != addr)) {
   1196		WARN_ONCE(1, "P4 PMU: Wrong address passed: %x\n", addr);
   1197		return -1;
   1198	}
   1199
   1200	return idx;
   1201}
   1202
   1203static int p4_next_cntr(int thread, unsigned long *used_mask,
   1204			struct p4_event_bind *bind)
   1205{
   1206	int i, j;
   1207
   1208	for (i = 0; i < P4_CNTR_LIMIT; i++) {
   1209		j = bind->cntr[thread][i];
   1210		if (j != -1 && !test_bit(j, used_mask))
   1211			return j;
   1212	}
   1213
   1214	return -1;
   1215}
   1216
   1217static int p4_pmu_schedule_events(struct cpu_hw_events *cpuc, int n, int *assign)
   1218{
   1219	unsigned long used_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
   1220	unsigned long escr_mask[BITS_TO_LONGS(P4_ESCR_MSR_TABLE_SIZE)];
   1221	int cpu = smp_processor_id();
   1222	struct hw_perf_event *hwc;
   1223	struct p4_event_bind *bind;
   1224	unsigned int i, thread, num;
   1225	int cntr_idx, escr_idx;
   1226	u64 config_alias;
   1227	int pass;
   1228
   1229	bitmap_zero(used_mask, X86_PMC_IDX_MAX);
   1230	bitmap_zero(escr_mask, P4_ESCR_MSR_TABLE_SIZE);
   1231
   1232	for (i = 0, num = n; i < n; i++, num--) {
   1233
   1234		hwc = &cpuc->event_list[i]->hw;
   1235		thread = p4_ht_thread(cpu);
   1236		pass = 0;
   1237
   1238again:
   1239		/*
   1240		 * It's possible to hit a circular lock
   1241		 * between original and alternative events
   1242		 * if both are scheduled already.
   1243		 */
   1244		if (pass > 2)
   1245			goto done;
   1246
   1247		bind = p4_config_get_bind(hwc->config);
   1248		escr_idx = p4_get_escr_idx(bind->escr_msr[thread]);
   1249		if (unlikely(escr_idx == -1))
   1250			goto done;
   1251
   1252		if (hwc->idx != -1 && !p4_should_swap_ts(hwc->config, cpu)) {
   1253			cntr_idx = hwc->idx;
   1254			if (assign)
   1255				assign[i] = hwc->idx;
   1256			goto reserve;
   1257		}
   1258
   1259		cntr_idx = p4_next_cntr(thread, used_mask, bind);
   1260		if (cntr_idx == -1 || test_bit(escr_idx, escr_mask)) {
   1261			/*
   1262			 * Check whether an event alias is still available.
   1263			 */
   1264			config_alias = p4_get_alias_event(hwc->config);
   1265			if (!config_alias)
   1266				goto done;
   1267			hwc->config = config_alias;
   1268			pass++;
   1269			goto again;
   1270		}
   1271		/*
   1272		 * Perf does test runs to see if a whole group can be assigned
   1273		 * together successfully.  There can be multiple rounds of this.
   1274		 * Unfortunately, p4_pmu_swap_config_ts touches the hwc->config
   1275		 * bits, such that the next round of group assignments will
   1276		 * cause the above p4_should_swap_ts to pass instead of fail.
   1277		 * This leads to counters exclusive to thread0 being used by
   1278		 * thread1.
   1279		 *
   1280		 * Solve this with a cheap hack, reset the idx back to -1 to
   1281		 * force a new lookup (p4_next_cntr) to get the right counter
   1282		 * for the right thread.
   1283		 *
   1284		 * This probably doesn't comply with the general spirit of how
   1285		 * perf wants to work, but P4 is special. :-(
   1286		 */
   1287		if (p4_should_swap_ts(hwc->config, cpu))
   1288			hwc->idx = -1;
   1289		p4_pmu_swap_config_ts(hwc, cpu);
   1290		if (assign)
   1291			assign[i] = cntr_idx;
   1292reserve:
   1293		set_bit(cntr_idx, used_mask);
   1294		set_bit(escr_idx, escr_mask);
   1295	}
   1296
   1297done:
   1298	return num ? -EINVAL : 0;
   1299}
   1300
   1301PMU_FORMAT_ATTR(cccr, "config:0-31" );
   1302PMU_FORMAT_ATTR(escr, "config:32-62");
   1303PMU_FORMAT_ATTR(ht,   "config:63"   );
   1304
   1305static struct attribute *intel_p4_formats_attr[] = {
   1306	&format_attr_cccr.attr,
   1307	&format_attr_escr.attr,
   1308	&format_attr_ht.attr,
   1309	NULL,
   1310};
   1311
   1312static __initconst const struct x86_pmu p4_pmu = {
   1313	.name			= "Netburst P4/Xeon",
   1314	.handle_irq		= p4_pmu_handle_irq,
   1315	.disable_all		= p4_pmu_disable_all,
   1316	.enable_all		= p4_pmu_enable_all,
   1317	.enable			= p4_pmu_enable_event,
   1318	.disable		= p4_pmu_disable_event,
   1319	.eventsel		= MSR_P4_BPU_CCCR0,
   1320	.perfctr		= MSR_P4_BPU_PERFCTR0,
   1321	.event_map		= p4_pmu_event_map,
   1322	.max_events		= ARRAY_SIZE(p4_general_events),
   1323	.get_event_constraints	= x86_get_event_constraints,
   1324	/*
   1325	 * IF HT disabled we may need to use all
   1326	 * ARCH_P4_MAX_CCCR counters simultaneously
   1327	 * though leave it restricted at moment assuming
   1328	 * HT is on
   1329	 */
   1330	.num_counters		= ARCH_P4_MAX_CCCR,
   1331	.apic			= 1,
   1332	.cntval_bits		= ARCH_P4_CNTRVAL_BITS,
   1333	.cntval_mask		= ARCH_P4_CNTRVAL_MASK,
   1334	.max_period		= (1ULL << (ARCH_P4_CNTRVAL_BITS - 1)) - 1,
   1335	.hw_config		= p4_hw_config,
   1336	.schedule_events	= p4_pmu_schedule_events,
   1337	/*
   1338	 * This handles erratum N15 in intel doc 249199-029,
   1339	 * the counter may not be updated correctly on write
   1340	 * so we need a second write operation to do the trick
   1341	 * (the official workaround didn't work)
   1342	 *
   1343	 * the former idea is taken from OProfile code
   1344	 */
   1345	.perfctr_second_write	= 1,
   1346
   1347	.format_attrs		= intel_p4_formats_attr,
   1348};
   1349
   1350__init int p4_pmu_init(void)
   1351{
   1352	unsigned int low, high;
   1353	int i, reg;
   1354
   1355	/* If we get stripped -- indexing fails */
   1356	BUILD_BUG_ON(ARCH_P4_MAX_CCCR > INTEL_PMC_MAX_GENERIC);
   1357
   1358	rdmsr(MSR_IA32_MISC_ENABLE, low, high);
   1359	if (!(low & (1 << 7))) {
   1360		pr_cont("unsupported Netburst CPU model %d ",
   1361			boot_cpu_data.x86_model);
   1362		return -ENODEV;
   1363	}
   1364
   1365	memcpy(hw_cache_event_ids, p4_hw_cache_event_ids,
   1366		sizeof(hw_cache_event_ids));
   1367
   1368	pr_cont("Netburst events, ");
   1369
   1370	x86_pmu = p4_pmu;
   1371
   1372	/*
   1373	 * Even though the counters are configured to interrupt a particular
   1374	 * logical processor when an overflow happens, testing has shown that
   1375	 * on kdump kernels (which uses a single cpu), thread1's counter
   1376	 * continues to run and will report an NMI on thread0.  Due to the
   1377	 * overflow bug, this leads to a stream of unknown NMIs.
   1378	 *
   1379	 * Solve this by zero'ing out the registers to mimic a reset.
   1380	 */
   1381	for (i = 0; i < x86_pmu.num_counters; i++) {
   1382		reg = x86_pmu_config_addr(i);
   1383		wrmsrl_safe(reg, 0ULL);
   1384	}
   1385
   1386	return 0;
   1387}