cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

efi.h (12702B)


      1/* SPDX-License-Identifier: GPL-2.0 */
      2#ifndef _ASM_X86_EFI_H
      3#define _ASM_X86_EFI_H
      4
      5#include <asm/fpu/api.h>
      6#include <asm/processor-flags.h>
      7#include <asm/tlb.h>
      8#include <asm/nospec-branch.h>
      9#include <asm/mmu_context.h>
     10#include <asm/ibt.h>
     11#include <linux/build_bug.h>
     12#include <linux/kernel.h>
     13#include <linux/pgtable.h>
     14
     15extern unsigned long efi_fw_vendor, efi_config_table;
     16extern unsigned long efi_mixed_mode_stack_pa;
     17
     18/*
     19 * We map the EFI regions needed for runtime services non-contiguously,
     20 * with preserved alignment on virtual addresses starting from -4G down
     21 * for a total max space of 64G. This way, we provide for stable runtime
     22 * services addresses across kernels so that a kexec'd kernel can still
     23 * use them.
     24 *
     25 * This is the main reason why we're doing stable VA mappings for RT
     26 * services.
     27 */
     28
     29#define EFI32_LOADER_SIGNATURE	"EL32"
     30#define EFI64_LOADER_SIGNATURE	"EL64"
     31
     32#define ARCH_EFI_IRQ_FLAGS_MASK	X86_EFLAGS_IF
     33
     34/*
     35 * The EFI services are called through variadic functions in many cases. These
     36 * functions are implemented in assembler and support only a fixed number of
     37 * arguments. The macros below allows us to check at build time that we don't
     38 * try to call them with too many arguments.
     39 *
     40 * __efi_nargs() will return the number of arguments if it is 7 or less, and
     41 * cause a BUILD_BUG otherwise. The limitations of the C preprocessor make it
     42 * impossible to calculate the exact number of arguments beyond some
     43 * pre-defined limit. The maximum number of arguments currently supported by
     44 * any of the thunks is 7, so this is good enough for now and can be extended
     45 * in the obvious way if we ever need more.
     46 */
     47
     48#define __efi_nargs(...) __efi_nargs_(__VA_ARGS__)
     49#define __efi_nargs_(...) __efi_nargs__(0, ##__VA_ARGS__,	\
     50	__efi_arg_sentinel(9), __efi_arg_sentinel(8),		\
     51	__efi_arg_sentinel(7), __efi_arg_sentinel(6),		\
     52	__efi_arg_sentinel(5), __efi_arg_sentinel(4),		\
     53	__efi_arg_sentinel(3), __efi_arg_sentinel(2),		\
     54	__efi_arg_sentinel(1), __efi_arg_sentinel(0))
     55#define __efi_nargs__(_0, _1, _2, _3, _4, _5, _6, _7, _8, _9, n, ...)	\
     56	__take_second_arg(n,					\
     57		({ BUILD_BUG_ON_MSG(1, "__efi_nargs limit exceeded"); 10; }))
     58#define __efi_arg_sentinel(n) , n
     59
     60/*
     61 * __efi_nargs_check(f, n, ...) will cause a BUILD_BUG if the ellipsis
     62 * represents more than n arguments.
     63 */
     64
     65#define __efi_nargs_check(f, n, ...)					\
     66	__efi_nargs_check_(f, __efi_nargs(__VA_ARGS__), n)
     67#define __efi_nargs_check_(f, p, n) __efi_nargs_check__(f, p, n)
     68#define __efi_nargs_check__(f, p, n) ({					\
     69	BUILD_BUG_ON_MSG(						\
     70		(p) > (n),						\
     71		#f " called with too many arguments (" #p ">" #n ")");	\
     72})
     73
     74static inline void efi_fpu_begin(void)
     75{
     76	/*
     77	 * The UEFI calling convention (UEFI spec 2.3.2 and 2.3.4) requires
     78	 * that FCW and MXCSR (64-bit) must be initialized prior to calling
     79	 * UEFI code.  (Oddly the spec does not require that the FPU stack
     80	 * be empty.)
     81	 */
     82	kernel_fpu_begin_mask(KFPU_387 | KFPU_MXCSR);
     83}
     84
     85static inline void efi_fpu_end(void)
     86{
     87	kernel_fpu_end();
     88}
     89
     90#ifdef CONFIG_X86_32
     91#define arch_efi_call_virt_setup()					\
     92({									\
     93	efi_fpu_begin();						\
     94	firmware_restrict_branch_speculation_start();			\
     95})
     96
     97#define arch_efi_call_virt_teardown()					\
     98({									\
     99	firmware_restrict_branch_speculation_end();			\
    100	efi_fpu_end();							\
    101})
    102
    103#define arch_efi_call_virt(p, f, args...)	p->f(args)
    104
    105#else /* !CONFIG_X86_32 */
    106
    107#define EFI_LOADER_SIGNATURE	"EL64"
    108
    109extern asmlinkage u64 __efi_call(void *fp, ...);
    110
    111#define efi_call(...) ({						\
    112	__efi_nargs_check(efi_call, 7, __VA_ARGS__);			\
    113	__efi_call(__VA_ARGS__);					\
    114})
    115
    116#define arch_efi_call_virt_setup()					\
    117({									\
    118	efi_sync_low_kernel_mappings();					\
    119	efi_fpu_begin();						\
    120	firmware_restrict_branch_speculation_start();			\
    121	efi_enter_mm();							\
    122})
    123
    124#define arch_efi_call_virt(p, f, args...) ({				\
    125	u64 ret, ibt = ibt_save();					\
    126	ret = efi_call((void *)p->f, args);				\
    127	ibt_restore(ibt);						\
    128	ret;								\
    129})
    130
    131#define arch_efi_call_virt_teardown()					\
    132({									\
    133	efi_leave_mm();							\
    134	firmware_restrict_branch_speculation_end();			\
    135	efi_fpu_end();							\
    136})
    137
    138#ifdef CONFIG_KASAN
    139/*
    140 * CONFIG_KASAN may redefine memset to __memset.  __memset function is present
    141 * only in kernel binary.  Since the EFI stub linked into a separate binary it
    142 * doesn't have __memset().  So we should use standard memset from
    143 * arch/x86/boot/compressed/string.c.  The same applies to memcpy and memmove.
    144 */
    145#undef memcpy
    146#undef memset
    147#undef memmove
    148#endif
    149
    150#endif /* CONFIG_X86_32 */
    151
    152extern int __init efi_memblock_x86_reserve_range(void);
    153extern void __init efi_print_memmap(void);
    154extern void __init efi_map_region(efi_memory_desc_t *md);
    155extern void __init efi_map_region_fixed(efi_memory_desc_t *md);
    156extern void efi_sync_low_kernel_mappings(void);
    157extern int __init efi_alloc_page_tables(void);
    158extern int __init efi_setup_page_tables(unsigned long pa_memmap, unsigned num_pages);
    159extern void __init efi_runtime_update_mappings(void);
    160extern void __init efi_dump_pagetable(void);
    161extern void __init efi_apply_memmap_quirks(void);
    162extern int __init efi_reuse_config(u64 tables, int nr_tables);
    163extern void efi_delete_dummy_variable(void);
    164extern void efi_crash_gracefully_on_page_fault(unsigned long phys_addr);
    165extern void efi_free_boot_services(void);
    166
    167void efi_enter_mm(void);
    168void efi_leave_mm(void);
    169
    170/* kexec external ABI */
    171struct efi_setup_data {
    172	u64 fw_vendor;
    173	u64 __unused;
    174	u64 tables;
    175	u64 smbios;
    176	u64 reserved[8];
    177};
    178
    179extern u64 efi_setup;
    180
    181#ifdef CONFIG_EFI
    182extern efi_status_t __efi64_thunk(u32, ...);
    183
    184#define efi64_thunk(...) ({						\
    185	u64 __pad[3]; /* must have space for 3 args on the stack */	\
    186	__efi_nargs_check(efi64_thunk, 9, __VA_ARGS__);			\
    187	__efi64_thunk(__VA_ARGS__, __pad);				\
    188})
    189
    190static inline bool efi_is_mixed(void)
    191{
    192	if (!IS_ENABLED(CONFIG_EFI_MIXED))
    193		return false;
    194	return IS_ENABLED(CONFIG_X86_64) && !efi_enabled(EFI_64BIT);
    195}
    196
    197static inline bool efi_runtime_supported(void)
    198{
    199	if (IS_ENABLED(CONFIG_X86_64) == efi_enabled(EFI_64BIT))
    200		return true;
    201
    202	return IS_ENABLED(CONFIG_EFI_MIXED);
    203}
    204
    205extern void parse_efi_setup(u64 phys_addr, u32 data_len);
    206
    207extern void efi_thunk_runtime_setup(void);
    208efi_status_t efi_set_virtual_address_map(unsigned long memory_map_size,
    209					 unsigned long descriptor_size,
    210					 u32 descriptor_version,
    211					 efi_memory_desc_t *virtual_map,
    212					 unsigned long systab_phys);
    213
    214/* arch specific definitions used by the stub code */
    215
    216#ifdef CONFIG_EFI_MIXED
    217
    218#define ARCH_HAS_EFISTUB_WRAPPERS
    219
    220static inline bool efi_is_64bit(void)
    221{
    222	extern const bool efi_is64;
    223
    224	return efi_is64;
    225}
    226
    227static inline bool efi_is_native(void)
    228{
    229	return efi_is_64bit();
    230}
    231
    232#define efi_mixed_mode_cast(attr)					\
    233	__builtin_choose_expr(						\
    234		__builtin_types_compatible_p(u32, __typeof__(attr)),	\
    235			(unsigned long)(attr), (attr))
    236
    237#define efi_table_attr(inst, attr)					\
    238	(efi_is_native()						\
    239		? inst->attr						\
    240		: (__typeof__(inst->attr))				\
    241			efi_mixed_mode_cast(inst->mixed_mode.attr))
    242
    243/*
    244 * The following macros allow translating arguments if necessary from native to
    245 * mixed mode. The use case for this is to initialize the upper 32 bits of
    246 * output parameters, and where the 32-bit method requires a 64-bit argument,
    247 * which must be split up into two arguments to be thunked properly.
    248 *
    249 * As examples, the AllocatePool boot service returns the address of the
    250 * allocation, but it will not set the high 32 bits of the address. To ensure
    251 * that the full 64-bit address is initialized, we zero-init the address before
    252 * calling the thunk.
    253 *
    254 * The FreePages boot service takes a 64-bit physical address even in 32-bit
    255 * mode. For the thunk to work correctly, a native 64-bit call of
    256 * 	free_pages(addr, size)
    257 * must be translated to
    258 * 	efi64_thunk(free_pages, addr & U32_MAX, addr >> 32, size)
    259 * so that the two 32-bit halves of addr get pushed onto the stack separately.
    260 */
    261
    262static inline void *efi64_zero_upper(void *p)
    263{
    264	((u32 *)p)[1] = 0;
    265	return p;
    266}
    267
    268static inline u32 efi64_convert_status(efi_status_t status)
    269{
    270	return (u32)(status | (u64)status >> 32);
    271}
    272
    273#define __efi64_split(val)		(val) & U32_MAX, (u64)(val) >> 32
    274
    275#define __efi64_argmap_free_pages(addr, size)				\
    276	((addr), 0, (size))
    277
    278#define __efi64_argmap_get_memory_map(mm_size, mm, key, size, ver)	\
    279	((mm_size), (mm), efi64_zero_upper(key), efi64_zero_upper(size), (ver))
    280
    281#define __efi64_argmap_allocate_pool(type, size, buffer)		\
    282	((type), (size), efi64_zero_upper(buffer))
    283
    284#define __efi64_argmap_create_event(type, tpl, f, c, event)		\
    285	((type), (tpl), (f), (c), efi64_zero_upper(event))
    286
    287#define __efi64_argmap_set_timer(event, type, time)			\
    288	((event), (type), lower_32_bits(time), upper_32_bits(time))
    289
    290#define __efi64_argmap_wait_for_event(num, event, index)		\
    291	((num), (event), efi64_zero_upper(index))
    292
    293#define __efi64_argmap_handle_protocol(handle, protocol, interface)	\
    294	((handle), (protocol), efi64_zero_upper(interface))
    295
    296#define __efi64_argmap_locate_protocol(protocol, reg, interface)	\
    297	((protocol), (reg), efi64_zero_upper(interface))
    298
    299#define __efi64_argmap_locate_device_path(protocol, path, handle)	\
    300	((protocol), (path), efi64_zero_upper(handle))
    301
    302#define __efi64_argmap_exit(handle, status, size, data)			\
    303	((handle), efi64_convert_status(status), (size), (data))
    304
    305/* PCI I/O */
    306#define __efi64_argmap_get_location(protocol, seg, bus, dev, func)	\
    307	((protocol), efi64_zero_upper(seg), efi64_zero_upper(bus),	\
    308	 efi64_zero_upper(dev), efi64_zero_upper(func))
    309
    310/* LoadFile */
    311#define __efi64_argmap_load_file(protocol, path, policy, bufsize, buf)	\
    312	((protocol), (path), (policy), efi64_zero_upper(bufsize), (buf))
    313
    314/* Graphics Output Protocol */
    315#define __efi64_argmap_query_mode(gop, mode, size, info)		\
    316	((gop), (mode), efi64_zero_upper(size), efi64_zero_upper(info))
    317
    318/* TCG2 protocol */
    319#define __efi64_argmap_hash_log_extend_event(prot, fl, addr, size, ev)	\
    320	((prot), (fl), 0ULL, (u64)(addr), 0ULL, (u64)(size), 0ULL, ev)
    321
    322/* DXE services */
    323#define __efi64_argmap_get_memory_space_descriptor(phys, desc) \
    324	(__efi64_split(phys), (desc))
    325
    326#define __efi64_argmap_set_memory_space_attributes(phys, size, flags) \
    327	(__efi64_split(phys), __efi64_split(size), __efi64_split(flags))
    328
    329/*
    330 * The macros below handle the plumbing for the argument mapping. To add a
    331 * mapping for a specific EFI method, simply define a macro
    332 * __efi64_argmap_<method name>, following the examples above.
    333 */
    334
    335#define __efi64_thunk_map(inst, func, ...)				\
    336	efi64_thunk(inst->mixed_mode.func,				\
    337		__efi64_argmap(__efi64_argmap_ ## func(__VA_ARGS__),	\
    338			       (__VA_ARGS__)))
    339
    340#define __efi64_argmap(mapped, args)					\
    341	__PASTE(__efi64_argmap__, __efi_nargs(__efi_eat mapped))(mapped, args)
    342#define __efi64_argmap__0(mapped, args) __efi_eval mapped
    343#define __efi64_argmap__1(mapped, args) __efi_eval args
    344
    345#define __efi_eat(...)
    346#define __efi_eval(...) __VA_ARGS__
    347
    348/* The three macros below handle dispatching via the thunk if needed */
    349
    350#define efi_call_proto(inst, func, ...)					\
    351	(efi_is_native()						\
    352		? inst->func(inst, ##__VA_ARGS__)			\
    353		: __efi64_thunk_map(inst, func, inst, ##__VA_ARGS__))
    354
    355#define efi_bs_call(func, ...)						\
    356	(efi_is_native()						\
    357		? efi_system_table->boottime->func(__VA_ARGS__)		\
    358		: __efi64_thunk_map(efi_table_attr(efi_system_table,	\
    359						   boottime),		\
    360				    func, __VA_ARGS__))
    361
    362#define efi_rt_call(func, ...)						\
    363	(efi_is_native()						\
    364		? efi_system_table->runtime->func(__VA_ARGS__)		\
    365		: __efi64_thunk_map(efi_table_attr(efi_system_table,	\
    366						   runtime),		\
    367				    func, __VA_ARGS__))
    368
    369#define efi_dxe_call(func, ...)						\
    370	(efi_is_native()						\
    371		? efi_dxe_table->func(__VA_ARGS__)			\
    372		: __efi64_thunk_map(efi_dxe_table, func, __VA_ARGS__))
    373
    374#else /* CONFIG_EFI_MIXED */
    375
    376static inline bool efi_is_64bit(void)
    377{
    378	return IS_ENABLED(CONFIG_X86_64);
    379}
    380
    381#endif /* CONFIG_EFI_MIXED */
    382
    383extern bool efi_reboot_required(void);
    384extern bool efi_is_table_address(unsigned long phys_addr);
    385
    386extern void efi_find_mirror(void);
    387extern void efi_reserve_boot_services(void);
    388#else
    389static inline void parse_efi_setup(u64 phys_addr, u32 data_len) {}
    390static inline bool efi_reboot_required(void)
    391{
    392	return false;
    393}
    394static inline  bool efi_is_table_address(unsigned long phys_addr)
    395{
    396	return false;
    397}
    398static inline void efi_find_mirror(void)
    399{
    400}
    401static inline void efi_reserve_boot_services(void)
    402{
    403}
    404#endif /* CONFIG_EFI */
    405
    406#ifdef CONFIG_EFI_FAKE_MEMMAP
    407extern void __init efi_fake_memmap_early(void);
    408#else
    409static inline void efi_fake_memmap_early(void)
    410{
    411}
    412#endif
    413
    414#define arch_ima_efi_boot_mode	\
    415	({ extern struct boot_params boot_params; boot_params.secure_boot; })
    416
    417#endif /* _ASM_X86_EFI_H */