cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

kvm_host.h (64255B)


      1/* SPDX-License-Identifier: GPL-2.0-only */
      2/*
      3 * Kernel-based Virtual Machine driver for Linux
      4 *
      5 * This header defines architecture specific interfaces, x86 version
      6 */
      7
      8#ifndef _ASM_X86_KVM_HOST_H
      9#define _ASM_X86_KVM_HOST_H
     10
     11#include <linux/types.h>
     12#include <linux/mm.h>
     13#include <linux/mmu_notifier.h>
     14#include <linux/tracepoint.h>
     15#include <linux/cpumask.h>
     16#include <linux/irq_work.h>
     17#include <linux/irq.h>
     18#include <linux/workqueue.h>
     19
     20#include <linux/kvm.h>
     21#include <linux/kvm_para.h>
     22#include <linux/kvm_types.h>
     23#include <linux/perf_event.h>
     24#include <linux/pvclock_gtod.h>
     25#include <linux/clocksource.h>
     26#include <linux/irqbypass.h>
     27#include <linux/hyperv.h>
     28
     29#include <asm/apic.h>
     30#include <asm/pvclock-abi.h>
     31#include <asm/desc.h>
     32#include <asm/mtrr.h>
     33#include <asm/msr-index.h>
     34#include <asm/asm.h>
     35#include <asm/kvm_page_track.h>
     36#include <asm/kvm_vcpu_regs.h>
     37#include <asm/hyperv-tlfs.h>
     38
     39#define __KVM_HAVE_ARCH_VCPU_DEBUGFS
     40
     41#define KVM_MAX_VCPUS 1024
     42
     43/*
     44 * In x86, the VCPU ID corresponds to the APIC ID, and APIC IDs
     45 * might be larger than the actual number of VCPUs because the
     46 * APIC ID encodes CPU topology information.
     47 *
     48 * In the worst case, we'll need less than one extra bit for the
     49 * Core ID, and less than one extra bit for the Package (Die) ID,
     50 * so ratio of 4 should be enough.
     51 */
     52#define KVM_VCPU_ID_RATIO 4
     53#define KVM_MAX_VCPU_IDS (KVM_MAX_VCPUS * KVM_VCPU_ID_RATIO)
     54
     55/* memory slots that are not exposed to userspace */
     56#define KVM_PRIVATE_MEM_SLOTS 3
     57
     58#define KVM_HALT_POLL_NS_DEFAULT 200000
     59
     60#define KVM_IRQCHIP_NUM_PINS  KVM_IOAPIC_NUM_PINS
     61
     62#define KVM_DIRTY_LOG_MANUAL_CAPS   (KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE | \
     63					KVM_DIRTY_LOG_INITIALLY_SET)
     64
     65#define KVM_BUS_LOCK_DETECTION_VALID_MODE	(KVM_BUS_LOCK_DETECTION_OFF | \
     66						 KVM_BUS_LOCK_DETECTION_EXIT)
     67
     68/* x86-specific vcpu->requests bit members */
     69#define KVM_REQ_MIGRATE_TIMER		KVM_ARCH_REQ(0)
     70#define KVM_REQ_REPORT_TPR_ACCESS	KVM_ARCH_REQ(1)
     71#define KVM_REQ_TRIPLE_FAULT		KVM_ARCH_REQ(2)
     72#define KVM_REQ_MMU_SYNC		KVM_ARCH_REQ(3)
     73#define KVM_REQ_CLOCK_UPDATE		KVM_ARCH_REQ(4)
     74#define KVM_REQ_LOAD_MMU_PGD		KVM_ARCH_REQ(5)
     75#define KVM_REQ_EVENT			KVM_ARCH_REQ(6)
     76#define KVM_REQ_APF_HALT		KVM_ARCH_REQ(7)
     77#define KVM_REQ_STEAL_UPDATE		KVM_ARCH_REQ(8)
     78#define KVM_REQ_NMI			KVM_ARCH_REQ(9)
     79#define KVM_REQ_PMU			KVM_ARCH_REQ(10)
     80#define KVM_REQ_PMI			KVM_ARCH_REQ(11)
     81#define KVM_REQ_SMI			KVM_ARCH_REQ(12)
     82#define KVM_REQ_MASTERCLOCK_UPDATE	KVM_ARCH_REQ(13)
     83#define KVM_REQ_MCLOCK_INPROGRESS \
     84	KVM_ARCH_REQ_FLAGS(14, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
     85#define KVM_REQ_SCAN_IOAPIC \
     86	KVM_ARCH_REQ_FLAGS(15, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
     87#define KVM_REQ_GLOBAL_CLOCK_UPDATE	KVM_ARCH_REQ(16)
     88#define KVM_REQ_APIC_PAGE_RELOAD \
     89	KVM_ARCH_REQ_FLAGS(17, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
     90#define KVM_REQ_HV_CRASH		KVM_ARCH_REQ(18)
     91#define KVM_REQ_IOAPIC_EOI_EXIT		KVM_ARCH_REQ(19)
     92#define KVM_REQ_HV_RESET		KVM_ARCH_REQ(20)
     93#define KVM_REQ_HV_EXIT			KVM_ARCH_REQ(21)
     94#define KVM_REQ_HV_STIMER		KVM_ARCH_REQ(22)
     95#define KVM_REQ_LOAD_EOI_EXITMAP	KVM_ARCH_REQ(23)
     96#define KVM_REQ_GET_NESTED_STATE_PAGES	KVM_ARCH_REQ(24)
     97#define KVM_REQ_APICV_UPDATE \
     98	KVM_ARCH_REQ_FLAGS(25, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
     99#define KVM_REQ_TLB_FLUSH_CURRENT	KVM_ARCH_REQ(26)
    100#define KVM_REQ_TLB_FLUSH_GUEST \
    101	KVM_ARCH_REQ_FLAGS(27, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
    102#define KVM_REQ_APF_READY		KVM_ARCH_REQ(28)
    103#define KVM_REQ_MSR_FILTER_CHANGED	KVM_ARCH_REQ(29)
    104#define KVM_REQ_UPDATE_CPU_DIRTY_LOGGING \
    105	KVM_ARCH_REQ_FLAGS(30, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
    106#define KVM_REQ_MMU_FREE_OBSOLETE_ROOTS \
    107	KVM_ARCH_REQ_FLAGS(31, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
    108#define KVM_REQ_UPDATE_PROTECTED_GUEST_STATE	KVM_ARCH_REQ(32)
    109
    110#define CR0_RESERVED_BITS                                               \
    111	(~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
    112			  | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
    113			  | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
    114
    115#define CR4_RESERVED_BITS                                               \
    116	(~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
    117			  | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE     \
    118			  | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR | X86_CR4_PCIDE \
    119			  | X86_CR4_OSXSAVE | X86_CR4_SMEP | X86_CR4_FSGSBASE \
    120			  | X86_CR4_OSXMMEXCPT | X86_CR4_LA57 | X86_CR4_VMXE \
    121			  | X86_CR4_SMAP | X86_CR4_PKE | X86_CR4_UMIP))
    122
    123#define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
    124
    125
    126
    127#define INVALID_PAGE (~(hpa_t)0)
    128#define VALID_PAGE(x) ((x) != INVALID_PAGE)
    129
    130#define UNMAPPED_GVA (~(gpa_t)0)
    131#define INVALID_GPA (~(gpa_t)0)
    132
    133/* KVM Hugepage definitions for x86 */
    134#define KVM_MAX_HUGEPAGE_LEVEL	PG_LEVEL_1G
    135#define KVM_NR_PAGE_SIZES	(KVM_MAX_HUGEPAGE_LEVEL - PG_LEVEL_4K + 1)
    136#define KVM_HPAGE_GFN_SHIFT(x)	(((x) - 1) * 9)
    137#define KVM_HPAGE_SHIFT(x)	(PAGE_SHIFT + KVM_HPAGE_GFN_SHIFT(x))
    138#define KVM_HPAGE_SIZE(x)	(1UL << KVM_HPAGE_SHIFT(x))
    139#define KVM_HPAGE_MASK(x)	(~(KVM_HPAGE_SIZE(x) - 1))
    140#define KVM_PAGES_PER_HPAGE(x)	(KVM_HPAGE_SIZE(x) / PAGE_SIZE)
    141
    142#define KVM_MEMSLOT_PAGES_TO_MMU_PAGES_RATIO 50
    143#define KVM_MIN_ALLOC_MMU_PAGES 64UL
    144#define KVM_MMU_HASH_SHIFT 12
    145#define KVM_NUM_MMU_PAGES (1 << KVM_MMU_HASH_SHIFT)
    146#define KVM_MIN_FREE_MMU_PAGES 5
    147#define KVM_REFILL_PAGES 25
    148#define KVM_MAX_CPUID_ENTRIES 256
    149#define KVM_NR_FIXED_MTRR_REGION 88
    150#define KVM_NR_VAR_MTRR 8
    151
    152#define ASYNC_PF_PER_VCPU 64
    153
    154enum kvm_reg {
    155	VCPU_REGS_RAX = __VCPU_REGS_RAX,
    156	VCPU_REGS_RCX = __VCPU_REGS_RCX,
    157	VCPU_REGS_RDX = __VCPU_REGS_RDX,
    158	VCPU_REGS_RBX = __VCPU_REGS_RBX,
    159	VCPU_REGS_RSP = __VCPU_REGS_RSP,
    160	VCPU_REGS_RBP = __VCPU_REGS_RBP,
    161	VCPU_REGS_RSI = __VCPU_REGS_RSI,
    162	VCPU_REGS_RDI = __VCPU_REGS_RDI,
    163#ifdef CONFIG_X86_64
    164	VCPU_REGS_R8  = __VCPU_REGS_R8,
    165	VCPU_REGS_R9  = __VCPU_REGS_R9,
    166	VCPU_REGS_R10 = __VCPU_REGS_R10,
    167	VCPU_REGS_R11 = __VCPU_REGS_R11,
    168	VCPU_REGS_R12 = __VCPU_REGS_R12,
    169	VCPU_REGS_R13 = __VCPU_REGS_R13,
    170	VCPU_REGS_R14 = __VCPU_REGS_R14,
    171	VCPU_REGS_R15 = __VCPU_REGS_R15,
    172#endif
    173	VCPU_REGS_RIP,
    174	NR_VCPU_REGS,
    175
    176	VCPU_EXREG_PDPTR = NR_VCPU_REGS,
    177	VCPU_EXREG_CR0,
    178	VCPU_EXREG_CR3,
    179	VCPU_EXREG_CR4,
    180	VCPU_EXREG_RFLAGS,
    181	VCPU_EXREG_SEGMENTS,
    182	VCPU_EXREG_EXIT_INFO_1,
    183	VCPU_EXREG_EXIT_INFO_2,
    184};
    185
    186enum {
    187	VCPU_SREG_ES,
    188	VCPU_SREG_CS,
    189	VCPU_SREG_SS,
    190	VCPU_SREG_DS,
    191	VCPU_SREG_FS,
    192	VCPU_SREG_GS,
    193	VCPU_SREG_TR,
    194	VCPU_SREG_LDTR,
    195};
    196
    197enum exit_fastpath_completion {
    198	EXIT_FASTPATH_NONE,
    199	EXIT_FASTPATH_REENTER_GUEST,
    200	EXIT_FASTPATH_EXIT_HANDLED,
    201};
    202typedef enum exit_fastpath_completion fastpath_t;
    203
    204struct x86_emulate_ctxt;
    205struct x86_exception;
    206enum x86_intercept;
    207enum x86_intercept_stage;
    208
    209#define KVM_NR_DB_REGS	4
    210
    211#define DR6_BUS_LOCK   (1 << 11)
    212#define DR6_BD		(1 << 13)
    213#define DR6_BS		(1 << 14)
    214#define DR6_BT		(1 << 15)
    215#define DR6_RTM		(1 << 16)
    216/*
    217 * DR6_ACTIVE_LOW combines fixed-1 and active-low bits.
    218 * We can regard all the bits in DR6_FIXED_1 as active_low bits;
    219 * they will never be 0 for now, but when they are defined
    220 * in the future it will require no code change.
    221 *
    222 * DR6_ACTIVE_LOW is also used as the init/reset value for DR6.
    223 */
    224#define DR6_ACTIVE_LOW	0xffff0ff0
    225#define DR6_VOLATILE	0x0001e80f
    226#define DR6_FIXED_1	(DR6_ACTIVE_LOW & ~DR6_VOLATILE)
    227
    228#define DR7_BP_EN_MASK	0x000000ff
    229#define DR7_GE		(1 << 9)
    230#define DR7_GD		(1 << 13)
    231#define DR7_FIXED_1	0x00000400
    232#define DR7_VOLATILE	0xffff2bff
    233
    234#define KVM_GUESTDBG_VALID_MASK \
    235	(KVM_GUESTDBG_ENABLE | \
    236	KVM_GUESTDBG_SINGLESTEP | \
    237	KVM_GUESTDBG_USE_HW_BP | \
    238	KVM_GUESTDBG_USE_SW_BP | \
    239	KVM_GUESTDBG_INJECT_BP | \
    240	KVM_GUESTDBG_INJECT_DB | \
    241	KVM_GUESTDBG_BLOCKIRQ)
    242
    243
    244#define PFERR_PRESENT_BIT 0
    245#define PFERR_WRITE_BIT 1
    246#define PFERR_USER_BIT 2
    247#define PFERR_RSVD_BIT 3
    248#define PFERR_FETCH_BIT 4
    249#define PFERR_PK_BIT 5
    250#define PFERR_SGX_BIT 15
    251#define PFERR_GUEST_RMP_BIT 31
    252#define PFERR_GUEST_FINAL_BIT 32
    253#define PFERR_GUEST_PAGE_BIT 33
    254#define PFERR_IMPLICIT_ACCESS_BIT 48
    255#define PFERR_GUEST_ENC_BIT 34
    256#define PFERR_GUEST_SIZEM_BIT 35
    257#define PFERR_GUEST_VMPL_BIT 36
    258
    259#define PFERR_PRESENT_MASK (1U << PFERR_PRESENT_BIT)
    260#define PFERR_WRITE_MASK (1U << PFERR_WRITE_BIT)
    261#define PFERR_USER_MASK (1U << PFERR_USER_BIT)
    262#define PFERR_RSVD_MASK (1U << PFERR_RSVD_BIT)
    263#define PFERR_FETCH_MASK (1U << PFERR_FETCH_BIT)
    264#define PFERR_PK_MASK (1U << PFERR_PK_BIT)
    265#define PFERR_SGX_MASK (1U << PFERR_SGX_BIT)
    266#define PFERR_GUEST_FINAL_MASK (1ULL << PFERR_GUEST_FINAL_BIT)
    267#define PFERR_GUEST_PAGE_MASK (1ULL << PFERR_GUEST_PAGE_BIT)
    268#define PFERR_IMPLICIT_ACCESS (1ULL << PFERR_IMPLICIT_ACCESS_BIT)
    269#define PFERR_GUEST_RMP_MASK (1ULL << PFERR_GUEST_RMP_BIT)
    270#define PFERR_GUEST_ENC_MASK (1ULL << PFERR_GUEST_ENC_BIT)
    271#define PFERR_GUEST_SIZEM_MASK (1ULL << PFERR_GUEST_SIZEM_BIT)
    272#define PFERR_GUEST_VMPL_MASK (1ULL << PFERR_GUEST_VMPL_BIT)
    273
    274#define PFERR_NESTED_GUEST_PAGE (PFERR_GUEST_PAGE_MASK |	\
    275				 PFERR_WRITE_MASK |		\
    276				 PFERR_PRESENT_MASK)
    277
    278/* apic attention bits */
    279#define KVM_APIC_CHECK_VAPIC	0
    280/*
    281 * The following bit is set with PV-EOI, unset on EOI.
    282 * We detect PV-EOI changes by guest by comparing
    283 * this bit with PV-EOI in guest memory.
    284 * See the implementation in apic_update_pv_eoi.
    285 */
    286#define KVM_APIC_PV_EOI_PENDING	1
    287
    288struct kvm_kernel_irq_routing_entry;
    289
    290/*
    291 * kvm_mmu_page_role tracks the properties of a shadow page (where shadow page
    292 * also includes TDP pages) to determine whether or not a page can be used in
    293 * the given MMU context.  This is a subset of the overall kvm_cpu_role to
    294 * minimize the size of kvm_memory_slot.arch.gfn_track, i.e. allows allocating
    295 * 2 bytes per gfn instead of 4 bytes per gfn.
    296 *
    297 * Upper-level shadow pages having gptes are tracked for write-protection via
    298 * gfn_track.  As above, gfn_track is a 16 bit counter, so KVM must not create
    299 * more than 2^16-1 upper-level shadow pages at a single gfn, otherwise
    300 * gfn_track will overflow and explosions will ensure.
    301 *
    302 * A unique shadow page (SP) for a gfn is created if and only if an existing SP
    303 * cannot be reused.  The ability to reuse a SP is tracked by its role, which
    304 * incorporates various mode bits and properties of the SP.  Roughly speaking,
    305 * the number of unique SPs that can theoretically be created is 2^n, where n
    306 * is the number of bits that are used to compute the role.
    307 *
    308 * But, even though there are 19 bits in the mask below, not all combinations
    309 * of modes and flags are possible:
    310 *
    311 *   - invalid shadow pages are not accounted, so the bits are effectively 18
    312 *
    313 *   - quadrant will only be used if has_4_byte_gpte=1 (non-PAE paging);
    314 *     execonly and ad_disabled are only used for nested EPT which has
    315 *     has_4_byte_gpte=0.  Therefore, 2 bits are always unused.
    316 *
    317 *   - the 4 bits of level are effectively limited to the values 2/3/4/5,
    318 *     as 4k SPs are not tracked (allowed to go unsync).  In addition non-PAE
    319 *     paging has exactly one upper level, making level completely redundant
    320 *     when has_4_byte_gpte=1.
    321 *
    322 *   - on top of this, smep_andnot_wp and smap_andnot_wp are only set if
    323 *     cr0_wp=0, therefore these three bits only give rise to 5 possibilities.
    324 *
    325 * Therefore, the maximum number of possible upper-level shadow pages for a
    326 * single gfn is a bit less than 2^13.
    327 */
    328union kvm_mmu_page_role {
    329	u32 word;
    330	struct {
    331		unsigned level:4;
    332		unsigned has_4_byte_gpte:1;
    333		unsigned quadrant:2;
    334		unsigned direct:1;
    335		unsigned access:3;
    336		unsigned invalid:1;
    337		unsigned efer_nx:1;
    338		unsigned cr0_wp:1;
    339		unsigned smep_andnot_wp:1;
    340		unsigned smap_andnot_wp:1;
    341		unsigned ad_disabled:1;
    342		unsigned guest_mode:1;
    343		unsigned passthrough:1;
    344		unsigned :5;
    345
    346		/*
    347		 * This is left at the top of the word so that
    348		 * kvm_memslots_for_spte_role can extract it with a
    349		 * simple shift.  While there is room, give it a whole
    350		 * byte so it is also faster to load it from memory.
    351		 */
    352		unsigned smm:8;
    353	};
    354};
    355
    356/*
    357 * kvm_mmu_extended_role complements kvm_mmu_page_role, tracking properties
    358 * relevant to the current MMU configuration.   When loading CR0, CR4, or EFER,
    359 * including on nested transitions, if nothing in the full role changes then
    360 * MMU re-configuration can be skipped. @valid bit is set on first usage so we
    361 * don't treat all-zero structure as valid data.
    362 *
    363 * The properties that are tracked in the extended role but not the page role
    364 * are for things that either (a) do not affect the validity of the shadow page
    365 * or (b) are indirectly reflected in the shadow page's role.  For example,
    366 * CR4.PKE only affects permission checks for software walks of the guest page
    367 * tables (because KVM doesn't support Protection Keys with shadow paging), and
    368 * CR0.PG, CR4.PAE, and CR4.PSE are indirectly reflected in role.level.
    369 *
    370 * Note, SMEP and SMAP are not redundant with sm*p_andnot_wp in the page role.
    371 * If CR0.WP=1, KVM can reuse shadow pages for the guest regardless of SMEP and
    372 * SMAP, but the MMU's permission checks for software walks need to be SMEP and
    373 * SMAP aware regardless of CR0.WP.
    374 */
    375union kvm_mmu_extended_role {
    376	u32 word;
    377	struct {
    378		unsigned int valid:1;
    379		unsigned int execonly:1;
    380		unsigned int cr4_pse:1;
    381		unsigned int cr4_pke:1;
    382		unsigned int cr4_smap:1;
    383		unsigned int cr4_smep:1;
    384		unsigned int cr4_la57:1;
    385		unsigned int efer_lma:1;
    386	};
    387};
    388
    389union kvm_cpu_role {
    390	u64 as_u64;
    391	struct {
    392		union kvm_mmu_page_role base;
    393		union kvm_mmu_extended_role ext;
    394	};
    395};
    396
    397struct kvm_rmap_head {
    398	unsigned long val;
    399};
    400
    401struct kvm_pio_request {
    402	unsigned long linear_rip;
    403	unsigned long count;
    404	int in;
    405	int port;
    406	int size;
    407};
    408
    409#define PT64_ROOT_MAX_LEVEL 5
    410
    411struct rsvd_bits_validate {
    412	u64 rsvd_bits_mask[2][PT64_ROOT_MAX_LEVEL];
    413	u64 bad_mt_xwr;
    414};
    415
    416struct kvm_mmu_root_info {
    417	gpa_t pgd;
    418	hpa_t hpa;
    419};
    420
    421#define KVM_MMU_ROOT_INFO_INVALID \
    422	((struct kvm_mmu_root_info) { .pgd = INVALID_PAGE, .hpa = INVALID_PAGE })
    423
    424#define KVM_MMU_NUM_PREV_ROOTS 3
    425
    426#define KVM_HAVE_MMU_RWLOCK
    427
    428struct kvm_mmu_page;
    429struct kvm_page_fault;
    430
    431/*
    432 * x86 supports 4 paging modes (5-level 64-bit, 4-level 64-bit, 3-level 32-bit,
    433 * and 2-level 32-bit).  The kvm_mmu structure abstracts the details of the
    434 * current mmu mode.
    435 */
    436struct kvm_mmu {
    437	unsigned long (*get_guest_pgd)(struct kvm_vcpu *vcpu);
    438	u64 (*get_pdptr)(struct kvm_vcpu *vcpu, int index);
    439	int (*page_fault)(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault);
    440	void (*inject_page_fault)(struct kvm_vcpu *vcpu,
    441				  struct x86_exception *fault);
    442	gpa_t (*gva_to_gpa)(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
    443			    gpa_t gva_or_gpa, u64 access,
    444			    struct x86_exception *exception);
    445	int (*sync_page)(struct kvm_vcpu *vcpu,
    446			 struct kvm_mmu_page *sp);
    447	void (*invlpg)(struct kvm_vcpu *vcpu, gva_t gva, hpa_t root_hpa);
    448	struct kvm_mmu_root_info root;
    449	union kvm_cpu_role cpu_role;
    450	union kvm_mmu_page_role root_role;
    451
    452	/*
    453	* The pkru_mask indicates if protection key checks are needed.  It
    454	* consists of 16 domains indexed by page fault error code bits [4:1],
    455	* with PFEC.RSVD replaced by ACC_USER_MASK from the page tables.
    456	* Each domain has 2 bits which are ANDed with AD and WD from PKRU.
    457	*/
    458	u32 pkru_mask;
    459
    460	struct kvm_mmu_root_info prev_roots[KVM_MMU_NUM_PREV_ROOTS];
    461
    462	/*
    463	 * Bitmap; bit set = permission fault
    464	 * Byte index: page fault error code [4:1]
    465	 * Bit index: pte permissions in ACC_* format
    466	 */
    467	u8 permissions[16];
    468
    469	u64 *pae_root;
    470	u64 *pml4_root;
    471	u64 *pml5_root;
    472
    473	/*
    474	 * check zero bits on shadow page table entries, these
    475	 * bits include not only hardware reserved bits but also
    476	 * the bits spte never used.
    477	 */
    478	struct rsvd_bits_validate shadow_zero_check;
    479
    480	struct rsvd_bits_validate guest_rsvd_check;
    481
    482	u64 pdptrs[4]; /* pae */
    483};
    484
    485struct kvm_tlb_range {
    486	u64 start_gfn;
    487	u64 pages;
    488};
    489
    490enum pmc_type {
    491	KVM_PMC_GP = 0,
    492	KVM_PMC_FIXED,
    493};
    494
    495struct kvm_pmc {
    496	enum pmc_type type;
    497	u8 idx;
    498	u64 counter;
    499	u64 eventsel;
    500	struct perf_event *perf_event;
    501	struct kvm_vcpu *vcpu;
    502	/*
    503	 * eventsel value for general purpose counters,
    504	 * ctrl value for fixed counters.
    505	 */
    506	u64 current_config;
    507	bool is_paused;
    508	bool intr;
    509};
    510
    511#define KVM_PMC_MAX_FIXED	3
    512struct kvm_pmu {
    513	unsigned nr_arch_gp_counters;
    514	unsigned nr_arch_fixed_counters;
    515	unsigned available_event_types;
    516	u64 fixed_ctr_ctrl;
    517	u64 global_ctrl;
    518	u64 global_status;
    519	u64 counter_bitmask[2];
    520	u64 global_ctrl_mask;
    521	u64 global_ovf_ctrl_mask;
    522	u64 reserved_bits;
    523	u64 raw_event_mask;
    524	u8 version;
    525	struct kvm_pmc gp_counters[INTEL_PMC_MAX_GENERIC];
    526	struct kvm_pmc fixed_counters[KVM_PMC_MAX_FIXED];
    527	struct irq_work irq_work;
    528	DECLARE_BITMAP(reprogram_pmi, X86_PMC_IDX_MAX);
    529	DECLARE_BITMAP(all_valid_pmc_idx, X86_PMC_IDX_MAX);
    530	DECLARE_BITMAP(pmc_in_use, X86_PMC_IDX_MAX);
    531
    532	/*
    533	 * The gate to release perf_events not marked in
    534	 * pmc_in_use only once in a vcpu time slice.
    535	 */
    536	bool need_cleanup;
    537
    538	/*
    539	 * The total number of programmed perf_events and it helps to avoid
    540	 * redundant check before cleanup if guest don't use vPMU at all.
    541	 */
    542	u8 event_count;
    543};
    544
    545struct kvm_pmu_ops;
    546
    547enum {
    548	KVM_DEBUGREG_BP_ENABLED = 1,
    549	KVM_DEBUGREG_WONT_EXIT = 2,
    550};
    551
    552struct kvm_mtrr_range {
    553	u64 base;
    554	u64 mask;
    555	struct list_head node;
    556};
    557
    558struct kvm_mtrr {
    559	struct kvm_mtrr_range var_ranges[KVM_NR_VAR_MTRR];
    560	mtrr_type fixed_ranges[KVM_NR_FIXED_MTRR_REGION];
    561	u64 deftype;
    562
    563	struct list_head head;
    564};
    565
    566/* Hyper-V SynIC timer */
    567struct kvm_vcpu_hv_stimer {
    568	struct hrtimer timer;
    569	int index;
    570	union hv_stimer_config config;
    571	u64 count;
    572	u64 exp_time;
    573	struct hv_message msg;
    574	bool msg_pending;
    575};
    576
    577/* Hyper-V synthetic interrupt controller (SynIC)*/
    578struct kvm_vcpu_hv_synic {
    579	u64 version;
    580	u64 control;
    581	u64 msg_page;
    582	u64 evt_page;
    583	atomic64_t sint[HV_SYNIC_SINT_COUNT];
    584	atomic_t sint_to_gsi[HV_SYNIC_SINT_COUNT];
    585	DECLARE_BITMAP(auto_eoi_bitmap, 256);
    586	DECLARE_BITMAP(vec_bitmap, 256);
    587	bool active;
    588	bool dont_zero_synic_pages;
    589};
    590
    591/* Hyper-V per vcpu emulation context */
    592struct kvm_vcpu_hv {
    593	struct kvm_vcpu *vcpu;
    594	u32 vp_index;
    595	u64 hv_vapic;
    596	s64 runtime_offset;
    597	struct kvm_vcpu_hv_synic synic;
    598	struct kvm_hyperv_exit exit;
    599	struct kvm_vcpu_hv_stimer stimer[HV_SYNIC_STIMER_COUNT];
    600	DECLARE_BITMAP(stimer_pending_bitmap, HV_SYNIC_STIMER_COUNT);
    601	bool enforce_cpuid;
    602	struct {
    603		u32 features_eax; /* HYPERV_CPUID_FEATURES.EAX */
    604		u32 features_ebx; /* HYPERV_CPUID_FEATURES.EBX */
    605		u32 features_edx; /* HYPERV_CPUID_FEATURES.EDX */
    606		u32 enlightenments_eax; /* HYPERV_CPUID_ENLIGHTMENT_INFO.EAX */
    607		u32 enlightenments_ebx; /* HYPERV_CPUID_ENLIGHTMENT_INFO.EBX */
    608		u32 syndbg_cap_eax; /* HYPERV_CPUID_SYNDBG_PLATFORM_CAPABILITIES.EAX */
    609	} cpuid_cache;
    610};
    611
    612/* Xen HVM per vcpu emulation context */
    613struct kvm_vcpu_xen {
    614	u64 hypercall_rip;
    615	u32 current_runstate;
    616	u8 upcall_vector;
    617	struct gfn_to_pfn_cache vcpu_info_cache;
    618	struct gfn_to_pfn_cache vcpu_time_info_cache;
    619	struct gfn_to_pfn_cache runstate_cache;
    620	u64 last_steal;
    621	u64 runstate_entry_time;
    622	u64 runstate_times[4];
    623	unsigned long evtchn_pending_sel;
    624	u32 vcpu_id; /* The Xen / ACPI vCPU ID */
    625	u32 timer_virq;
    626	u64 timer_expires; /* In guest epoch */
    627	atomic_t timer_pending;
    628	struct hrtimer timer;
    629	int poll_evtchn;
    630	struct timer_list poll_timer;
    631};
    632
    633struct kvm_vcpu_arch {
    634	/*
    635	 * rip and regs accesses must go through
    636	 * kvm_{register,rip}_{read,write} functions.
    637	 */
    638	unsigned long regs[NR_VCPU_REGS];
    639	u32 regs_avail;
    640	u32 regs_dirty;
    641
    642	unsigned long cr0;
    643	unsigned long cr0_guest_owned_bits;
    644	unsigned long cr2;
    645	unsigned long cr3;
    646	unsigned long cr4;
    647	unsigned long cr4_guest_owned_bits;
    648	unsigned long cr4_guest_rsvd_bits;
    649	unsigned long cr8;
    650	u32 host_pkru;
    651	u32 pkru;
    652	u32 hflags;
    653	u64 efer;
    654	u64 apic_base;
    655	struct kvm_lapic *apic;    /* kernel irqchip context */
    656	bool apicv_active;
    657	bool load_eoi_exitmap_pending;
    658	DECLARE_BITMAP(ioapic_handled_vectors, 256);
    659	unsigned long apic_attention;
    660	int32_t apic_arb_prio;
    661	int mp_state;
    662	u64 ia32_misc_enable_msr;
    663	u64 smbase;
    664	u64 smi_count;
    665	bool at_instruction_boundary;
    666	bool tpr_access_reporting;
    667	bool xsaves_enabled;
    668	bool xfd_no_write_intercept;
    669	u64 ia32_xss;
    670	u64 microcode_version;
    671	u64 arch_capabilities;
    672	u64 perf_capabilities;
    673
    674	/*
    675	 * Paging state of the vcpu
    676	 *
    677	 * If the vcpu runs in guest mode with two level paging this still saves
    678	 * the paging mode of the l1 guest. This context is always used to
    679	 * handle faults.
    680	 */
    681	struct kvm_mmu *mmu;
    682
    683	/* Non-nested MMU for L1 */
    684	struct kvm_mmu root_mmu;
    685
    686	/* L1 MMU when running nested */
    687	struct kvm_mmu guest_mmu;
    688
    689	/*
    690	 * Paging state of an L2 guest (used for nested npt)
    691	 *
    692	 * This context will save all necessary information to walk page tables
    693	 * of an L2 guest. This context is only initialized for page table
    694	 * walking and not for faulting since we never handle l2 page faults on
    695	 * the host.
    696	 */
    697	struct kvm_mmu nested_mmu;
    698
    699	/*
    700	 * Pointer to the mmu context currently used for
    701	 * gva_to_gpa translations.
    702	 */
    703	struct kvm_mmu *walk_mmu;
    704
    705	struct kvm_mmu_memory_cache mmu_pte_list_desc_cache;
    706	struct kvm_mmu_memory_cache mmu_shadow_page_cache;
    707	struct kvm_mmu_memory_cache mmu_gfn_array_cache;
    708	struct kvm_mmu_memory_cache mmu_page_header_cache;
    709
    710	/*
    711	 * QEMU userspace and the guest each have their own FPU state.
    712	 * In vcpu_run, we switch between the user and guest FPU contexts.
    713	 * While running a VCPU, the VCPU thread will have the guest FPU
    714	 * context.
    715	 *
    716	 * Note that while the PKRU state lives inside the fpu registers,
    717	 * it is switched out separately at VMENTER and VMEXIT time. The
    718	 * "guest_fpstate" state here contains the guest FPU context, with the
    719	 * host PRKU bits.
    720	 */
    721	struct fpu_guest guest_fpu;
    722
    723	u64 xcr0;
    724
    725	struct kvm_pio_request pio;
    726	void *pio_data;
    727	void *sev_pio_data;
    728	unsigned sev_pio_count;
    729
    730	u8 event_exit_inst_len;
    731
    732	struct kvm_queued_exception {
    733		bool pending;
    734		bool injected;
    735		bool has_error_code;
    736		u8 nr;
    737		u32 error_code;
    738		unsigned long payload;
    739		bool has_payload;
    740		u8 nested_apf;
    741	} exception;
    742
    743	struct kvm_queued_interrupt {
    744		bool injected;
    745		bool soft;
    746		u8 nr;
    747	} interrupt;
    748
    749	int halt_request; /* real mode on Intel only */
    750
    751	int cpuid_nent;
    752	struct kvm_cpuid_entry2 *cpuid_entries;
    753	u32 kvm_cpuid_base;
    754
    755	u64 reserved_gpa_bits;
    756	int maxphyaddr;
    757
    758	/* emulate context */
    759
    760	struct x86_emulate_ctxt *emulate_ctxt;
    761	bool emulate_regs_need_sync_to_vcpu;
    762	bool emulate_regs_need_sync_from_vcpu;
    763	int (*complete_userspace_io)(struct kvm_vcpu *vcpu);
    764
    765	gpa_t time;
    766	struct pvclock_vcpu_time_info hv_clock;
    767	unsigned int hw_tsc_khz;
    768	struct gfn_to_pfn_cache pv_time;
    769	/* set guest stopped flag in pvclock flags field */
    770	bool pvclock_set_guest_stopped_request;
    771
    772	struct {
    773		u8 preempted;
    774		u64 msr_val;
    775		u64 last_steal;
    776		struct gfn_to_hva_cache cache;
    777	} st;
    778
    779	u64 l1_tsc_offset;
    780	u64 tsc_offset; /* current tsc offset */
    781	u64 last_guest_tsc;
    782	u64 last_host_tsc;
    783	u64 tsc_offset_adjustment;
    784	u64 this_tsc_nsec;
    785	u64 this_tsc_write;
    786	u64 this_tsc_generation;
    787	bool tsc_catchup;
    788	bool tsc_always_catchup;
    789	s8 virtual_tsc_shift;
    790	u32 virtual_tsc_mult;
    791	u32 virtual_tsc_khz;
    792	s64 ia32_tsc_adjust_msr;
    793	u64 msr_ia32_power_ctl;
    794	u64 l1_tsc_scaling_ratio;
    795	u64 tsc_scaling_ratio; /* current scaling ratio */
    796
    797	atomic_t nmi_queued;  /* unprocessed asynchronous NMIs */
    798	unsigned nmi_pending; /* NMI queued after currently running handler */
    799	bool nmi_injected;    /* Trying to inject an NMI this entry */
    800	bool smi_pending;    /* SMI queued after currently running handler */
    801	u8 handling_intr_from_guest;
    802
    803	struct kvm_mtrr mtrr_state;
    804	u64 pat;
    805
    806	unsigned switch_db_regs;
    807	unsigned long db[KVM_NR_DB_REGS];
    808	unsigned long dr6;
    809	unsigned long dr7;
    810	unsigned long eff_db[KVM_NR_DB_REGS];
    811	unsigned long guest_debug_dr7;
    812	u64 msr_platform_info;
    813	u64 msr_misc_features_enables;
    814
    815	u64 mcg_cap;
    816	u64 mcg_status;
    817	u64 mcg_ctl;
    818	u64 mcg_ext_ctl;
    819	u64 *mce_banks;
    820
    821	/* Cache MMIO info */
    822	u64 mmio_gva;
    823	unsigned mmio_access;
    824	gfn_t mmio_gfn;
    825	u64 mmio_gen;
    826
    827	struct kvm_pmu pmu;
    828
    829	/* used for guest single stepping over the given code position */
    830	unsigned long singlestep_rip;
    831
    832	bool hyperv_enabled;
    833	struct kvm_vcpu_hv *hyperv;
    834	struct kvm_vcpu_xen xen;
    835
    836	cpumask_var_t wbinvd_dirty_mask;
    837
    838	unsigned long last_retry_eip;
    839	unsigned long last_retry_addr;
    840
    841	struct {
    842		bool halted;
    843		gfn_t gfns[ASYNC_PF_PER_VCPU];
    844		struct gfn_to_hva_cache data;
    845		u64 msr_en_val; /* MSR_KVM_ASYNC_PF_EN */
    846		u64 msr_int_val; /* MSR_KVM_ASYNC_PF_INT */
    847		u16 vec;
    848		u32 id;
    849		bool send_user_only;
    850		u32 host_apf_flags;
    851		unsigned long nested_apf_token;
    852		bool delivery_as_pf_vmexit;
    853		bool pageready_pending;
    854	} apf;
    855
    856	/* OSVW MSRs (AMD only) */
    857	struct {
    858		u64 length;
    859		u64 status;
    860	} osvw;
    861
    862	struct {
    863		u64 msr_val;
    864		struct gfn_to_hva_cache data;
    865	} pv_eoi;
    866
    867	u64 msr_kvm_poll_control;
    868
    869	/*
    870	 * Indicates the guest is trying to write a gfn that contains one or
    871	 * more of the PTEs used to translate the write itself, i.e. the access
    872	 * is changing its own translation in the guest page tables.  KVM exits
    873	 * to userspace if emulation of the faulting instruction fails and this
    874	 * flag is set, as KVM cannot make forward progress.
    875	 *
    876	 * If emulation fails for a write to guest page tables, KVM unprotects
    877	 * (zaps) the shadow page for the target gfn and resumes the guest to
    878	 * retry the non-emulatable instruction (on hardware).  Unprotecting the
    879	 * gfn doesn't allow forward progress for a self-changing access because
    880	 * doing so also zaps the translation for the gfn, i.e. retrying the
    881	 * instruction will hit a !PRESENT fault, which results in a new shadow
    882	 * page and sends KVM back to square one.
    883	 */
    884	bool write_fault_to_shadow_pgtable;
    885
    886	/* set at EPT violation at this point */
    887	unsigned long exit_qualification;
    888
    889	/* pv related host specific info */
    890	struct {
    891		bool pv_unhalted;
    892	} pv;
    893
    894	int pending_ioapic_eoi;
    895	int pending_external_vector;
    896
    897	/* be preempted when it's in kernel-mode(cpl=0) */
    898	bool preempted_in_kernel;
    899
    900	/* Flush the L1 Data cache for L1TF mitigation on VMENTER */
    901	bool l1tf_flush_l1d;
    902
    903	/* Host CPU on which VM-entry was most recently attempted */
    904	int last_vmentry_cpu;
    905
    906	/* AMD MSRC001_0015 Hardware Configuration */
    907	u64 msr_hwcr;
    908
    909	/* pv related cpuid info */
    910	struct {
    911		/*
    912		 * value of the eax register in the KVM_CPUID_FEATURES CPUID
    913		 * leaf.
    914		 */
    915		u32 features;
    916
    917		/*
    918		 * indicates whether pv emulation should be disabled if features
    919		 * are not present in the guest's cpuid
    920		 */
    921		bool enforce;
    922	} pv_cpuid;
    923
    924	/* Protected Guests */
    925	bool guest_state_protected;
    926
    927	/*
    928	 * Set when PDPTS were loaded directly by the userspace without
    929	 * reading the guest memory
    930	 */
    931	bool pdptrs_from_userspace;
    932
    933#if IS_ENABLED(CONFIG_HYPERV)
    934	hpa_t hv_root_tdp;
    935#endif
    936};
    937
    938struct kvm_lpage_info {
    939	int disallow_lpage;
    940};
    941
    942struct kvm_arch_memory_slot {
    943	struct kvm_rmap_head *rmap[KVM_NR_PAGE_SIZES];
    944	struct kvm_lpage_info *lpage_info[KVM_NR_PAGE_SIZES - 1];
    945	unsigned short *gfn_track[KVM_PAGE_TRACK_MAX];
    946};
    947
    948/*
    949 * We use as the mode the number of bits allocated in the LDR for the
    950 * logical processor ID.  It happens that these are all powers of two.
    951 * This makes it is very easy to detect cases where the APICs are
    952 * configured for multiple modes; in that case, we cannot use the map and
    953 * hence cannot use kvm_irq_delivery_to_apic_fast either.
    954 */
    955#define KVM_APIC_MODE_XAPIC_CLUSTER          4
    956#define KVM_APIC_MODE_XAPIC_FLAT             8
    957#define KVM_APIC_MODE_X2APIC                16
    958
    959struct kvm_apic_map {
    960	struct rcu_head rcu;
    961	u8 mode;
    962	u32 max_apic_id;
    963	union {
    964		struct kvm_lapic *xapic_flat_map[8];
    965		struct kvm_lapic *xapic_cluster_map[16][4];
    966	};
    967	struct kvm_lapic *phys_map[];
    968};
    969
    970/* Hyper-V synthetic debugger (SynDbg)*/
    971struct kvm_hv_syndbg {
    972	struct {
    973		u64 control;
    974		u64 status;
    975		u64 send_page;
    976		u64 recv_page;
    977		u64 pending_page;
    978	} control;
    979	u64 options;
    980};
    981
    982/* Current state of Hyper-V TSC page clocksource */
    983enum hv_tsc_page_status {
    984	/* TSC page was not set up or disabled */
    985	HV_TSC_PAGE_UNSET = 0,
    986	/* TSC page MSR was written by the guest, update pending */
    987	HV_TSC_PAGE_GUEST_CHANGED,
    988	/* TSC page update was triggered from the host side */
    989	HV_TSC_PAGE_HOST_CHANGED,
    990	/* TSC page was properly set up and is currently active  */
    991	HV_TSC_PAGE_SET,
    992	/* TSC page was set up with an inaccessible GPA */
    993	HV_TSC_PAGE_BROKEN,
    994};
    995
    996/* Hyper-V emulation context */
    997struct kvm_hv {
    998	struct mutex hv_lock;
    999	u64 hv_guest_os_id;
   1000	u64 hv_hypercall;
   1001	u64 hv_tsc_page;
   1002	enum hv_tsc_page_status hv_tsc_page_status;
   1003
   1004	/* Hyper-v based guest crash (NT kernel bugcheck) parameters */
   1005	u64 hv_crash_param[HV_X64_MSR_CRASH_PARAMS];
   1006	u64 hv_crash_ctl;
   1007
   1008	struct ms_hyperv_tsc_page tsc_ref;
   1009
   1010	struct idr conn_to_evt;
   1011
   1012	u64 hv_reenlightenment_control;
   1013	u64 hv_tsc_emulation_control;
   1014	u64 hv_tsc_emulation_status;
   1015
   1016	/* How many vCPUs have VP index != vCPU index */
   1017	atomic_t num_mismatched_vp_indexes;
   1018
   1019	/*
   1020	 * How many SynICs use 'AutoEOI' feature
   1021	 * (protected by arch.apicv_update_lock)
   1022	 */
   1023	unsigned int synic_auto_eoi_used;
   1024
   1025	struct hv_partition_assist_pg *hv_pa_pg;
   1026	struct kvm_hv_syndbg hv_syndbg;
   1027};
   1028
   1029struct msr_bitmap_range {
   1030	u32 flags;
   1031	u32 nmsrs;
   1032	u32 base;
   1033	unsigned long *bitmap;
   1034};
   1035
   1036/* Xen emulation context */
   1037struct kvm_xen {
   1038	u32 xen_version;
   1039	bool long_mode;
   1040	u8 upcall_vector;
   1041	struct gfn_to_pfn_cache shinfo_cache;
   1042	struct idr evtchn_ports;
   1043	unsigned long poll_mask[BITS_TO_LONGS(KVM_MAX_VCPUS)];
   1044};
   1045
   1046enum kvm_irqchip_mode {
   1047	KVM_IRQCHIP_NONE,
   1048	KVM_IRQCHIP_KERNEL,       /* created with KVM_CREATE_IRQCHIP */
   1049	KVM_IRQCHIP_SPLIT,        /* created with KVM_CAP_SPLIT_IRQCHIP */
   1050};
   1051
   1052struct kvm_x86_msr_filter {
   1053	u8 count;
   1054	bool default_allow:1;
   1055	struct msr_bitmap_range ranges[16];
   1056};
   1057
   1058enum kvm_apicv_inhibit {
   1059
   1060	/********************************************************************/
   1061	/* INHIBITs that are relevant to both Intel's APICv and AMD's AVIC. */
   1062	/********************************************************************/
   1063
   1064	/*
   1065	 * APIC acceleration is disabled by a module parameter
   1066	 * and/or not supported in hardware.
   1067	 */
   1068	APICV_INHIBIT_REASON_DISABLE,
   1069
   1070	/*
   1071	 * APIC acceleration is inhibited because AutoEOI feature is
   1072	 * being used by a HyperV guest.
   1073	 */
   1074	APICV_INHIBIT_REASON_HYPERV,
   1075
   1076	/*
   1077	 * APIC acceleration is inhibited because the userspace didn't yet
   1078	 * enable the kernel/split irqchip.
   1079	 */
   1080	APICV_INHIBIT_REASON_ABSENT,
   1081
   1082	/* APIC acceleration is inhibited because KVM_GUESTDBG_BLOCKIRQ
   1083	 * (out of band, debug measure of blocking all interrupts on this vCPU)
   1084	 * was enabled, to avoid AVIC/APICv bypassing it.
   1085	 */
   1086	APICV_INHIBIT_REASON_BLOCKIRQ,
   1087
   1088	/*
   1089	 * For simplicity, the APIC acceleration is inhibited
   1090	 * first time either APIC ID or APIC base are changed by the guest
   1091	 * from their reset values.
   1092	 */
   1093	APICV_INHIBIT_REASON_APIC_ID_MODIFIED,
   1094	APICV_INHIBIT_REASON_APIC_BASE_MODIFIED,
   1095
   1096	/******************************************************/
   1097	/* INHIBITs that are relevant only to the AMD's AVIC. */
   1098	/******************************************************/
   1099
   1100	/*
   1101	 * AVIC is inhibited on a vCPU because it runs a nested guest.
   1102	 *
   1103	 * This is needed because unlike APICv, the peers of this vCPU
   1104	 * cannot use the doorbell mechanism to signal interrupts via AVIC when
   1105	 * a vCPU runs nested.
   1106	 */
   1107	APICV_INHIBIT_REASON_NESTED,
   1108
   1109	/*
   1110	 * On SVM, the wait for the IRQ window is implemented with pending vIRQ,
   1111	 * which cannot be injected when the AVIC is enabled, thus AVIC
   1112	 * is inhibited while KVM waits for IRQ window.
   1113	 */
   1114	APICV_INHIBIT_REASON_IRQWIN,
   1115
   1116	/*
   1117	 * PIT (i8254) 're-inject' mode, relies on EOI intercept,
   1118	 * which AVIC doesn't support for edge triggered interrupts.
   1119	 */
   1120	APICV_INHIBIT_REASON_PIT_REINJ,
   1121
   1122	/*
   1123	 * AVIC is inhibited because the guest has x2apic in its CPUID.
   1124	 */
   1125	APICV_INHIBIT_REASON_X2APIC,
   1126
   1127	/*
   1128	 * AVIC is disabled because SEV doesn't support it.
   1129	 */
   1130	APICV_INHIBIT_REASON_SEV,
   1131
   1132	/*
   1133	 * AVIC is disabled because SNP doesn't support it.
   1134	 */
   1135	APICV_INHIBIT_REASON_SNP,
   1136};
   1137
   1138struct kvm_arch {
   1139	unsigned long n_used_mmu_pages;
   1140	unsigned long n_requested_mmu_pages;
   1141	unsigned long n_max_mmu_pages;
   1142	unsigned int indirect_shadow_pages;
   1143	u8 mmu_valid_gen;
   1144	struct hlist_head mmu_page_hash[KVM_NUM_MMU_PAGES];
   1145	struct list_head active_mmu_pages;
   1146	struct list_head zapped_obsolete_pages;
   1147	struct list_head lpage_disallowed_mmu_pages;
   1148	struct kvm_page_track_notifier_node mmu_sp_tracker;
   1149	struct kvm_page_track_notifier_head track_notifier_head;
   1150	/*
   1151	 * Protects marking pages unsync during page faults, as TDP MMU page
   1152	 * faults only take mmu_lock for read.  For simplicity, the unsync
   1153	 * pages lock is always taken when marking pages unsync regardless of
   1154	 * whether mmu_lock is held for read or write.
   1155	 */
   1156	spinlock_t mmu_unsync_pages_lock;
   1157
   1158	struct list_head assigned_dev_head;
   1159	struct iommu_domain *iommu_domain;
   1160	bool iommu_noncoherent;
   1161#define __KVM_HAVE_ARCH_NONCOHERENT_DMA
   1162	atomic_t noncoherent_dma_count;
   1163#define __KVM_HAVE_ARCH_ASSIGNED_DEVICE
   1164	atomic_t assigned_device_count;
   1165	struct kvm_pic *vpic;
   1166	struct kvm_ioapic *vioapic;
   1167	struct kvm_pit *vpit;
   1168	atomic_t vapics_in_nmi_mode;
   1169	struct mutex apic_map_lock;
   1170	struct kvm_apic_map __rcu *apic_map;
   1171	atomic_t apic_map_dirty;
   1172
   1173	/* Protects apic_access_memslot_enabled and apicv_inhibit_reasons */
   1174	struct rw_semaphore apicv_update_lock;
   1175
   1176	bool apic_access_memslot_enabled;
   1177	unsigned long apicv_inhibit_reasons;
   1178
   1179	gpa_t wall_clock;
   1180
   1181	bool mwait_in_guest;
   1182	bool hlt_in_guest;
   1183	bool pause_in_guest;
   1184	bool cstate_in_guest;
   1185
   1186	unsigned long irq_sources_bitmap;
   1187	s64 kvmclock_offset;
   1188
   1189	/*
   1190	 * This also protects nr_vcpus_matched_tsc which is read from a
   1191	 * preemption-disabled region, so it must be a raw spinlock.
   1192	 */
   1193	raw_spinlock_t tsc_write_lock;
   1194	u64 last_tsc_nsec;
   1195	u64 last_tsc_write;
   1196	u32 last_tsc_khz;
   1197	u64 last_tsc_offset;
   1198	u64 cur_tsc_nsec;
   1199	u64 cur_tsc_write;
   1200	u64 cur_tsc_offset;
   1201	u64 cur_tsc_generation;
   1202	int nr_vcpus_matched_tsc;
   1203
   1204	u32 default_tsc_khz;
   1205
   1206	seqcount_raw_spinlock_t pvclock_sc;
   1207	bool use_master_clock;
   1208	u64 master_kernel_ns;
   1209	u64 master_cycle_now;
   1210	struct delayed_work kvmclock_update_work;
   1211	struct delayed_work kvmclock_sync_work;
   1212
   1213	struct kvm_xen_hvm_config xen_hvm_config;
   1214
   1215	/* reads protected by irq_srcu, writes by irq_lock */
   1216	struct hlist_head mask_notifier_list;
   1217
   1218	struct kvm_hv hyperv;
   1219	struct kvm_xen xen;
   1220
   1221	bool backwards_tsc_observed;
   1222	bool boot_vcpu_runs_old_kvmclock;
   1223	u32 bsp_vcpu_id;
   1224
   1225	u64 disabled_quirks;
   1226	int cpu_dirty_logging_count;
   1227
   1228	enum kvm_irqchip_mode irqchip_mode;
   1229	u8 nr_reserved_ioapic_pins;
   1230
   1231	bool disabled_lapic_found;
   1232
   1233	bool x2apic_format;
   1234	bool x2apic_broadcast_quirk_disabled;
   1235
   1236	bool guest_can_read_msr_platform_info;
   1237	bool exception_payload_enabled;
   1238
   1239	bool bus_lock_detection_enabled;
   1240	bool enable_pmu;
   1241	/*
   1242	 * If exit_on_emulation_error is set, and the in-kernel instruction
   1243	 * emulator fails to emulate an instruction, allow userspace
   1244	 * the opportunity to look at it.
   1245	 */
   1246	bool exit_on_emulation_error;
   1247
   1248	/* Deflect RDMSR and WRMSR to user space when they trigger a #GP */
   1249	u32 user_space_msr_mask;
   1250	struct kvm_x86_msr_filter __rcu *msr_filter;
   1251
   1252	u32 hypercall_exit_enabled;
   1253
   1254	/* Guest can access the SGX PROVISIONKEY. */
   1255	bool sgx_provisioning_allowed;
   1256
   1257	struct kvm_pmu_event_filter __rcu *pmu_event_filter;
   1258	struct task_struct *nx_lpage_recovery_thread;
   1259
   1260#ifdef CONFIG_X86_64
   1261	/*
   1262	 * Whether the TDP MMU is enabled for this VM. This contains a
   1263	 * snapshot of the TDP MMU module parameter from when the VM was
   1264	 * created and remains unchanged for the life of the VM. If this is
   1265	 * true, TDP MMU handler functions will run for various MMU
   1266	 * operations.
   1267	 */
   1268	bool tdp_mmu_enabled;
   1269
   1270	/*
   1271	 * List of struct kvm_mmu_pages being used as roots.
   1272	 * All struct kvm_mmu_pages in the list should have
   1273	 * tdp_mmu_page set.
   1274	 *
   1275	 * For reads, this list is protected by:
   1276	 *	the MMU lock in read mode + RCU or
   1277	 *	the MMU lock in write mode
   1278	 *
   1279	 * For writes, this list is protected by:
   1280	 *	the MMU lock in read mode + the tdp_mmu_pages_lock or
   1281	 *	the MMU lock in write mode
   1282	 *
   1283	 * Roots will remain in the list until their tdp_mmu_root_count
   1284	 * drops to zero, at which point the thread that decremented the
   1285	 * count to zero should removed the root from the list and clean
   1286	 * it up, freeing the root after an RCU grace period.
   1287	 */
   1288	struct list_head tdp_mmu_roots;
   1289
   1290	/*
   1291	 * List of struct kvmp_mmu_pages not being used as roots.
   1292	 * All struct kvm_mmu_pages in the list should have
   1293	 * tdp_mmu_page set and a tdp_mmu_root_count of 0.
   1294	 */
   1295	struct list_head tdp_mmu_pages;
   1296
   1297	/*
   1298	 * Protects accesses to the following fields when the MMU lock
   1299	 * is held in read mode:
   1300	 *  - tdp_mmu_roots (above)
   1301	 *  - tdp_mmu_pages (above)
   1302	 *  - the link field of struct kvm_mmu_pages used by the TDP MMU
   1303	 *  - lpage_disallowed_mmu_pages
   1304	 *  - the lpage_disallowed_link field of struct kvm_mmu_pages used
   1305	 *    by the TDP MMU
   1306	 * It is acceptable, but not necessary, to acquire this lock when
   1307	 * the thread holds the MMU lock in write mode.
   1308	 */
   1309	spinlock_t tdp_mmu_pages_lock;
   1310	struct workqueue_struct *tdp_mmu_zap_wq;
   1311#endif /* CONFIG_X86_64 */
   1312
   1313	/*
   1314	 * If set, at least one shadow root has been allocated. This flag
   1315	 * is used as one input when determining whether certain memslot
   1316	 * related allocations are necessary.
   1317	 */
   1318	bool shadow_root_allocated;
   1319
   1320#if IS_ENABLED(CONFIG_HYPERV)
   1321	hpa_t	hv_root_tdp;
   1322	spinlock_t hv_root_tdp_lock;
   1323#endif
   1324};
   1325
   1326struct kvm_vm_stat {
   1327	struct kvm_vm_stat_generic generic;
   1328	u64 mmu_shadow_zapped;
   1329	u64 mmu_pte_write;
   1330	u64 mmu_pde_zapped;
   1331	u64 mmu_flooded;
   1332	u64 mmu_recycled;
   1333	u64 mmu_cache_miss;
   1334	u64 mmu_unsync;
   1335	union {
   1336		struct {
   1337			atomic64_t pages_4k;
   1338			atomic64_t pages_2m;
   1339			atomic64_t pages_1g;
   1340		};
   1341		atomic64_t pages[KVM_NR_PAGE_SIZES];
   1342	};
   1343	u64 nx_lpage_splits;
   1344	u64 max_mmu_page_hash_collisions;
   1345	u64 max_mmu_rmap_size;
   1346};
   1347
   1348struct kvm_vcpu_stat {
   1349	struct kvm_vcpu_stat_generic generic;
   1350	u64 pf_taken;
   1351	u64 pf_fixed;
   1352	u64 pf_emulate;
   1353	u64 pf_spurious;
   1354	u64 pf_fast;
   1355	u64 pf_mmio_spte_created;
   1356	u64 pf_guest;
   1357	u64 tlb_flush;
   1358	u64 invlpg;
   1359
   1360	u64 exits;
   1361	u64 io_exits;
   1362	u64 mmio_exits;
   1363	u64 signal_exits;
   1364	u64 irq_window_exits;
   1365	u64 nmi_window_exits;
   1366	u64 l1d_flush;
   1367	u64 halt_exits;
   1368	u64 request_irq_exits;
   1369	u64 irq_exits;
   1370	u64 host_state_reload;
   1371	u64 fpu_reload;
   1372	u64 insn_emulation;
   1373	u64 insn_emulation_fail;
   1374	u64 hypercalls;
   1375	u64 irq_injections;
   1376	u64 nmi_injections;
   1377	u64 req_event;
   1378	u64 nested_run;
   1379	u64 directed_yield_attempted;
   1380	u64 directed_yield_successful;
   1381	u64 preemption_reported;
   1382	u64 preemption_other;
   1383	u64 guest_mode;
   1384};
   1385
   1386struct x86_instruction_info;
   1387
   1388struct msr_data {
   1389	bool host_initiated;
   1390	u32 index;
   1391	u64 data;
   1392};
   1393
   1394struct kvm_lapic_irq {
   1395	u32 vector;
   1396	u16 delivery_mode;
   1397	u16 dest_mode;
   1398	bool level;
   1399	u16 trig_mode;
   1400	u32 shorthand;
   1401	u32 dest_id;
   1402	bool msi_redir_hint;
   1403};
   1404
   1405static inline u16 kvm_lapic_irq_dest_mode(bool dest_mode_logical)
   1406{
   1407	return dest_mode_logical ? APIC_DEST_LOGICAL : APIC_DEST_PHYSICAL;
   1408}
   1409
   1410struct kvm_x86_ops {
   1411	const char *name;
   1412
   1413	int (*hardware_enable)(void);
   1414	void (*hardware_disable)(void);
   1415	void (*hardware_unsetup)(void);
   1416	bool (*has_emulated_msr)(struct kvm *kvm, u32 index);
   1417	void (*vcpu_after_set_cpuid)(struct kvm_vcpu *vcpu);
   1418
   1419	unsigned int vm_size;
   1420	int (*vm_init)(struct kvm *kvm);
   1421	void (*vm_destroy)(struct kvm *kvm);
   1422
   1423	/* Create, but do not attach this VCPU */
   1424	int (*vcpu_create)(struct kvm_vcpu *vcpu);
   1425	void (*vcpu_free)(struct kvm_vcpu *vcpu);
   1426	void (*vcpu_reset)(struct kvm_vcpu *vcpu, bool init_event);
   1427
   1428	void (*prepare_switch_to_guest)(struct kvm_vcpu *vcpu);
   1429	void (*vcpu_load)(struct kvm_vcpu *vcpu, int cpu);
   1430	void (*vcpu_put)(struct kvm_vcpu *vcpu);
   1431
   1432	void (*update_exception_bitmap)(struct kvm_vcpu *vcpu);
   1433	int (*get_msr)(struct kvm_vcpu *vcpu, struct msr_data *msr);
   1434	int (*set_msr)(struct kvm_vcpu *vcpu, struct msr_data *msr);
   1435	u64 (*get_segment_base)(struct kvm_vcpu *vcpu, int seg);
   1436	void (*get_segment)(struct kvm_vcpu *vcpu,
   1437			    struct kvm_segment *var, int seg);
   1438	int (*get_cpl)(struct kvm_vcpu *vcpu);
   1439	void (*set_segment)(struct kvm_vcpu *vcpu,
   1440			    struct kvm_segment *var, int seg);
   1441	void (*get_cs_db_l_bits)(struct kvm_vcpu *vcpu, int *db, int *l);
   1442	void (*set_cr0)(struct kvm_vcpu *vcpu, unsigned long cr0);
   1443	void (*post_set_cr3)(struct kvm_vcpu *vcpu, unsigned long cr3);
   1444	bool (*is_valid_cr4)(struct kvm_vcpu *vcpu, unsigned long cr0);
   1445	void (*set_cr4)(struct kvm_vcpu *vcpu, unsigned long cr4);
   1446	int (*set_efer)(struct kvm_vcpu *vcpu, u64 efer);
   1447	void (*get_idt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt);
   1448	void (*set_idt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt);
   1449	void (*get_gdt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt);
   1450	void (*set_gdt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt);
   1451	void (*sync_dirty_debug_regs)(struct kvm_vcpu *vcpu);
   1452	void (*set_dr7)(struct kvm_vcpu *vcpu, unsigned long value);
   1453	void (*cache_reg)(struct kvm_vcpu *vcpu, enum kvm_reg reg);
   1454	unsigned long (*get_rflags)(struct kvm_vcpu *vcpu);
   1455	void (*set_rflags)(struct kvm_vcpu *vcpu, unsigned long rflags);
   1456	bool (*get_if_flag)(struct kvm_vcpu *vcpu);
   1457
   1458	void (*flush_tlb_all)(struct kvm_vcpu *vcpu);
   1459	void (*flush_tlb_current)(struct kvm_vcpu *vcpu);
   1460	int  (*tlb_remote_flush)(struct kvm *kvm);
   1461	int  (*tlb_remote_flush_with_range)(struct kvm *kvm,
   1462			struct kvm_tlb_range *range);
   1463
   1464	/*
   1465	 * Flush any TLB entries associated with the given GVA.
   1466	 * Does not need to flush GPA->HPA mappings.
   1467	 * Can potentially get non-canonical addresses through INVLPGs, which
   1468	 * the implementation may choose to ignore if appropriate.
   1469	 */
   1470	void (*flush_tlb_gva)(struct kvm_vcpu *vcpu, gva_t addr);
   1471
   1472	/*
   1473	 * Flush any TLB entries created by the guest.  Like tlb_flush_gva(),
   1474	 * does not need to flush GPA->HPA mappings.
   1475	 */
   1476	void (*flush_tlb_guest)(struct kvm_vcpu *vcpu);
   1477
   1478	int (*vcpu_pre_run)(struct kvm_vcpu *vcpu);
   1479	enum exit_fastpath_completion (*vcpu_run)(struct kvm_vcpu *vcpu);
   1480	int (*handle_exit)(struct kvm_vcpu *vcpu,
   1481		enum exit_fastpath_completion exit_fastpath);
   1482	int (*skip_emulated_instruction)(struct kvm_vcpu *vcpu);
   1483	void (*update_emulated_instruction)(struct kvm_vcpu *vcpu);
   1484	void (*set_interrupt_shadow)(struct kvm_vcpu *vcpu, int mask);
   1485	u32 (*get_interrupt_shadow)(struct kvm_vcpu *vcpu);
   1486	void (*patch_hypercall)(struct kvm_vcpu *vcpu,
   1487				unsigned char *hypercall_addr);
   1488	void (*inject_irq)(struct kvm_vcpu *vcpu);
   1489	void (*inject_nmi)(struct kvm_vcpu *vcpu);
   1490	void (*queue_exception)(struct kvm_vcpu *vcpu);
   1491	void (*cancel_injection)(struct kvm_vcpu *vcpu);
   1492	int (*interrupt_allowed)(struct kvm_vcpu *vcpu, bool for_injection);
   1493	int (*nmi_allowed)(struct kvm_vcpu *vcpu, bool for_injection);
   1494	bool (*get_nmi_mask)(struct kvm_vcpu *vcpu);
   1495	void (*set_nmi_mask)(struct kvm_vcpu *vcpu, bool masked);
   1496	void (*enable_nmi_window)(struct kvm_vcpu *vcpu);
   1497	void (*enable_irq_window)(struct kvm_vcpu *vcpu);
   1498	void (*update_cr8_intercept)(struct kvm_vcpu *vcpu, int tpr, int irr);
   1499	bool (*check_apicv_inhibit_reasons)(enum kvm_apicv_inhibit reason);
   1500	void (*refresh_apicv_exec_ctrl)(struct kvm_vcpu *vcpu);
   1501	void (*hwapic_irr_update)(struct kvm_vcpu *vcpu, int max_irr);
   1502	void (*hwapic_isr_update)(struct kvm_vcpu *vcpu, int isr);
   1503	bool (*guest_apic_has_interrupt)(struct kvm_vcpu *vcpu);
   1504	void (*load_eoi_exitmap)(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap);
   1505	void (*set_virtual_apic_mode)(struct kvm_vcpu *vcpu);
   1506	void (*set_apic_access_page_addr)(struct kvm_vcpu *vcpu);
   1507	void (*deliver_interrupt)(struct kvm_lapic *apic, int delivery_mode,
   1508				  int trig_mode, int vector);
   1509	int (*sync_pir_to_irr)(struct kvm_vcpu *vcpu);
   1510	int (*set_tss_addr)(struct kvm *kvm, unsigned int addr);
   1511	int (*set_identity_map_addr)(struct kvm *kvm, u64 ident_addr);
   1512	u64 (*get_mt_mask)(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio);
   1513
   1514	void (*load_mmu_pgd)(struct kvm_vcpu *vcpu, hpa_t root_hpa,
   1515			     int root_level);
   1516
   1517	bool (*has_wbinvd_exit)(void);
   1518
   1519	u64 (*get_l2_tsc_offset)(struct kvm_vcpu *vcpu);
   1520	u64 (*get_l2_tsc_multiplier)(struct kvm_vcpu *vcpu);
   1521	void (*write_tsc_offset)(struct kvm_vcpu *vcpu, u64 offset);
   1522	void (*write_tsc_multiplier)(struct kvm_vcpu *vcpu, u64 multiplier);
   1523
   1524	/*
   1525	 * Retrieve somewhat arbitrary exit information.  Intended to
   1526	 * be used only from within tracepoints or error paths.
   1527	 */
   1528	void (*get_exit_info)(struct kvm_vcpu *vcpu, u32 *reason,
   1529			      u64 *info1, u64 *info2,
   1530			      u32 *exit_int_info, u32 *exit_int_info_err_code);
   1531
   1532	int (*check_intercept)(struct kvm_vcpu *vcpu,
   1533			       struct x86_instruction_info *info,
   1534			       enum x86_intercept_stage stage,
   1535			       struct x86_exception *exception);
   1536	void (*handle_exit_irqoff)(struct kvm_vcpu *vcpu);
   1537
   1538	void (*request_immediate_exit)(struct kvm_vcpu *vcpu);
   1539
   1540	void (*sched_in)(struct kvm_vcpu *kvm, int cpu);
   1541
   1542	/*
   1543	 * Size of the CPU's dirty log buffer, i.e. VMX's PML buffer.  A zero
   1544	 * value indicates CPU dirty logging is unsupported or disabled.
   1545	 */
   1546	int cpu_dirty_log_size;
   1547	void (*update_cpu_dirty_logging)(struct kvm_vcpu *vcpu);
   1548
   1549	const struct kvm_x86_nested_ops *nested_ops;
   1550
   1551	void (*vcpu_blocking)(struct kvm_vcpu *vcpu);
   1552	void (*vcpu_unblocking)(struct kvm_vcpu *vcpu);
   1553
   1554	int (*pi_update_irte)(struct kvm *kvm, unsigned int host_irq,
   1555			      uint32_t guest_irq, bool set);
   1556	void (*pi_start_assignment)(struct kvm *kvm);
   1557	void (*apicv_post_state_restore)(struct kvm_vcpu *vcpu);
   1558	bool (*dy_apicv_has_pending_interrupt)(struct kvm_vcpu *vcpu);
   1559
   1560	int (*set_hv_timer)(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc,
   1561			    bool *expired);
   1562	void (*cancel_hv_timer)(struct kvm_vcpu *vcpu);
   1563
   1564	void (*setup_mce)(struct kvm_vcpu *vcpu);
   1565
   1566	int (*smi_allowed)(struct kvm_vcpu *vcpu, bool for_injection);
   1567	int (*enter_smm)(struct kvm_vcpu *vcpu, char *smstate);
   1568	int (*leave_smm)(struct kvm_vcpu *vcpu, const char *smstate);
   1569	void (*enable_smi_window)(struct kvm_vcpu *vcpu);
   1570
   1571	int (*mem_enc_ioctl)(struct kvm *kvm, void __user *argp);
   1572	int (*mem_enc_register_region)(struct kvm *kvm, struct kvm_enc_region *argp);
   1573	int (*mem_enc_unregister_region)(struct kvm *kvm, struct kvm_enc_region *argp);
   1574	int (*vm_copy_enc_context_from)(struct kvm *kvm, unsigned int source_fd);
   1575	int (*vm_move_enc_context_from)(struct kvm *kvm, unsigned int source_fd);
   1576
   1577	int (*get_msr_feature)(struct kvm_msr_entry *entry);
   1578
   1579	bool (*can_emulate_instruction)(struct kvm_vcpu *vcpu, int emul_type,
   1580					void *insn, int insn_len);
   1581
   1582	bool (*apic_init_signal_blocked)(struct kvm_vcpu *vcpu);
   1583	int (*enable_direct_tlbflush)(struct kvm_vcpu *vcpu);
   1584
   1585	void (*migrate_timers)(struct kvm_vcpu *vcpu);
   1586	void (*msr_filter_changed)(struct kvm_vcpu *vcpu);
   1587	int (*complete_emulated_msr)(struct kvm_vcpu *vcpu, int err);
   1588
   1589	void (*vcpu_deliver_sipi_vector)(struct kvm_vcpu *vcpu, u8 vector);
   1590
   1591	/*
   1592	 * Returns vCPU specific APICv inhibit reasons
   1593	 */
   1594	unsigned long (*vcpu_get_apicv_inhibit_reasons)(struct kvm_vcpu *vcpu);
   1595
   1596	void *(*alloc_apic_backing_page)(struct kvm_vcpu *vcpu);
   1597
   1598	void (*rmp_page_level_adjust)(struct kvm *kvm, kvm_pfn_t pfn, int *level);
   1599};
   1600
   1601struct kvm_x86_nested_ops {
   1602	void (*leave_nested)(struct kvm_vcpu *vcpu);
   1603	int (*check_events)(struct kvm_vcpu *vcpu);
   1604	bool (*handle_page_fault_workaround)(struct kvm_vcpu *vcpu,
   1605					     struct x86_exception *fault);
   1606	bool (*hv_timer_pending)(struct kvm_vcpu *vcpu);
   1607	void (*triple_fault)(struct kvm_vcpu *vcpu);
   1608	int (*get_state)(struct kvm_vcpu *vcpu,
   1609			 struct kvm_nested_state __user *user_kvm_nested_state,
   1610			 unsigned user_data_size);
   1611	int (*set_state)(struct kvm_vcpu *vcpu,
   1612			 struct kvm_nested_state __user *user_kvm_nested_state,
   1613			 struct kvm_nested_state *kvm_state);
   1614	bool (*get_nested_state_pages)(struct kvm_vcpu *vcpu);
   1615	int (*write_log_dirty)(struct kvm_vcpu *vcpu, gpa_t l2_gpa);
   1616
   1617	int (*enable_evmcs)(struct kvm_vcpu *vcpu,
   1618			    uint16_t *vmcs_version);
   1619	uint16_t (*get_evmcs_version)(struct kvm_vcpu *vcpu);
   1620};
   1621
   1622struct kvm_x86_init_ops {
   1623	int (*cpu_has_kvm_support)(void);
   1624	int (*disabled_by_bios)(void);
   1625	int (*check_processor_compatibility)(void);
   1626	int (*hardware_setup)(void);
   1627	unsigned int (*handle_intel_pt_intr)(void);
   1628
   1629	struct kvm_x86_ops *runtime_ops;
   1630	struct kvm_pmu_ops *pmu_ops;
   1631};
   1632
   1633struct kvm_arch_async_pf {
   1634	u32 token;
   1635	gfn_t gfn;
   1636	unsigned long cr3;
   1637	bool direct_map;
   1638};
   1639
   1640extern u32 __read_mostly kvm_nr_uret_msrs;
   1641extern u64 __read_mostly host_efer;
   1642extern bool __read_mostly allow_smaller_maxphyaddr;
   1643extern bool __read_mostly enable_apicv;
   1644extern struct kvm_x86_ops kvm_x86_ops;
   1645
   1646#define KVM_X86_OP(func) \
   1647	DECLARE_STATIC_CALL(kvm_x86_##func, *(((struct kvm_x86_ops *)0)->func));
   1648#define KVM_X86_OP_OPTIONAL KVM_X86_OP
   1649#define KVM_X86_OP_OPTIONAL_RET0 KVM_X86_OP
   1650#include <asm/kvm-x86-ops.h>
   1651
   1652#define __KVM_HAVE_ARCH_VM_ALLOC
   1653static inline struct kvm *kvm_arch_alloc_vm(void)
   1654{
   1655	return __vmalloc(kvm_x86_ops.vm_size, GFP_KERNEL_ACCOUNT | __GFP_ZERO);
   1656}
   1657
   1658#define __KVM_HAVE_ARCH_VM_FREE
   1659void kvm_arch_free_vm(struct kvm *kvm);
   1660
   1661#define __KVM_HAVE_ARCH_FLUSH_REMOTE_TLB
   1662static inline int kvm_arch_flush_remote_tlb(struct kvm *kvm)
   1663{
   1664	if (kvm_x86_ops.tlb_remote_flush &&
   1665	    !static_call(kvm_x86_tlb_remote_flush)(kvm))
   1666		return 0;
   1667	else
   1668		return -ENOTSUPP;
   1669}
   1670
   1671#define kvm_arch_pmi_in_guest(vcpu) \
   1672	((vcpu) && (vcpu)->arch.handling_intr_from_guest)
   1673
   1674void __init kvm_mmu_x86_module_init(void);
   1675int kvm_mmu_vendor_module_init(void);
   1676void kvm_mmu_vendor_module_exit(void);
   1677
   1678void kvm_mmu_destroy(struct kvm_vcpu *vcpu);
   1679int kvm_mmu_create(struct kvm_vcpu *vcpu);
   1680int kvm_mmu_init_vm(struct kvm *kvm);
   1681void kvm_mmu_uninit_vm(struct kvm *kvm);
   1682
   1683void kvm_mmu_after_set_cpuid(struct kvm_vcpu *vcpu);
   1684void kvm_mmu_reset_context(struct kvm_vcpu *vcpu);
   1685void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
   1686				      const struct kvm_memory_slot *memslot,
   1687				      int start_level);
   1688void kvm_mmu_slot_try_split_huge_pages(struct kvm *kvm,
   1689				       const struct kvm_memory_slot *memslot,
   1690				       int target_level);
   1691void kvm_mmu_try_split_huge_pages(struct kvm *kvm,
   1692				  const struct kvm_memory_slot *memslot,
   1693				  u64 start, u64 end,
   1694				  int target_level);
   1695void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
   1696				   const struct kvm_memory_slot *memslot);
   1697void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
   1698				   const struct kvm_memory_slot *memslot);
   1699void kvm_mmu_zap_all(struct kvm *kvm);
   1700void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, u64 gen);
   1701void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned long kvm_nr_mmu_pages);
   1702void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end);
   1703
   1704
   1705int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3);
   1706
   1707int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
   1708			  const void *val, int bytes);
   1709
   1710struct kvm_irq_mask_notifier {
   1711	void (*func)(struct kvm_irq_mask_notifier *kimn, bool masked);
   1712	int irq;
   1713	struct hlist_node link;
   1714};
   1715
   1716void kvm_register_irq_mask_notifier(struct kvm *kvm, int irq,
   1717				    struct kvm_irq_mask_notifier *kimn);
   1718void kvm_unregister_irq_mask_notifier(struct kvm *kvm, int irq,
   1719				      struct kvm_irq_mask_notifier *kimn);
   1720void kvm_fire_mask_notifiers(struct kvm *kvm, unsigned irqchip, unsigned pin,
   1721			     bool mask);
   1722
   1723extern bool tdp_enabled;
   1724
   1725u64 vcpu_tsc_khz(struct kvm_vcpu *vcpu);
   1726
   1727/* control of guest tsc rate supported? */
   1728extern bool kvm_has_tsc_control;
   1729/* maximum supported tsc_khz for guests */
   1730extern u32  kvm_max_guest_tsc_khz;
   1731/* number of bits of the fractional part of the TSC scaling ratio */
   1732extern u8   kvm_tsc_scaling_ratio_frac_bits;
   1733/* maximum allowed value of TSC scaling ratio */
   1734extern u64  kvm_max_tsc_scaling_ratio;
   1735/* 1ull << kvm_tsc_scaling_ratio_frac_bits */
   1736extern u64  kvm_default_tsc_scaling_ratio;
   1737/* bus lock detection supported? */
   1738extern bool kvm_has_bus_lock_exit;
   1739
   1740extern u64 kvm_mce_cap_supported;
   1741
   1742/*
   1743 * EMULTYPE_NO_DECODE - Set when re-emulating an instruction (after completing
   1744 *			userspace I/O) to indicate that the emulation context
   1745 *			should be reused as is, i.e. skip initialization of
   1746 *			emulation context, instruction fetch and decode.
   1747 *
   1748 * EMULTYPE_TRAP_UD - Set when emulating an intercepted #UD from hardware.
   1749 *		      Indicates that only select instructions (tagged with
   1750 *		      EmulateOnUD) should be emulated (to minimize the emulator
   1751 *		      attack surface).  See also EMULTYPE_TRAP_UD_FORCED.
   1752 *
   1753 * EMULTYPE_SKIP - Set when emulating solely to skip an instruction, i.e. to
   1754 *		   decode the instruction length.  For use *only* by
   1755 *		   kvm_x86_ops.skip_emulated_instruction() implementations if
   1756 *		   EMULTYPE_COMPLETE_USER_EXIT is not set.
   1757 *
   1758 * EMULTYPE_ALLOW_RETRY_PF - Set when the emulator should resume the guest to
   1759 *			     retry native execution under certain conditions,
   1760 *			     Can only be set in conjunction with EMULTYPE_PF.
   1761 *
   1762 * EMULTYPE_TRAP_UD_FORCED - Set when emulating an intercepted #UD that was
   1763 *			     triggered by KVM's magic "force emulation" prefix,
   1764 *			     which is opt in via module param (off by default).
   1765 *			     Bypasses EmulateOnUD restriction despite emulating
   1766 *			     due to an intercepted #UD (see EMULTYPE_TRAP_UD).
   1767 *			     Used to test the full emulator from userspace.
   1768 *
   1769 * EMULTYPE_VMWARE_GP - Set when emulating an intercepted #GP for VMware
   1770 *			backdoor emulation, which is opt in via module param.
   1771 *			VMware backdoor emulation handles select instructions
   1772 *			and reinjects the #GP for all other cases.
   1773 *
   1774 * EMULTYPE_PF - Set when emulating MMIO by way of an intercepted #PF, in which
   1775 *		 case the CR2/GPA value pass on the stack is valid.
   1776 *
   1777 * EMULTYPE_COMPLETE_USER_EXIT - Set when the emulator should update interruptibility
   1778 *				 state and inject single-step #DBs after skipping
   1779 *				 an instruction (after completing userspace I/O).
   1780 */
   1781#define EMULTYPE_NO_DECODE	    (1 << 0)
   1782#define EMULTYPE_TRAP_UD	    (1 << 1)
   1783#define EMULTYPE_SKIP		    (1 << 2)
   1784#define EMULTYPE_ALLOW_RETRY_PF	    (1 << 3)
   1785#define EMULTYPE_TRAP_UD_FORCED	    (1 << 4)
   1786#define EMULTYPE_VMWARE_GP	    (1 << 5)
   1787#define EMULTYPE_PF		    (1 << 6)
   1788#define EMULTYPE_COMPLETE_USER_EXIT (1 << 7)
   1789
   1790int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type);
   1791int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu,
   1792					void *insn, int insn_len);
   1793void __kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu,
   1794					  u64 *data, u8 ndata);
   1795void kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu);
   1796
   1797void kvm_enable_efer_bits(u64);
   1798bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer);
   1799int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data, bool host_initiated);
   1800int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data);
   1801int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data);
   1802int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu);
   1803int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu);
   1804int kvm_emulate_as_nop(struct kvm_vcpu *vcpu);
   1805int kvm_emulate_invd(struct kvm_vcpu *vcpu);
   1806int kvm_emulate_mwait(struct kvm_vcpu *vcpu);
   1807int kvm_handle_invalid_op(struct kvm_vcpu *vcpu);
   1808int kvm_emulate_monitor(struct kvm_vcpu *vcpu);
   1809
   1810int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in);
   1811int kvm_emulate_cpuid(struct kvm_vcpu *vcpu);
   1812int kvm_emulate_halt(struct kvm_vcpu *vcpu);
   1813int kvm_emulate_halt_noskip(struct kvm_vcpu *vcpu);
   1814int kvm_emulate_ap_reset_hold(struct kvm_vcpu *vcpu);
   1815int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu);
   1816
   1817void kvm_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg);
   1818int kvm_load_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector, int seg);
   1819void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector);
   1820
   1821int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
   1822		    int reason, bool has_error_code, u32 error_code);
   1823
   1824void kvm_post_set_cr0(struct kvm_vcpu *vcpu, unsigned long old_cr0, unsigned long cr0);
   1825void kvm_post_set_cr4(struct kvm_vcpu *vcpu, unsigned long old_cr4, unsigned long cr4);
   1826int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0);
   1827int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3);
   1828int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
   1829int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8);
   1830int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val);
   1831void kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val);
   1832unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu);
   1833void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw);
   1834int kvm_emulate_xsetbv(struct kvm_vcpu *vcpu);
   1835
   1836int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr);
   1837int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr);
   1838
   1839unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu);
   1840void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
   1841int kvm_emulate_rdpmc(struct kvm_vcpu *vcpu);
   1842
   1843void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr);
   1844void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code);
   1845void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr, unsigned long payload);
   1846void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr);
   1847void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code);
   1848void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault);
   1849bool kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu,
   1850				    struct x86_exception *fault);
   1851bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl);
   1852bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr);
   1853
   1854static inline int __kvm_irq_line_state(unsigned long *irq_state,
   1855				       int irq_source_id, int level)
   1856{
   1857	/* Logical OR for level trig interrupt */
   1858	if (level)
   1859		__set_bit(irq_source_id, irq_state);
   1860	else
   1861		__clear_bit(irq_source_id, irq_state);
   1862
   1863	return !!(*irq_state);
   1864}
   1865
   1866#define KVM_MMU_ROOT_CURRENT		BIT(0)
   1867#define KVM_MMU_ROOT_PREVIOUS(i)	BIT(1+i)
   1868#define KVM_MMU_ROOTS_ALL		(~0UL)
   1869
   1870int kvm_pic_set_irq(struct kvm_pic *pic, int irq, int irq_source_id, int level);
   1871void kvm_pic_clear_all(struct kvm_pic *pic, int irq_source_id);
   1872
   1873void kvm_inject_nmi(struct kvm_vcpu *vcpu);
   1874
   1875void kvm_update_dr7(struct kvm_vcpu *vcpu);
   1876
   1877int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn);
   1878void kvm_mmu_free_roots(struct kvm *kvm, struct kvm_mmu *mmu,
   1879			ulong roots_to_free);
   1880void kvm_mmu_free_guest_mode_roots(struct kvm *kvm, struct kvm_mmu *mmu);
   1881gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
   1882			      struct x86_exception *exception);
   1883gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
   1884			       struct x86_exception *exception);
   1885gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
   1886			       struct x86_exception *exception);
   1887gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
   1888				struct x86_exception *exception);
   1889
   1890bool kvm_apicv_activated(struct kvm *kvm);
   1891bool kvm_vcpu_apicv_activated(struct kvm_vcpu *vcpu);
   1892void kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu);
   1893void __kvm_set_or_clear_apicv_inhibit(struct kvm *kvm,
   1894				      enum kvm_apicv_inhibit reason, bool set);
   1895void kvm_set_or_clear_apicv_inhibit(struct kvm *kvm,
   1896				    enum kvm_apicv_inhibit reason, bool set);
   1897
   1898static inline void kvm_set_apicv_inhibit(struct kvm *kvm,
   1899					 enum kvm_apicv_inhibit reason)
   1900{
   1901	kvm_set_or_clear_apicv_inhibit(kvm, reason, true);
   1902}
   1903
   1904static inline void kvm_clear_apicv_inhibit(struct kvm *kvm,
   1905					   enum kvm_apicv_inhibit reason)
   1906{
   1907	kvm_set_or_clear_apicv_inhibit(kvm, reason, false);
   1908}
   1909
   1910int kvm_emulate_hypercall(struct kvm_vcpu *vcpu);
   1911
   1912int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, u64 error_code,
   1913		       void *insn, int insn_len);
   1914void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva);
   1915void kvm_mmu_invalidate_gva(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
   1916			    gva_t gva, hpa_t root_hpa);
   1917void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid);
   1918void kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd);
   1919
   1920void kvm_configure_mmu(bool enable_tdp, int tdp_forced_root_level,
   1921		       int tdp_max_root_level, int tdp_huge_page_level);
   1922
   1923static inline u16 kvm_read_ldt(void)
   1924{
   1925	u16 ldt;
   1926	asm("sldt %0" : "=g"(ldt));
   1927	return ldt;
   1928}
   1929
   1930static inline void kvm_load_ldt(u16 sel)
   1931{
   1932	asm("lldt %0" : : "rm"(sel));
   1933}
   1934
   1935#ifdef CONFIG_X86_64
   1936static inline unsigned long read_msr(unsigned long msr)
   1937{
   1938	u64 value;
   1939
   1940	rdmsrl(msr, value);
   1941	return value;
   1942}
   1943#endif
   1944
   1945static inline void kvm_inject_gp(struct kvm_vcpu *vcpu, u32 error_code)
   1946{
   1947	kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
   1948}
   1949
   1950#define TSS_IOPB_BASE_OFFSET 0x66
   1951#define TSS_BASE_SIZE 0x68
   1952#define TSS_IOPB_SIZE (65536 / 8)
   1953#define TSS_REDIRECTION_SIZE (256 / 8)
   1954#define RMODE_TSS_SIZE							\
   1955	(TSS_BASE_SIZE + TSS_REDIRECTION_SIZE + TSS_IOPB_SIZE + 1)
   1956
   1957enum {
   1958	TASK_SWITCH_CALL = 0,
   1959	TASK_SWITCH_IRET = 1,
   1960	TASK_SWITCH_JMP = 2,
   1961	TASK_SWITCH_GATE = 3,
   1962};
   1963
   1964#define HF_GIF_MASK		(1 << 0)
   1965#define HF_NMI_MASK		(1 << 3)
   1966#define HF_IRET_MASK		(1 << 4)
   1967#define HF_GUEST_MASK		(1 << 5) /* VCPU is in guest-mode */
   1968#define HF_SMM_MASK		(1 << 6)
   1969#define HF_SMM_INSIDE_NMI_MASK	(1 << 7)
   1970
   1971#define __KVM_VCPU_MULTIPLE_ADDRESS_SPACE
   1972#define KVM_ADDRESS_SPACE_NUM 2
   1973
   1974#define kvm_arch_vcpu_memslots_id(vcpu) ((vcpu)->arch.hflags & HF_SMM_MASK ? 1 : 0)
   1975#define kvm_memslots_for_spte_role(kvm, role) __kvm_memslots(kvm, (role).smm)
   1976
   1977#define KVM_ARCH_WANT_MMU_NOTIFIER
   1978
   1979int kvm_cpu_has_injectable_intr(struct kvm_vcpu *v);
   1980int kvm_cpu_has_interrupt(struct kvm_vcpu *vcpu);
   1981int kvm_cpu_has_extint(struct kvm_vcpu *v);
   1982int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu);
   1983int kvm_cpu_get_interrupt(struct kvm_vcpu *v);
   1984void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event);
   1985
   1986int kvm_pv_send_ipi(struct kvm *kvm, unsigned long ipi_bitmap_low,
   1987		    unsigned long ipi_bitmap_high, u32 min,
   1988		    unsigned long icr, int op_64_bit);
   1989
   1990int kvm_add_user_return_msr(u32 msr);
   1991int kvm_find_user_return_msr(u32 msr);
   1992int kvm_set_user_return_msr(unsigned index, u64 val, u64 mask);
   1993
   1994static inline bool kvm_is_supported_user_return_msr(u32 msr)
   1995{
   1996	return kvm_find_user_return_msr(msr) >= 0;
   1997}
   1998
   1999u64 kvm_scale_tsc(u64 tsc, u64 ratio);
   2000u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc);
   2001u64 kvm_calc_nested_tsc_offset(u64 l1_offset, u64 l2_offset, u64 l2_multiplier);
   2002u64 kvm_calc_nested_tsc_multiplier(u64 l1_multiplier, u64 l2_multiplier);
   2003
   2004unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu);
   2005bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip);
   2006
   2007void kvm_make_scan_ioapic_request(struct kvm *kvm);
   2008void kvm_make_scan_ioapic_request_mask(struct kvm *kvm,
   2009				       unsigned long *vcpu_bitmap);
   2010
   2011bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
   2012				     struct kvm_async_pf *work);
   2013void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
   2014				 struct kvm_async_pf *work);
   2015void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu,
   2016			       struct kvm_async_pf *work);
   2017void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu);
   2018bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu);
   2019extern bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn);
   2020
   2021int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu);
   2022int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err);
   2023void __kvm_request_immediate_exit(struct kvm_vcpu *vcpu);
   2024
   2025void __user *__x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa,
   2026				     u32 size);
   2027bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu);
   2028bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu);
   2029
   2030bool kvm_intr_is_single_vcpu(struct kvm *kvm, struct kvm_lapic_irq *irq,
   2031			     struct kvm_vcpu **dest_vcpu);
   2032
   2033void kvm_set_msi_irq(struct kvm *kvm, struct kvm_kernel_irq_routing_entry *e,
   2034		     struct kvm_lapic_irq *irq);
   2035
   2036static inline bool kvm_irq_is_postable(struct kvm_lapic_irq *irq)
   2037{
   2038	/* We can only post Fixed and LowPrio IRQs */
   2039	return (irq->delivery_mode == APIC_DM_FIXED ||
   2040		irq->delivery_mode == APIC_DM_LOWEST);
   2041}
   2042
   2043static inline void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
   2044{
   2045	static_call_cond(kvm_x86_vcpu_blocking)(vcpu);
   2046}
   2047
   2048static inline void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
   2049{
   2050	static_call_cond(kvm_x86_vcpu_unblocking)(vcpu);
   2051}
   2052
   2053static inline int kvm_cpu_get_apicid(int mps_cpu)
   2054{
   2055#ifdef CONFIG_X86_LOCAL_APIC
   2056	return default_cpu_present_to_apicid(mps_cpu);
   2057#else
   2058	WARN_ON_ONCE(1);
   2059	return BAD_APICID;
   2060#endif
   2061}
   2062
   2063#define put_smstate(type, buf, offset, val)                      \
   2064	*(type *)((buf) + (offset) - 0x7e00) = val
   2065
   2066#define GET_SMSTATE(type, buf, offset)		\
   2067	(*(type *)((buf) + (offset) - 0x7e00))
   2068
   2069int kvm_cpu_dirty_log_size(void);
   2070
   2071int memslot_rmap_alloc(struct kvm_memory_slot *slot, unsigned long npages);
   2072
   2073#define KVM_CLOCK_VALID_FLAGS						\
   2074	(KVM_CLOCK_TSC_STABLE | KVM_CLOCK_REALTIME | KVM_CLOCK_HOST_TSC)
   2075
   2076#define KVM_X86_VALID_QUIRKS			\
   2077	(KVM_X86_QUIRK_LINT0_REENABLED |	\
   2078	 KVM_X86_QUIRK_CD_NW_CLEARED |		\
   2079	 KVM_X86_QUIRK_LAPIC_MMIO_HOLE |	\
   2080	 KVM_X86_QUIRK_OUT_7E_INC_RIP |		\
   2081	 KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT |	\
   2082	 KVM_X86_QUIRK_FIX_HYPERCALL_INSN)
   2083
   2084#endif /* _ASM_X86_KVM_HOST_H */