percpu.h (16985B)
1/* SPDX-License-Identifier: GPL-2.0 */ 2#ifndef _ASM_X86_PERCPU_H 3#define _ASM_X86_PERCPU_H 4 5#ifdef CONFIG_X86_64 6#define __percpu_seg gs 7#else 8#define __percpu_seg fs 9#endif 10 11#ifdef __ASSEMBLY__ 12 13#ifdef CONFIG_SMP 14#define PER_CPU_VAR(var) %__percpu_seg:var 15#else /* ! SMP */ 16#define PER_CPU_VAR(var) var 17#endif /* SMP */ 18 19#ifdef CONFIG_X86_64_SMP 20#define INIT_PER_CPU_VAR(var) init_per_cpu__##var 21#else 22#define INIT_PER_CPU_VAR(var) var 23#endif 24 25#else /* ...!ASSEMBLY */ 26 27#include <linux/kernel.h> 28#include <linux/stringify.h> 29 30#ifdef CONFIG_SMP 31#define __percpu_prefix "%%"__stringify(__percpu_seg)":" 32#define __my_cpu_offset this_cpu_read(this_cpu_off) 33 34/* 35 * Compared to the generic __my_cpu_offset version, the following 36 * saves one instruction and avoids clobbering a temp register. 37 */ 38#define arch_raw_cpu_ptr(ptr) \ 39({ \ 40 unsigned long tcp_ptr__; \ 41 asm ("add " __percpu_arg(1) ", %0" \ 42 : "=r" (tcp_ptr__) \ 43 : "m" (this_cpu_off), "0" (ptr)); \ 44 (typeof(*(ptr)) __kernel __force *)tcp_ptr__; \ 45}) 46#else 47#define __percpu_prefix "" 48#endif 49 50#define __percpu_arg(x) __percpu_prefix "%" #x 51 52/* 53 * Initialized pointers to per-cpu variables needed for the boot 54 * processor need to use these macros to get the proper address 55 * offset from __per_cpu_load on SMP. 56 * 57 * There also must be an entry in vmlinux_64.lds.S 58 */ 59#define DECLARE_INIT_PER_CPU(var) \ 60 extern typeof(var) init_per_cpu_var(var) 61 62#ifdef CONFIG_X86_64_SMP 63#define init_per_cpu_var(var) init_per_cpu__##var 64#else 65#define init_per_cpu_var(var) var 66#endif 67 68/* For arch-specific code, we can use direct single-insn ops (they 69 * don't give an lvalue though). */ 70 71#define __pcpu_type_1 u8 72#define __pcpu_type_2 u16 73#define __pcpu_type_4 u32 74#define __pcpu_type_8 u64 75 76#define __pcpu_cast_1(val) ((u8)(((unsigned long) val) & 0xff)) 77#define __pcpu_cast_2(val) ((u16)(((unsigned long) val) & 0xffff)) 78#define __pcpu_cast_4(val) ((u32)(((unsigned long) val) & 0xffffffff)) 79#define __pcpu_cast_8(val) ((u64)(val)) 80 81#define __pcpu_op1_1(op, dst) op "b " dst 82#define __pcpu_op1_2(op, dst) op "w " dst 83#define __pcpu_op1_4(op, dst) op "l " dst 84#define __pcpu_op1_8(op, dst) op "q " dst 85 86#define __pcpu_op2_1(op, src, dst) op "b " src ", " dst 87#define __pcpu_op2_2(op, src, dst) op "w " src ", " dst 88#define __pcpu_op2_4(op, src, dst) op "l " src ", " dst 89#define __pcpu_op2_8(op, src, dst) op "q " src ", " dst 90 91#define __pcpu_reg_1(mod, x) mod "q" (x) 92#define __pcpu_reg_2(mod, x) mod "r" (x) 93#define __pcpu_reg_4(mod, x) mod "r" (x) 94#define __pcpu_reg_8(mod, x) mod "r" (x) 95 96#define __pcpu_reg_imm_1(x) "qi" (x) 97#define __pcpu_reg_imm_2(x) "ri" (x) 98#define __pcpu_reg_imm_4(x) "ri" (x) 99#define __pcpu_reg_imm_8(x) "re" (x) 100 101#define percpu_to_op(size, qual, op, _var, _val) \ 102do { \ 103 __pcpu_type_##size pto_val__ = __pcpu_cast_##size(_val); \ 104 if (0) { \ 105 typeof(_var) pto_tmp__; \ 106 pto_tmp__ = (_val); \ 107 (void)pto_tmp__; \ 108 } \ 109 asm qual(__pcpu_op2_##size(op, "%[val]", __percpu_arg([var])) \ 110 : [var] "+m" (_var) \ 111 : [val] __pcpu_reg_imm_##size(pto_val__)); \ 112} while (0) 113 114#define percpu_unary_op(size, qual, op, _var) \ 115({ \ 116 asm qual (__pcpu_op1_##size(op, __percpu_arg([var])) \ 117 : [var] "+m" (_var)); \ 118}) 119 120/* 121 * Generate a percpu add to memory instruction and optimize code 122 * if one is added or subtracted. 123 */ 124#define percpu_add_op(size, qual, var, val) \ 125do { \ 126 const int pao_ID__ = (__builtin_constant_p(val) && \ 127 ((val) == 1 || (val) == -1)) ? \ 128 (int)(val) : 0; \ 129 if (0) { \ 130 typeof(var) pao_tmp__; \ 131 pao_tmp__ = (val); \ 132 (void)pao_tmp__; \ 133 } \ 134 if (pao_ID__ == 1) \ 135 percpu_unary_op(size, qual, "inc", var); \ 136 else if (pao_ID__ == -1) \ 137 percpu_unary_op(size, qual, "dec", var); \ 138 else \ 139 percpu_to_op(size, qual, "add", var, val); \ 140} while (0) 141 142#define percpu_from_op(size, qual, op, _var) \ 143({ \ 144 __pcpu_type_##size pfo_val__; \ 145 asm qual (__pcpu_op2_##size(op, __percpu_arg([var]), "%[val]") \ 146 : [val] __pcpu_reg_##size("=", pfo_val__) \ 147 : [var] "m" (_var)); \ 148 (typeof(_var))(unsigned long) pfo_val__; \ 149}) 150 151#define percpu_stable_op(size, op, _var) \ 152({ \ 153 __pcpu_type_##size pfo_val__; \ 154 asm(__pcpu_op2_##size(op, __percpu_arg(P[var]), "%[val]") \ 155 : [val] __pcpu_reg_##size("=", pfo_val__) \ 156 : [var] "p" (&(_var))); \ 157 (typeof(_var))(unsigned long) pfo_val__; \ 158}) 159 160/* 161 * Add return operation 162 */ 163#define percpu_add_return_op(size, qual, _var, _val) \ 164({ \ 165 __pcpu_type_##size paro_tmp__ = __pcpu_cast_##size(_val); \ 166 asm qual (__pcpu_op2_##size("xadd", "%[tmp]", \ 167 __percpu_arg([var])) \ 168 : [tmp] __pcpu_reg_##size("+", paro_tmp__), \ 169 [var] "+m" (_var) \ 170 : : "memory"); \ 171 (typeof(_var))(unsigned long) (paro_tmp__ + _val); \ 172}) 173 174/* 175 * xchg is implemented using cmpxchg without a lock prefix. xchg is 176 * expensive due to the implied lock prefix. The processor cannot prefetch 177 * cachelines if xchg is used. 178 */ 179#define percpu_xchg_op(size, qual, _var, _nval) \ 180({ \ 181 __pcpu_type_##size pxo_old__; \ 182 __pcpu_type_##size pxo_new__ = __pcpu_cast_##size(_nval); \ 183 asm qual (__pcpu_op2_##size("mov", __percpu_arg([var]), \ 184 "%[oval]") \ 185 "\n1:\t" \ 186 __pcpu_op2_##size("cmpxchg", "%[nval]", \ 187 __percpu_arg([var])) \ 188 "\n\tjnz 1b" \ 189 : [oval] "=&a" (pxo_old__), \ 190 [var] "+m" (_var) \ 191 : [nval] __pcpu_reg_##size(, pxo_new__) \ 192 : "memory"); \ 193 (typeof(_var))(unsigned long) pxo_old__; \ 194}) 195 196/* 197 * cmpxchg has no such implied lock semantics as a result it is much 198 * more efficient for cpu local operations. 199 */ 200#define percpu_cmpxchg_op(size, qual, _var, _oval, _nval) \ 201({ \ 202 __pcpu_type_##size pco_old__ = __pcpu_cast_##size(_oval); \ 203 __pcpu_type_##size pco_new__ = __pcpu_cast_##size(_nval); \ 204 asm qual (__pcpu_op2_##size("cmpxchg", "%[nval]", \ 205 __percpu_arg([var])) \ 206 : [oval] "+a" (pco_old__), \ 207 [var] "+m" (_var) \ 208 : [nval] __pcpu_reg_##size(, pco_new__) \ 209 : "memory"); \ 210 (typeof(_var))(unsigned long) pco_old__; \ 211}) 212 213/* 214 * this_cpu_read() makes gcc load the percpu variable every time it is 215 * accessed while this_cpu_read_stable() allows the value to be cached. 216 * this_cpu_read_stable() is more efficient and can be used if its value 217 * is guaranteed to be valid across cpus. The current users include 218 * get_current() and get_thread_info() both of which are actually 219 * per-thread variables implemented as per-cpu variables and thus 220 * stable for the duration of the respective task. 221 */ 222#define this_cpu_read_stable_1(pcp) percpu_stable_op(1, "mov", pcp) 223#define this_cpu_read_stable_2(pcp) percpu_stable_op(2, "mov", pcp) 224#define this_cpu_read_stable_4(pcp) percpu_stable_op(4, "mov", pcp) 225#define this_cpu_read_stable_8(pcp) percpu_stable_op(8, "mov", pcp) 226#define this_cpu_read_stable(pcp) __pcpu_size_call_return(this_cpu_read_stable_, pcp) 227 228#define raw_cpu_read_1(pcp) percpu_from_op(1, , "mov", pcp) 229#define raw_cpu_read_2(pcp) percpu_from_op(2, , "mov", pcp) 230#define raw_cpu_read_4(pcp) percpu_from_op(4, , "mov", pcp) 231 232#define raw_cpu_write_1(pcp, val) percpu_to_op(1, , "mov", (pcp), val) 233#define raw_cpu_write_2(pcp, val) percpu_to_op(2, , "mov", (pcp), val) 234#define raw_cpu_write_4(pcp, val) percpu_to_op(4, , "mov", (pcp), val) 235#define raw_cpu_add_1(pcp, val) percpu_add_op(1, , (pcp), val) 236#define raw_cpu_add_2(pcp, val) percpu_add_op(2, , (pcp), val) 237#define raw_cpu_add_4(pcp, val) percpu_add_op(4, , (pcp), val) 238#define raw_cpu_and_1(pcp, val) percpu_to_op(1, , "and", (pcp), val) 239#define raw_cpu_and_2(pcp, val) percpu_to_op(2, , "and", (pcp), val) 240#define raw_cpu_and_4(pcp, val) percpu_to_op(4, , "and", (pcp), val) 241#define raw_cpu_or_1(pcp, val) percpu_to_op(1, , "or", (pcp), val) 242#define raw_cpu_or_2(pcp, val) percpu_to_op(2, , "or", (pcp), val) 243#define raw_cpu_or_4(pcp, val) percpu_to_op(4, , "or", (pcp), val) 244 245/* 246 * raw_cpu_xchg() can use a load-store since it is not required to be 247 * IRQ-safe. 248 */ 249#define raw_percpu_xchg_op(var, nval) \ 250({ \ 251 typeof(var) pxo_ret__ = raw_cpu_read(var); \ 252 raw_cpu_write(var, (nval)); \ 253 pxo_ret__; \ 254}) 255 256#define raw_cpu_xchg_1(pcp, val) raw_percpu_xchg_op(pcp, val) 257#define raw_cpu_xchg_2(pcp, val) raw_percpu_xchg_op(pcp, val) 258#define raw_cpu_xchg_4(pcp, val) raw_percpu_xchg_op(pcp, val) 259 260#define this_cpu_read_1(pcp) percpu_from_op(1, volatile, "mov", pcp) 261#define this_cpu_read_2(pcp) percpu_from_op(2, volatile, "mov", pcp) 262#define this_cpu_read_4(pcp) percpu_from_op(4, volatile, "mov", pcp) 263#define this_cpu_write_1(pcp, val) percpu_to_op(1, volatile, "mov", (pcp), val) 264#define this_cpu_write_2(pcp, val) percpu_to_op(2, volatile, "mov", (pcp), val) 265#define this_cpu_write_4(pcp, val) percpu_to_op(4, volatile, "mov", (pcp), val) 266#define this_cpu_add_1(pcp, val) percpu_add_op(1, volatile, (pcp), val) 267#define this_cpu_add_2(pcp, val) percpu_add_op(2, volatile, (pcp), val) 268#define this_cpu_add_4(pcp, val) percpu_add_op(4, volatile, (pcp), val) 269#define this_cpu_and_1(pcp, val) percpu_to_op(1, volatile, "and", (pcp), val) 270#define this_cpu_and_2(pcp, val) percpu_to_op(2, volatile, "and", (pcp), val) 271#define this_cpu_and_4(pcp, val) percpu_to_op(4, volatile, "and", (pcp), val) 272#define this_cpu_or_1(pcp, val) percpu_to_op(1, volatile, "or", (pcp), val) 273#define this_cpu_or_2(pcp, val) percpu_to_op(2, volatile, "or", (pcp), val) 274#define this_cpu_or_4(pcp, val) percpu_to_op(4, volatile, "or", (pcp), val) 275#define this_cpu_xchg_1(pcp, nval) percpu_xchg_op(1, volatile, pcp, nval) 276#define this_cpu_xchg_2(pcp, nval) percpu_xchg_op(2, volatile, pcp, nval) 277#define this_cpu_xchg_4(pcp, nval) percpu_xchg_op(4, volatile, pcp, nval) 278 279#define raw_cpu_add_return_1(pcp, val) percpu_add_return_op(1, , pcp, val) 280#define raw_cpu_add_return_2(pcp, val) percpu_add_return_op(2, , pcp, val) 281#define raw_cpu_add_return_4(pcp, val) percpu_add_return_op(4, , pcp, val) 282#define raw_cpu_cmpxchg_1(pcp, oval, nval) percpu_cmpxchg_op(1, , pcp, oval, nval) 283#define raw_cpu_cmpxchg_2(pcp, oval, nval) percpu_cmpxchg_op(2, , pcp, oval, nval) 284#define raw_cpu_cmpxchg_4(pcp, oval, nval) percpu_cmpxchg_op(4, , pcp, oval, nval) 285 286#define this_cpu_add_return_1(pcp, val) percpu_add_return_op(1, volatile, pcp, val) 287#define this_cpu_add_return_2(pcp, val) percpu_add_return_op(2, volatile, pcp, val) 288#define this_cpu_add_return_4(pcp, val) percpu_add_return_op(4, volatile, pcp, val) 289#define this_cpu_cmpxchg_1(pcp, oval, nval) percpu_cmpxchg_op(1, volatile, pcp, oval, nval) 290#define this_cpu_cmpxchg_2(pcp, oval, nval) percpu_cmpxchg_op(2, volatile, pcp, oval, nval) 291#define this_cpu_cmpxchg_4(pcp, oval, nval) percpu_cmpxchg_op(4, volatile, pcp, oval, nval) 292 293#ifdef CONFIG_X86_CMPXCHG64 294#define percpu_cmpxchg8b_double(pcp1, pcp2, o1, o2, n1, n2) \ 295({ \ 296 bool __ret; \ 297 typeof(pcp1) __o1 = (o1), __n1 = (n1); \ 298 typeof(pcp2) __o2 = (o2), __n2 = (n2); \ 299 asm volatile("cmpxchg8b "__percpu_arg(1) \ 300 CC_SET(z) \ 301 : CC_OUT(z) (__ret), "+m" (pcp1), "+m" (pcp2), "+a" (__o1), "+d" (__o2) \ 302 : "b" (__n1), "c" (__n2)); \ 303 __ret; \ 304}) 305 306#define raw_cpu_cmpxchg_double_4 percpu_cmpxchg8b_double 307#define this_cpu_cmpxchg_double_4 percpu_cmpxchg8b_double 308#endif /* CONFIG_X86_CMPXCHG64 */ 309 310/* 311 * Per cpu atomic 64 bit operations are only available under 64 bit. 312 * 32 bit must fall back to generic operations. 313 */ 314#ifdef CONFIG_X86_64 315#define raw_cpu_read_8(pcp) percpu_from_op(8, , "mov", pcp) 316#define raw_cpu_write_8(pcp, val) percpu_to_op(8, , "mov", (pcp), val) 317#define raw_cpu_add_8(pcp, val) percpu_add_op(8, , (pcp), val) 318#define raw_cpu_and_8(pcp, val) percpu_to_op(8, , "and", (pcp), val) 319#define raw_cpu_or_8(pcp, val) percpu_to_op(8, , "or", (pcp), val) 320#define raw_cpu_add_return_8(pcp, val) percpu_add_return_op(8, , pcp, val) 321#define raw_cpu_xchg_8(pcp, nval) raw_percpu_xchg_op(pcp, nval) 322#define raw_cpu_cmpxchg_8(pcp, oval, nval) percpu_cmpxchg_op(8, , pcp, oval, nval) 323 324#define this_cpu_read_8(pcp) percpu_from_op(8, volatile, "mov", pcp) 325#define this_cpu_write_8(pcp, val) percpu_to_op(8, volatile, "mov", (pcp), val) 326#define this_cpu_add_8(pcp, val) percpu_add_op(8, volatile, (pcp), val) 327#define this_cpu_and_8(pcp, val) percpu_to_op(8, volatile, "and", (pcp), val) 328#define this_cpu_or_8(pcp, val) percpu_to_op(8, volatile, "or", (pcp), val) 329#define this_cpu_add_return_8(pcp, val) percpu_add_return_op(8, volatile, pcp, val) 330#define this_cpu_xchg_8(pcp, nval) percpu_xchg_op(8, volatile, pcp, nval) 331#define this_cpu_cmpxchg_8(pcp, oval, nval) percpu_cmpxchg_op(8, volatile, pcp, oval, nval) 332 333/* 334 * Pretty complex macro to generate cmpxchg16 instruction. The instruction 335 * is not supported on early AMD64 processors so we must be able to emulate 336 * it in software. The address used in the cmpxchg16 instruction must be 337 * aligned to a 16 byte boundary. 338 */ 339#define percpu_cmpxchg16b_double(pcp1, pcp2, o1, o2, n1, n2) \ 340({ \ 341 bool __ret; \ 342 typeof(pcp1) __o1 = (o1), __n1 = (n1); \ 343 typeof(pcp2) __o2 = (o2), __n2 = (n2); \ 344 alternative_io("leaq %P1,%%rsi\n\tcall this_cpu_cmpxchg16b_emu\n\t", \ 345 "cmpxchg16b " __percpu_arg(1) "\n\tsetz %0\n\t", \ 346 X86_FEATURE_CX16, \ 347 ASM_OUTPUT2("=a" (__ret), "+m" (pcp1), \ 348 "+m" (pcp2), "+d" (__o2)), \ 349 "b" (__n1), "c" (__n2), "a" (__o1) : "rsi"); \ 350 __ret; \ 351}) 352 353#define raw_cpu_cmpxchg_double_8 percpu_cmpxchg16b_double 354#define this_cpu_cmpxchg_double_8 percpu_cmpxchg16b_double 355 356#endif 357 358static __always_inline bool x86_this_cpu_constant_test_bit(unsigned int nr, 359 const unsigned long __percpu *addr) 360{ 361 unsigned long __percpu *a = 362 (unsigned long __percpu *)addr + nr / BITS_PER_LONG; 363 364#ifdef CONFIG_X86_64 365 return ((1UL << (nr % BITS_PER_LONG)) & raw_cpu_read_8(*a)) != 0; 366#else 367 return ((1UL << (nr % BITS_PER_LONG)) & raw_cpu_read_4(*a)) != 0; 368#endif 369} 370 371static inline bool x86_this_cpu_variable_test_bit(int nr, 372 const unsigned long __percpu *addr) 373{ 374 bool oldbit; 375 376 asm volatile("btl "__percpu_arg(2)",%1" 377 CC_SET(c) 378 : CC_OUT(c) (oldbit) 379 : "m" (*(unsigned long __percpu *)addr), "Ir" (nr)); 380 381 return oldbit; 382} 383 384#define x86_this_cpu_test_bit(nr, addr) \ 385 (__builtin_constant_p((nr)) \ 386 ? x86_this_cpu_constant_test_bit((nr), (addr)) \ 387 : x86_this_cpu_variable_test_bit((nr), (addr))) 388 389 390#include <asm-generic/percpu.h> 391 392/* We can use this directly for local CPU (faster). */ 393DECLARE_PER_CPU_READ_MOSTLY(unsigned long, this_cpu_off); 394 395#endif /* !__ASSEMBLY__ */ 396 397#ifdef CONFIG_SMP 398 399/* 400 * Define the "EARLY_PER_CPU" macros. These are used for some per_cpu 401 * variables that are initialized and accessed before there are per_cpu 402 * areas allocated. 403 */ 404 405#define DEFINE_EARLY_PER_CPU(_type, _name, _initvalue) \ 406 DEFINE_PER_CPU(_type, _name) = _initvalue; \ 407 __typeof__(_type) _name##_early_map[NR_CPUS] __initdata = \ 408 { [0 ... NR_CPUS-1] = _initvalue }; \ 409 __typeof__(_type) *_name##_early_ptr __refdata = _name##_early_map 410 411#define DEFINE_EARLY_PER_CPU_READ_MOSTLY(_type, _name, _initvalue) \ 412 DEFINE_PER_CPU_READ_MOSTLY(_type, _name) = _initvalue; \ 413 __typeof__(_type) _name##_early_map[NR_CPUS] __initdata = \ 414 { [0 ... NR_CPUS-1] = _initvalue }; \ 415 __typeof__(_type) *_name##_early_ptr __refdata = _name##_early_map 416 417#define EXPORT_EARLY_PER_CPU_SYMBOL(_name) \ 418 EXPORT_PER_CPU_SYMBOL(_name) 419 420#define DECLARE_EARLY_PER_CPU(_type, _name) \ 421 DECLARE_PER_CPU(_type, _name); \ 422 extern __typeof__(_type) *_name##_early_ptr; \ 423 extern __typeof__(_type) _name##_early_map[] 424 425#define DECLARE_EARLY_PER_CPU_READ_MOSTLY(_type, _name) \ 426 DECLARE_PER_CPU_READ_MOSTLY(_type, _name); \ 427 extern __typeof__(_type) *_name##_early_ptr; \ 428 extern __typeof__(_type) _name##_early_map[] 429 430#define early_per_cpu_ptr(_name) (_name##_early_ptr) 431#define early_per_cpu_map(_name, _idx) (_name##_early_map[_idx]) 432#define early_per_cpu(_name, _cpu) \ 433 *(early_per_cpu_ptr(_name) ? \ 434 &early_per_cpu_ptr(_name)[_cpu] : \ 435 &per_cpu(_name, _cpu)) 436 437#else /* !CONFIG_SMP */ 438#define DEFINE_EARLY_PER_CPU(_type, _name, _initvalue) \ 439 DEFINE_PER_CPU(_type, _name) = _initvalue 440 441#define DEFINE_EARLY_PER_CPU_READ_MOSTLY(_type, _name, _initvalue) \ 442 DEFINE_PER_CPU_READ_MOSTLY(_type, _name) = _initvalue 443 444#define EXPORT_EARLY_PER_CPU_SYMBOL(_name) \ 445 EXPORT_PER_CPU_SYMBOL(_name) 446 447#define DECLARE_EARLY_PER_CPU(_type, _name) \ 448 DECLARE_PER_CPU(_type, _name) 449 450#define DECLARE_EARLY_PER_CPU_READ_MOSTLY(_type, _name) \ 451 DECLARE_PER_CPU_READ_MOSTLY(_type, _name) 452 453#define early_per_cpu(_name, _cpu) per_cpu(_name, _cpu) 454#define early_per_cpu_ptr(_name) NULL 455/* no early_per_cpu_map() */ 456 457#endif /* !CONFIG_SMP */ 458 459#endif /* _ASM_X86_PERCPU_H */