cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

pgtable-3level.h (8963B)


      1/* SPDX-License-Identifier: GPL-2.0 */
      2#ifndef _ASM_X86_PGTABLE_3LEVEL_H
      3#define _ASM_X86_PGTABLE_3LEVEL_H
      4
      5#include <asm/atomic64_32.h>
      6
      7/*
      8 * Intel Physical Address Extension (PAE) Mode - three-level page
      9 * tables on PPro+ CPUs.
     10 *
     11 * Copyright (C) 1999 Ingo Molnar <mingo@redhat.com>
     12 */
     13
     14#define pte_ERROR(e)							\
     15	pr_err("%s:%d: bad pte %p(%08lx%08lx)\n",			\
     16	       __FILE__, __LINE__, &(e), (e).pte_high, (e).pte_low)
     17#define pmd_ERROR(e)							\
     18	pr_err("%s:%d: bad pmd %p(%016Lx)\n",				\
     19	       __FILE__, __LINE__, &(e), pmd_val(e))
     20#define pgd_ERROR(e)							\
     21	pr_err("%s:%d: bad pgd %p(%016Lx)\n",				\
     22	       __FILE__, __LINE__, &(e), pgd_val(e))
     23
     24/* Rules for using set_pte: the pte being assigned *must* be
     25 * either not present or in a state where the hardware will
     26 * not attempt to update the pte.  In places where this is
     27 * not possible, use pte_get_and_clear to obtain the old pte
     28 * value and then use set_pte to update it.  -ben
     29 */
     30static inline void native_set_pte(pte_t *ptep, pte_t pte)
     31{
     32	ptep->pte_high = pte.pte_high;
     33	smp_wmb();
     34	ptep->pte_low = pte.pte_low;
     35}
     36
     37#define pmd_read_atomic pmd_read_atomic
     38/*
     39 * pte_offset_map_lock() on 32-bit PAE kernels was reading the pmd_t with
     40 * a "*pmdp" dereference done by GCC. Problem is, in certain places
     41 * where pte_offset_map_lock() is called, concurrent page faults are
     42 * allowed, if the mmap_lock is hold for reading. An example is mincore
     43 * vs page faults vs MADV_DONTNEED. On the page fault side
     44 * pmd_populate() rightfully does a set_64bit(), but if we're reading the
     45 * pmd_t with a "*pmdp" on the mincore side, a SMP race can happen
     46 * because GCC will not read the 64-bit value of the pmd atomically.
     47 *
     48 * To fix this all places running pte_offset_map_lock() while holding the
     49 * mmap_lock in read mode, shall read the pmdp pointer using this
     50 * function to know if the pmd is null or not, and in turn to know if
     51 * they can run pte_offset_map_lock() or pmd_trans_huge() or other pmd
     52 * operations.
     53 *
     54 * Without THP if the mmap_lock is held for reading, the pmd can only
     55 * transition from null to not null while pmd_read_atomic() runs. So
     56 * we can always return atomic pmd values with this function.
     57 *
     58 * With THP if the mmap_lock is held for reading, the pmd can become
     59 * trans_huge or none or point to a pte (and in turn become "stable")
     60 * at any time under pmd_read_atomic(). We could read it truly
     61 * atomically here with an atomic64_read() for the THP enabled case (and
     62 * it would be a whole lot simpler), but to avoid using cmpxchg8b we
     63 * only return an atomic pmdval if the low part of the pmdval is later
     64 * found to be stable (i.e. pointing to a pte). We are also returning a
     65 * 'none' (zero) pmdval if the low part of the pmd is zero.
     66 *
     67 * In some cases the high and low part of the pmdval returned may not be
     68 * consistent if THP is enabled (the low part may point to previously
     69 * mapped hugepage, while the high part may point to a more recently
     70 * mapped hugepage), but pmd_none_or_trans_huge_or_clear_bad() only
     71 * needs the low part of the pmd to be read atomically to decide if the
     72 * pmd is unstable or not, with the only exception when the low part
     73 * of the pmd is zero, in which case we return a 'none' pmd.
     74 */
     75static inline pmd_t pmd_read_atomic(pmd_t *pmdp)
     76{
     77	pmdval_t ret;
     78	u32 *tmp = (u32 *)pmdp;
     79
     80	ret = (pmdval_t) (*tmp);
     81	if (ret) {
     82		/*
     83		 * If the low part is null, we must not read the high part
     84		 * or we can end up with a partial pmd.
     85		 */
     86		smp_rmb();
     87		ret |= ((pmdval_t)*(tmp + 1)) << 32;
     88	}
     89
     90	return (pmd_t) { ret };
     91}
     92
     93static inline void native_set_pte_atomic(pte_t *ptep, pte_t pte)
     94{
     95	set_64bit((unsigned long long *)(ptep), native_pte_val(pte));
     96}
     97
     98static inline void native_set_pmd(pmd_t *pmdp, pmd_t pmd)
     99{
    100	set_64bit((unsigned long long *)(pmdp), native_pmd_val(pmd));
    101}
    102
    103static inline void native_set_pud(pud_t *pudp, pud_t pud)
    104{
    105#ifdef CONFIG_PAGE_TABLE_ISOLATION
    106	pud.p4d.pgd = pti_set_user_pgtbl(&pudp->p4d.pgd, pud.p4d.pgd);
    107#endif
    108	set_64bit((unsigned long long *)(pudp), native_pud_val(pud));
    109}
    110
    111/*
    112 * For PTEs and PDEs, we must clear the P-bit first when clearing a page table
    113 * entry, so clear the bottom half first and enforce ordering with a compiler
    114 * barrier.
    115 */
    116static inline void native_pte_clear(struct mm_struct *mm, unsigned long addr,
    117				    pte_t *ptep)
    118{
    119	ptep->pte_low = 0;
    120	smp_wmb();
    121	ptep->pte_high = 0;
    122}
    123
    124static inline void native_pmd_clear(pmd_t *pmd)
    125{
    126	u32 *tmp = (u32 *)pmd;
    127	*tmp = 0;
    128	smp_wmb();
    129	*(tmp + 1) = 0;
    130}
    131
    132static inline void native_pud_clear(pud_t *pudp)
    133{
    134}
    135
    136static inline void pud_clear(pud_t *pudp)
    137{
    138	set_pud(pudp, __pud(0));
    139
    140	/*
    141	 * According to Intel App note "TLBs, Paging-Structure Caches,
    142	 * and Their Invalidation", April 2007, document 317080-001,
    143	 * section 8.1: in PAE mode we explicitly have to flush the
    144	 * TLB via cr3 if the top-level pgd is changed...
    145	 *
    146	 * Currently all places where pud_clear() is called either have
    147	 * flush_tlb_mm() followed or don't need TLB flush (x86_64 code or
    148	 * pud_clear_bad()), so we don't need TLB flush here.
    149	 */
    150}
    151
    152#ifdef CONFIG_SMP
    153static inline pte_t native_ptep_get_and_clear(pte_t *ptep)
    154{
    155	pte_t res;
    156
    157	res.pte = (pteval_t)arch_atomic64_xchg((atomic64_t *)ptep, 0);
    158
    159	return res;
    160}
    161#else
    162#define native_ptep_get_and_clear(xp) native_local_ptep_get_and_clear(xp)
    163#endif
    164
    165union split_pmd {
    166	struct {
    167		u32 pmd_low;
    168		u32 pmd_high;
    169	};
    170	pmd_t pmd;
    171};
    172
    173#ifdef CONFIG_SMP
    174static inline pmd_t native_pmdp_get_and_clear(pmd_t *pmdp)
    175{
    176	union split_pmd res, *orig = (union split_pmd *)pmdp;
    177
    178	/* xchg acts as a barrier before setting of the high bits */
    179	res.pmd_low = xchg(&orig->pmd_low, 0);
    180	res.pmd_high = orig->pmd_high;
    181	orig->pmd_high = 0;
    182
    183	return res.pmd;
    184}
    185#else
    186#define native_pmdp_get_and_clear(xp) native_local_pmdp_get_and_clear(xp)
    187#endif
    188
    189#ifndef pmdp_establish
    190#define pmdp_establish pmdp_establish
    191static inline pmd_t pmdp_establish(struct vm_area_struct *vma,
    192		unsigned long address, pmd_t *pmdp, pmd_t pmd)
    193{
    194	pmd_t old;
    195
    196	/*
    197	 * If pmd has present bit cleared we can get away without expensive
    198	 * cmpxchg64: we can update pmdp half-by-half without racing with
    199	 * anybody.
    200	 */
    201	if (!(pmd_val(pmd) & _PAGE_PRESENT)) {
    202		union split_pmd old, new, *ptr;
    203
    204		ptr = (union split_pmd *)pmdp;
    205
    206		new.pmd = pmd;
    207
    208		/* xchg acts as a barrier before setting of the high bits */
    209		old.pmd_low = xchg(&ptr->pmd_low, new.pmd_low);
    210		old.pmd_high = ptr->pmd_high;
    211		ptr->pmd_high = new.pmd_high;
    212		return old.pmd;
    213	}
    214
    215	do {
    216		old = *pmdp;
    217	} while (cmpxchg64(&pmdp->pmd, old.pmd, pmd.pmd) != old.pmd);
    218
    219	return old;
    220}
    221#endif
    222
    223#ifdef CONFIG_SMP
    224union split_pud {
    225	struct {
    226		u32 pud_low;
    227		u32 pud_high;
    228	};
    229	pud_t pud;
    230};
    231
    232static inline pud_t native_pudp_get_and_clear(pud_t *pudp)
    233{
    234	union split_pud res, *orig = (union split_pud *)pudp;
    235
    236#ifdef CONFIG_PAGE_TABLE_ISOLATION
    237	pti_set_user_pgtbl(&pudp->p4d.pgd, __pgd(0));
    238#endif
    239
    240	/* xchg acts as a barrier before setting of the high bits */
    241	res.pud_low = xchg(&orig->pud_low, 0);
    242	res.pud_high = orig->pud_high;
    243	orig->pud_high = 0;
    244
    245	return res.pud;
    246}
    247#else
    248#define native_pudp_get_and_clear(xp) native_local_pudp_get_and_clear(xp)
    249#endif
    250
    251/* Encode and de-code a swap entry */
    252#define SWP_TYPE_BITS		5
    253
    254#define SWP_OFFSET_FIRST_BIT	(_PAGE_BIT_PROTNONE + 1)
    255
    256/* We always extract/encode the offset by shifting it all the way up, and then down again */
    257#define SWP_OFFSET_SHIFT	(SWP_OFFSET_FIRST_BIT + SWP_TYPE_BITS)
    258
    259#define MAX_SWAPFILES_CHECK() BUILD_BUG_ON(MAX_SWAPFILES_SHIFT > 5)
    260#define __swp_type(x)			(((x).val) & 0x1f)
    261#define __swp_offset(x)			((x).val >> 5)
    262#define __swp_entry(type, offset)	((swp_entry_t){(type) | (offset) << 5})
    263
    264/*
    265 * Normally, __swp_entry() converts from arch-independent swp_entry_t to
    266 * arch-dependent swp_entry_t, and __swp_entry_to_pte() just stores the result
    267 * to pte. But here we have 32bit swp_entry_t and 64bit pte, and need to use the
    268 * whole 64 bits. Thus, we shift the "real" arch-dependent conversion to
    269 * __swp_entry_to_pte() through the following helper macro based on 64bit
    270 * __swp_entry().
    271 */
    272#define __swp_pteval_entry(type, offset) ((pteval_t) { \
    273	(~(pteval_t)(offset) << SWP_OFFSET_SHIFT >> SWP_TYPE_BITS) \
    274	| ((pteval_t)(type) << (64 - SWP_TYPE_BITS)) })
    275
    276#define __swp_entry_to_pte(x)	((pte_t){ .pte = \
    277		__swp_pteval_entry(__swp_type(x), __swp_offset(x)) })
    278/*
    279 * Analogically, __pte_to_swp_entry() doesn't just extract the arch-dependent
    280 * swp_entry_t, but also has to convert it from 64bit to the 32bit
    281 * intermediate representation, using the following macros based on 64bit
    282 * __swp_type() and __swp_offset().
    283 */
    284#define __pteval_swp_type(x) ((unsigned long)((x).pte >> (64 - SWP_TYPE_BITS)))
    285#define __pteval_swp_offset(x) ((unsigned long)(~((x).pte) << SWP_TYPE_BITS >> SWP_OFFSET_SHIFT))
    286
    287#define __pte_to_swp_entry(pte)	(__swp_entry(__pteval_swp_type(pte), \
    288					     __pteval_swp_offset(pte)))
    289
    290#include <asm/pgtable-invert.h>
    291
    292#endif /* _ASM_X86_PGTABLE_3LEVEL_H */