cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

uv_hub.h (23371B)


      1/*
      2 * This file is subject to the terms and conditions of the GNU General Public
      3 * License.  See the file "COPYING" in the main directory of this archive
      4 * for more details.
      5 *
      6 * SGI UV architectural definitions
      7 *
      8 * (C) Copyright 2020 Hewlett Packard Enterprise Development LP
      9 * Copyright (C) 2007-2014 Silicon Graphics, Inc. All rights reserved.
     10 */
     11
     12#ifndef _ASM_X86_UV_UV_HUB_H
     13#define _ASM_X86_UV_UV_HUB_H
     14
     15#ifdef CONFIG_X86_64
     16#include <linux/numa.h>
     17#include <linux/percpu.h>
     18#include <linux/timer.h>
     19#include <linux/io.h>
     20#include <linux/topology.h>
     21#include <asm/types.h>
     22#include <asm/percpu.h>
     23#include <asm/uv/uv.h>
     24#include <asm/uv/uv_mmrs.h>
     25#include <asm/uv/bios.h>
     26#include <asm/irq_vectors.h>
     27#include <asm/io_apic.h>
     28
     29
     30/*
     31 * Addressing Terminology
     32 *
     33 *	M       - The low M bits of a physical address represent the offset
     34 *		  into the blade local memory. RAM memory on a blade is physically
     35 *		  contiguous (although various IO spaces may punch holes in
     36 *		  it)..
     37 *
     38 *	N	- Number of bits in the node portion of a socket physical
     39 *		  address.
     40 *
     41 *	NASID   - network ID of a router, Mbrick or Cbrick. Nasid values of
     42 *		  routers always have low bit of 1, C/MBricks have low bit
     43 *		  equal to 0. Most addressing macros that target UV hub chips
     44 *		  right shift the NASID by 1 to exclude the always-zero bit.
     45 *		  NASIDs contain up to 15 bits.
     46 *
     47 *	GNODE   - NASID right shifted by 1 bit. Most mmrs contain gnodes instead
     48 *		  of nasids.
     49 *
     50 *	PNODE   - the low N bits of the GNODE. The PNODE is the most useful variant
     51 *		  of the nasid for socket usage.
     52 *
     53 *	GPA	- (global physical address) a socket physical address converted
     54 *		  so that it can be used by the GRU as a global address. Socket
     55 *		  physical addresses 1) need additional NASID (node) bits added
     56 *		  to the high end of the address, and 2) unaliased if the
     57 *		  partition does not have a physical address 0. In addition, on
     58 *		  UV2 rev 1, GPAs need the gnode left shifted to bits 39 or 40.
     59 *
     60 *
     61 *  NumaLink Global Physical Address Format:
     62 *  +--------------------------------+---------------------+
     63 *  |00..000|      GNODE             |      NodeOffset     |
     64 *  +--------------------------------+---------------------+
     65 *          |<-------53 - M bits --->|<--------M bits ----->
     66 *
     67 *	M - number of node offset bits (35 .. 40)
     68 *
     69 *
     70 *  Memory/UV-HUB Processor Socket Address Format:
     71 *  +----------------+---------------+---------------------+
     72 *  |00..000000000000|   PNODE       |      NodeOffset     |
     73 *  +----------------+---------------+---------------------+
     74 *                   <--- N bits --->|<--------M bits ----->
     75 *
     76 *	M - number of node offset bits (35 .. 40)
     77 *	N - number of PNODE bits (0 .. 10)
     78 *
     79 *		Note: M + N cannot currently exceed 44 (x86_64) or 46 (IA64).
     80 *		The actual values are configuration dependent and are set at
     81 *		boot time. M & N values are set by the hardware/BIOS at boot.
     82 *
     83 *
     84 * APICID format
     85 *	NOTE!!!!!! This is the current format of the APICID. However, code
     86 *	should assume that this will change in the future. Use functions
     87 *	in this file for all APICID bit manipulations and conversion.
     88 *
     89 *		1111110000000000
     90 *		5432109876543210
     91 *		pppppppppplc0cch	Nehalem-EX (12 bits in hdw reg)
     92 *		ppppppppplcc0cch	Westmere-EX (12 bits in hdw reg)
     93 *		pppppppppppcccch	SandyBridge (15 bits in hdw reg)
     94 *		sssssssssss
     95 *
     96 *			p  = pnode bits
     97 *			l =  socket number on board
     98 *			c  = core
     99 *			h  = hyperthread
    100 *			s  = bits that are in the SOCKET_ID CSR
    101 *
    102 *	Note: Processor may support fewer bits in the APICID register. The ACPI
    103 *	      tables hold all 16 bits. Software needs to be aware of this.
    104 *
    105 *	      Unless otherwise specified, all references to APICID refer to
    106 *	      the FULL value contained in ACPI tables, not the subset in the
    107 *	      processor APICID register.
    108 */
    109
    110/*
    111 * Maximum number of bricks in all partitions and in all coherency domains.
    112 * This is the total number of bricks accessible in the numalink fabric. It
    113 * includes all C & M bricks. Routers are NOT included.
    114 *
    115 * This value is also the value of the maximum number of non-router NASIDs
    116 * in the numalink fabric.
    117 *
    118 * NOTE: a brick may contain 1 or 2 OS nodes. Don't get these confused.
    119 */
    120#define UV_MAX_NUMALINK_BLADES	16384
    121
    122/*
    123 * Maximum number of C/Mbricks within a software SSI (hardware may support
    124 * more).
    125 */
    126#define UV_MAX_SSI_BLADES	256
    127
    128/*
    129 * The largest possible NASID of a C or M brick (+ 2)
    130 */
    131#define UV_MAX_NASID_VALUE	(UV_MAX_NUMALINK_BLADES * 2)
    132
    133/* GAM (globally addressed memory) range table */
    134struct uv_gam_range_s {
    135	u32	limit;		/* PA bits 56:26 (GAM_RANGE_SHFT) */
    136	u16	nasid;		/* node's global physical address */
    137	s8	base;		/* entry index of node's base addr */
    138	u8	reserved;
    139};
    140
    141/*
    142 * The following defines attributes of the HUB chip. These attributes are
    143 * frequently referenced and are kept in a common per hub struct.
    144 * After setup, the struct is read only, so it should be readily
    145 * available in the L3 cache on the cpu socket for the node.
    146 */
    147struct uv_hub_info_s {
    148	unsigned int		hub_type;
    149	unsigned char		hub_revision;
    150	unsigned long		global_mmr_base;
    151	unsigned long		global_mmr_shift;
    152	unsigned long		gpa_mask;
    153	unsigned short		*socket_to_node;
    154	unsigned short		*socket_to_pnode;
    155	unsigned short		*pnode_to_socket;
    156	struct uv_gam_range_s	*gr_table;
    157	unsigned short		min_socket;
    158	unsigned short		min_pnode;
    159	unsigned char		m_val;
    160	unsigned char		n_val;
    161	unsigned char		gr_table_len;
    162	unsigned char		apic_pnode_shift;
    163	unsigned char		gpa_shift;
    164	unsigned char		nasid_shift;
    165	unsigned char		m_shift;
    166	unsigned char		n_lshift;
    167	unsigned int		gnode_extra;
    168	unsigned long		gnode_upper;
    169	unsigned long		lowmem_remap_top;
    170	unsigned long		lowmem_remap_base;
    171	unsigned long		global_gru_base;
    172	unsigned long		global_gru_shift;
    173	unsigned short		pnode;
    174	unsigned short		pnode_mask;
    175	unsigned short		coherency_domain_number;
    176	unsigned short		numa_blade_id;
    177	unsigned short		nr_possible_cpus;
    178	unsigned short		nr_online_cpus;
    179	short			memory_nid;
    180};
    181
    182/* CPU specific info with a pointer to the hub common info struct */
    183struct uv_cpu_info_s {
    184	void			*p_uv_hub_info;
    185	unsigned char		blade_cpu_id;
    186	void			*reserved;
    187};
    188DECLARE_PER_CPU(struct uv_cpu_info_s, __uv_cpu_info);
    189
    190#define uv_cpu_info		this_cpu_ptr(&__uv_cpu_info)
    191#define uv_cpu_info_per(cpu)	(&per_cpu(__uv_cpu_info, cpu))
    192
    193/* Node specific hub common info struct */
    194extern void **__uv_hub_info_list;
    195static inline struct uv_hub_info_s *uv_hub_info_list(int node)
    196{
    197	return (struct uv_hub_info_s *)__uv_hub_info_list[node];
    198}
    199
    200static inline struct uv_hub_info_s *_uv_hub_info(void)
    201{
    202	return (struct uv_hub_info_s *)uv_cpu_info->p_uv_hub_info;
    203}
    204#define	uv_hub_info	_uv_hub_info()
    205
    206static inline struct uv_hub_info_s *uv_cpu_hub_info(int cpu)
    207{
    208	return (struct uv_hub_info_s *)uv_cpu_info_per(cpu)->p_uv_hub_info;
    209}
    210
    211static inline int uv_hub_type(void)
    212{
    213	return uv_hub_info->hub_type;
    214}
    215
    216static inline __init void uv_hub_type_set(int uvmask)
    217{
    218	uv_hub_info->hub_type = uvmask;
    219}
    220
    221
    222/*
    223 * HUB revision ranges for each UV HUB architecture.
    224 * This is a software convention - NOT the hardware revision numbers in
    225 * the hub chip.
    226 */
    227#define UV2_HUB_REVISION_BASE		3
    228#define UV3_HUB_REVISION_BASE		5
    229#define UV4_HUB_REVISION_BASE		7
    230#define UV4A_HUB_REVISION_BASE		8	/* UV4 (fixed) rev 2 */
    231#define UV5_HUB_REVISION_BASE		9
    232
    233static inline int is_uv(int uvmask) { return uv_hub_type() & uvmask; }
    234static inline int is_uv1_hub(void) { return 0; }
    235static inline int is_uv2_hub(void) { return is_uv(UV2); }
    236static inline int is_uv3_hub(void) { return is_uv(UV3); }
    237static inline int is_uv4a_hub(void) { return is_uv(UV4A); }
    238static inline int is_uv4_hub(void) { return is_uv(UV4); }
    239static inline int is_uv5_hub(void) { return is_uv(UV5); }
    240
    241/*
    242 * UV4A is a revision of UV4.  So on UV4A, both is_uv4_hub() and
    243 * is_uv4a_hub() return true, While on UV4, only is_uv4_hub()
    244 * returns true.  So to get true results, first test if is UV4A,
    245 * then test if is UV4.
    246 */
    247
    248/* UVX class: UV2,3,4 */
    249static inline int is_uvx_hub(void) { return is_uv(UVX); }
    250
    251/* UVY class: UV5,..? */
    252static inline int is_uvy_hub(void) { return is_uv(UVY); }
    253
    254/* Any UV Hubbed System */
    255static inline int is_uv_hub(void) { return is_uv(UV_ANY); }
    256
    257union uvh_apicid {
    258    unsigned long       v;
    259    struct uvh_apicid_s {
    260        unsigned long   local_apic_mask  : 24;
    261        unsigned long   local_apic_shift :  5;
    262        unsigned long   unused1          :  3;
    263        unsigned long   pnode_mask       : 24;
    264        unsigned long   pnode_shift      :  5;
    265        unsigned long   unused2          :  3;
    266    } s;
    267};
    268
    269/*
    270 * Local & Global MMR space macros.
    271 *	Note: macros are intended to be used ONLY by inline functions
    272 *	in this file - not by other kernel code.
    273 *		n -  NASID (full 15-bit global nasid)
    274 *		g -  GNODE (full 15-bit global nasid, right shifted 1)
    275 *		p -  PNODE (local part of nsids, right shifted 1)
    276 */
    277#define UV_NASID_TO_PNODE(n)		\
    278		(((n) >> uv_hub_info->nasid_shift) & uv_hub_info->pnode_mask)
    279#define UV_PNODE_TO_GNODE(p)		((p) |uv_hub_info->gnode_extra)
    280#define UV_PNODE_TO_NASID(p)		\
    281		(UV_PNODE_TO_GNODE(p) << uv_hub_info->nasid_shift)
    282
    283#define UV2_LOCAL_MMR_BASE		0xfa000000UL
    284#define UV2_GLOBAL_MMR32_BASE		0xfc000000UL
    285#define UV2_LOCAL_MMR_SIZE		(32UL * 1024 * 1024)
    286#define UV2_GLOBAL_MMR32_SIZE		(32UL * 1024 * 1024)
    287
    288#define UV3_LOCAL_MMR_BASE		0xfa000000UL
    289#define UV3_GLOBAL_MMR32_BASE		0xfc000000UL
    290#define UV3_LOCAL_MMR_SIZE		(32UL * 1024 * 1024)
    291#define UV3_GLOBAL_MMR32_SIZE		(32UL * 1024 * 1024)
    292
    293#define UV4_LOCAL_MMR_BASE		0xfa000000UL
    294#define UV4_GLOBAL_MMR32_BASE		0
    295#define UV4_LOCAL_MMR_SIZE		(32UL * 1024 * 1024)
    296#define UV4_GLOBAL_MMR32_SIZE		0
    297
    298#define UV5_LOCAL_MMR_BASE		0xfa000000UL
    299#define UV5_GLOBAL_MMR32_BASE		0
    300#define UV5_LOCAL_MMR_SIZE		(32UL * 1024 * 1024)
    301#define UV5_GLOBAL_MMR32_SIZE		0
    302
    303#define UV_LOCAL_MMR_BASE		(				\
    304					is_uv(UV2) ? UV2_LOCAL_MMR_BASE : \
    305					is_uv(UV3) ? UV3_LOCAL_MMR_BASE : \
    306					is_uv(UV4) ? UV4_LOCAL_MMR_BASE : \
    307					is_uv(UV5) ? UV5_LOCAL_MMR_BASE : \
    308					0)
    309
    310#define UV_GLOBAL_MMR32_BASE		(				\
    311					is_uv(UV2) ? UV2_GLOBAL_MMR32_BASE : \
    312					is_uv(UV3) ? UV3_GLOBAL_MMR32_BASE : \
    313					is_uv(UV4) ? UV4_GLOBAL_MMR32_BASE : \
    314					is_uv(UV5) ? UV5_GLOBAL_MMR32_BASE : \
    315					0)
    316
    317#define UV_LOCAL_MMR_SIZE		(				\
    318					is_uv(UV2) ? UV2_LOCAL_MMR_SIZE : \
    319					is_uv(UV3) ? UV3_LOCAL_MMR_SIZE : \
    320					is_uv(UV4) ? UV4_LOCAL_MMR_SIZE : \
    321					is_uv(UV5) ? UV5_LOCAL_MMR_SIZE : \
    322					0)
    323
    324#define UV_GLOBAL_MMR32_SIZE		(				\
    325					is_uv(UV2) ? UV2_GLOBAL_MMR32_SIZE : \
    326					is_uv(UV3) ? UV3_GLOBAL_MMR32_SIZE : \
    327					is_uv(UV4) ? UV4_GLOBAL_MMR32_SIZE : \
    328					is_uv(UV5) ? UV5_GLOBAL_MMR32_SIZE : \
    329					0)
    330
    331#define UV_GLOBAL_MMR64_BASE		(uv_hub_info->global_mmr_base)
    332
    333#define UV_GLOBAL_GRU_MMR_BASE		0x4000000
    334
    335#define UV_GLOBAL_MMR32_PNODE_SHIFT	15
    336#define _UV_GLOBAL_MMR64_PNODE_SHIFT	26
    337#define UV_GLOBAL_MMR64_PNODE_SHIFT	(uv_hub_info->global_mmr_shift)
    338
    339#define UV_GLOBAL_MMR32_PNODE_BITS(p)	((p) << (UV_GLOBAL_MMR32_PNODE_SHIFT))
    340
    341#define UV_GLOBAL_MMR64_PNODE_BITS(p)					\
    342	(((unsigned long)(p)) << UV_GLOBAL_MMR64_PNODE_SHIFT)
    343
    344#define UVH_APICID		0x002D0E00L
    345#define UV_APIC_PNODE_SHIFT	6
    346
    347/* Local Bus from cpu's perspective */
    348#define LOCAL_BUS_BASE		0x1c00000
    349#define LOCAL_BUS_SIZE		(4 * 1024 * 1024)
    350
    351/*
    352 * System Controller Interface Reg
    353 *
    354 * Note there are NO leds on a UV system.  This register is only
    355 * used by the system controller to monitor system-wide operation.
    356 * There are 64 regs per node.  With Nehalem cpus (2 cores per node,
    357 * 8 cpus per core, 2 threads per cpu) there are 32 cpu threads on
    358 * a node.
    359 *
    360 * The window is located at top of ACPI MMR space
    361 */
    362#define SCIR_WINDOW_COUNT	64
    363#define SCIR_LOCAL_MMR_BASE	(LOCAL_BUS_BASE + \
    364				 LOCAL_BUS_SIZE - \
    365				 SCIR_WINDOW_COUNT)
    366
    367#define SCIR_CPU_HEARTBEAT	0x01	/* timer interrupt */
    368#define SCIR_CPU_ACTIVITY	0x02	/* not idle */
    369#define SCIR_CPU_HB_INTERVAL	(HZ)	/* once per second */
    370
    371/* Loop through all installed blades */
    372#define for_each_possible_blade(bid)		\
    373	for ((bid) = 0; (bid) < uv_num_possible_blades(); (bid)++)
    374
    375/*
    376 * Macros for converting between kernel virtual addresses, socket local physical
    377 * addresses, and UV global physical addresses.
    378 *	Note: use the standard __pa() & __va() macros for converting
    379 *	      between socket virtual and socket physical addresses.
    380 */
    381
    382/* global bits offset - number of local address bits in gpa for this UV arch */
    383static inline unsigned int uv_gpa_shift(void)
    384{
    385	return uv_hub_info->gpa_shift;
    386}
    387#define	_uv_gpa_shift
    388
    389/* Find node that has the address range that contains global address  */
    390static inline struct uv_gam_range_s *uv_gam_range(unsigned long pa)
    391{
    392	struct uv_gam_range_s *gr = uv_hub_info->gr_table;
    393	unsigned long pal = (pa & uv_hub_info->gpa_mask) >> UV_GAM_RANGE_SHFT;
    394	int i, num = uv_hub_info->gr_table_len;
    395
    396	if (gr) {
    397		for (i = 0; i < num; i++, gr++) {
    398			if (pal < gr->limit)
    399				return gr;
    400		}
    401	}
    402	pr_crit("UV: GAM Range for 0x%lx not found at %p!\n", pa, gr);
    403	BUG();
    404}
    405
    406/* Return base address of node that contains global address  */
    407static inline unsigned long uv_gam_range_base(unsigned long pa)
    408{
    409	struct uv_gam_range_s *gr = uv_gam_range(pa);
    410	int base = gr->base;
    411
    412	if (base < 0)
    413		return 0UL;
    414
    415	return uv_hub_info->gr_table[base].limit;
    416}
    417
    418/* socket phys RAM --> UV global NASID (UV4+) */
    419static inline unsigned long uv_soc_phys_ram_to_nasid(unsigned long paddr)
    420{
    421	return uv_gam_range(paddr)->nasid;
    422}
    423#define	_uv_soc_phys_ram_to_nasid
    424
    425/* socket virtual --> UV global NASID (UV4+) */
    426static inline unsigned long uv_gpa_nasid(void *v)
    427{
    428	return uv_soc_phys_ram_to_nasid(__pa(v));
    429}
    430
    431/* socket phys RAM --> UV global physical address */
    432static inline unsigned long uv_soc_phys_ram_to_gpa(unsigned long paddr)
    433{
    434	unsigned int m_val = uv_hub_info->m_val;
    435
    436	if (paddr < uv_hub_info->lowmem_remap_top)
    437		paddr |= uv_hub_info->lowmem_remap_base;
    438
    439	if (m_val) {
    440		paddr |= uv_hub_info->gnode_upper;
    441		paddr = ((paddr << uv_hub_info->m_shift)
    442						>> uv_hub_info->m_shift) |
    443			((paddr >> uv_hub_info->m_val)
    444						<< uv_hub_info->n_lshift);
    445	} else {
    446		paddr |= uv_soc_phys_ram_to_nasid(paddr)
    447						<< uv_hub_info->gpa_shift;
    448	}
    449	return paddr;
    450}
    451
    452/* socket virtual --> UV global physical address */
    453static inline unsigned long uv_gpa(void *v)
    454{
    455	return uv_soc_phys_ram_to_gpa(__pa(v));
    456}
    457
    458/* Top two bits indicate the requested address is in MMR space.  */
    459static inline int
    460uv_gpa_in_mmr_space(unsigned long gpa)
    461{
    462	return (gpa >> 62) == 0x3UL;
    463}
    464
    465/* UV global physical address --> socket phys RAM */
    466static inline unsigned long uv_gpa_to_soc_phys_ram(unsigned long gpa)
    467{
    468	unsigned long paddr;
    469	unsigned long remap_base = uv_hub_info->lowmem_remap_base;
    470	unsigned long remap_top =  uv_hub_info->lowmem_remap_top;
    471	unsigned int m_val = uv_hub_info->m_val;
    472
    473	if (m_val)
    474		gpa = ((gpa << uv_hub_info->m_shift) >> uv_hub_info->m_shift) |
    475			((gpa >> uv_hub_info->n_lshift) << uv_hub_info->m_val);
    476
    477	paddr = gpa & uv_hub_info->gpa_mask;
    478	if (paddr >= remap_base && paddr < remap_base + remap_top)
    479		paddr -= remap_base;
    480	return paddr;
    481}
    482
    483/* gpa -> gnode */
    484static inline unsigned long uv_gpa_to_gnode(unsigned long gpa)
    485{
    486	unsigned int n_lshift = uv_hub_info->n_lshift;
    487
    488	if (n_lshift)
    489		return gpa >> n_lshift;
    490
    491	return uv_gam_range(gpa)->nasid >> 1;
    492}
    493
    494/* gpa -> pnode */
    495static inline int uv_gpa_to_pnode(unsigned long gpa)
    496{
    497	return uv_gpa_to_gnode(gpa) & uv_hub_info->pnode_mask;
    498}
    499
    500/* gpa -> node offset */
    501static inline unsigned long uv_gpa_to_offset(unsigned long gpa)
    502{
    503	unsigned int m_shift = uv_hub_info->m_shift;
    504
    505	if (m_shift)
    506		return (gpa << m_shift) >> m_shift;
    507
    508	return (gpa & uv_hub_info->gpa_mask) - uv_gam_range_base(gpa);
    509}
    510
    511/* Convert socket to node */
    512static inline int _uv_socket_to_node(int socket, unsigned short *s2nid)
    513{
    514	return s2nid ? s2nid[socket - uv_hub_info->min_socket] : socket;
    515}
    516
    517static inline int uv_socket_to_node(int socket)
    518{
    519	return _uv_socket_to_node(socket, uv_hub_info->socket_to_node);
    520}
    521
    522/* pnode, offset --> socket virtual */
    523static inline void *uv_pnode_offset_to_vaddr(int pnode, unsigned long offset)
    524{
    525	unsigned int m_val = uv_hub_info->m_val;
    526	unsigned long base;
    527	unsigned short sockid, node, *p2s;
    528
    529	if (m_val)
    530		return __va(((unsigned long)pnode << m_val) | offset);
    531
    532	p2s = uv_hub_info->pnode_to_socket;
    533	sockid = p2s ? p2s[pnode - uv_hub_info->min_pnode] : pnode;
    534	node = uv_socket_to_node(sockid);
    535
    536	/* limit address of previous socket is our base, except node 0 is 0 */
    537	if (!node)
    538		return __va((unsigned long)offset);
    539
    540	base = (unsigned long)(uv_hub_info->gr_table[node - 1].limit);
    541	return __va(base << UV_GAM_RANGE_SHFT | offset);
    542}
    543
    544/* Extract/Convert a PNODE from an APICID (full apicid, not processor subset) */
    545static inline int uv_apicid_to_pnode(int apicid)
    546{
    547	int pnode = apicid >> uv_hub_info->apic_pnode_shift;
    548	unsigned short *s2pn = uv_hub_info->socket_to_pnode;
    549
    550	return s2pn ? s2pn[pnode - uv_hub_info->min_socket] : pnode;
    551}
    552
    553/*
    554 * Access global MMRs using the low memory MMR32 space. This region supports
    555 * faster MMR access but not all MMRs are accessible in this space.
    556 */
    557static inline unsigned long *uv_global_mmr32_address(int pnode, unsigned long offset)
    558{
    559	return __va(UV_GLOBAL_MMR32_BASE |
    560		       UV_GLOBAL_MMR32_PNODE_BITS(pnode) | offset);
    561}
    562
    563static inline void uv_write_global_mmr32(int pnode, unsigned long offset, unsigned long val)
    564{
    565	writeq(val, uv_global_mmr32_address(pnode, offset));
    566}
    567
    568static inline unsigned long uv_read_global_mmr32(int pnode, unsigned long offset)
    569{
    570	return readq(uv_global_mmr32_address(pnode, offset));
    571}
    572
    573/*
    574 * Access Global MMR space using the MMR space located at the top of physical
    575 * memory.
    576 */
    577static inline volatile void __iomem *uv_global_mmr64_address(int pnode, unsigned long offset)
    578{
    579	return __va(UV_GLOBAL_MMR64_BASE |
    580		    UV_GLOBAL_MMR64_PNODE_BITS(pnode) | offset);
    581}
    582
    583static inline void uv_write_global_mmr64(int pnode, unsigned long offset, unsigned long val)
    584{
    585	writeq(val, uv_global_mmr64_address(pnode, offset));
    586}
    587
    588static inline unsigned long uv_read_global_mmr64(int pnode, unsigned long offset)
    589{
    590	return readq(uv_global_mmr64_address(pnode, offset));
    591}
    592
    593static inline void uv_write_global_mmr8(int pnode, unsigned long offset, unsigned char val)
    594{
    595	writeb(val, uv_global_mmr64_address(pnode, offset));
    596}
    597
    598static inline unsigned char uv_read_global_mmr8(int pnode, unsigned long offset)
    599{
    600	return readb(uv_global_mmr64_address(pnode, offset));
    601}
    602
    603/*
    604 * Access hub local MMRs. Faster than using global space but only local MMRs
    605 * are accessible.
    606 */
    607static inline unsigned long *uv_local_mmr_address(unsigned long offset)
    608{
    609	return __va(UV_LOCAL_MMR_BASE | offset);
    610}
    611
    612static inline unsigned long uv_read_local_mmr(unsigned long offset)
    613{
    614	return readq(uv_local_mmr_address(offset));
    615}
    616
    617static inline void uv_write_local_mmr(unsigned long offset, unsigned long val)
    618{
    619	writeq(val, uv_local_mmr_address(offset));
    620}
    621
    622static inline unsigned char uv_read_local_mmr8(unsigned long offset)
    623{
    624	return readb(uv_local_mmr_address(offset));
    625}
    626
    627static inline void uv_write_local_mmr8(unsigned long offset, unsigned char val)
    628{
    629	writeb(val, uv_local_mmr_address(offset));
    630}
    631
    632/* Blade-local cpu number of current cpu. Numbered 0 .. <# cpus on the blade> */
    633static inline int uv_blade_processor_id(void)
    634{
    635	return uv_cpu_info->blade_cpu_id;
    636}
    637
    638/* Blade-local cpu number of cpu N. Numbered 0 .. <# cpus on the blade> */
    639static inline int uv_cpu_blade_processor_id(int cpu)
    640{
    641	return uv_cpu_info_per(cpu)->blade_cpu_id;
    642}
    643
    644/* Blade number to Node number (UV2..UV4 is 1:1) */
    645static inline int uv_blade_to_node(int blade)
    646{
    647	return blade;
    648}
    649
    650/* Blade number of current cpu. Numnbered 0 .. <#blades -1> */
    651static inline int uv_numa_blade_id(void)
    652{
    653	return uv_hub_info->numa_blade_id;
    654}
    655
    656/*
    657 * Convert linux node number to the UV blade number.
    658 * .. Currently for UV2 thru UV4 the node and the blade are identical.
    659 * .. If this changes then you MUST check references to this function!
    660 */
    661static inline int uv_node_to_blade_id(int nid)
    662{
    663	return nid;
    664}
    665
    666/* Convert a CPU number to the UV blade number */
    667static inline int uv_cpu_to_blade_id(int cpu)
    668{
    669	return uv_node_to_blade_id(cpu_to_node(cpu));
    670}
    671
    672/* Convert a blade id to the PNODE of the blade */
    673static inline int uv_blade_to_pnode(int bid)
    674{
    675	return uv_hub_info_list(uv_blade_to_node(bid))->pnode;
    676}
    677
    678/* Nid of memory node on blade. -1 if no blade-local memory */
    679static inline int uv_blade_to_memory_nid(int bid)
    680{
    681	return uv_hub_info_list(uv_blade_to_node(bid))->memory_nid;
    682}
    683
    684/* Determine the number of possible cpus on a blade */
    685static inline int uv_blade_nr_possible_cpus(int bid)
    686{
    687	return uv_hub_info_list(uv_blade_to_node(bid))->nr_possible_cpus;
    688}
    689
    690/* Determine the number of online cpus on a blade */
    691static inline int uv_blade_nr_online_cpus(int bid)
    692{
    693	return uv_hub_info_list(uv_blade_to_node(bid))->nr_online_cpus;
    694}
    695
    696/* Convert a cpu id to the PNODE of the blade containing the cpu */
    697static inline int uv_cpu_to_pnode(int cpu)
    698{
    699	return uv_cpu_hub_info(cpu)->pnode;
    700}
    701
    702/* Convert a linux node number to the PNODE of the blade */
    703static inline int uv_node_to_pnode(int nid)
    704{
    705	return uv_hub_info_list(nid)->pnode;
    706}
    707
    708/* Maximum possible number of blades */
    709extern short uv_possible_blades;
    710static inline int uv_num_possible_blades(void)
    711{
    712	return uv_possible_blades;
    713}
    714
    715/* Per Hub NMI support */
    716extern void uv_nmi_setup(void);
    717extern void uv_nmi_setup_hubless(void);
    718
    719/* BIOS/Kernel flags exchange MMR */
    720#define UVH_BIOS_KERNEL_MMR		UVH_SCRATCH5
    721#define UVH_BIOS_KERNEL_MMR_ALIAS	UVH_SCRATCH5_ALIAS
    722#define UVH_BIOS_KERNEL_MMR_ALIAS_2	UVH_SCRATCH5_ALIAS_2
    723
    724/* TSC sync valid, set by BIOS */
    725#define UVH_TSC_SYNC_MMR	UVH_BIOS_KERNEL_MMR
    726#define UVH_TSC_SYNC_SHIFT	10
    727#define UVH_TSC_SYNC_SHIFT_UV2K	16	/* UV2/3k have different bits */
    728#define UVH_TSC_SYNC_MASK	3	/* 0011 */
    729#define UVH_TSC_SYNC_VALID	3	/* 0011 */
    730#define UVH_TSC_SYNC_UNKNOWN	0	/* 0000 */
    731
    732/* BMC sets a bit this MMR non-zero before sending an NMI */
    733#define UVH_NMI_MMR		UVH_BIOS_KERNEL_MMR
    734#define UVH_NMI_MMR_CLEAR	UVH_BIOS_KERNEL_MMR_ALIAS
    735#define UVH_NMI_MMR_SHIFT	63
    736#define UVH_NMI_MMR_TYPE	"SCRATCH5"
    737
    738struct uv_hub_nmi_s {
    739	raw_spinlock_t	nmi_lock;
    740	atomic_t	in_nmi;		/* flag this node in UV NMI IRQ */
    741	atomic_t	cpu_owner;	/* last locker of this struct */
    742	atomic_t	read_mmr_count;	/* count of MMR reads */
    743	atomic_t	nmi_count;	/* count of true UV NMIs */
    744	unsigned long	nmi_value;	/* last value read from NMI MMR */
    745	bool		hub_present;	/* false means UV hubless system */
    746	bool		pch_owner;	/* indicates this hub owns PCH */
    747};
    748
    749struct uv_cpu_nmi_s {
    750	struct uv_hub_nmi_s	*hub;
    751	int			state;
    752	int			pinging;
    753	int			queries;
    754	int			pings;
    755};
    756
    757DECLARE_PER_CPU(struct uv_cpu_nmi_s, uv_cpu_nmi);
    758
    759#define uv_hub_nmi			this_cpu_read(uv_cpu_nmi.hub)
    760#define uv_cpu_nmi_per(cpu)		(per_cpu(uv_cpu_nmi, cpu))
    761#define uv_hub_nmi_per(cpu)		(uv_cpu_nmi_per(cpu).hub)
    762
    763/* uv_cpu_nmi_states */
    764#define	UV_NMI_STATE_OUT		0
    765#define	UV_NMI_STATE_IN			1
    766#define	UV_NMI_STATE_DUMP		2
    767#define	UV_NMI_STATE_DUMP_DONE		3
    768
    769/*
    770 * Get the minimum revision number of the hub chips within the partition.
    771 * (See UVx_HUB_REVISION_BASE above for specific values.)
    772 */
    773static inline int uv_get_min_hub_revision_id(void)
    774{
    775	return uv_hub_info->hub_revision;
    776}
    777
    778#endif /* CONFIG_X86_64 */
    779#endif /* _ASM_X86_UV_UV_HUB_H */