cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

bugs.c (60074B)


      1// SPDX-License-Identifier: GPL-2.0
      2/*
      3 *  Copyright (C) 1994  Linus Torvalds
      4 *
      5 *  Cyrix stuff, June 1998 by:
      6 *	- Rafael R. Reilova (moved everything from head.S),
      7 *        <rreilova@ececs.uc.edu>
      8 *	- Channing Corn (tests & fixes),
      9 *	- Andrew D. Balsa (code cleanup).
     10 */
     11#include <linux/init.h>
     12#include <linux/utsname.h>
     13#include <linux/cpu.h>
     14#include <linux/module.h>
     15#include <linux/nospec.h>
     16#include <linux/prctl.h>
     17#include <linux/sched/smt.h>
     18#include <linux/pgtable.h>
     19#include <linux/bpf.h>
     20
     21#include <asm/spec-ctrl.h>
     22#include <asm/cmdline.h>
     23#include <asm/bugs.h>
     24#include <asm/processor.h>
     25#include <asm/processor-flags.h>
     26#include <asm/fpu/api.h>
     27#include <asm/msr.h>
     28#include <asm/vmx.h>
     29#include <asm/paravirt.h>
     30#include <asm/alternative.h>
     31#include <asm/set_memory.h>
     32#include <asm/intel-family.h>
     33#include <asm/e820/api.h>
     34#include <asm/hypervisor.h>
     35#include <asm/tlbflush.h>
     36
     37#include "cpu.h"
     38
     39static void __init spectre_v1_select_mitigation(void);
     40static void __init spectre_v2_select_mitigation(void);
     41static void __init ssb_select_mitigation(void);
     42static void __init l1tf_select_mitigation(void);
     43static void __init mds_select_mitigation(void);
     44static void __init md_clear_update_mitigation(void);
     45static void __init md_clear_select_mitigation(void);
     46static void __init taa_select_mitigation(void);
     47static void __init mmio_select_mitigation(void);
     48static void __init srbds_select_mitigation(void);
     49static void __init l1d_flush_select_mitigation(void);
     50
     51/* The base value of the SPEC_CTRL MSR that always has to be preserved. */
     52u64 x86_spec_ctrl_base;
     53EXPORT_SYMBOL_GPL(x86_spec_ctrl_base);
     54static DEFINE_MUTEX(spec_ctrl_mutex);
     55
     56/*
     57 * The vendor and possibly platform specific bits which can be modified in
     58 * x86_spec_ctrl_base.
     59 */
     60static u64 __ro_after_init x86_spec_ctrl_mask = SPEC_CTRL_IBRS;
     61
     62/*
     63 * AMD specific MSR info for Speculative Store Bypass control.
     64 * x86_amd_ls_cfg_ssbd_mask is initialized in identify_boot_cpu().
     65 */
     66u64 __ro_after_init x86_amd_ls_cfg_base;
     67u64 __ro_after_init x86_amd_ls_cfg_ssbd_mask;
     68
     69/* Control conditional STIBP in switch_to() */
     70DEFINE_STATIC_KEY_FALSE(switch_to_cond_stibp);
     71/* Control conditional IBPB in switch_mm() */
     72DEFINE_STATIC_KEY_FALSE(switch_mm_cond_ibpb);
     73/* Control unconditional IBPB in switch_mm() */
     74DEFINE_STATIC_KEY_FALSE(switch_mm_always_ibpb);
     75
     76/* Control MDS CPU buffer clear before returning to user space */
     77DEFINE_STATIC_KEY_FALSE(mds_user_clear);
     78EXPORT_SYMBOL_GPL(mds_user_clear);
     79/* Control MDS CPU buffer clear before idling (halt, mwait) */
     80DEFINE_STATIC_KEY_FALSE(mds_idle_clear);
     81EXPORT_SYMBOL_GPL(mds_idle_clear);
     82
     83/*
     84 * Controls whether l1d flush based mitigations are enabled,
     85 * based on hw features and admin setting via boot parameter
     86 * defaults to false
     87 */
     88DEFINE_STATIC_KEY_FALSE(switch_mm_cond_l1d_flush);
     89
     90/* Controls CPU Fill buffer clear before KVM guest MMIO accesses */
     91DEFINE_STATIC_KEY_FALSE(mmio_stale_data_clear);
     92EXPORT_SYMBOL_GPL(mmio_stale_data_clear);
     93
     94void __init check_bugs(void)
     95{
     96	identify_boot_cpu();
     97
     98	/*
     99	 * identify_boot_cpu() initialized SMT support information, let the
    100	 * core code know.
    101	 */
    102	cpu_smt_check_topology();
    103
    104	if (!IS_ENABLED(CONFIG_SMP)) {
    105		pr_info("CPU: ");
    106		print_cpu_info(&boot_cpu_data);
    107	}
    108
    109	/*
    110	 * Read the SPEC_CTRL MSR to account for reserved bits which may
    111	 * have unknown values. AMD64_LS_CFG MSR is cached in the early AMD
    112	 * init code as it is not enumerated and depends on the family.
    113	 */
    114	if (boot_cpu_has(X86_FEATURE_MSR_SPEC_CTRL))
    115		rdmsrl(MSR_IA32_SPEC_CTRL, x86_spec_ctrl_base);
    116
    117	/* Allow STIBP in MSR_SPEC_CTRL if supported */
    118	if (boot_cpu_has(X86_FEATURE_STIBP))
    119		x86_spec_ctrl_mask |= SPEC_CTRL_STIBP;
    120
    121	/* Select the proper CPU mitigations before patching alternatives: */
    122	spectre_v1_select_mitigation();
    123	spectre_v2_select_mitigation();
    124	ssb_select_mitigation();
    125	l1tf_select_mitigation();
    126	md_clear_select_mitigation();
    127	srbds_select_mitigation();
    128	l1d_flush_select_mitigation();
    129
    130	arch_smt_update();
    131
    132#ifdef CONFIG_X86_32
    133	/*
    134	 * Check whether we are able to run this kernel safely on SMP.
    135	 *
    136	 * - i386 is no longer supported.
    137	 * - In order to run on anything without a TSC, we need to be
    138	 *   compiled for a i486.
    139	 */
    140	if (boot_cpu_data.x86 < 4)
    141		panic("Kernel requires i486+ for 'invlpg' and other features");
    142
    143	init_utsname()->machine[1] =
    144		'0' + (boot_cpu_data.x86 > 6 ? 6 : boot_cpu_data.x86);
    145	alternative_instructions();
    146
    147	fpu__init_check_bugs();
    148#else /* CONFIG_X86_64 */
    149	alternative_instructions();
    150
    151	/*
    152	 * Make sure the first 2MB area is not mapped by huge pages
    153	 * There are typically fixed size MTRRs in there and overlapping
    154	 * MTRRs into large pages causes slow downs.
    155	 *
    156	 * Right now we don't do that with gbpages because there seems
    157	 * very little benefit for that case.
    158	 */
    159	if (!direct_gbpages)
    160		set_memory_4k((unsigned long)__va(0), 1);
    161#endif
    162}
    163
    164void
    165x86_virt_spec_ctrl(u64 guest_spec_ctrl, u64 guest_virt_spec_ctrl, bool setguest)
    166{
    167	u64 msrval, guestval, hostval = x86_spec_ctrl_base;
    168	struct thread_info *ti = current_thread_info();
    169
    170	/* Is MSR_SPEC_CTRL implemented ? */
    171	if (static_cpu_has(X86_FEATURE_MSR_SPEC_CTRL)) {
    172		/*
    173		 * Restrict guest_spec_ctrl to supported values. Clear the
    174		 * modifiable bits in the host base value and or the
    175		 * modifiable bits from the guest value.
    176		 */
    177		guestval = hostval & ~x86_spec_ctrl_mask;
    178		guestval |= guest_spec_ctrl & x86_spec_ctrl_mask;
    179
    180		/* SSBD controlled in MSR_SPEC_CTRL */
    181		if (static_cpu_has(X86_FEATURE_SPEC_CTRL_SSBD) ||
    182		    static_cpu_has(X86_FEATURE_AMD_SSBD))
    183			hostval |= ssbd_tif_to_spec_ctrl(ti->flags);
    184
    185		/* Conditional STIBP enabled? */
    186		if (static_branch_unlikely(&switch_to_cond_stibp))
    187			hostval |= stibp_tif_to_spec_ctrl(ti->flags);
    188
    189		if (hostval != guestval) {
    190			msrval = setguest ? guestval : hostval;
    191			wrmsrl(MSR_IA32_SPEC_CTRL, msrval);
    192		}
    193	}
    194
    195	/*
    196	 * If SSBD is not handled in MSR_SPEC_CTRL on AMD, update
    197	 * MSR_AMD64_L2_CFG or MSR_VIRT_SPEC_CTRL if supported.
    198	 */
    199	if (!static_cpu_has(X86_FEATURE_LS_CFG_SSBD) &&
    200	    !static_cpu_has(X86_FEATURE_VIRT_SSBD))
    201		return;
    202
    203	/*
    204	 * If the host has SSBD mitigation enabled, force it in the host's
    205	 * virtual MSR value. If its not permanently enabled, evaluate
    206	 * current's TIF_SSBD thread flag.
    207	 */
    208	if (static_cpu_has(X86_FEATURE_SPEC_STORE_BYPASS_DISABLE))
    209		hostval = SPEC_CTRL_SSBD;
    210	else
    211		hostval = ssbd_tif_to_spec_ctrl(ti->flags);
    212
    213	/* Sanitize the guest value */
    214	guestval = guest_virt_spec_ctrl & SPEC_CTRL_SSBD;
    215
    216	if (hostval != guestval) {
    217		unsigned long tif;
    218
    219		tif = setguest ? ssbd_spec_ctrl_to_tif(guestval) :
    220				 ssbd_spec_ctrl_to_tif(hostval);
    221
    222		speculation_ctrl_update(tif);
    223	}
    224}
    225EXPORT_SYMBOL_GPL(x86_virt_spec_ctrl);
    226
    227static void x86_amd_ssb_disable(void)
    228{
    229	u64 msrval = x86_amd_ls_cfg_base | x86_amd_ls_cfg_ssbd_mask;
    230
    231	if (boot_cpu_has(X86_FEATURE_VIRT_SSBD))
    232		wrmsrl(MSR_AMD64_VIRT_SPEC_CTRL, SPEC_CTRL_SSBD);
    233	else if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD))
    234		wrmsrl(MSR_AMD64_LS_CFG, msrval);
    235}
    236
    237#undef pr_fmt
    238#define pr_fmt(fmt)	"MDS: " fmt
    239
    240/* Default mitigation for MDS-affected CPUs */
    241static enum mds_mitigations mds_mitigation __ro_after_init = MDS_MITIGATION_FULL;
    242static bool mds_nosmt __ro_after_init = false;
    243
    244static const char * const mds_strings[] = {
    245	[MDS_MITIGATION_OFF]	= "Vulnerable",
    246	[MDS_MITIGATION_FULL]	= "Mitigation: Clear CPU buffers",
    247	[MDS_MITIGATION_VMWERV]	= "Vulnerable: Clear CPU buffers attempted, no microcode",
    248};
    249
    250static void __init mds_select_mitigation(void)
    251{
    252	if (!boot_cpu_has_bug(X86_BUG_MDS) || cpu_mitigations_off()) {
    253		mds_mitigation = MDS_MITIGATION_OFF;
    254		return;
    255	}
    256
    257	if (mds_mitigation == MDS_MITIGATION_FULL) {
    258		if (!boot_cpu_has(X86_FEATURE_MD_CLEAR))
    259			mds_mitigation = MDS_MITIGATION_VMWERV;
    260
    261		static_branch_enable(&mds_user_clear);
    262
    263		if (!boot_cpu_has(X86_BUG_MSBDS_ONLY) &&
    264		    (mds_nosmt || cpu_mitigations_auto_nosmt()))
    265			cpu_smt_disable(false);
    266	}
    267}
    268
    269static int __init mds_cmdline(char *str)
    270{
    271	if (!boot_cpu_has_bug(X86_BUG_MDS))
    272		return 0;
    273
    274	if (!str)
    275		return -EINVAL;
    276
    277	if (!strcmp(str, "off"))
    278		mds_mitigation = MDS_MITIGATION_OFF;
    279	else if (!strcmp(str, "full"))
    280		mds_mitigation = MDS_MITIGATION_FULL;
    281	else if (!strcmp(str, "full,nosmt")) {
    282		mds_mitigation = MDS_MITIGATION_FULL;
    283		mds_nosmt = true;
    284	}
    285
    286	return 0;
    287}
    288early_param("mds", mds_cmdline);
    289
    290#undef pr_fmt
    291#define pr_fmt(fmt)	"TAA: " fmt
    292
    293enum taa_mitigations {
    294	TAA_MITIGATION_OFF,
    295	TAA_MITIGATION_UCODE_NEEDED,
    296	TAA_MITIGATION_VERW,
    297	TAA_MITIGATION_TSX_DISABLED,
    298};
    299
    300/* Default mitigation for TAA-affected CPUs */
    301static enum taa_mitigations taa_mitigation __ro_after_init = TAA_MITIGATION_VERW;
    302static bool taa_nosmt __ro_after_init;
    303
    304static const char * const taa_strings[] = {
    305	[TAA_MITIGATION_OFF]		= "Vulnerable",
    306	[TAA_MITIGATION_UCODE_NEEDED]	= "Vulnerable: Clear CPU buffers attempted, no microcode",
    307	[TAA_MITIGATION_VERW]		= "Mitigation: Clear CPU buffers",
    308	[TAA_MITIGATION_TSX_DISABLED]	= "Mitigation: TSX disabled",
    309};
    310
    311static void __init taa_select_mitigation(void)
    312{
    313	u64 ia32_cap;
    314
    315	if (!boot_cpu_has_bug(X86_BUG_TAA)) {
    316		taa_mitigation = TAA_MITIGATION_OFF;
    317		return;
    318	}
    319
    320	/* TSX previously disabled by tsx=off */
    321	if (!boot_cpu_has(X86_FEATURE_RTM)) {
    322		taa_mitigation = TAA_MITIGATION_TSX_DISABLED;
    323		return;
    324	}
    325
    326	if (cpu_mitigations_off()) {
    327		taa_mitigation = TAA_MITIGATION_OFF;
    328		return;
    329	}
    330
    331	/*
    332	 * TAA mitigation via VERW is turned off if both
    333	 * tsx_async_abort=off and mds=off are specified.
    334	 */
    335	if (taa_mitigation == TAA_MITIGATION_OFF &&
    336	    mds_mitigation == MDS_MITIGATION_OFF)
    337		return;
    338
    339	if (boot_cpu_has(X86_FEATURE_MD_CLEAR))
    340		taa_mitigation = TAA_MITIGATION_VERW;
    341	else
    342		taa_mitigation = TAA_MITIGATION_UCODE_NEEDED;
    343
    344	/*
    345	 * VERW doesn't clear the CPU buffers when MD_CLEAR=1 and MDS_NO=1.
    346	 * A microcode update fixes this behavior to clear CPU buffers. It also
    347	 * adds support for MSR_IA32_TSX_CTRL which is enumerated by the
    348	 * ARCH_CAP_TSX_CTRL_MSR bit.
    349	 *
    350	 * On MDS_NO=1 CPUs if ARCH_CAP_TSX_CTRL_MSR is not set, microcode
    351	 * update is required.
    352	 */
    353	ia32_cap = x86_read_arch_cap_msr();
    354	if ( (ia32_cap & ARCH_CAP_MDS_NO) &&
    355	    !(ia32_cap & ARCH_CAP_TSX_CTRL_MSR))
    356		taa_mitigation = TAA_MITIGATION_UCODE_NEEDED;
    357
    358	/*
    359	 * TSX is enabled, select alternate mitigation for TAA which is
    360	 * the same as MDS. Enable MDS static branch to clear CPU buffers.
    361	 *
    362	 * For guests that can't determine whether the correct microcode is
    363	 * present on host, enable the mitigation for UCODE_NEEDED as well.
    364	 */
    365	static_branch_enable(&mds_user_clear);
    366
    367	if (taa_nosmt || cpu_mitigations_auto_nosmt())
    368		cpu_smt_disable(false);
    369}
    370
    371static int __init tsx_async_abort_parse_cmdline(char *str)
    372{
    373	if (!boot_cpu_has_bug(X86_BUG_TAA))
    374		return 0;
    375
    376	if (!str)
    377		return -EINVAL;
    378
    379	if (!strcmp(str, "off")) {
    380		taa_mitigation = TAA_MITIGATION_OFF;
    381	} else if (!strcmp(str, "full")) {
    382		taa_mitigation = TAA_MITIGATION_VERW;
    383	} else if (!strcmp(str, "full,nosmt")) {
    384		taa_mitigation = TAA_MITIGATION_VERW;
    385		taa_nosmt = true;
    386	}
    387
    388	return 0;
    389}
    390early_param("tsx_async_abort", tsx_async_abort_parse_cmdline);
    391
    392#undef pr_fmt
    393#define pr_fmt(fmt)	"MMIO Stale Data: " fmt
    394
    395enum mmio_mitigations {
    396	MMIO_MITIGATION_OFF,
    397	MMIO_MITIGATION_UCODE_NEEDED,
    398	MMIO_MITIGATION_VERW,
    399};
    400
    401/* Default mitigation for Processor MMIO Stale Data vulnerabilities */
    402static enum mmio_mitigations mmio_mitigation __ro_after_init = MMIO_MITIGATION_VERW;
    403static bool mmio_nosmt __ro_after_init = false;
    404
    405static const char * const mmio_strings[] = {
    406	[MMIO_MITIGATION_OFF]		= "Vulnerable",
    407	[MMIO_MITIGATION_UCODE_NEEDED]	= "Vulnerable: Clear CPU buffers attempted, no microcode",
    408	[MMIO_MITIGATION_VERW]		= "Mitigation: Clear CPU buffers",
    409};
    410
    411static void __init mmio_select_mitigation(void)
    412{
    413	u64 ia32_cap;
    414
    415	if (!boot_cpu_has_bug(X86_BUG_MMIO_STALE_DATA) ||
    416	    cpu_mitigations_off()) {
    417		mmio_mitigation = MMIO_MITIGATION_OFF;
    418		return;
    419	}
    420
    421	if (mmio_mitigation == MMIO_MITIGATION_OFF)
    422		return;
    423
    424	ia32_cap = x86_read_arch_cap_msr();
    425
    426	/*
    427	 * Enable CPU buffer clear mitigation for host and VMM, if also affected
    428	 * by MDS or TAA. Otherwise, enable mitigation for VMM only.
    429	 */
    430	if (boot_cpu_has_bug(X86_BUG_MDS) || (boot_cpu_has_bug(X86_BUG_TAA) &&
    431					      boot_cpu_has(X86_FEATURE_RTM)))
    432		static_branch_enable(&mds_user_clear);
    433	else
    434		static_branch_enable(&mmio_stale_data_clear);
    435
    436	/*
    437	 * If Processor-MMIO-Stale-Data bug is present and Fill Buffer data can
    438	 * be propagated to uncore buffers, clearing the Fill buffers on idle
    439	 * is required irrespective of SMT state.
    440	 */
    441	if (!(ia32_cap & ARCH_CAP_FBSDP_NO))
    442		static_branch_enable(&mds_idle_clear);
    443
    444	/*
    445	 * Check if the system has the right microcode.
    446	 *
    447	 * CPU Fill buffer clear mitigation is enumerated by either an explicit
    448	 * FB_CLEAR or by the presence of both MD_CLEAR and L1D_FLUSH on MDS
    449	 * affected systems.
    450	 */
    451	if ((ia32_cap & ARCH_CAP_FB_CLEAR) ||
    452	    (boot_cpu_has(X86_FEATURE_MD_CLEAR) &&
    453	     boot_cpu_has(X86_FEATURE_FLUSH_L1D) &&
    454	     !(ia32_cap & ARCH_CAP_MDS_NO)))
    455		mmio_mitigation = MMIO_MITIGATION_VERW;
    456	else
    457		mmio_mitigation = MMIO_MITIGATION_UCODE_NEEDED;
    458
    459	if (mmio_nosmt || cpu_mitigations_auto_nosmt())
    460		cpu_smt_disable(false);
    461}
    462
    463static int __init mmio_stale_data_parse_cmdline(char *str)
    464{
    465	if (!boot_cpu_has_bug(X86_BUG_MMIO_STALE_DATA))
    466		return 0;
    467
    468	if (!str)
    469		return -EINVAL;
    470
    471	if (!strcmp(str, "off")) {
    472		mmio_mitigation = MMIO_MITIGATION_OFF;
    473	} else if (!strcmp(str, "full")) {
    474		mmio_mitigation = MMIO_MITIGATION_VERW;
    475	} else if (!strcmp(str, "full,nosmt")) {
    476		mmio_mitigation = MMIO_MITIGATION_VERW;
    477		mmio_nosmt = true;
    478	}
    479
    480	return 0;
    481}
    482early_param("mmio_stale_data", mmio_stale_data_parse_cmdline);
    483
    484#undef pr_fmt
    485#define pr_fmt(fmt)     "" fmt
    486
    487static void __init md_clear_update_mitigation(void)
    488{
    489	if (cpu_mitigations_off())
    490		return;
    491
    492	if (!static_key_enabled(&mds_user_clear))
    493		goto out;
    494
    495	/*
    496	 * mds_user_clear is now enabled. Update MDS, TAA and MMIO Stale Data
    497	 * mitigation, if necessary.
    498	 */
    499	if (mds_mitigation == MDS_MITIGATION_OFF &&
    500	    boot_cpu_has_bug(X86_BUG_MDS)) {
    501		mds_mitigation = MDS_MITIGATION_FULL;
    502		mds_select_mitigation();
    503	}
    504	if (taa_mitigation == TAA_MITIGATION_OFF &&
    505	    boot_cpu_has_bug(X86_BUG_TAA)) {
    506		taa_mitigation = TAA_MITIGATION_VERW;
    507		taa_select_mitigation();
    508	}
    509	if (mmio_mitigation == MMIO_MITIGATION_OFF &&
    510	    boot_cpu_has_bug(X86_BUG_MMIO_STALE_DATA)) {
    511		mmio_mitigation = MMIO_MITIGATION_VERW;
    512		mmio_select_mitigation();
    513	}
    514out:
    515	if (boot_cpu_has_bug(X86_BUG_MDS))
    516		pr_info("MDS: %s\n", mds_strings[mds_mitigation]);
    517	if (boot_cpu_has_bug(X86_BUG_TAA))
    518		pr_info("TAA: %s\n", taa_strings[taa_mitigation]);
    519	if (boot_cpu_has_bug(X86_BUG_MMIO_STALE_DATA))
    520		pr_info("MMIO Stale Data: %s\n", mmio_strings[mmio_mitigation]);
    521}
    522
    523static void __init md_clear_select_mitigation(void)
    524{
    525	mds_select_mitigation();
    526	taa_select_mitigation();
    527	mmio_select_mitigation();
    528
    529	/*
    530	 * As MDS, TAA and MMIO Stale Data mitigations are inter-related, update
    531	 * and print their mitigation after MDS, TAA and MMIO Stale Data
    532	 * mitigation selection is done.
    533	 */
    534	md_clear_update_mitigation();
    535}
    536
    537#undef pr_fmt
    538#define pr_fmt(fmt)	"SRBDS: " fmt
    539
    540enum srbds_mitigations {
    541	SRBDS_MITIGATION_OFF,
    542	SRBDS_MITIGATION_UCODE_NEEDED,
    543	SRBDS_MITIGATION_FULL,
    544	SRBDS_MITIGATION_TSX_OFF,
    545	SRBDS_MITIGATION_HYPERVISOR,
    546};
    547
    548static enum srbds_mitigations srbds_mitigation __ro_after_init = SRBDS_MITIGATION_FULL;
    549
    550static const char * const srbds_strings[] = {
    551	[SRBDS_MITIGATION_OFF]		= "Vulnerable",
    552	[SRBDS_MITIGATION_UCODE_NEEDED]	= "Vulnerable: No microcode",
    553	[SRBDS_MITIGATION_FULL]		= "Mitigation: Microcode",
    554	[SRBDS_MITIGATION_TSX_OFF]	= "Mitigation: TSX disabled",
    555	[SRBDS_MITIGATION_HYPERVISOR]	= "Unknown: Dependent on hypervisor status",
    556};
    557
    558static bool srbds_off;
    559
    560void update_srbds_msr(void)
    561{
    562	u64 mcu_ctrl;
    563
    564	if (!boot_cpu_has_bug(X86_BUG_SRBDS))
    565		return;
    566
    567	if (boot_cpu_has(X86_FEATURE_HYPERVISOR))
    568		return;
    569
    570	if (srbds_mitigation == SRBDS_MITIGATION_UCODE_NEEDED)
    571		return;
    572
    573	/*
    574	 * A MDS_NO CPU for which SRBDS mitigation is not needed due to TSX
    575	 * being disabled and it hasn't received the SRBDS MSR microcode.
    576	 */
    577	if (!boot_cpu_has(X86_FEATURE_SRBDS_CTRL))
    578		return;
    579
    580	rdmsrl(MSR_IA32_MCU_OPT_CTRL, mcu_ctrl);
    581
    582	switch (srbds_mitigation) {
    583	case SRBDS_MITIGATION_OFF:
    584	case SRBDS_MITIGATION_TSX_OFF:
    585		mcu_ctrl |= RNGDS_MITG_DIS;
    586		break;
    587	case SRBDS_MITIGATION_FULL:
    588		mcu_ctrl &= ~RNGDS_MITG_DIS;
    589		break;
    590	default:
    591		break;
    592	}
    593
    594	wrmsrl(MSR_IA32_MCU_OPT_CTRL, mcu_ctrl);
    595}
    596
    597static void __init srbds_select_mitigation(void)
    598{
    599	u64 ia32_cap;
    600
    601	if (!boot_cpu_has_bug(X86_BUG_SRBDS))
    602		return;
    603
    604	/*
    605	 * Check to see if this is one of the MDS_NO systems supporting TSX that
    606	 * are only exposed to SRBDS when TSX is enabled or when CPU is affected
    607	 * by Processor MMIO Stale Data vulnerability.
    608	 */
    609	ia32_cap = x86_read_arch_cap_msr();
    610	if ((ia32_cap & ARCH_CAP_MDS_NO) && !boot_cpu_has(X86_FEATURE_RTM) &&
    611	    !boot_cpu_has_bug(X86_BUG_MMIO_STALE_DATA))
    612		srbds_mitigation = SRBDS_MITIGATION_TSX_OFF;
    613	else if (boot_cpu_has(X86_FEATURE_HYPERVISOR))
    614		srbds_mitigation = SRBDS_MITIGATION_HYPERVISOR;
    615	else if (!boot_cpu_has(X86_FEATURE_SRBDS_CTRL))
    616		srbds_mitigation = SRBDS_MITIGATION_UCODE_NEEDED;
    617	else if (cpu_mitigations_off() || srbds_off)
    618		srbds_mitigation = SRBDS_MITIGATION_OFF;
    619
    620	update_srbds_msr();
    621	pr_info("%s\n", srbds_strings[srbds_mitigation]);
    622}
    623
    624static int __init srbds_parse_cmdline(char *str)
    625{
    626	if (!str)
    627		return -EINVAL;
    628
    629	if (!boot_cpu_has_bug(X86_BUG_SRBDS))
    630		return 0;
    631
    632	srbds_off = !strcmp(str, "off");
    633	return 0;
    634}
    635early_param("srbds", srbds_parse_cmdline);
    636
    637#undef pr_fmt
    638#define pr_fmt(fmt)     "L1D Flush : " fmt
    639
    640enum l1d_flush_mitigations {
    641	L1D_FLUSH_OFF = 0,
    642	L1D_FLUSH_ON,
    643};
    644
    645static enum l1d_flush_mitigations l1d_flush_mitigation __initdata = L1D_FLUSH_OFF;
    646
    647static void __init l1d_flush_select_mitigation(void)
    648{
    649	if (!l1d_flush_mitigation || !boot_cpu_has(X86_FEATURE_FLUSH_L1D))
    650		return;
    651
    652	static_branch_enable(&switch_mm_cond_l1d_flush);
    653	pr_info("Conditional flush on switch_mm() enabled\n");
    654}
    655
    656static int __init l1d_flush_parse_cmdline(char *str)
    657{
    658	if (!strcmp(str, "on"))
    659		l1d_flush_mitigation = L1D_FLUSH_ON;
    660
    661	return 0;
    662}
    663early_param("l1d_flush", l1d_flush_parse_cmdline);
    664
    665#undef pr_fmt
    666#define pr_fmt(fmt)     "Spectre V1 : " fmt
    667
    668enum spectre_v1_mitigation {
    669	SPECTRE_V1_MITIGATION_NONE,
    670	SPECTRE_V1_MITIGATION_AUTO,
    671};
    672
    673static enum spectre_v1_mitigation spectre_v1_mitigation __ro_after_init =
    674	SPECTRE_V1_MITIGATION_AUTO;
    675
    676static const char * const spectre_v1_strings[] = {
    677	[SPECTRE_V1_MITIGATION_NONE] = "Vulnerable: __user pointer sanitization and usercopy barriers only; no swapgs barriers",
    678	[SPECTRE_V1_MITIGATION_AUTO] = "Mitigation: usercopy/swapgs barriers and __user pointer sanitization",
    679};
    680
    681/*
    682 * Does SMAP provide full mitigation against speculative kernel access to
    683 * userspace?
    684 */
    685static bool smap_works_speculatively(void)
    686{
    687	if (!boot_cpu_has(X86_FEATURE_SMAP))
    688		return false;
    689
    690	/*
    691	 * On CPUs which are vulnerable to Meltdown, SMAP does not
    692	 * prevent speculative access to user data in the L1 cache.
    693	 * Consider SMAP to be non-functional as a mitigation on these
    694	 * CPUs.
    695	 */
    696	if (boot_cpu_has(X86_BUG_CPU_MELTDOWN))
    697		return false;
    698
    699	return true;
    700}
    701
    702static void __init spectre_v1_select_mitigation(void)
    703{
    704	if (!boot_cpu_has_bug(X86_BUG_SPECTRE_V1) || cpu_mitigations_off()) {
    705		spectre_v1_mitigation = SPECTRE_V1_MITIGATION_NONE;
    706		return;
    707	}
    708
    709	if (spectre_v1_mitigation == SPECTRE_V1_MITIGATION_AUTO) {
    710		/*
    711		 * With Spectre v1, a user can speculatively control either
    712		 * path of a conditional swapgs with a user-controlled GS
    713		 * value.  The mitigation is to add lfences to both code paths.
    714		 *
    715		 * If FSGSBASE is enabled, the user can put a kernel address in
    716		 * GS, in which case SMAP provides no protection.
    717		 *
    718		 * If FSGSBASE is disabled, the user can only put a user space
    719		 * address in GS.  That makes an attack harder, but still
    720		 * possible if there's no SMAP protection.
    721		 */
    722		if (boot_cpu_has(X86_FEATURE_FSGSBASE) ||
    723		    !smap_works_speculatively()) {
    724			/*
    725			 * Mitigation can be provided from SWAPGS itself or
    726			 * PTI as the CR3 write in the Meltdown mitigation
    727			 * is serializing.
    728			 *
    729			 * If neither is there, mitigate with an LFENCE to
    730			 * stop speculation through swapgs.
    731			 */
    732			if (boot_cpu_has_bug(X86_BUG_SWAPGS) &&
    733			    !boot_cpu_has(X86_FEATURE_PTI))
    734				setup_force_cpu_cap(X86_FEATURE_FENCE_SWAPGS_USER);
    735
    736			/*
    737			 * Enable lfences in the kernel entry (non-swapgs)
    738			 * paths, to prevent user entry from speculatively
    739			 * skipping swapgs.
    740			 */
    741			setup_force_cpu_cap(X86_FEATURE_FENCE_SWAPGS_KERNEL);
    742		}
    743	}
    744
    745	pr_info("%s\n", spectre_v1_strings[spectre_v1_mitigation]);
    746}
    747
    748static int __init nospectre_v1_cmdline(char *str)
    749{
    750	spectre_v1_mitigation = SPECTRE_V1_MITIGATION_NONE;
    751	return 0;
    752}
    753early_param("nospectre_v1", nospectre_v1_cmdline);
    754
    755#undef pr_fmt
    756#define pr_fmt(fmt)     "Spectre V2 : " fmt
    757
    758static enum spectre_v2_mitigation spectre_v2_enabled __ro_after_init =
    759	SPECTRE_V2_NONE;
    760
    761static enum spectre_v2_user_mitigation spectre_v2_user_stibp __ro_after_init =
    762	SPECTRE_V2_USER_NONE;
    763static enum spectre_v2_user_mitigation spectre_v2_user_ibpb __ro_after_init =
    764	SPECTRE_V2_USER_NONE;
    765
    766#ifdef CONFIG_RETPOLINE
    767static bool spectre_v2_bad_module;
    768
    769bool retpoline_module_ok(bool has_retpoline)
    770{
    771	if (spectre_v2_enabled == SPECTRE_V2_NONE || has_retpoline)
    772		return true;
    773
    774	pr_err("System may be vulnerable to spectre v2\n");
    775	spectre_v2_bad_module = true;
    776	return false;
    777}
    778
    779static inline const char *spectre_v2_module_string(void)
    780{
    781	return spectre_v2_bad_module ? " - vulnerable module loaded" : "";
    782}
    783#else
    784static inline const char *spectre_v2_module_string(void) { return ""; }
    785#endif
    786
    787#define SPECTRE_V2_LFENCE_MSG "WARNING: LFENCE mitigation is not recommended for this CPU, data leaks possible!\n"
    788#define SPECTRE_V2_EIBRS_EBPF_MSG "WARNING: Unprivileged eBPF is enabled with eIBRS on, data leaks possible via Spectre v2 BHB attacks!\n"
    789#define SPECTRE_V2_EIBRS_LFENCE_EBPF_SMT_MSG "WARNING: Unprivileged eBPF is enabled with eIBRS+LFENCE mitigation and SMT, data leaks possible via Spectre v2 BHB attacks!\n"
    790
    791#ifdef CONFIG_BPF_SYSCALL
    792void unpriv_ebpf_notify(int new_state)
    793{
    794	if (new_state)
    795		return;
    796
    797	/* Unprivileged eBPF is enabled */
    798
    799	switch (spectre_v2_enabled) {
    800	case SPECTRE_V2_EIBRS:
    801		pr_err(SPECTRE_V2_EIBRS_EBPF_MSG);
    802		break;
    803	case SPECTRE_V2_EIBRS_LFENCE:
    804		if (sched_smt_active())
    805			pr_err(SPECTRE_V2_EIBRS_LFENCE_EBPF_SMT_MSG);
    806		break;
    807	default:
    808		break;
    809	}
    810}
    811#endif
    812
    813static inline bool match_option(const char *arg, int arglen, const char *opt)
    814{
    815	int len = strlen(opt);
    816
    817	return len == arglen && !strncmp(arg, opt, len);
    818}
    819
    820/* The kernel command line selection for spectre v2 */
    821enum spectre_v2_mitigation_cmd {
    822	SPECTRE_V2_CMD_NONE,
    823	SPECTRE_V2_CMD_AUTO,
    824	SPECTRE_V2_CMD_FORCE,
    825	SPECTRE_V2_CMD_RETPOLINE,
    826	SPECTRE_V2_CMD_RETPOLINE_GENERIC,
    827	SPECTRE_V2_CMD_RETPOLINE_LFENCE,
    828	SPECTRE_V2_CMD_EIBRS,
    829	SPECTRE_V2_CMD_EIBRS_RETPOLINE,
    830	SPECTRE_V2_CMD_EIBRS_LFENCE,
    831};
    832
    833enum spectre_v2_user_cmd {
    834	SPECTRE_V2_USER_CMD_NONE,
    835	SPECTRE_V2_USER_CMD_AUTO,
    836	SPECTRE_V2_USER_CMD_FORCE,
    837	SPECTRE_V2_USER_CMD_PRCTL,
    838	SPECTRE_V2_USER_CMD_PRCTL_IBPB,
    839	SPECTRE_V2_USER_CMD_SECCOMP,
    840	SPECTRE_V2_USER_CMD_SECCOMP_IBPB,
    841};
    842
    843static const char * const spectre_v2_user_strings[] = {
    844	[SPECTRE_V2_USER_NONE]			= "User space: Vulnerable",
    845	[SPECTRE_V2_USER_STRICT]		= "User space: Mitigation: STIBP protection",
    846	[SPECTRE_V2_USER_STRICT_PREFERRED]	= "User space: Mitigation: STIBP always-on protection",
    847	[SPECTRE_V2_USER_PRCTL]			= "User space: Mitigation: STIBP via prctl",
    848	[SPECTRE_V2_USER_SECCOMP]		= "User space: Mitigation: STIBP via seccomp and prctl",
    849};
    850
    851static const struct {
    852	const char			*option;
    853	enum spectre_v2_user_cmd	cmd;
    854	bool				secure;
    855} v2_user_options[] __initconst = {
    856	{ "auto",		SPECTRE_V2_USER_CMD_AUTO,		false },
    857	{ "off",		SPECTRE_V2_USER_CMD_NONE,		false },
    858	{ "on",			SPECTRE_V2_USER_CMD_FORCE,		true  },
    859	{ "prctl",		SPECTRE_V2_USER_CMD_PRCTL,		false },
    860	{ "prctl,ibpb",		SPECTRE_V2_USER_CMD_PRCTL_IBPB,		false },
    861	{ "seccomp",		SPECTRE_V2_USER_CMD_SECCOMP,		false },
    862	{ "seccomp,ibpb",	SPECTRE_V2_USER_CMD_SECCOMP_IBPB,	false },
    863};
    864
    865static void __init spec_v2_user_print_cond(const char *reason, bool secure)
    866{
    867	if (boot_cpu_has_bug(X86_BUG_SPECTRE_V2) != secure)
    868		pr_info("spectre_v2_user=%s forced on command line.\n", reason);
    869}
    870
    871static enum spectre_v2_user_cmd __init
    872spectre_v2_parse_user_cmdline(enum spectre_v2_mitigation_cmd v2_cmd)
    873{
    874	char arg[20];
    875	int ret, i;
    876
    877	switch (v2_cmd) {
    878	case SPECTRE_V2_CMD_NONE:
    879		return SPECTRE_V2_USER_CMD_NONE;
    880	case SPECTRE_V2_CMD_FORCE:
    881		return SPECTRE_V2_USER_CMD_FORCE;
    882	default:
    883		break;
    884	}
    885
    886	ret = cmdline_find_option(boot_command_line, "spectre_v2_user",
    887				  arg, sizeof(arg));
    888	if (ret < 0)
    889		return SPECTRE_V2_USER_CMD_AUTO;
    890
    891	for (i = 0; i < ARRAY_SIZE(v2_user_options); i++) {
    892		if (match_option(arg, ret, v2_user_options[i].option)) {
    893			spec_v2_user_print_cond(v2_user_options[i].option,
    894						v2_user_options[i].secure);
    895			return v2_user_options[i].cmd;
    896		}
    897	}
    898
    899	pr_err("Unknown user space protection option (%s). Switching to AUTO select\n", arg);
    900	return SPECTRE_V2_USER_CMD_AUTO;
    901}
    902
    903static inline bool spectre_v2_in_eibrs_mode(enum spectre_v2_mitigation mode)
    904{
    905	return (mode == SPECTRE_V2_EIBRS ||
    906		mode == SPECTRE_V2_EIBRS_RETPOLINE ||
    907		mode == SPECTRE_V2_EIBRS_LFENCE);
    908}
    909
    910static void __init
    911spectre_v2_user_select_mitigation(enum spectre_v2_mitigation_cmd v2_cmd)
    912{
    913	enum spectre_v2_user_mitigation mode = SPECTRE_V2_USER_NONE;
    914	bool smt_possible = IS_ENABLED(CONFIG_SMP);
    915	enum spectre_v2_user_cmd cmd;
    916
    917	if (!boot_cpu_has(X86_FEATURE_IBPB) && !boot_cpu_has(X86_FEATURE_STIBP))
    918		return;
    919
    920	if (cpu_smt_control == CPU_SMT_FORCE_DISABLED ||
    921	    cpu_smt_control == CPU_SMT_NOT_SUPPORTED)
    922		smt_possible = false;
    923
    924	cmd = spectre_v2_parse_user_cmdline(v2_cmd);
    925	switch (cmd) {
    926	case SPECTRE_V2_USER_CMD_NONE:
    927		goto set_mode;
    928	case SPECTRE_V2_USER_CMD_FORCE:
    929		mode = SPECTRE_V2_USER_STRICT;
    930		break;
    931	case SPECTRE_V2_USER_CMD_AUTO:
    932	case SPECTRE_V2_USER_CMD_PRCTL:
    933	case SPECTRE_V2_USER_CMD_PRCTL_IBPB:
    934		mode = SPECTRE_V2_USER_PRCTL;
    935		break;
    936	case SPECTRE_V2_USER_CMD_SECCOMP:
    937	case SPECTRE_V2_USER_CMD_SECCOMP_IBPB:
    938		if (IS_ENABLED(CONFIG_SECCOMP))
    939			mode = SPECTRE_V2_USER_SECCOMP;
    940		else
    941			mode = SPECTRE_V2_USER_PRCTL;
    942		break;
    943	}
    944
    945	/* Initialize Indirect Branch Prediction Barrier */
    946	if (boot_cpu_has(X86_FEATURE_IBPB)) {
    947		setup_force_cpu_cap(X86_FEATURE_USE_IBPB);
    948
    949		spectre_v2_user_ibpb = mode;
    950		switch (cmd) {
    951		case SPECTRE_V2_USER_CMD_FORCE:
    952		case SPECTRE_V2_USER_CMD_PRCTL_IBPB:
    953		case SPECTRE_V2_USER_CMD_SECCOMP_IBPB:
    954			static_branch_enable(&switch_mm_always_ibpb);
    955			spectre_v2_user_ibpb = SPECTRE_V2_USER_STRICT;
    956			break;
    957		case SPECTRE_V2_USER_CMD_PRCTL:
    958		case SPECTRE_V2_USER_CMD_AUTO:
    959		case SPECTRE_V2_USER_CMD_SECCOMP:
    960			static_branch_enable(&switch_mm_cond_ibpb);
    961			break;
    962		default:
    963			break;
    964		}
    965
    966		pr_info("mitigation: Enabling %s Indirect Branch Prediction Barrier\n",
    967			static_key_enabled(&switch_mm_always_ibpb) ?
    968			"always-on" : "conditional");
    969	}
    970
    971	/*
    972	 * If no STIBP, enhanced IBRS is enabled or SMT impossible, STIBP is not
    973	 * required.
    974	 */
    975	if (!boot_cpu_has(X86_FEATURE_STIBP) ||
    976	    !smt_possible ||
    977	    spectre_v2_in_eibrs_mode(spectre_v2_enabled))
    978		return;
    979
    980	/*
    981	 * At this point, an STIBP mode other than "off" has been set.
    982	 * If STIBP support is not being forced, check if STIBP always-on
    983	 * is preferred.
    984	 */
    985	if (mode != SPECTRE_V2_USER_STRICT &&
    986	    boot_cpu_has(X86_FEATURE_AMD_STIBP_ALWAYS_ON))
    987		mode = SPECTRE_V2_USER_STRICT_PREFERRED;
    988
    989	spectre_v2_user_stibp = mode;
    990
    991set_mode:
    992	pr_info("%s\n", spectre_v2_user_strings[mode]);
    993}
    994
    995static const char * const spectre_v2_strings[] = {
    996	[SPECTRE_V2_NONE]			= "Vulnerable",
    997	[SPECTRE_V2_RETPOLINE]			= "Mitigation: Retpolines",
    998	[SPECTRE_V2_LFENCE]			= "Mitigation: LFENCE",
    999	[SPECTRE_V2_EIBRS]			= "Mitigation: Enhanced IBRS",
   1000	[SPECTRE_V2_EIBRS_LFENCE]		= "Mitigation: Enhanced IBRS + LFENCE",
   1001	[SPECTRE_V2_EIBRS_RETPOLINE]		= "Mitigation: Enhanced IBRS + Retpolines",
   1002};
   1003
   1004static const struct {
   1005	const char *option;
   1006	enum spectre_v2_mitigation_cmd cmd;
   1007	bool secure;
   1008} mitigation_options[] __initconst = {
   1009	{ "off",		SPECTRE_V2_CMD_NONE,		  false },
   1010	{ "on",			SPECTRE_V2_CMD_FORCE,		  true  },
   1011	{ "retpoline",		SPECTRE_V2_CMD_RETPOLINE,	  false },
   1012	{ "retpoline,amd",	SPECTRE_V2_CMD_RETPOLINE_LFENCE,  false },
   1013	{ "retpoline,lfence",	SPECTRE_V2_CMD_RETPOLINE_LFENCE,  false },
   1014	{ "retpoline,generic",	SPECTRE_V2_CMD_RETPOLINE_GENERIC, false },
   1015	{ "eibrs",		SPECTRE_V2_CMD_EIBRS,		  false },
   1016	{ "eibrs,lfence",	SPECTRE_V2_CMD_EIBRS_LFENCE,	  false },
   1017	{ "eibrs,retpoline",	SPECTRE_V2_CMD_EIBRS_RETPOLINE,	  false },
   1018	{ "auto",		SPECTRE_V2_CMD_AUTO,		  false },
   1019};
   1020
   1021static void __init spec_v2_print_cond(const char *reason, bool secure)
   1022{
   1023	if (boot_cpu_has_bug(X86_BUG_SPECTRE_V2) != secure)
   1024		pr_info("%s selected on command line.\n", reason);
   1025}
   1026
   1027static enum spectre_v2_mitigation_cmd __init spectre_v2_parse_cmdline(void)
   1028{
   1029	enum spectre_v2_mitigation_cmd cmd = SPECTRE_V2_CMD_AUTO;
   1030	char arg[20];
   1031	int ret, i;
   1032
   1033	if (cmdline_find_option_bool(boot_command_line, "nospectre_v2") ||
   1034	    cpu_mitigations_off())
   1035		return SPECTRE_V2_CMD_NONE;
   1036
   1037	ret = cmdline_find_option(boot_command_line, "spectre_v2", arg, sizeof(arg));
   1038	if (ret < 0)
   1039		return SPECTRE_V2_CMD_AUTO;
   1040
   1041	for (i = 0; i < ARRAY_SIZE(mitigation_options); i++) {
   1042		if (!match_option(arg, ret, mitigation_options[i].option))
   1043			continue;
   1044		cmd = mitigation_options[i].cmd;
   1045		break;
   1046	}
   1047
   1048	if (i >= ARRAY_SIZE(mitigation_options)) {
   1049		pr_err("unknown option (%s). Switching to AUTO select\n", arg);
   1050		return SPECTRE_V2_CMD_AUTO;
   1051	}
   1052
   1053	if ((cmd == SPECTRE_V2_CMD_RETPOLINE ||
   1054	     cmd == SPECTRE_V2_CMD_RETPOLINE_LFENCE ||
   1055	     cmd == SPECTRE_V2_CMD_RETPOLINE_GENERIC ||
   1056	     cmd == SPECTRE_V2_CMD_EIBRS_LFENCE ||
   1057	     cmd == SPECTRE_V2_CMD_EIBRS_RETPOLINE) &&
   1058	    !IS_ENABLED(CONFIG_RETPOLINE)) {
   1059		pr_err("%s selected but not compiled in. Switching to AUTO select\n",
   1060		       mitigation_options[i].option);
   1061		return SPECTRE_V2_CMD_AUTO;
   1062	}
   1063
   1064	if ((cmd == SPECTRE_V2_CMD_EIBRS ||
   1065	     cmd == SPECTRE_V2_CMD_EIBRS_LFENCE ||
   1066	     cmd == SPECTRE_V2_CMD_EIBRS_RETPOLINE) &&
   1067	    !boot_cpu_has(X86_FEATURE_IBRS_ENHANCED)) {
   1068		pr_err("%s selected but CPU doesn't have eIBRS. Switching to AUTO select\n",
   1069		       mitigation_options[i].option);
   1070		return SPECTRE_V2_CMD_AUTO;
   1071	}
   1072
   1073	if ((cmd == SPECTRE_V2_CMD_RETPOLINE_LFENCE ||
   1074	     cmd == SPECTRE_V2_CMD_EIBRS_LFENCE) &&
   1075	    !boot_cpu_has(X86_FEATURE_LFENCE_RDTSC)) {
   1076		pr_err("%s selected, but CPU doesn't have a serializing LFENCE. Switching to AUTO select\n",
   1077		       mitigation_options[i].option);
   1078		return SPECTRE_V2_CMD_AUTO;
   1079	}
   1080
   1081	spec_v2_print_cond(mitigation_options[i].option,
   1082			   mitigation_options[i].secure);
   1083	return cmd;
   1084}
   1085
   1086static enum spectre_v2_mitigation __init spectre_v2_select_retpoline(void)
   1087{
   1088	if (!IS_ENABLED(CONFIG_RETPOLINE)) {
   1089		pr_err("Kernel not compiled with retpoline; no mitigation available!");
   1090		return SPECTRE_V2_NONE;
   1091	}
   1092
   1093	return SPECTRE_V2_RETPOLINE;
   1094}
   1095
   1096static void __init spectre_v2_select_mitigation(void)
   1097{
   1098	enum spectre_v2_mitigation_cmd cmd = spectre_v2_parse_cmdline();
   1099	enum spectre_v2_mitigation mode = SPECTRE_V2_NONE;
   1100
   1101	/*
   1102	 * If the CPU is not affected and the command line mode is NONE or AUTO
   1103	 * then nothing to do.
   1104	 */
   1105	if (!boot_cpu_has_bug(X86_BUG_SPECTRE_V2) &&
   1106	    (cmd == SPECTRE_V2_CMD_NONE || cmd == SPECTRE_V2_CMD_AUTO))
   1107		return;
   1108
   1109	switch (cmd) {
   1110	case SPECTRE_V2_CMD_NONE:
   1111		return;
   1112
   1113	case SPECTRE_V2_CMD_FORCE:
   1114	case SPECTRE_V2_CMD_AUTO:
   1115		if (boot_cpu_has(X86_FEATURE_IBRS_ENHANCED)) {
   1116			mode = SPECTRE_V2_EIBRS;
   1117			break;
   1118		}
   1119
   1120		mode = spectre_v2_select_retpoline();
   1121		break;
   1122
   1123	case SPECTRE_V2_CMD_RETPOLINE_LFENCE:
   1124		pr_err(SPECTRE_V2_LFENCE_MSG);
   1125		mode = SPECTRE_V2_LFENCE;
   1126		break;
   1127
   1128	case SPECTRE_V2_CMD_RETPOLINE_GENERIC:
   1129		mode = SPECTRE_V2_RETPOLINE;
   1130		break;
   1131
   1132	case SPECTRE_V2_CMD_RETPOLINE:
   1133		mode = spectre_v2_select_retpoline();
   1134		break;
   1135
   1136	case SPECTRE_V2_CMD_EIBRS:
   1137		mode = SPECTRE_V2_EIBRS;
   1138		break;
   1139
   1140	case SPECTRE_V2_CMD_EIBRS_LFENCE:
   1141		mode = SPECTRE_V2_EIBRS_LFENCE;
   1142		break;
   1143
   1144	case SPECTRE_V2_CMD_EIBRS_RETPOLINE:
   1145		mode = SPECTRE_V2_EIBRS_RETPOLINE;
   1146		break;
   1147	}
   1148
   1149	if (mode == SPECTRE_V2_EIBRS && unprivileged_ebpf_enabled())
   1150		pr_err(SPECTRE_V2_EIBRS_EBPF_MSG);
   1151
   1152	if (spectre_v2_in_eibrs_mode(mode)) {
   1153		/* Force it so VMEXIT will restore correctly */
   1154		x86_spec_ctrl_base |= SPEC_CTRL_IBRS;
   1155		wrmsrl(MSR_IA32_SPEC_CTRL, x86_spec_ctrl_base);
   1156	}
   1157
   1158	switch (mode) {
   1159	case SPECTRE_V2_NONE:
   1160	case SPECTRE_V2_EIBRS:
   1161		break;
   1162
   1163	case SPECTRE_V2_LFENCE:
   1164	case SPECTRE_V2_EIBRS_LFENCE:
   1165		setup_force_cpu_cap(X86_FEATURE_RETPOLINE_LFENCE);
   1166		fallthrough;
   1167
   1168	case SPECTRE_V2_RETPOLINE:
   1169	case SPECTRE_V2_EIBRS_RETPOLINE:
   1170		setup_force_cpu_cap(X86_FEATURE_RETPOLINE);
   1171		break;
   1172	}
   1173
   1174	spectre_v2_enabled = mode;
   1175	pr_info("%s\n", spectre_v2_strings[mode]);
   1176
   1177	/*
   1178	 * If spectre v2 protection has been enabled, unconditionally fill
   1179	 * RSB during a context switch; this protects against two independent
   1180	 * issues:
   1181	 *
   1182	 *	- RSB underflow (and switch to BTB) on Skylake+
   1183	 *	- SpectreRSB variant of spectre v2 on X86_BUG_SPECTRE_V2 CPUs
   1184	 */
   1185	setup_force_cpu_cap(X86_FEATURE_RSB_CTXSW);
   1186	pr_info("Spectre v2 / SpectreRSB mitigation: Filling RSB on context switch\n");
   1187
   1188	/*
   1189	 * Retpoline means the kernel is safe because it has no indirect
   1190	 * branches. Enhanced IBRS protects firmware too, so, enable restricted
   1191	 * speculation around firmware calls only when Enhanced IBRS isn't
   1192	 * supported.
   1193	 *
   1194	 * Use "mode" to check Enhanced IBRS instead of boot_cpu_has(), because
   1195	 * the user might select retpoline on the kernel command line and if
   1196	 * the CPU supports Enhanced IBRS, kernel might un-intentionally not
   1197	 * enable IBRS around firmware calls.
   1198	 */
   1199	if (boot_cpu_has(X86_FEATURE_IBRS) && !spectre_v2_in_eibrs_mode(mode)) {
   1200		setup_force_cpu_cap(X86_FEATURE_USE_IBRS_FW);
   1201		pr_info("Enabling Restricted Speculation for firmware calls\n");
   1202	}
   1203
   1204	/* Set up IBPB and STIBP depending on the general spectre V2 command */
   1205	spectre_v2_user_select_mitigation(cmd);
   1206}
   1207
   1208static void update_stibp_msr(void * __unused)
   1209{
   1210	wrmsrl(MSR_IA32_SPEC_CTRL, x86_spec_ctrl_base);
   1211}
   1212
   1213/* Update x86_spec_ctrl_base in case SMT state changed. */
   1214static void update_stibp_strict(void)
   1215{
   1216	u64 mask = x86_spec_ctrl_base & ~SPEC_CTRL_STIBP;
   1217
   1218	if (sched_smt_active())
   1219		mask |= SPEC_CTRL_STIBP;
   1220
   1221	if (mask == x86_spec_ctrl_base)
   1222		return;
   1223
   1224	pr_info("Update user space SMT mitigation: STIBP %s\n",
   1225		mask & SPEC_CTRL_STIBP ? "always-on" : "off");
   1226	x86_spec_ctrl_base = mask;
   1227	on_each_cpu(update_stibp_msr, NULL, 1);
   1228}
   1229
   1230/* Update the static key controlling the evaluation of TIF_SPEC_IB */
   1231static void update_indir_branch_cond(void)
   1232{
   1233	if (sched_smt_active())
   1234		static_branch_enable(&switch_to_cond_stibp);
   1235	else
   1236		static_branch_disable(&switch_to_cond_stibp);
   1237}
   1238
   1239#undef pr_fmt
   1240#define pr_fmt(fmt) fmt
   1241
   1242/* Update the static key controlling the MDS CPU buffer clear in idle */
   1243static void update_mds_branch_idle(void)
   1244{
   1245	u64 ia32_cap = x86_read_arch_cap_msr();
   1246
   1247	/*
   1248	 * Enable the idle clearing if SMT is active on CPUs which are
   1249	 * affected only by MSBDS and not any other MDS variant.
   1250	 *
   1251	 * The other variants cannot be mitigated when SMT is enabled, so
   1252	 * clearing the buffers on idle just to prevent the Store Buffer
   1253	 * repartitioning leak would be a window dressing exercise.
   1254	 */
   1255	if (!boot_cpu_has_bug(X86_BUG_MSBDS_ONLY))
   1256		return;
   1257
   1258	if (sched_smt_active()) {
   1259		static_branch_enable(&mds_idle_clear);
   1260	} else if (mmio_mitigation == MMIO_MITIGATION_OFF ||
   1261		   (ia32_cap & ARCH_CAP_FBSDP_NO)) {
   1262		static_branch_disable(&mds_idle_clear);
   1263	}
   1264}
   1265
   1266#define MDS_MSG_SMT "MDS CPU bug present and SMT on, data leak possible. See https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/mds.html for more details.\n"
   1267#define TAA_MSG_SMT "TAA CPU bug present and SMT on, data leak possible. See https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/tsx_async_abort.html for more details.\n"
   1268#define MMIO_MSG_SMT "MMIO Stale Data CPU bug present and SMT on, data leak possible. See https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/processor_mmio_stale_data.html for more details.\n"
   1269
   1270void cpu_bugs_smt_update(void)
   1271{
   1272	mutex_lock(&spec_ctrl_mutex);
   1273
   1274	if (sched_smt_active() && unprivileged_ebpf_enabled() &&
   1275	    spectre_v2_enabled == SPECTRE_V2_EIBRS_LFENCE)
   1276		pr_warn_once(SPECTRE_V2_EIBRS_LFENCE_EBPF_SMT_MSG);
   1277
   1278	switch (spectre_v2_user_stibp) {
   1279	case SPECTRE_V2_USER_NONE:
   1280		break;
   1281	case SPECTRE_V2_USER_STRICT:
   1282	case SPECTRE_V2_USER_STRICT_PREFERRED:
   1283		update_stibp_strict();
   1284		break;
   1285	case SPECTRE_V2_USER_PRCTL:
   1286	case SPECTRE_V2_USER_SECCOMP:
   1287		update_indir_branch_cond();
   1288		break;
   1289	}
   1290
   1291	switch (mds_mitigation) {
   1292	case MDS_MITIGATION_FULL:
   1293	case MDS_MITIGATION_VMWERV:
   1294		if (sched_smt_active() && !boot_cpu_has(X86_BUG_MSBDS_ONLY))
   1295			pr_warn_once(MDS_MSG_SMT);
   1296		update_mds_branch_idle();
   1297		break;
   1298	case MDS_MITIGATION_OFF:
   1299		break;
   1300	}
   1301
   1302	switch (taa_mitigation) {
   1303	case TAA_MITIGATION_VERW:
   1304	case TAA_MITIGATION_UCODE_NEEDED:
   1305		if (sched_smt_active())
   1306			pr_warn_once(TAA_MSG_SMT);
   1307		break;
   1308	case TAA_MITIGATION_TSX_DISABLED:
   1309	case TAA_MITIGATION_OFF:
   1310		break;
   1311	}
   1312
   1313	switch (mmio_mitigation) {
   1314	case MMIO_MITIGATION_VERW:
   1315	case MMIO_MITIGATION_UCODE_NEEDED:
   1316		if (sched_smt_active())
   1317			pr_warn_once(MMIO_MSG_SMT);
   1318		break;
   1319	case MMIO_MITIGATION_OFF:
   1320		break;
   1321	}
   1322
   1323	mutex_unlock(&spec_ctrl_mutex);
   1324}
   1325
   1326#undef pr_fmt
   1327#define pr_fmt(fmt)	"Speculative Store Bypass: " fmt
   1328
   1329static enum ssb_mitigation ssb_mode __ro_after_init = SPEC_STORE_BYPASS_NONE;
   1330
   1331/* The kernel command line selection */
   1332enum ssb_mitigation_cmd {
   1333	SPEC_STORE_BYPASS_CMD_NONE,
   1334	SPEC_STORE_BYPASS_CMD_AUTO,
   1335	SPEC_STORE_BYPASS_CMD_ON,
   1336	SPEC_STORE_BYPASS_CMD_PRCTL,
   1337	SPEC_STORE_BYPASS_CMD_SECCOMP,
   1338};
   1339
   1340static const char * const ssb_strings[] = {
   1341	[SPEC_STORE_BYPASS_NONE]	= "Vulnerable",
   1342	[SPEC_STORE_BYPASS_DISABLE]	= "Mitigation: Speculative Store Bypass disabled",
   1343	[SPEC_STORE_BYPASS_PRCTL]	= "Mitigation: Speculative Store Bypass disabled via prctl",
   1344	[SPEC_STORE_BYPASS_SECCOMP]	= "Mitigation: Speculative Store Bypass disabled via prctl and seccomp",
   1345};
   1346
   1347static const struct {
   1348	const char *option;
   1349	enum ssb_mitigation_cmd cmd;
   1350} ssb_mitigation_options[]  __initconst = {
   1351	{ "auto",	SPEC_STORE_BYPASS_CMD_AUTO },    /* Platform decides */
   1352	{ "on",		SPEC_STORE_BYPASS_CMD_ON },      /* Disable Speculative Store Bypass */
   1353	{ "off",	SPEC_STORE_BYPASS_CMD_NONE },    /* Don't touch Speculative Store Bypass */
   1354	{ "prctl",	SPEC_STORE_BYPASS_CMD_PRCTL },   /* Disable Speculative Store Bypass via prctl */
   1355	{ "seccomp",	SPEC_STORE_BYPASS_CMD_SECCOMP }, /* Disable Speculative Store Bypass via prctl and seccomp */
   1356};
   1357
   1358static enum ssb_mitigation_cmd __init ssb_parse_cmdline(void)
   1359{
   1360	enum ssb_mitigation_cmd cmd = SPEC_STORE_BYPASS_CMD_AUTO;
   1361	char arg[20];
   1362	int ret, i;
   1363
   1364	if (cmdline_find_option_bool(boot_command_line, "nospec_store_bypass_disable") ||
   1365	    cpu_mitigations_off()) {
   1366		return SPEC_STORE_BYPASS_CMD_NONE;
   1367	} else {
   1368		ret = cmdline_find_option(boot_command_line, "spec_store_bypass_disable",
   1369					  arg, sizeof(arg));
   1370		if (ret < 0)
   1371			return SPEC_STORE_BYPASS_CMD_AUTO;
   1372
   1373		for (i = 0; i < ARRAY_SIZE(ssb_mitigation_options); i++) {
   1374			if (!match_option(arg, ret, ssb_mitigation_options[i].option))
   1375				continue;
   1376
   1377			cmd = ssb_mitigation_options[i].cmd;
   1378			break;
   1379		}
   1380
   1381		if (i >= ARRAY_SIZE(ssb_mitigation_options)) {
   1382			pr_err("unknown option (%s). Switching to AUTO select\n", arg);
   1383			return SPEC_STORE_BYPASS_CMD_AUTO;
   1384		}
   1385	}
   1386
   1387	return cmd;
   1388}
   1389
   1390static enum ssb_mitigation __init __ssb_select_mitigation(void)
   1391{
   1392	enum ssb_mitigation mode = SPEC_STORE_BYPASS_NONE;
   1393	enum ssb_mitigation_cmd cmd;
   1394
   1395	if (!boot_cpu_has(X86_FEATURE_SSBD))
   1396		return mode;
   1397
   1398	cmd = ssb_parse_cmdline();
   1399	if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS) &&
   1400	    (cmd == SPEC_STORE_BYPASS_CMD_NONE ||
   1401	     cmd == SPEC_STORE_BYPASS_CMD_AUTO))
   1402		return mode;
   1403
   1404	switch (cmd) {
   1405	case SPEC_STORE_BYPASS_CMD_SECCOMP:
   1406		/*
   1407		 * Choose prctl+seccomp as the default mode if seccomp is
   1408		 * enabled.
   1409		 */
   1410		if (IS_ENABLED(CONFIG_SECCOMP))
   1411			mode = SPEC_STORE_BYPASS_SECCOMP;
   1412		else
   1413			mode = SPEC_STORE_BYPASS_PRCTL;
   1414		break;
   1415	case SPEC_STORE_BYPASS_CMD_ON:
   1416		mode = SPEC_STORE_BYPASS_DISABLE;
   1417		break;
   1418	case SPEC_STORE_BYPASS_CMD_AUTO:
   1419	case SPEC_STORE_BYPASS_CMD_PRCTL:
   1420		mode = SPEC_STORE_BYPASS_PRCTL;
   1421		break;
   1422	case SPEC_STORE_BYPASS_CMD_NONE:
   1423		break;
   1424	}
   1425
   1426	/*
   1427	 * If SSBD is controlled by the SPEC_CTRL MSR, then set the proper
   1428	 * bit in the mask to allow guests to use the mitigation even in the
   1429	 * case where the host does not enable it.
   1430	 */
   1431	if (static_cpu_has(X86_FEATURE_SPEC_CTRL_SSBD) ||
   1432	    static_cpu_has(X86_FEATURE_AMD_SSBD)) {
   1433		x86_spec_ctrl_mask |= SPEC_CTRL_SSBD;
   1434	}
   1435
   1436	/*
   1437	 * We have three CPU feature flags that are in play here:
   1438	 *  - X86_BUG_SPEC_STORE_BYPASS - CPU is susceptible.
   1439	 *  - X86_FEATURE_SSBD - CPU is able to turn off speculative store bypass
   1440	 *  - X86_FEATURE_SPEC_STORE_BYPASS_DISABLE - engage the mitigation
   1441	 */
   1442	if (mode == SPEC_STORE_BYPASS_DISABLE) {
   1443		setup_force_cpu_cap(X86_FEATURE_SPEC_STORE_BYPASS_DISABLE);
   1444		/*
   1445		 * Intel uses the SPEC CTRL MSR Bit(2) for this, while AMD may
   1446		 * use a completely different MSR and bit dependent on family.
   1447		 */
   1448		if (!static_cpu_has(X86_FEATURE_SPEC_CTRL_SSBD) &&
   1449		    !static_cpu_has(X86_FEATURE_AMD_SSBD)) {
   1450			x86_amd_ssb_disable();
   1451		} else {
   1452			x86_spec_ctrl_base |= SPEC_CTRL_SSBD;
   1453			wrmsrl(MSR_IA32_SPEC_CTRL, x86_spec_ctrl_base);
   1454		}
   1455	}
   1456
   1457	return mode;
   1458}
   1459
   1460static void ssb_select_mitigation(void)
   1461{
   1462	ssb_mode = __ssb_select_mitigation();
   1463
   1464	if (boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
   1465		pr_info("%s\n", ssb_strings[ssb_mode]);
   1466}
   1467
   1468#undef pr_fmt
   1469#define pr_fmt(fmt)     "Speculation prctl: " fmt
   1470
   1471static void task_update_spec_tif(struct task_struct *tsk)
   1472{
   1473	/* Force the update of the real TIF bits */
   1474	set_tsk_thread_flag(tsk, TIF_SPEC_FORCE_UPDATE);
   1475
   1476	/*
   1477	 * Immediately update the speculation control MSRs for the current
   1478	 * task, but for a non-current task delay setting the CPU
   1479	 * mitigation until it is scheduled next.
   1480	 *
   1481	 * This can only happen for SECCOMP mitigation. For PRCTL it's
   1482	 * always the current task.
   1483	 */
   1484	if (tsk == current)
   1485		speculation_ctrl_update_current();
   1486}
   1487
   1488static int l1d_flush_prctl_set(struct task_struct *task, unsigned long ctrl)
   1489{
   1490
   1491	if (!static_branch_unlikely(&switch_mm_cond_l1d_flush))
   1492		return -EPERM;
   1493
   1494	switch (ctrl) {
   1495	case PR_SPEC_ENABLE:
   1496		set_ti_thread_flag(&task->thread_info, TIF_SPEC_L1D_FLUSH);
   1497		return 0;
   1498	case PR_SPEC_DISABLE:
   1499		clear_ti_thread_flag(&task->thread_info, TIF_SPEC_L1D_FLUSH);
   1500		return 0;
   1501	default:
   1502		return -ERANGE;
   1503	}
   1504}
   1505
   1506static int ssb_prctl_set(struct task_struct *task, unsigned long ctrl)
   1507{
   1508	if (ssb_mode != SPEC_STORE_BYPASS_PRCTL &&
   1509	    ssb_mode != SPEC_STORE_BYPASS_SECCOMP)
   1510		return -ENXIO;
   1511
   1512	switch (ctrl) {
   1513	case PR_SPEC_ENABLE:
   1514		/* If speculation is force disabled, enable is not allowed */
   1515		if (task_spec_ssb_force_disable(task))
   1516			return -EPERM;
   1517		task_clear_spec_ssb_disable(task);
   1518		task_clear_spec_ssb_noexec(task);
   1519		task_update_spec_tif(task);
   1520		break;
   1521	case PR_SPEC_DISABLE:
   1522		task_set_spec_ssb_disable(task);
   1523		task_clear_spec_ssb_noexec(task);
   1524		task_update_spec_tif(task);
   1525		break;
   1526	case PR_SPEC_FORCE_DISABLE:
   1527		task_set_spec_ssb_disable(task);
   1528		task_set_spec_ssb_force_disable(task);
   1529		task_clear_spec_ssb_noexec(task);
   1530		task_update_spec_tif(task);
   1531		break;
   1532	case PR_SPEC_DISABLE_NOEXEC:
   1533		if (task_spec_ssb_force_disable(task))
   1534			return -EPERM;
   1535		task_set_spec_ssb_disable(task);
   1536		task_set_spec_ssb_noexec(task);
   1537		task_update_spec_tif(task);
   1538		break;
   1539	default:
   1540		return -ERANGE;
   1541	}
   1542	return 0;
   1543}
   1544
   1545static bool is_spec_ib_user_controlled(void)
   1546{
   1547	return spectre_v2_user_ibpb == SPECTRE_V2_USER_PRCTL ||
   1548		spectre_v2_user_ibpb == SPECTRE_V2_USER_SECCOMP ||
   1549		spectre_v2_user_stibp == SPECTRE_V2_USER_PRCTL ||
   1550		spectre_v2_user_stibp == SPECTRE_V2_USER_SECCOMP;
   1551}
   1552
   1553static int ib_prctl_set(struct task_struct *task, unsigned long ctrl)
   1554{
   1555	switch (ctrl) {
   1556	case PR_SPEC_ENABLE:
   1557		if (spectre_v2_user_ibpb == SPECTRE_V2_USER_NONE &&
   1558		    spectre_v2_user_stibp == SPECTRE_V2_USER_NONE)
   1559			return 0;
   1560
   1561		/*
   1562		 * With strict mode for both IBPB and STIBP, the instruction
   1563		 * code paths avoid checking this task flag and instead,
   1564		 * unconditionally run the instruction. However, STIBP and IBPB
   1565		 * are independent and either can be set to conditionally
   1566		 * enabled regardless of the mode of the other.
   1567		 *
   1568		 * If either is set to conditional, allow the task flag to be
   1569		 * updated, unless it was force-disabled by a previous prctl
   1570		 * call. Currently, this is possible on an AMD CPU which has the
   1571		 * feature X86_FEATURE_AMD_STIBP_ALWAYS_ON. In this case, if the
   1572		 * kernel is booted with 'spectre_v2_user=seccomp', then
   1573		 * spectre_v2_user_ibpb == SPECTRE_V2_USER_SECCOMP and
   1574		 * spectre_v2_user_stibp == SPECTRE_V2_USER_STRICT_PREFERRED.
   1575		 */
   1576		if (!is_spec_ib_user_controlled() ||
   1577		    task_spec_ib_force_disable(task))
   1578			return -EPERM;
   1579
   1580		task_clear_spec_ib_disable(task);
   1581		task_update_spec_tif(task);
   1582		break;
   1583	case PR_SPEC_DISABLE:
   1584	case PR_SPEC_FORCE_DISABLE:
   1585		/*
   1586		 * Indirect branch speculation is always allowed when
   1587		 * mitigation is force disabled.
   1588		 */
   1589		if (spectre_v2_user_ibpb == SPECTRE_V2_USER_NONE &&
   1590		    spectre_v2_user_stibp == SPECTRE_V2_USER_NONE)
   1591			return -EPERM;
   1592
   1593		if (!is_spec_ib_user_controlled())
   1594			return 0;
   1595
   1596		task_set_spec_ib_disable(task);
   1597		if (ctrl == PR_SPEC_FORCE_DISABLE)
   1598			task_set_spec_ib_force_disable(task);
   1599		task_update_spec_tif(task);
   1600		break;
   1601	default:
   1602		return -ERANGE;
   1603	}
   1604	return 0;
   1605}
   1606
   1607int arch_prctl_spec_ctrl_set(struct task_struct *task, unsigned long which,
   1608			     unsigned long ctrl)
   1609{
   1610	switch (which) {
   1611	case PR_SPEC_STORE_BYPASS:
   1612		return ssb_prctl_set(task, ctrl);
   1613	case PR_SPEC_INDIRECT_BRANCH:
   1614		return ib_prctl_set(task, ctrl);
   1615	case PR_SPEC_L1D_FLUSH:
   1616		return l1d_flush_prctl_set(task, ctrl);
   1617	default:
   1618		return -ENODEV;
   1619	}
   1620}
   1621
   1622#ifdef CONFIG_SECCOMP
   1623void arch_seccomp_spec_mitigate(struct task_struct *task)
   1624{
   1625	if (ssb_mode == SPEC_STORE_BYPASS_SECCOMP)
   1626		ssb_prctl_set(task, PR_SPEC_FORCE_DISABLE);
   1627	if (spectre_v2_user_ibpb == SPECTRE_V2_USER_SECCOMP ||
   1628	    spectre_v2_user_stibp == SPECTRE_V2_USER_SECCOMP)
   1629		ib_prctl_set(task, PR_SPEC_FORCE_DISABLE);
   1630}
   1631#endif
   1632
   1633static int l1d_flush_prctl_get(struct task_struct *task)
   1634{
   1635	if (!static_branch_unlikely(&switch_mm_cond_l1d_flush))
   1636		return PR_SPEC_FORCE_DISABLE;
   1637
   1638	if (test_ti_thread_flag(&task->thread_info, TIF_SPEC_L1D_FLUSH))
   1639		return PR_SPEC_PRCTL | PR_SPEC_ENABLE;
   1640	else
   1641		return PR_SPEC_PRCTL | PR_SPEC_DISABLE;
   1642}
   1643
   1644static int ssb_prctl_get(struct task_struct *task)
   1645{
   1646	switch (ssb_mode) {
   1647	case SPEC_STORE_BYPASS_DISABLE:
   1648		return PR_SPEC_DISABLE;
   1649	case SPEC_STORE_BYPASS_SECCOMP:
   1650	case SPEC_STORE_BYPASS_PRCTL:
   1651		if (task_spec_ssb_force_disable(task))
   1652			return PR_SPEC_PRCTL | PR_SPEC_FORCE_DISABLE;
   1653		if (task_spec_ssb_noexec(task))
   1654			return PR_SPEC_PRCTL | PR_SPEC_DISABLE_NOEXEC;
   1655		if (task_spec_ssb_disable(task))
   1656			return PR_SPEC_PRCTL | PR_SPEC_DISABLE;
   1657		return PR_SPEC_PRCTL | PR_SPEC_ENABLE;
   1658	default:
   1659		if (boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
   1660			return PR_SPEC_ENABLE;
   1661		return PR_SPEC_NOT_AFFECTED;
   1662	}
   1663}
   1664
   1665static int ib_prctl_get(struct task_struct *task)
   1666{
   1667	if (!boot_cpu_has_bug(X86_BUG_SPECTRE_V2))
   1668		return PR_SPEC_NOT_AFFECTED;
   1669
   1670	if (spectre_v2_user_ibpb == SPECTRE_V2_USER_NONE &&
   1671	    spectre_v2_user_stibp == SPECTRE_V2_USER_NONE)
   1672		return PR_SPEC_ENABLE;
   1673	else if (is_spec_ib_user_controlled()) {
   1674		if (task_spec_ib_force_disable(task))
   1675			return PR_SPEC_PRCTL | PR_SPEC_FORCE_DISABLE;
   1676		if (task_spec_ib_disable(task))
   1677			return PR_SPEC_PRCTL | PR_SPEC_DISABLE;
   1678		return PR_SPEC_PRCTL | PR_SPEC_ENABLE;
   1679	} else if (spectre_v2_user_ibpb == SPECTRE_V2_USER_STRICT ||
   1680	    spectre_v2_user_stibp == SPECTRE_V2_USER_STRICT ||
   1681	    spectre_v2_user_stibp == SPECTRE_V2_USER_STRICT_PREFERRED)
   1682		return PR_SPEC_DISABLE;
   1683	else
   1684		return PR_SPEC_NOT_AFFECTED;
   1685}
   1686
   1687int arch_prctl_spec_ctrl_get(struct task_struct *task, unsigned long which)
   1688{
   1689	switch (which) {
   1690	case PR_SPEC_STORE_BYPASS:
   1691		return ssb_prctl_get(task);
   1692	case PR_SPEC_INDIRECT_BRANCH:
   1693		return ib_prctl_get(task);
   1694	case PR_SPEC_L1D_FLUSH:
   1695		return l1d_flush_prctl_get(task);
   1696	default:
   1697		return -ENODEV;
   1698	}
   1699}
   1700
   1701void x86_spec_ctrl_setup_ap(void)
   1702{
   1703	if (boot_cpu_has(X86_FEATURE_MSR_SPEC_CTRL))
   1704		wrmsrl(MSR_IA32_SPEC_CTRL, x86_spec_ctrl_base);
   1705
   1706	if (ssb_mode == SPEC_STORE_BYPASS_DISABLE)
   1707		x86_amd_ssb_disable();
   1708}
   1709
   1710bool itlb_multihit_kvm_mitigation;
   1711EXPORT_SYMBOL_GPL(itlb_multihit_kvm_mitigation);
   1712
   1713#undef pr_fmt
   1714#define pr_fmt(fmt)	"L1TF: " fmt
   1715
   1716/* Default mitigation for L1TF-affected CPUs */
   1717enum l1tf_mitigations l1tf_mitigation __ro_after_init = L1TF_MITIGATION_FLUSH;
   1718#if IS_ENABLED(CONFIG_KVM_INTEL)
   1719EXPORT_SYMBOL_GPL(l1tf_mitigation);
   1720#endif
   1721enum vmx_l1d_flush_state l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_AUTO;
   1722EXPORT_SYMBOL_GPL(l1tf_vmx_mitigation);
   1723
   1724/*
   1725 * These CPUs all support 44bits physical address space internally in the
   1726 * cache but CPUID can report a smaller number of physical address bits.
   1727 *
   1728 * The L1TF mitigation uses the top most address bit for the inversion of
   1729 * non present PTEs. When the installed memory reaches into the top most
   1730 * address bit due to memory holes, which has been observed on machines
   1731 * which report 36bits physical address bits and have 32G RAM installed,
   1732 * then the mitigation range check in l1tf_select_mitigation() triggers.
   1733 * This is a false positive because the mitigation is still possible due to
   1734 * the fact that the cache uses 44bit internally. Use the cache bits
   1735 * instead of the reported physical bits and adjust them on the affected
   1736 * machines to 44bit if the reported bits are less than 44.
   1737 */
   1738static void override_cache_bits(struct cpuinfo_x86 *c)
   1739{
   1740	if (c->x86 != 6)
   1741		return;
   1742
   1743	switch (c->x86_model) {
   1744	case INTEL_FAM6_NEHALEM:
   1745	case INTEL_FAM6_WESTMERE:
   1746	case INTEL_FAM6_SANDYBRIDGE:
   1747	case INTEL_FAM6_IVYBRIDGE:
   1748	case INTEL_FAM6_HASWELL:
   1749	case INTEL_FAM6_HASWELL_L:
   1750	case INTEL_FAM6_HASWELL_G:
   1751	case INTEL_FAM6_BROADWELL:
   1752	case INTEL_FAM6_BROADWELL_G:
   1753	case INTEL_FAM6_SKYLAKE_L:
   1754	case INTEL_FAM6_SKYLAKE:
   1755	case INTEL_FAM6_KABYLAKE_L:
   1756	case INTEL_FAM6_KABYLAKE:
   1757		if (c->x86_cache_bits < 44)
   1758			c->x86_cache_bits = 44;
   1759		break;
   1760	}
   1761}
   1762
   1763static void __init l1tf_select_mitigation(void)
   1764{
   1765	u64 half_pa;
   1766
   1767	if (!boot_cpu_has_bug(X86_BUG_L1TF))
   1768		return;
   1769
   1770	if (cpu_mitigations_off())
   1771		l1tf_mitigation = L1TF_MITIGATION_OFF;
   1772	else if (cpu_mitigations_auto_nosmt())
   1773		l1tf_mitigation = L1TF_MITIGATION_FLUSH_NOSMT;
   1774
   1775	override_cache_bits(&boot_cpu_data);
   1776
   1777	switch (l1tf_mitigation) {
   1778	case L1TF_MITIGATION_OFF:
   1779	case L1TF_MITIGATION_FLUSH_NOWARN:
   1780	case L1TF_MITIGATION_FLUSH:
   1781		break;
   1782	case L1TF_MITIGATION_FLUSH_NOSMT:
   1783	case L1TF_MITIGATION_FULL:
   1784		cpu_smt_disable(false);
   1785		break;
   1786	case L1TF_MITIGATION_FULL_FORCE:
   1787		cpu_smt_disable(true);
   1788		break;
   1789	}
   1790
   1791#if CONFIG_PGTABLE_LEVELS == 2
   1792	pr_warn("Kernel not compiled for PAE. No mitigation for L1TF\n");
   1793	return;
   1794#endif
   1795
   1796	half_pa = (u64)l1tf_pfn_limit() << PAGE_SHIFT;
   1797	if (l1tf_mitigation != L1TF_MITIGATION_OFF &&
   1798			e820__mapped_any(half_pa, ULLONG_MAX - half_pa, E820_TYPE_RAM)) {
   1799		pr_warn("System has more than MAX_PA/2 memory. L1TF mitigation not effective.\n");
   1800		pr_info("You may make it effective by booting the kernel with mem=%llu parameter.\n",
   1801				half_pa);
   1802		pr_info("However, doing so will make a part of your RAM unusable.\n");
   1803		pr_info("Reading https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html might help you decide.\n");
   1804		return;
   1805	}
   1806
   1807	setup_force_cpu_cap(X86_FEATURE_L1TF_PTEINV);
   1808}
   1809
   1810static int __init l1tf_cmdline(char *str)
   1811{
   1812	if (!boot_cpu_has_bug(X86_BUG_L1TF))
   1813		return 0;
   1814
   1815	if (!str)
   1816		return -EINVAL;
   1817
   1818	if (!strcmp(str, "off"))
   1819		l1tf_mitigation = L1TF_MITIGATION_OFF;
   1820	else if (!strcmp(str, "flush,nowarn"))
   1821		l1tf_mitigation = L1TF_MITIGATION_FLUSH_NOWARN;
   1822	else if (!strcmp(str, "flush"))
   1823		l1tf_mitigation = L1TF_MITIGATION_FLUSH;
   1824	else if (!strcmp(str, "flush,nosmt"))
   1825		l1tf_mitigation = L1TF_MITIGATION_FLUSH_NOSMT;
   1826	else if (!strcmp(str, "full"))
   1827		l1tf_mitigation = L1TF_MITIGATION_FULL;
   1828	else if (!strcmp(str, "full,force"))
   1829		l1tf_mitigation = L1TF_MITIGATION_FULL_FORCE;
   1830
   1831	return 0;
   1832}
   1833early_param("l1tf", l1tf_cmdline);
   1834
   1835#undef pr_fmt
   1836#define pr_fmt(fmt) fmt
   1837
   1838#ifdef CONFIG_SYSFS
   1839
   1840#define L1TF_DEFAULT_MSG "Mitigation: PTE Inversion"
   1841
   1842#if IS_ENABLED(CONFIG_KVM_INTEL)
   1843static const char * const l1tf_vmx_states[] = {
   1844	[VMENTER_L1D_FLUSH_AUTO]		= "auto",
   1845	[VMENTER_L1D_FLUSH_NEVER]		= "vulnerable",
   1846	[VMENTER_L1D_FLUSH_COND]		= "conditional cache flushes",
   1847	[VMENTER_L1D_FLUSH_ALWAYS]		= "cache flushes",
   1848	[VMENTER_L1D_FLUSH_EPT_DISABLED]	= "EPT disabled",
   1849	[VMENTER_L1D_FLUSH_NOT_REQUIRED]	= "flush not necessary"
   1850};
   1851
   1852static ssize_t l1tf_show_state(char *buf)
   1853{
   1854	if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_AUTO)
   1855		return sprintf(buf, "%s\n", L1TF_DEFAULT_MSG);
   1856
   1857	if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_EPT_DISABLED ||
   1858	    (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_NEVER &&
   1859	     sched_smt_active())) {
   1860		return sprintf(buf, "%s; VMX: %s\n", L1TF_DEFAULT_MSG,
   1861			       l1tf_vmx_states[l1tf_vmx_mitigation]);
   1862	}
   1863
   1864	return sprintf(buf, "%s; VMX: %s, SMT %s\n", L1TF_DEFAULT_MSG,
   1865		       l1tf_vmx_states[l1tf_vmx_mitigation],
   1866		       sched_smt_active() ? "vulnerable" : "disabled");
   1867}
   1868
   1869static ssize_t itlb_multihit_show_state(char *buf)
   1870{
   1871	if (!boot_cpu_has(X86_FEATURE_MSR_IA32_FEAT_CTL) ||
   1872	    !boot_cpu_has(X86_FEATURE_VMX))
   1873		return sprintf(buf, "KVM: Mitigation: VMX unsupported\n");
   1874	else if (!(cr4_read_shadow() & X86_CR4_VMXE))
   1875		return sprintf(buf, "KVM: Mitigation: VMX disabled\n");
   1876	else if (itlb_multihit_kvm_mitigation)
   1877		return sprintf(buf, "KVM: Mitigation: Split huge pages\n");
   1878	else
   1879		return sprintf(buf, "KVM: Vulnerable\n");
   1880}
   1881#else
   1882static ssize_t l1tf_show_state(char *buf)
   1883{
   1884	return sprintf(buf, "%s\n", L1TF_DEFAULT_MSG);
   1885}
   1886
   1887static ssize_t itlb_multihit_show_state(char *buf)
   1888{
   1889	return sprintf(buf, "Processor vulnerable\n");
   1890}
   1891#endif
   1892
   1893static ssize_t mds_show_state(char *buf)
   1894{
   1895	if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) {
   1896		return sprintf(buf, "%s; SMT Host state unknown\n",
   1897			       mds_strings[mds_mitigation]);
   1898	}
   1899
   1900	if (boot_cpu_has(X86_BUG_MSBDS_ONLY)) {
   1901		return sprintf(buf, "%s; SMT %s\n", mds_strings[mds_mitigation],
   1902			       (mds_mitigation == MDS_MITIGATION_OFF ? "vulnerable" :
   1903			        sched_smt_active() ? "mitigated" : "disabled"));
   1904	}
   1905
   1906	return sprintf(buf, "%s; SMT %s\n", mds_strings[mds_mitigation],
   1907		       sched_smt_active() ? "vulnerable" : "disabled");
   1908}
   1909
   1910static ssize_t tsx_async_abort_show_state(char *buf)
   1911{
   1912	if ((taa_mitigation == TAA_MITIGATION_TSX_DISABLED) ||
   1913	    (taa_mitigation == TAA_MITIGATION_OFF))
   1914		return sprintf(buf, "%s\n", taa_strings[taa_mitigation]);
   1915
   1916	if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) {
   1917		return sprintf(buf, "%s; SMT Host state unknown\n",
   1918			       taa_strings[taa_mitigation]);
   1919	}
   1920
   1921	return sprintf(buf, "%s; SMT %s\n", taa_strings[taa_mitigation],
   1922		       sched_smt_active() ? "vulnerable" : "disabled");
   1923}
   1924
   1925static ssize_t mmio_stale_data_show_state(char *buf)
   1926{
   1927	if (mmio_mitigation == MMIO_MITIGATION_OFF)
   1928		return sysfs_emit(buf, "%s\n", mmio_strings[mmio_mitigation]);
   1929
   1930	if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) {
   1931		return sysfs_emit(buf, "%s; SMT Host state unknown\n",
   1932				  mmio_strings[mmio_mitigation]);
   1933	}
   1934
   1935	return sysfs_emit(buf, "%s; SMT %s\n", mmio_strings[mmio_mitigation],
   1936			  sched_smt_active() ? "vulnerable" : "disabled");
   1937}
   1938
   1939static char *stibp_state(void)
   1940{
   1941	if (spectre_v2_in_eibrs_mode(spectre_v2_enabled))
   1942		return "";
   1943
   1944	switch (spectre_v2_user_stibp) {
   1945	case SPECTRE_V2_USER_NONE:
   1946		return ", STIBP: disabled";
   1947	case SPECTRE_V2_USER_STRICT:
   1948		return ", STIBP: forced";
   1949	case SPECTRE_V2_USER_STRICT_PREFERRED:
   1950		return ", STIBP: always-on";
   1951	case SPECTRE_V2_USER_PRCTL:
   1952	case SPECTRE_V2_USER_SECCOMP:
   1953		if (static_key_enabled(&switch_to_cond_stibp))
   1954			return ", STIBP: conditional";
   1955	}
   1956	return "";
   1957}
   1958
   1959static char *ibpb_state(void)
   1960{
   1961	if (boot_cpu_has(X86_FEATURE_IBPB)) {
   1962		if (static_key_enabled(&switch_mm_always_ibpb))
   1963			return ", IBPB: always-on";
   1964		if (static_key_enabled(&switch_mm_cond_ibpb))
   1965			return ", IBPB: conditional";
   1966		return ", IBPB: disabled";
   1967	}
   1968	return "";
   1969}
   1970
   1971static ssize_t spectre_v2_show_state(char *buf)
   1972{
   1973	if (spectre_v2_enabled == SPECTRE_V2_LFENCE)
   1974		return sprintf(buf, "Vulnerable: LFENCE\n");
   1975
   1976	if (spectre_v2_enabled == SPECTRE_V2_EIBRS && unprivileged_ebpf_enabled())
   1977		return sprintf(buf, "Vulnerable: eIBRS with unprivileged eBPF\n");
   1978
   1979	if (sched_smt_active() && unprivileged_ebpf_enabled() &&
   1980	    spectre_v2_enabled == SPECTRE_V2_EIBRS_LFENCE)
   1981		return sprintf(buf, "Vulnerable: eIBRS+LFENCE with unprivileged eBPF and SMT\n");
   1982
   1983	return sprintf(buf, "%s%s%s%s%s%s\n",
   1984		       spectre_v2_strings[spectre_v2_enabled],
   1985		       ibpb_state(),
   1986		       boot_cpu_has(X86_FEATURE_USE_IBRS_FW) ? ", IBRS_FW" : "",
   1987		       stibp_state(),
   1988		       boot_cpu_has(X86_FEATURE_RSB_CTXSW) ? ", RSB filling" : "",
   1989		       spectre_v2_module_string());
   1990}
   1991
   1992static ssize_t srbds_show_state(char *buf)
   1993{
   1994	return sprintf(buf, "%s\n", srbds_strings[srbds_mitigation]);
   1995}
   1996
   1997static ssize_t cpu_show_common(struct device *dev, struct device_attribute *attr,
   1998			       char *buf, unsigned int bug)
   1999{
   2000	if (!boot_cpu_has_bug(bug))
   2001		return sprintf(buf, "Not affected\n");
   2002
   2003	switch (bug) {
   2004	case X86_BUG_CPU_MELTDOWN:
   2005		if (boot_cpu_has(X86_FEATURE_PTI))
   2006			return sprintf(buf, "Mitigation: PTI\n");
   2007
   2008		if (hypervisor_is_type(X86_HYPER_XEN_PV))
   2009			return sprintf(buf, "Unknown (XEN PV detected, hypervisor mitigation required)\n");
   2010
   2011		break;
   2012
   2013	case X86_BUG_SPECTRE_V1:
   2014		return sprintf(buf, "%s\n", spectre_v1_strings[spectre_v1_mitigation]);
   2015
   2016	case X86_BUG_SPECTRE_V2:
   2017		return spectre_v2_show_state(buf);
   2018
   2019	case X86_BUG_SPEC_STORE_BYPASS:
   2020		return sprintf(buf, "%s\n", ssb_strings[ssb_mode]);
   2021
   2022	case X86_BUG_L1TF:
   2023		if (boot_cpu_has(X86_FEATURE_L1TF_PTEINV))
   2024			return l1tf_show_state(buf);
   2025		break;
   2026
   2027	case X86_BUG_MDS:
   2028		return mds_show_state(buf);
   2029
   2030	case X86_BUG_TAA:
   2031		return tsx_async_abort_show_state(buf);
   2032
   2033	case X86_BUG_ITLB_MULTIHIT:
   2034		return itlb_multihit_show_state(buf);
   2035
   2036	case X86_BUG_SRBDS:
   2037		return srbds_show_state(buf);
   2038
   2039	case X86_BUG_MMIO_STALE_DATA:
   2040		return mmio_stale_data_show_state(buf);
   2041
   2042	default:
   2043		break;
   2044	}
   2045
   2046	return sprintf(buf, "Vulnerable\n");
   2047}
   2048
   2049ssize_t cpu_show_meltdown(struct device *dev, struct device_attribute *attr, char *buf)
   2050{
   2051	return cpu_show_common(dev, attr, buf, X86_BUG_CPU_MELTDOWN);
   2052}
   2053
   2054ssize_t cpu_show_spectre_v1(struct device *dev, struct device_attribute *attr, char *buf)
   2055{
   2056	return cpu_show_common(dev, attr, buf, X86_BUG_SPECTRE_V1);
   2057}
   2058
   2059ssize_t cpu_show_spectre_v2(struct device *dev, struct device_attribute *attr, char *buf)
   2060{
   2061	return cpu_show_common(dev, attr, buf, X86_BUG_SPECTRE_V2);
   2062}
   2063
   2064ssize_t cpu_show_spec_store_bypass(struct device *dev, struct device_attribute *attr, char *buf)
   2065{
   2066	return cpu_show_common(dev, attr, buf, X86_BUG_SPEC_STORE_BYPASS);
   2067}
   2068
   2069ssize_t cpu_show_l1tf(struct device *dev, struct device_attribute *attr, char *buf)
   2070{
   2071	return cpu_show_common(dev, attr, buf, X86_BUG_L1TF);
   2072}
   2073
   2074ssize_t cpu_show_mds(struct device *dev, struct device_attribute *attr, char *buf)
   2075{
   2076	return cpu_show_common(dev, attr, buf, X86_BUG_MDS);
   2077}
   2078
   2079ssize_t cpu_show_tsx_async_abort(struct device *dev, struct device_attribute *attr, char *buf)
   2080{
   2081	return cpu_show_common(dev, attr, buf, X86_BUG_TAA);
   2082}
   2083
   2084ssize_t cpu_show_itlb_multihit(struct device *dev, struct device_attribute *attr, char *buf)
   2085{
   2086	return cpu_show_common(dev, attr, buf, X86_BUG_ITLB_MULTIHIT);
   2087}
   2088
   2089ssize_t cpu_show_srbds(struct device *dev, struct device_attribute *attr, char *buf)
   2090{
   2091	return cpu_show_common(dev, attr, buf, X86_BUG_SRBDS);
   2092}
   2093
   2094ssize_t cpu_show_mmio_stale_data(struct device *dev, struct device_attribute *attr, char *buf)
   2095{
   2096	return cpu_show_common(dev, attr, buf, X86_BUG_MMIO_STALE_DATA);
   2097}
   2098#endif