cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

common.c (62135B)


      1// SPDX-License-Identifier: GPL-2.0-only
      2/* cpu_feature_enabled() cannot be used this early */
      3#define USE_EARLY_PGTABLE_L5
      4
      5#include <linux/memblock.h>
      6#include <linux/linkage.h>
      7#include <linux/bitops.h>
      8#include <linux/kernel.h>
      9#include <linux/export.h>
     10#include <linux/percpu.h>
     11#include <linux/string.h>
     12#include <linux/ctype.h>
     13#include <linux/delay.h>
     14#include <linux/sched/mm.h>
     15#include <linux/sched/clock.h>
     16#include <linux/sched/task.h>
     17#include <linux/sched/smt.h>
     18#include <linux/init.h>
     19#include <linux/kprobes.h>
     20#include <linux/kgdb.h>
     21#include <linux/smp.h>
     22#include <linux/io.h>
     23#include <linux/syscore_ops.h>
     24#include <linux/pgtable.h>
     25
     26#include <asm/cmdline.h>
     27#include <asm/stackprotector.h>
     28#include <asm/perf_event.h>
     29#include <asm/mmu_context.h>
     30#include <asm/doublefault.h>
     31#include <asm/archrandom.h>
     32#include <asm/hypervisor.h>
     33#include <asm/processor.h>
     34#include <asm/tlbflush.h>
     35#include <asm/debugreg.h>
     36#include <asm/sections.h>
     37#include <asm/vsyscall.h>
     38#include <linux/topology.h>
     39#include <linux/cpumask.h>
     40#include <linux/atomic.h>
     41#include <asm/proto.h>
     42#include <asm/setup.h>
     43#include <asm/apic.h>
     44#include <asm/desc.h>
     45#include <asm/fpu/api.h>
     46#include <asm/mtrr.h>
     47#include <asm/hwcap2.h>
     48#include <linux/numa.h>
     49#include <asm/numa.h>
     50#include <asm/asm.h>
     51#include <asm/bugs.h>
     52#include <asm/cpu.h>
     53#include <asm/mce.h>
     54#include <asm/msr.h>
     55#include <asm/memtype.h>
     56#include <asm/microcode.h>
     57#include <asm/microcode_intel.h>
     58#include <asm/intel-family.h>
     59#include <asm/cpu_device_id.h>
     60#include <asm/uv/uv.h>
     61#include <asm/sigframe.h>
     62#include <asm/traps.h>
     63#include <asm/sev.h>
     64
     65#include "cpu.h"
     66
     67u32 elf_hwcap2 __read_mostly;
     68
     69/* all of these masks are initialized in setup_cpu_local_masks() */
     70cpumask_var_t cpu_initialized_mask;
     71cpumask_var_t cpu_callout_mask;
     72cpumask_var_t cpu_callin_mask;
     73
     74/* representing cpus for which sibling maps can be computed */
     75cpumask_var_t cpu_sibling_setup_mask;
     76
     77/* Number of siblings per CPU package */
     78int smp_num_siblings = 1;
     79EXPORT_SYMBOL(smp_num_siblings);
     80
     81/* Last level cache ID of each logical CPU */
     82DEFINE_PER_CPU_READ_MOSTLY(u16, cpu_llc_id) = BAD_APICID;
     83
     84u16 get_llc_id(unsigned int cpu)
     85{
     86	return per_cpu(cpu_llc_id, cpu);
     87}
     88EXPORT_SYMBOL_GPL(get_llc_id);
     89
     90/* L2 cache ID of each logical CPU */
     91DEFINE_PER_CPU_READ_MOSTLY(u16, cpu_l2c_id) = BAD_APICID;
     92
     93static struct ppin_info {
     94	int	feature;
     95	int	msr_ppin_ctl;
     96	int	msr_ppin;
     97} ppin_info[] = {
     98	[X86_VENDOR_INTEL] = {
     99		.feature = X86_FEATURE_INTEL_PPIN,
    100		.msr_ppin_ctl = MSR_PPIN_CTL,
    101		.msr_ppin = MSR_PPIN
    102	},
    103	[X86_VENDOR_AMD] = {
    104		.feature = X86_FEATURE_AMD_PPIN,
    105		.msr_ppin_ctl = MSR_AMD_PPIN_CTL,
    106		.msr_ppin = MSR_AMD_PPIN
    107	},
    108};
    109
    110static const struct x86_cpu_id ppin_cpuids[] = {
    111	X86_MATCH_FEATURE(X86_FEATURE_AMD_PPIN, &ppin_info[X86_VENDOR_AMD]),
    112	X86_MATCH_FEATURE(X86_FEATURE_INTEL_PPIN, &ppin_info[X86_VENDOR_INTEL]),
    113
    114	/* Legacy models without CPUID enumeration */
    115	X86_MATCH_INTEL_FAM6_MODEL(IVYBRIDGE_X, &ppin_info[X86_VENDOR_INTEL]),
    116	X86_MATCH_INTEL_FAM6_MODEL(HASWELL_X, &ppin_info[X86_VENDOR_INTEL]),
    117	X86_MATCH_INTEL_FAM6_MODEL(BROADWELL_D, &ppin_info[X86_VENDOR_INTEL]),
    118	X86_MATCH_INTEL_FAM6_MODEL(BROADWELL_X, &ppin_info[X86_VENDOR_INTEL]),
    119	X86_MATCH_INTEL_FAM6_MODEL(SKYLAKE_X, &ppin_info[X86_VENDOR_INTEL]),
    120	X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_X, &ppin_info[X86_VENDOR_INTEL]),
    121	X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_D, &ppin_info[X86_VENDOR_INTEL]),
    122	X86_MATCH_INTEL_FAM6_MODEL(SAPPHIRERAPIDS_X, &ppin_info[X86_VENDOR_INTEL]),
    123	X86_MATCH_INTEL_FAM6_MODEL(XEON_PHI_KNL, &ppin_info[X86_VENDOR_INTEL]),
    124	X86_MATCH_INTEL_FAM6_MODEL(XEON_PHI_KNM, &ppin_info[X86_VENDOR_INTEL]),
    125
    126	{}
    127};
    128
    129static void ppin_init(struct cpuinfo_x86 *c)
    130{
    131	const struct x86_cpu_id *id;
    132	unsigned long long val;
    133	struct ppin_info *info;
    134
    135	id = x86_match_cpu(ppin_cpuids);
    136	if (!id)
    137		return;
    138
    139	/*
    140	 * Testing the presence of the MSR is not enough. Need to check
    141	 * that the PPIN_CTL allows reading of the PPIN.
    142	 */
    143	info = (struct ppin_info *)id->driver_data;
    144
    145	if (rdmsrl_safe(info->msr_ppin_ctl, &val))
    146		goto clear_ppin;
    147
    148	if ((val & 3UL) == 1UL) {
    149		/* PPIN locked in disabled mode */
    150		goto clear_ppin;
    151	}
    152
    153	/* If PPIN is disabled, try to enable */
    154	if (!(val & 2UL)) {
    155		wrmsrl_safe(info->msr_ppin_ctl,  val | 2UL);
    156		rdmsrl_safe(info->msr_ppin_ctl, &val);
    157	}
    158
    159	/* Is the enable bit set? */
    160	if (val & 2UL) {
    161		c->ppin = __rdmsr(info->msr_ppin);
    162		set_cpu_cap(c, info->feature);
    163		return;
    164	}
    165
    166clear_ppin:
    167	clear_cpu_cap(c, info->feature);
    168}
    169
    170/* correctly size the local cpu masks */
    171void __init setup_cpu_local_masks(void)
    172{
    173	alloc_bootmem_cpumask_var(&cpu_initialized_mask);
    174	alloc_bootmem_cpumask_var(&cpu_callin_mask);
    175	alloc_bootmem_cpumask_var(&cpu_callout_mask);
    176	alloc_bootmem_cpumask_var(&cpu_sibling_setup_mask);
    177}
    178
    179static void default_init(struct cpuinfo_x86 *c)
    180{
    181#ifdef CONFIG_X86_64
    182	cpu_detect_cache_sizes(c);
    183#else
    184	/* Not much we can do here... */
    185	/* Check if at least it has cpuid */
    186	if (c->cpuid_level == -1) {
    187		/* No cpuid. It must be an ancient CPU */
    188		if (c->x86 == 4)
    189			strcpy(c->x86_model_id, "486");
    190		else if (c->x86 == 3)
    191			strcpy(c->x86_model_id, "386");
    192	}
    193#endif
    194}
    195
    196static const struct cpu_dev default_cpu = {
    197	.c_init		= default_init,
    198	.c_vendor	= "Unknown",
    199	.c_x86_vendor	= X86_VENDOR_UNKNOWN,
    200};
    201
    202static const struct cpu_dev *this_cpu = &default_cpu;
    203
    204DEFINE_PER_CPU_PAGE_ALIGNED(struct gdt_page, gdt_page) = { .gdt = {
    205#ifdef CONFIG_X86_64
    206	/*
    207	 * We need valid kernel segments for data and code in long mode too
    208	 * IRET will check the segment types  kkeil 2000/10/28
    209	 * Also sysret mandates a special GDT layout
    210	 *
    211	 * TLS descriptors are currently at a different place compared to i386.
    212	 * Hopefully nobody expects them at a fixed place (Wine?)
    213	 */
    214	[GDT_ENTRY_KERNEL32_CS]		= GDT_ENTRY_INIT(0xc09b, 0, 0xfffff),
    215	[GDT_ENTRY_KERNEL_CS]		= GDT_ENTRY_INIT(0xa09b, 0, 0xfffff),
    216	[GDT_ENTRY_KERNEL_DS]		= GDT_ENTRY_INIT(0xc093, 0, 0xfffff),
    217	[GDT_ENTRY_DEFAULT_USER32_CS]	= GDT_ENTRY_INIT(0xc0fb, 0, 0xfffff),
    218	[GDT_ENTRY_DEFAULT_USER_DS]	= GDT_ENTRY_INIT(0xc0f3, 0, 0xfffff),
    219	[GDT_ENTRY_DEFAULT_USER_CS]	= GDT_ENTRY_INIT(0xa0fb, 0, 0xfffff),
    220#else
    221	[GDT_ENTRY_KERNEL_CS]		= GDT_ENTRY_INIT(0xc09a, 0, 0xfffff),
    222	[GDT_ENTRY_KERNEL_DS]		= GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
    223	[GDT_ENTRY_DEFAULT_USER_CS]	= GDT_ENTRY_INIT(0xc0fa, 0, 0xfffff),
    224	[GDT_ENTRY_DEFAULT_USER_DS]	= GDT_ENTRY_INIT(0xc0f2, 0, 0xfffff),
    225	/*
    226	 * Segments used for calling PnP BIOS have byte granularity.
    227	 * They code segments and data segments have fixed 64k limits,
    228	 * the transfer segment sizes are set at run time.
    229	 */
    230	/* 32-bit code */
    231	[GDT_ENTRY_PNPBIOS_CS32]	= GDT_ENTRY_INIT(0x409a, 0, 0xffff),
    232	/* 16-bit code */
    233	[GDT_ENTRY_PNPBIOS_CS16]	= GDT_ENTRY_INIT(0x009a, 0, 0xffff),
    234	/* 16-bit data */
    235	[GDT_ENTRY_PNPBIOS_DS]		= GDT_ENTRY_INIT(0x0092, 0, 0xffff),
    236	/* 16-bit data */
    237	[GDT_ENTRY_PNPBIOS_TS1]		= GDT_ENTRY_INIT(0x0092, 0, 0),
    238	/* 16-bit data */
    239	[GDT_ENTRY_PNPBIOS_TS2]		= GDT_ENTRY_INIT(0x0092, 0, 0),
    240	/*
    241	 * The APM segments have byte granularity and their bases
    242	 * are set at run time.  All have 64k limits.
    243	 */
    244	/* 32-bit code */
    245	[GDT_ENTRY_APMBIOS_BASE]	= GDT_ENTRY_INIT(0x409a, 0, 0xffff),
    246	/* 16-bit code */
    247	[GDT_ENTRY_APMBIOS_BASE+1]	= GDT_ENTRY_INIT(0x009a, 0, 0xffff),
    248	/* data */
    249	[GDT_ENTRY_APMBIOS_BASE+2]	= GDT_ENTRY_INIT(0x4092, 0, 0xffff),
    250
    251	[GDT_ENTRY_ESPFIX_SS]		= GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
    252	[GDT_ENTRY_PERCPU]		= GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
    253#endif
    254} };
    255EXPORT_PER_CPU_SYMBOL_GPL(gdt_page);
    256
    257#ifdef CONFIG_X86_64
    258static int __init x86_nopcid_setup(char *s)
    259{
    260	/* nopcid doesn't accept parameters */
    261	if (s)
    262		return -EINVAL;
    263
    264	/* do not emit a message if the feature is not present */
    265	if (!boot_cpu_has(X86_FEATURE_PCID))
    266		return 0;
    267
    268	setup_clear_cpu_cap(X86_FEATURE_PCID);
    269	pr_info("nopcid: PCID feature disabled\n");
    270	return 0;
    271}
    272early_param("nopcid", x86_nopcid_setup);
    273#endif
    274
    275static int __init x86_noinvpcid_setup(char *s)
    276{
    277	/* noinvpcid doesn't accept parameters */
    278	if (s)
    279		return -EINVAL;
    280
    281	/* do not emit a message if the feature is not present */
    282	if (!boot_cpu_has(X86_FEATURE_INVPCID))
    283		return 0;
    284
    285	setup_clear_cpu_cap(X86_FEATURE_INVPCID);
    286	pr_info("noinvpcid: INVPCID feature disabled\n");
    287	return 0;
    288}
    289early_param("noinvpcid", x86_noinvpcid_setup);
    290
    291#ifdef CONFIG_X86_32
    292static int cachesize_override = -1;
    293static int disable_x86_serial_nr = 1;
    294
    295static int __init cachesize_setup(char *str)
    296{
    297	get_option(&str, &cachesize_override);
    298	return 1;
    299}
    300__setup("cachesize=", cachesize_setup);
    301
    302/* Standard macro to see if a specific flag is changeable */
    303static inline int flag_is_changeable_p(u32 flag)
    304{
    305	u32 f1, f2;
    306
    307	/*
    308	 * Cyrix and IDT cpus allow disabling of CPUID
    309	 * so the code below may return different results
    310	 * when it is executed before and after enabling
    311	 * the CPUID. Add "volatile" to not allow gcc to
    312	 * optimize the subsequent calls to this function.
    313	 */
    314	asm volatile ("pushfl		\n\t"
    315		      "pushfl		\n\t"
    316		      "popl %0		\n\t"
    317		      "movl %0, %1	\n\t"
    318		      "xorl %2, %0	\n\t"
    319		      "pushl %0		\n\t"
    320		      "popfl		\n\t"
    321		      "pushfl		\n\t"
    322		      "popl %0		\n\t"
    323		      "popfl		\n\t"
    324
    325		      : "=&r" (f1), "=&r" (f2)
    326		      : "ir" (flag));
    327
    328	return ((f1^f2) & flag) != 0;
    329}
    330
    331/* Probe for the CPUID instruction */
    332int have_cpuid_p(void)
    333{
    334	return flag_is_changeable_p(X86_EFLAGS_ID);
    335}
    336
    337static void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
    338{
    339	unsigned long lo, hi;
    340
    341	if (!cpu_has(c, X86_FEATURE_PN) || !disable_x86_serial_nr)
    342		return;
    343
    344	/* Disable processor serial number: */
    345
    346	rdmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
    347	lo |= 0x200000;
    348	wrmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
    349
    350	pr_notice("CPU serial number disabled.\n");
    351	clear_cpu_cap(c, X86_FEATURE_PN);
    352
    353	/* Disabling the serial number may affect the cpuid level */
    354	c->cpuid_level = cpuid_eax(0);
    355}
    356
    357static int __init x86_serial_nr_setup(char *s)
    358{
    359	disable_x86_serial_nr = 0;
    360	return 1;
    361}
    362__setup("serialnumber", x86_serial_nr_setup);
    363#else
    364static inline int flag_is_changeable_p(u32 flag)
    365{
    366	return 1;
    367}
    368static inline void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
    369{
    370}
    371#endif
    372
    373static __always_inline void setup_smep(struct cpuinfo_x86 *c)
    374{
    375	if (cpu_has(c, X86_FEATURE_SMEP))
    376		cr4_set_bits(X86_CR4_SMEP);
    377}
    378
    379static __always_inline void setup_smap(struct cpuinfo_x86 *c)
    380{
    381	unsigned long eflags = native_save_fl();
    382
    383	/* This should have been cleared long ago */
    384	BUG_ON(eflags & X86_EFLAGS_AC);
    385
    386	if (cpu_has(c, X86_FEATURE_SMAP))
    387		cr4_set_bits(X86_CR4_SMAP);
    388}
    389
    390static __always_inline void setup_umip(struct cpuinfo_x86 *c)
    391{
    392	/* Check the boot processor, plus build option for UMIP. */
    393	if (!cpu_feature_enabled(X86_FEATURE_UMIP))
    394		goto out;
    395
    396	/* Check the current processor's cpuid bits. */
    397	if (!cpu_has(c, X86_FEATURE_UMIP))
    398		goto out;
    399
    400	cr4_set_bits(X86_CR4_UMIP);
    401
    402	pr_info_once("x86/cpu: User Mode Instruction Prevention (UMIP) activated\n");
    403
    404	return;
    405
    406out:
    407	/*
    408	 * Make sure UMIP is disabled in case it was enabled in a
    409	 * previous boot (e.g., via kexec).
    410	 */
    411	cr4_clear_bits(X86_CR4_UMIP);
    412}
    413
    414/* These bits should not change their value after CPU init is finished. */
    415static const unsigned long cr4_pinned_mask =
    416	X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_UMIP |
    417	X86_CR4_FSGSBASE | X86_CR4_CET;
    418static DEFINE_STATIC_KEY_FALSE_RO(cr_pinning);
    419static unsigned long cr4_pinned_bits __ro_after_init;
    420
    421void native_write_cr0(unsigned long val)
    422{
    423	unsigned long bits_missing = 0;
    424
    425set_register:
    426	asm volatile("mov %0,%%cr0": "+r" (val) : : "memory");
    427
    428	if (static_branch_likely(&cr_pinning)) {
    429		if (unlikely((val & X86_CR0_WP) != X86_CR0_WP)) {
    430			bits_missing = X86_CR0_WP;
    431			val |= bits_missing;
    432			goto set_register;
    433		}
    434		/* Warn after we've set the missing bits. */
    435		WARN_ONCE(bits_missing, "CR0 WP bit went missing!?\n");
    436	}
    437}
    438EXPORT_SYMBOL(native_write_cr0);
    439
    440void __no_profile native_write_cr4(unsigned long val)
    441{
    442	unsigned long bits_changed = 0;
    443
    444set_register:
    445	asm volatile("mov %0,%%cr4": "+r" (val) : : "memory");
    446
    447	if (static_branch_likely(&cr_pinning)) {
    448		if (unlikely((val & cr4_pinned_mask) != cr4_pinned_bits)) {
    449			bits_changed = (val & cr4_pinned_mask) ^ cr4_pinned_bits;
    450			val = (val & ~cr4_pinned_mask) | cr4_pinned_bits;
    451			goto set_register;
    452		}
    453		/* Warn after we've corrected the changed bits. */
    454		WARN_ONCE(bits_changed, "pinned CR4 bits changed: 0x%lx!?\n",
    455			  bits_changed);
    456	}
    457}
    458#if IS_MODULE(CONFIG_LKDTM)
    459EXPORT_SYMBOL_GPL(native_write_cr4);
    460#endif
    461
    462void cr4_update_irqsoff(unsigned long set, unsigned long clear)
    463{
    464	unsigned long newval, cr4 = this_cpu_read(cpu_tlbstate.cr4);
    465
    466	lockdep_assert_irqs_disabled();
    467
    468	newval = (cr4 & ~clear) | set;
    469	if (newval != cr4) {
    470		this_cpu_write(cpu_tlbstate.cr4, newval);
    471		__write_cr4(newval);
    472	}
    473}
    474EXPORT_SYMBOL(cr4_update_irqsoff);
    475
    476/* Read the CR4 shadow. */
    477unsigned long cr4_read_shadow(void)
    478{
    479	return this_cpu_read(cpu_tlbstate.cr4);
    480}
    481EXPORT_SYMBOL_GPL(cr4_read_shadow);
    482
    483void cr4_init(void)
    484{
    485	unsigned long cr4 = __read_cr4();
    486
    487	if (boot_cpu_has(X86_FEATURE_PCID))
    488		cr4 |= X86_CR4_PCIDE;
    489	if (static_branch_likely(&cr_pinning))
    490		cr4 = (cr4 & ~cr4_pinned_mask) | cr4_pinned_bits;
    491
    492	__write_cr4(cr4);
    493
    494	/* Initialize cr4 shadow for this CPU. */
    495	this_cpu_write(cpu_tlbstate.cr4, cr4);
    496}
    497
    498/*
    499 * Once CPU feature detection is finished (and boot params have been
    500 * parsed), record any of the sensitive CR bits that are set, and
    501 * enable CR pinning.
    502 */
    503static void __init setup_cr_pinning(void)
    504{
    505	cr4_pinned_bits = this_cpu_read(cpu_tlbstate.cr4) & cr4_pinned_mask;
    506	static_key_enable(&cr_pinning.key);
    507}
    508
    509static __init int x86_nofsgsbase_setup(char *arg)
    510{
    511	/* Require an exact match without trailing characters. */
    512	if (strlen(arg))
    513		return 0;
    514
    515	/* Do not emit a message if the feature is not present. */
    516	if (!boot_cpu_has(X86_FEATURE_FSGSBASE))
    517		return 1;
    518
    519	setup_clear_cpu_cap(X86_FEATURE_FSGSBASE);
    520	pr_info("FSGSBASE disabled via kernel command line\n");
    521	return 1;
    522}
    523__setup("nofsgsbase", x86_nofsgsbase_setup);
    524
    525/*
    526 * Protection Keys are not available in 32-bit mode.
    527 */
    528static bool pku_disabled;
    529
    530static __always_inline void setup_pku(struct cpuinfo_x86 *c)
    531{
    532	if (c == &boot_cpu_data) {
    533		if (pku_disabled || !cpu_feature_enabled(X86_FEATURE_PKU))
    534			return;
    535		/*
    536		 * Setting CR4.PKE will cause the X86_FEATURE_OSPKE cpuid
    537		 * bit to be set.  Enforce it.
    538		 */
    539		setup_force_cpu_cap(X86_FEATURE_OSPKE);
    540
    541	} else if (!cpu_feature_enabled(X86_FEATURE_OSPKE)) {
    542		return;
    543	}
    544
    545	cr4_set_bits(X86_CR4_PKE);
    546	/* Load the default PKRU value */
    547	pkru_write_default();
    548}
    549
    550#ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
    551static __init int setup_disable_pku(char *arg)
    552{
    553	/*
    554	 * Do not clear the X86_FEATURE_PKU bit.  All of the
    555	 * runtime checks are against OSPKE so clearing the
    556	 * bit does nothing.
    557	 *
    558	 * This way, we will see "pku" in cpuinfo, but not
    559	 * "ospke", which is exactly what we want.  It shows
    560	 * that the CPU has PKU, but the OS has not enabled it.
    561	 * This happens to be exactly how a system would look
    562	 * if we disabled the config option.
    563	 */
    564	pr_info("x86: 'nopku' specified, disabling Memory Protection Keys\n");
    565	pku_disabled = true;
    566	return 1;
    567}
    568__setup("nopku", setup_disable_pku);
    569#endif /* CONFIG_X86_64 */
    570
    571#ifdef CONFIG_X86_KERNEL_IBT
    572
    573__noendbr u64 ibt_save(void)
    574{
    575	u64 msr = 0;
    576
    577	if (cpu_feature_enabled(X86_FEATURE_IBT)) {
    578		rdmsrl(MSR_IA32_S_CET, msr);
    579		wrmsrl(MSR_IA32_S_CET, msr & ~CET_ENDBR_EN);
    580	}
    581
    582	return msr;
    583}
    584
    585__noendbr void ibt_restore(u64 save)
    586{
    587	u64 msr;
    588
    589	if (cpu_feature_enabled(X86_FEATURE_IBT)) {
    590		rdmsrl(MSR_IA32_S_CET, msr);
    591		msr &= ~CET_ENDBR_EN;
    592		msr |= (save & CET_ENDBR_EN);
    593		wrmsrl(MSR_IA32_S_CET, msr);
    594	}
    595}
    596
    597#endif
    598
    599static __always_inline void setup_cet(struct cpuinfo_x86 *c)
    600{
    601	u64 msr = CET_ENDBR_EN;
    602
    603	if (!HAS_KERNEL_IBT ||
    604	    !cpu_feature_enabled(X86_FEATURE_IBT))
    605		return;
    606
    607	wrmsrl(MSR_IA32_S_CET, msr);
    608	cr4_set_bits(X86_CR4_CET);
    609
    610	if (!ibt_selftest()) {
    611		pr_err("IBT selftest: Failed!\n");
    612		setup_clear_cpu_cap(X86_FEATURE_IBT);
    613		return;
    614	}
    615}
    616
    617__noendbr void cet_disable(void)
    618{
    619	if (cpu_feature_enabled(X86_FEATURE_IBT))
    620		wrmsrl(MSR_IA32_S_CET, 0);
    621}
    622
    623/*
    624 * Some CPU features depend on higher CPUID levels, which may not always
    625 * be available due to CPUID level capping or broken virtualization
    626 * software.  Add those features to this table to auto-disable them.
    627 */
    628struct cpuid_dependent_feature {
    629	u32 feature;
    630	u32 level;
    631};
    632
    633static const struct cpuid_dependent_feature
    634cpuid_dependent_features[] = {
    635	{ X86_FEATURE_MWAIT,		0x00000005 },
    636	{ X86_FEATURE_DCA,		0x00000009 },
    637	{ X86_FEATURE_XSAVE,		0x0000000d },
    638	{ 0, 0 }
    639};
    640
    641static void filter_cpuid_features(struct cpuinfo_x86 *c, bool warn)
    642{
    643	const struct cpuid_dependent_feature *df;
    644
    645	for (df = cpuid_dependent_features; df->feature; df++) {
    646
    647		if (!cpu_has(c, df->feature))
    648			continue;
    649		/*
    650		 * Note: cpuid_level is set to -1 if unavailable, but
    651		 * extended_extended_level is set to 0 if unavailable
    652		 * and the legitimate extended levels are all negative
    653		 * when signed; hence the weird messing around with
    654		 * signs here...
    655		 */
    656		if (!((s32)df->level < 0 ?
    657		     (u32)df->level > (u32)c->extended_cpuid_level :
    658		     (s32)df->level > (s32)c->cpuid_level))
    659			continue;
    660
    661		clear_cpu_cap(c, df->feature);
    662		if (!warn)
    663			continue;
    664
    665		pr_warn("CPU: CPU feature " X86_CAP_FMT " disabled, no CPUID level 0x%x\n",
    666			x86_cap_flag(df->feature), df->level);
    667	}
    668}
    669
    670/*
    671 * Naming convention should be: <Name> [(<Codename>)]
    672 * This table only is used unless init_<vendor>() below doesn't set it;
    673 * in particular, if CPUID levels 0x80000002..4 are supported, this
    674 * isn't used
    675 */
    676
    677/* Look up CPU names by table lookup. */
    678static const char *table_lookup_model(struct cpuinfo_x86 *c)
    679{
    680#ifdef CONFIG_X86_32
    681	const struct legacy_cpu_model_info *info;
    682
    683	if (c->x86_model >= 16)
    684		return NULL;	/* Range check */
    685
    686	if (!this_cpu)
    687		return NULL;
    688
    689	info = this_cpu->legacy_models;
    690
    691	while (info->family) {
    692		if (info->family == c->x86)
    693			return info->model_names[c->x86_model];
    694		info++;
    695	}
    696#endif
    697	return NULL;		/* Not found */
    698}
    699
    700/* Aligned to unsigned long to avoid split lock in atomic bitmap ops */
    701__u32 cpu_caps_cleared[NCAPINTS + NBUGINTS] __aligned(sizeof(unsigned long));
    702__u32 cpu_caps_set[NCAPINTS + NBUGINTS] __aligned(sizeof(unsigned long));
    703
    704void load_percpu_segment(int cpu)
    705{
    706#ifdef CONFIG_X86_32
    707	loadsegment(fs, __KERNEL_PERCPU);
    708#else
    709	__loadsegment_simple(gs, 0);
    710	wrmsrl(MSR_GS_BASE, cpu_kernelmode_gs_base(cpu));
    711#endif
    712}
    713
    714#ifdef CONFIG_X86_32
    715/* The 32-bit entry code needs to find cpu_entry_area. */
    716DEFINE_PER_CPU(struct cpu_entry_area *, cpu_entry_area);
    717#endif
    718
    719/* Load the original GDT from the per-cpu structure */
    720void load_direct_gdt(int cpu)
    721{
    722	struct desc_ptr gdt_descr;
    723
    724	gdt_descr.address = (long)get_cpu_gdt_rw(cpu);
    725	gdt_descr.size = GDT_SIZE - 1;
    726	load_gdt(&gdt_descr);
    727}
    728EXPORT_SYMBOL_GPL(load_direct_gdt);
    729
    730/* Load a fixmap remapping of the per-cpu GDT */
    731void load_fixmap_gdt(int cpu)
    732{
    733	struct desc_ptr gdt_descr;
    734
    735	gdt_descr.address = (long)get_cpu_gdt_ro(cpu);
    736	gdt_descr.size = GDT_SIZE - 1;
    737	load_gdt(&gdt_descr);
    738}
    739EXPORT_SYMBOL_GPL(load_fixmap_gdt);
    740
    741/*
    742 * Current gdt points %fs at the "master" per-cpu area: after this,
    743 * it's on the real one.
    744 */
    745void switch_to_new_gdt(int cpu)
    746{
    747	/* Load the original GDT */
    748	load_direct_gdt(cpu);
    749	/* Reload the per-cpu base */
    750	load_percpu_segment(cpu);
    751}
    752
    753static const struct cpu_dev *cpu_devs[X86_VENDOR_NUM] = {};
    754
    755static void get_model_name(struct cpuinfo_x86 *c)
    756{
    757	unsigned int *v;
    758	char *p, *q, *s;
    759
    760	if (c->extended_cpuid_level < 0x80000004)
    761		return;
    762
    763	v = (unsigned int *)c->x86_model_id;
    764	cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
    765	cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
    766	cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
    767	c->x86_model_id[48] = 0;
    768
    769	/* Trim whitespace */
    770	p = q = s = &c->x86_model_id[0];
    771
    772	while (*p == ' ')
    773		p++;
    774
    775	while (*p) {
    776		/* Note the last non-whitespace index */
    777		if (!isspace(*p))
    778			s = q;
    779
    780		*q++ = *p++;
    781	}
    782
    783	*(s + 1) = '\0';
    784}
    785
    786void detect_num_cpu_cores(struct cpuinfo_x86 *c)
    787{
    788	unsigned int eax, ebx, ecx, edx;
    789
    790	c->x86_max_cores = 1;
    791	if (!IS_ENABLED(CONFIG_SMP) || c->cpuid_level < 4)
    792		return;
    793
    794	cpuid_count(4, 0, &eax, &ebx, &ecx, &edx);
    795	if (eax & 0x1f)
    796		c->x86_max_cores = (eax >> 26) + 1;
    797}
    798
    799void cpu_detect_cache_sizes(struct cpuinfo_x86 *c)
    800{
    801	unsigned int n, dummy, ebx, ecx, edx, l2size;
    802
    803	n = c->extended_cpuid_level;
    804
    805	if (n >= 0x80000005) {
    806		cpuid(0x80000005, &dummy, &ebx, &ecx, &edx);
    807		c->x86_cache_size = (ecx>>24) + (edx>>24);
    808#ifdef CONFIG_X86_64
    809		/* On K8 L1 TLB is inclusive, so don't count it */
    810		c->x86_tlbsize = 0;
    811#endif
    812	}
    813
    814	if (n < 0x80000006)	/* Some chips just has a large L1. */
    815		return;
    816
    817	cpuid(0x80000006, &dummy, &ebx, &ecx, &edx);
    818	l2size = ecx >> 16;
    819
    820#ifdef CONFIG_X86_64
    821	c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff);
    822#else
    823	/* do processor-specific cache resizing */
    824	if (this_cpu->legacy_cache_size)
    825		l2size = this_cpu->legacy_cache_size(c, l2size);
    826
    827	/* Allow user to override all this if necessary. */
    828	if (cachesize_override != -1)
    829		l2size = cachesize_override;
    830
    831	if (l2size == 0)
    832		return;		/* Again, no L2 cache is possible */
    833#endif
    834
    835	c->x86_cache_size = l2size;
    836}
    837
    838u16 __read_mostly tlb_lli_4k[NR_INFO];
    839u16 __read_mostly tlb_lli_2m[NR_INFO];
    840u16 __read_mostly tlb_lli_4m[NR_INFO];
    841u16 __read_mostly tlb_lld_4k[NR_INFO];
    842u16 __read_mostly tlb_lld_2m[NR_INFO];
    843u16 __read_mostly tlb_lld_4m[NR_INFO];
    844u16 __read_mostly tlb_lld_1g[NR_INFO];
    845
    846static void cpu_detect_tlb(struct cpuinfo_x86 *c)
    847{
    848	if (this_cpu->c_detect_tlb)
    849		this_cpu->c_detect_tlb(c);
    850
    851	pr_info("Last level iTLB entries: 4KB %d, 2MB %d, 4MB %d\n",
    852		tlb_lli_4k[ENTRIES], tlb_lli_2m[ENTRIES],
    853		tlb_lli_4m[ENTRIES]);
    854
    855	pr_info("Last level dTLB entries: 4KB %d, 2MB %d, 4MB %d, 1GB %d\n",
    856		tlb_lld_4k[ENTRIES], tlb_lld_2m[ENTRIES],
    857		tlb_lld_4m[ENTRIES], tlb_lld_1g[ENTRIES]);
    858}
    859
    860int detect_ht_early(struct cpuinfo_x86 *c)
    861{
    862#ifdef CONFIG_SMP
    863	u32 eax, ebx, ecx, edx;
    864
    865	if (!cpu_has(c, X86_FEATURE_HT))
    866		return -1;
    867
    868	if (cpu_has(c, X86_FEATURE_CMP_LEGACY))
    869		return -1;
    870
    871	if (cpu_has(c, X86_FEATURE_XTOPOLOGY))
    872		return -1;
    873
    874	cpuid(1, &eax, &ebx, &ecx, &edx);
    875
    876	smp_num_siblings = (ebx & 0xff0000) >> 16;
    877	if (smp_num_siblings == 1)
    878		pr_info_once("CPU0: Hyper-Threading is disabled\n");
    879#endif
    880	return 0;
    881}
    882
    883void detect_ht(struct cpuinfo_x86 *c)
    884{
    885#ifdef CONFIG_SMP
    886	int index_msb, core_bits;
    887
    888	if (detect_ht_early(c) < 0)
    889		return;
    890
    891	index_msb = get_count_order(smp_num_siblings);
    892	c->phys_proc_id = apic->phys_pkg_id(c->initial_apicid, index_msb);
    893
    894	smp_num_siblings = smp_num_siblings / c->x86_max_cores;
    895
    896	index_msb = get_count_order(smp_num_siblings);
    897
    898	core_bits = get_count_order(c->x86_max_cores);
    899
    900	c->cpu_core_id = apic->phys_pkg_id(c->initial_apicid, index_msb) &
    901				       ((1 << core_bits) - 1);
    902#endif
    903}
    904
    905static void get_cpu_vendor(struct cpuinfo_x86 *c)
    906{
    907	char *v = c->x86_vendor_id;
    908	int i;
    909
    910	for (i = 0; i < X86_VENDOR_NUM; i++) {
    911		if (!cpu_devs[i])
    912			break;
    913
    914		if (!strcmp(v, cpu_devs[i]->c_ident[0]) ||
    915		    (cpu_devs[i]->c_ident[1] &&
    916		     !strcmp(v, cpu_devs[i]->c_ident[1]))) {
    917
    918			this_cpu = cpu_devs[i];
    919			c->x86_vendor = this_cpu->c_x86_vendor;
    920			return;
    921		}
    922	}
    923
    924	pr_err_once("CPU: vendor_id '%s' unknown, using generic init.\n" \
    925		    "CPU: Your system may be unstable.\n", v);
    926
    927	c->x86_vendor = X86_VENDOR_UNKNOWN;
    928	this_cpu = &default_cpu;
    929}
    930
    931void cpu_detect(struct cpuinfo_x86 *c)
    932{
    933	/* Get vendor name */
    934	cpuid(0x00000000, (unsigned int *)&c->cpuid_level,
    935	      (unsigned int *)&c->x86_vendor_id[0],
    936	      (unsigned int *)&c->x86_vendor_id[8],
    937	      (unsigned int *)&c->x86_vendor_id[4]);
    938
    939	c->x86 = 4;
    940	/* Intel-defined flags: level 0x00000001 */
    941	if (c->cpuid_level >= 0x00000001) {
    942		u32 junk, tfms, cap0, misc;
    943
    944		cpuid(0x00000001, &tfms, &misc, &junk, &cap0);
    945		c->x86		= x86_family(tfms);
    946		c->x86_model	= x86_model(tfms);
    947		c->x86_stepping	= x86_stepping(tfms);
    948
    949		if (cap0 & (1<<19)) {
    950			c->x86_clflush_size = ((misc >> 8) & 0xff) * 8;
    951			c->x86_cache_alignment = c->x86_clflush_size;
    952		}
    953	}
    954}
    955
    956static void apply_forced_caps(struct cpuinfo_x86 *c)
    957{
    958	int i;
    959
    960	for (i = 0; i < NCAPINTS + NBUGINTS; i++) {
    961		c->x86_capability[i] &= ~cpu_caps_cleared[i];
    962		c->x86_capability[i] |= cpu_caps_set[i];
    963	}
    964}
    965
    966static void init_speculation_control(struct cpuinfo_x86 *c)
    967{
    968	/*
    969	 * The Intel SPEC_CTRL CPUID bit implies IBRS and IBPB support,
    970	 * and they also have a different bit for STIBP support. Also,
    971	 * a hypervisor might have set the individual AMD bits even on
    972	 * Intel CPUs, for finer-grained selection of what's available.
    973	 */
    974	if (cpu_has(c, X86_FEATURE_SPEC_CTRL)) {
    975		set_cpu_cap(c, X86_FEATURE_IBRS);
    976		set_cpu_cap(c, X86_FEATURE_IBPB);
    977		set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
    978	}
    979
    980	if (cpu_has(c, X86_FEATURE_INTEL_STIBP))
    981		set_cpu_cap(c, X86_FEATURE_STIBP);
    982
    983	if (cpu_has(c, X86_FEATURE_SPEC_CTRL_SSBD) ||
    984	    cpu_has(c, X86_FEATURE_VIRT_SSBD))
    985		set_cpu_cap(c, X86_FEATURE_SSBD);
    986
    987	if (cpu_has(c, X86_FEATURE_AMD_IBRS)) {
    988		set_cpu_cap(c, X86_FEATURE_IBRS);
    989		set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
    990	}
    991
    992	if (cpu_has(c, X86_FEATURE_AMD_IBPB))
    993		set_cpu_cap(c, X86_FEATURE_IBPB);
    994
    995	if (cpu_has(c, X86_FEATURE_AMD_STIBP)) {
    996		set_cpu_cap(c, X86_FEATURE_STIBP);
    997		set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
    998	}
    999
   1000	if (cpu_has(c, X86_FEATURE_AMD_SSBD)) {
   1001		set_cpu_cap(c, X86_FEATURE_SSBD);
   1002		set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
   1003		clear_cpu_cap(c, X86_FEATURE_VIRT_SSBD);
   1004	}
   1005}
   1006
   1007void get_cpu_cap(struct cpuinfo_x86 *c)
   1008{
   1009	u32 eax, ebx, ecx, edx;
   1010
   1011	/* Intel-defined flags: level 0x00000001 */
   1012	if (c->cpuid_level >= 0x00000001) {
   1013		cpuid(0x00000001, &eax, &ebx, &ecx, &edx);
   1014
   1015		c->x86_capability[CPUID_1_ECX] = ecx;
   1016		c->x86_capability[CPUID_1_EDX] = edx;
   1017	}
   1018
   1019	/* Thermal and Power Management Leaf: level 0x00000006 (eax) */
   1020	if (c->cpuid_level >= 0x00000006)
   1021		c->x86_capability[CPUID_6_EAX] = cpuid_eax(0x00000006);
   1022
   1023	/* Additional Intel-defined flags: level 0x00000007 */
   1024	if (c->cpuid_level >= 0x00000007) {
   1025		cpuid_count(0x00000007, 0, &eax, &ebx, &ecx, &edx);
   1026		c->x86_capability[CPUID_7_0_EBX] = ebx;
   1027		c->x86_capability[CPUID_7_ECX] = ecx;
   1028		c->x86_capability[CPUID_7_EDX] = edx;
   1029
   1030		/* Check valid sub-leaf index before accessing it */
   1031		if (eax >= 1) {
   1032			cpuid_count(0x00000007, 1, &eax, &ebx, &ecx, &edx);
   1033			c->x86_capability[CPUID_7_1_EAX] = eax;
   1034		}
   1035	}
   1036
   1037	/* Extended state features: level 0x0000000d */
   1038	if (c->cpuid_level >= 0x0000000d) {
   1039		cpuid_count(0x0000000d, 1, &eax, &ebx, &ecx, &edx);
   1040
   1041		c->x86_capability[CPUID_D_1_EAX] = eax;
   1042	}
   1043
   1044	/* AMD-defined flags: level 0x80000001 */
   1045	eax = cpuid_eax(0x80000000);
   1046	c->extended_cpuid_level = eax;
   1047
   1048	if ((eax & 0xffff0000) == 0x80000000) {
   1049		if (eax >= 0x80000001) {
   1050			cpuid(0x80000001, &eax, &ebx, &ecx, &edx);
   1051
   1052			c->x86_capability[CPUID_8000_0001_ECX] = ecx;
   1053			c->x86_capability[CPUID_8000_0001_EDX] = edx;
   1054		}
   1055	}
   1056
   1057	if (c->extended_cpuid_level >= 0x80000007) {
   1058		cpuid(0x80000007, &eax, &ebx, &ecx, &edx);
   1059
   1060		c->x86_capability[CPUID_8000_0007_EBX] = ebx;
   1061		c->x86_power = edx;
   1062	}
   1063
   1064	if (c->extended_cpuid_level >= 0x80000008) {
   1065		cpuid(0x80000008, &eax, &ebx, &ecx, &edx);
   1066		c->x86_capability[CPUID_8000_0008_EBX] = ebx;
   1067	}
   1068
   1069	if (c->extended_cpuid_level >= 0x8000000a)
   1070		c->x86_capability[CPUID_8000_000A_EDX] = cpuid_edx(0x8000000a);
   1071
   1072	if (c->extended_cpuid_level >= 0x8000001f)
   1073		c->x86_capability[CPUID_8000_001F_EAX] = cpuid_eax(0x8000001f);
   1074
   1075	init_scattered_cpuid_features(c);
   1076	init_speculation_control(c);
   1077
   1078	/*
   1079	 * Clear/Set all flags overridden by options, after probe.
   1080	 * This needs to happen each time we re-probe, which may happen
   1081	 * several times during CPU initialization.
   1082	 */
   1083	apply_forced_caps(c);
   1084}
   1085
   1086void get_cpu_address_sizes(struct cpuinfo_x86 *c)
   1087{
   1088	u32 eax, ebx, ecx, edx;
   1089
   1090	if (c->extended_cpuid_level >= 0x80000008) {
   1091		cpuid(0x80000008, &eax, &ebx, &ecx, &edx);
   1092
   1093		c->x86_virt_bits = (eax >> 8) & 0xff;
   1094		c->x86_phys_bits = eax & 0xff;
   1095	}
   1096#ifdef CONFIG_X86_32
   1097	else if (cpu_has(c, X86_FEATURE_PAE) || cpu_has(c, X86_FEATURE_PSE36))
   1098		c->x86_phys_bits = 36;
   1099#endif
   1100	c->x86_cache_bits = c->x86_phys_bits;
   1101}
   1102
   1103static void identify_cpu_without_cpuid(struct cpuinfo_x86 *c)
   1104{
   1105#ifdef CONFIG_X86_32
   1106	int i;
   1107
   1108	/*
   1109	 * First of all, decide if this is a 486 or higher
   1110	 * It's a 486 if we can modify the AC flag
   1111	 */
   1112	if (flag_is_changeable_p(X86_EFLAGS_AC))
   1113		c->x86 = 4;
   1114	else
   1115		c->x86 = 3;
   1116
   1117	for (i = 0; i < X86_VENDOR_NUM; i++)
   1118		if (cpu_devs[i] && cpu_devs[i]->c_identify) {
   1119			c->x86_vendor_id[0] = 0;
   1120			cpu_devs[i]->c_identify(c);
   1121			if (c->x86_vendor_id[0]) {
   1122				get_cpu_vendor(c);
   1123				break;
   1124			}
   1125		}
   1126#endif
   1127}
   1128
   1129#define NO_SPECULATION		BIT(0)
   1130#define NO_MELTDOWN		BIT(1)
   1131#define NO_SSB			BIT(2)
   1132#define NO_L1TF			BIT(3)
   1133#define NO_MDS			BIT(4)
   1134#define MSBDS_ONLY		BIT(5)
   1135#define NO_SWAPGS		BIT(6)
   1136#define NO_ITLB_MULTIHIT	BIT(7)
   1137#define NO_SPECTRE_V2		BIT(8)
   1138
   1139#define VULNWL(vendor, family, model, whitelist)	\
   1140	X86_MATCH_VENDOR_FAM_MODEL(vendor, family, model, whitelist)
   1141
   1142#define VULNWL_INTEL(model, whitelist)		\
   1143	VULNWL(INTEL, 6, INTEL_FAM6_##model, whitelist)
   1144
   1145#define VULNWL_AMD(family, whitelist)		\
   1146	VULNWL(AMD, family, X86_MODEL_ANY, whitelist)
   1147
   1148#define VULNWL_HYGON(family, whitelist)		\
   1149	VULNWL(HYGON, family, X86_MODEL_ANY, whitelist)
   1150
   1151static const __initconst struct x86_cpu_id cpu_vuln_whitelist[] = {
   1152	VULNWL(ANY,	4, X86_MODEL_ANY,	NO_SPECULATION),
   1153	VULNWL(CENTAUR,	5, X86_MODEL_ANY,	NO_SPECULATION),
   1154	VULNWL(INTEL,	5, X86_MODEL_ANY,	NO_SPECULATION),
   1155	VULNWL(NSC,	5, X86_MODEL_ANY,	NO_SPECULATION),
   1156	VULNWL(VORTEX,	5, X86_MODEL_ANY,	NO_SPECULATION),
   1157	VULNWL(VORTEX,	6, X86_MODEL_ANY,	NO_SPECULATION),
   1158
   1159	/* Intel Family 6 */
   1160	VULNWL_INTEL(ATOM_SALTWELL,		NO_SPECULATION | NO_ITLB_MULTIHIT),
   1161	VULNWL_INTEL(ATOM_SALTWELL_TABLET,	NO_SPECULATION | NO_ITLB_MULTIHIT),
   1162	VULNWL_INTEL(ATOM_SALTWELL_MID,		NO_SPECULATION | NO_ITLB_MULTIHIT),
   1163	VULNWL_INTEL(ATOM_BONNELL,		NO_SPECULATION | NO_ITLB_MULTIHIT),
   1164	VULNWL_INTEL(ATOM_BONNELL_MID,		NO_SPECULATION | NO_ITLB_MULTIHIT),
   1165
   1166	VULNWL_INTEL(ATOM_SILVERMONT,		NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
   1167	VULNWL_INTEL(ATOM_SILVERMONT_D,		NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
   1168	VULNWL_INTEL(ATOM_SILVERMONT_MID,	NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
   1169	VULNWL_INTEL(ATOM_AIRMONT,		NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
   1170	VULNWL_INTEL(XEON_PHI_KNL,		NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
   1171	VULNWL_INTEL(XEON_PHI_KNM,		NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
   1172
   1173	VULNWL_INTEL(CORE_YONAH,		NO_SSB),
   1174
   1175	VULNWL_INTEL(ATOM_AIRMONT_MID,		NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
   1176	VULNWL_INTEL(ATOM_AIRMONT_NP,		NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT),
   1177
   1178	VULNWL_INTEL(ATOM_GOLDMONT,		NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT),
   1179	VULNWL_INTEL(ATOM_GOLDMONT_D,		NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT),
   1180	VULNWL_INTEL(ATOM_GOLDMONT_PLUS,	NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT),
   1181
   1182	/*
   1183	 * Technically, swapgs isn't serializing on AMD (despite it previously
   1184	 * being documented as such in the APM).  But according to AMD, %gs is
   1185	 * updated non-speculatively, and the issuing of %gs-relative memory
   1186	 * operands will be blocked until the %gs update completes, which is
   1187	 * good enough for our purposes.
   1188	 */
   1189
   1190	VULNWL_INTEL(ATOM_TREMONT_D,		NO_ITLB_MULTIHIT),
   1191
   1192	/* AMD Family 0xf - 0x12 */
   1193	VULNWL_AMD(0x0f,	NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT),
   1194	VULNWL_AMD(0x10,	NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT),
   1195	VULNWL_AMD(0x11,	NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT),
   1196	VULNWL_AMD(0x12,	NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT),
   1197
   1198	/* FAMILY_ANY must be last, otherwise 0x0f - 0x12 matches won't work */
   1199	VULNWL_AMD(X86_FAMILY_ANY,	NO_MELTDOWN | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT),
   1200	VULNWL_HYGON(X86_FAMILY_ANY,	NO_MELTDOWN | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT),
   1201
   1202	/* Zhaoxin Family 7 */
   1203	VULNWL(CENTAUR,	7, X86_MODEL_ANY,	NO_SPECTRE_V2 | NO_SWAPGS),
   1204	VULNWL(ZHAOXIN,	7, X86_MODEL_ANY,	NO_SPECTRE_V2 | NO_SWAPGS),
   1205	{}
   1206};
   1207
   1208#define VULNBL_INTEL_STEPPINGS(model, steppings, issues)		   \
   1209	X86_MATCH_VENDOR_FAM_MODEL_STEPPINGS_FEATURE(INTEL, 6,		   \
   1210					    INTEL_FAM6_##model, steppings, \
   1211					    X86_FEATURE_ANY, issues)
   1212
   1213#define SRBDS		BIT(0)
   1214/* CPU is affected by X86_BUG_MMIO_STALE_DATA */
   1215#define MMIO		BIT(1)
   1216/* CPU is affected by Shared Buffers Data Sampling (SBDS), a variant of X86_BUG_MMIO_STALE_DATA */
   1217#define MMIO_SBDS	BIT(2)
   1218
   1219static const struct x86_cpu_id cpu_vuln_blacklist[] __initconst = {
   1220	VULNBL_INTEL_STEPPINGS(IVYBRIDGE,	X86_STEPPING_ANY,		SRBDS),
   1221	VULNBL_INTEL_STEPPINGS(HASWELL,		X86_STEPPING_ANY,		SRBDS),
   1222	VULNBL_INTEL_STEPPINGS(HASWELL_L,	X86_STEPPING_ANY,		SRBDS),
   1223	VULNBL_INTEL_STEPPINGS(HASWELL_G,	X86_STEPPING_ANY,		SRBDS),
   1224	VULNBL_INTEL_STEPPINGS(HASWELL_X,	BIT(2) | BIT(4),		MMIO),
   1225	VULNBL_INTEL_STEPPINGS(BROADWELL_D,	X86_STEPPINGS(0x3, 0x5),	MMIO),
   1226	VULNBL_INTEL_STEPPINGS(BROADWELL_G,	X86_STEPPING_ANY,		SRBDS),
   1227	VULNBL_INTEL_STEPPINGS(BROADWELL_X,	X86_STEPPING_ANY,		MMIO),
   1228	VULNBL_INTEL_STEPPINGS(BROADWELL,	X86_STEPPING_ANY,		SRBDS),
   1229	VULNBL_INTEL_STEPPINGS(SKYLAKE_L,	X86_STEPPINGS(0x3, 0x3),	SRBDS | MMIO),
   1230	VULNBL_INTEL_STEPPINGS(SKYLAKE_L,	X86_STEPPING_ANY,		SRBDS),
   1231	VULNBL_INTEL_STEPPINGS(SKYLAKE_X,	BIT(3) | BIT(4) | BIT(6) |
   1232						BIT(7) | BIT(0xB),              MMIO),
   1233	VULNBL_INTEL_STEPPINGS(SKYLAKE,		X86_STEPPINGS(0x3, 0x3),	SRBDS | MMIO),
   1234	VULNBL_INTEL_STEPPINGS(SKYLAKE,		X86_STEPPING_ANY,		SRBDS),
   1235	VULNBL_INTEL_STEPPINGS(KABYLAKE_L,	X86_STEPPINGS(0x9, 0xC),	SRBDS | MMIO),
   1236	VULNBL_INTEL_STEPPINGS(KABYLAKE_L,	X86_STEPPINGS(0x0, 0x8),	SRBDS),
   1237	VULNBL_INTEL_STEPPINGS(KABYLAKE,	X86_STEPPINGS(0x9, 0xD),	SRBDS | MMIO),
   1238	VULNBL_INTEL_STEPPINGS(KABYLAKE,	X86_STEPPINGS(0x0, 0x8),	SRBDS),
   1239	VULNBL_INTEL_STEPPINGS(ICELAKE_L,	X86_STEPPINGS(0x5, 0x5),	MMIO | MMIO_SBDS),
   1240	VULNBL_INTEL_STEPPINGS(ICELAKE_D,	X86_STEPPINGS(0x1, 0x1),	MMIO),
   1241	VULNBL_INTEL_STEPPINGS(ICELAKE_X,	X86_STEPPINGS(0x4, 0x6),	MMIO),
   1242	VULNBL_INTEL_STEPPINGS(COMETLAKE,	BIT(2) | BIT(3) | BIT(5),	MMIO | MMIO_SBDS),
   1243	VULNBL_INTEL_STEPPINGS(COMETLAKE_L,	X86_STEPPINGS(0x1, 0x1),	MMIO | MMIO_SBDS),
   1244	VULNBL_INTEL_STEPPINGS(COMETLAKE_L,	X86_STEPPINGS(0x0, 0x0),	MMIO),
   1245	VULNBL_INTEL_STEPPINGS(LAKEFIELD,	X86_STEPPINGS(0x1, 0x1),	MMIO | MMIO_SBDS),
   1246	VULNBL_INTEL_STEPPINGS(ROCKETLAKE,	X86_STEPPINGS(0x1, 0x1),	MMIO),
   1247	VULNBL_INTEL_STEPPINGS(ATOM_TREMONT,	X86_STEPPINGS(0x1, 0x1),	MMIO | MMIO_SBDS),
   1248	VULNBL_INTEL_STEPPINGS(ATOM_TREMONT_D,	X86_STEPPING_ANY,		MMIO),
   1249	VULNBL_INTEL_STEPPINGS(ATOM_TREMONT_L,	X86_STEPPINGS(0x0, 0x0),	MMIO | MMIO_SBDS),
   1250	{}
   1251};
   1252
   1253static bool __init cpu_matches(const struct x86_cpu_id *table, unsigned long which)
   1254{
   1255	const struct x86_cpu_id *m = x86_match_cpu(table);
   1256
   1257	return m && !!(m->driver_data & which);
   1258}
   1259
   1260u64 x86_read_arch_cap_msr(void)
   1261{
   1262	u64 ia32_cap = 0;
   1263
   1264	if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES))
   1265		rdmsrl(MSR_IA32_ARCH_CAPABILITIES, ia32_cap);
   1266
   1267	return ia32_cap;
   1268}
   1269
   1270static bool arch_cap_mmio_immune(u64 ia32_cap)
   1271{
   1272	return (ia32_cap & ARCH_CAP_FBSDP_NO &&
   1273		ia32_cap & ARCH_CAP_PSDP_NO &&
   1274		ia32_cap & ARCH_CAP_SBDR_SSDP_NO);
   1275}
   1276
   1277static void __init cpu_set_bug_bits(struct cpuinfo_x86 *c)
   1278{
   1279	u64 ia32_cap = x86_read_arch_cap_msr();
   1280
   1281	/* Set ITLB_MULTIHIT bug if cpu is not in the whitelist and not mitigated */
   1282	if (!cpu_matches(cpu_vuln_whitelist, NO_ITLB_MULTIHIT) &&
   1283	    !(ia32_cap & ARCH_CAP_PSCHANGE_MC_NO))
   1284		setup_force_cpu_bug(X86_BUG_ITLB_MULTIHIT);
   1285
   1286	if (cpu_matches(cpu_vuln_whitelist, NO_SPECULATION))
   1287		return;
   1288
   1289	setup_force_cpu_bug(X86_BUG_SPECTRE_V1);
   1290
   1291	if (!cpu_matches(cpu_vuln_whitelist, NO_SPECTRE_V2))
   1292		setup_force_cpu_bug(X86_BUG_SPECTRE_V2);
   1293
   1294	if (!cpu_matches(cpu_vuln_whitelist, NO_SSB) &&
   1295	    !(ia32_cap & ARCH_CAP_SSB_NO) &&
   1296	   !cpu_has(c, X86_FEATURE_AMD_SSB_NO))
   1297		setup_force_cpu_bug(X86_BUG_SPEC_STORE_BYPASS);
   1298
   1299	if (ia32_cap & ARCH_CAP_IBRS_ALL)
   1300		setup_force_cpu_cap(X86_FEATURE_IBRS_ENHANCED);
   1301
   1302	if (!cpu_matches(cpu_vuln_whitelist, NO_MDS) &&
   1303	    !(ia32_cap & ARCH_CAP_MDS_NO)) {
   1304		setup_force_cpu_bug(X86_BUG_MDS);
   1305		if (cpu_matches(cpu_vuln_whitelist, MSBDS_ONLY))
   1306			setup_force_cpu_bug(X86_BUG_MSBDS_ONLY);
   1307	}
   1308
   1309	if (!cpu_matches(cpu_vuln_whitelist, NO_SWAPGS))
   1310		setup_force_cpu_bug(X86_BUG_SWAPGS);
   1311
   1312	/*
   1313	 * When the CPU is not mitigated for TAA (TAA_NO=0) set TAA bug when:
   1314	 *	- TSX is supported or
   1315	 *	- TSX_CTRL is present
   1316	 *
   1317	 * TSX_CTRL check is needed for cases when TSX could be disabled before
   1318	 * the kernel boot e.g. kexec.
   1319	 * TSX_CTRL check alone is not sufficient for cases when the microcode
   1320	 * update is not present or running as guest that don't get TSX_CTRL.
   1321	 */
   1322	if (!(ia32_cap & ARCH_CAP_TAA_NO) &&
   1323	    (cpu_has(c, X86_FEATURE_RTM) ||
   1324	     (ia32_cap & ARCH_CAP_TSX_CTRL_MSR)))
   1325		setup_force_cpu_bug(X86_BUG_TAA);
   1326
   1327	/*
   1328	 * SRBDS affects CPUs which support RDRAND or RDSEED and are listed
   1329	 * in the vulnerability blacklist.
   1330	 *
   1331	 * Some of the implications and mitigation of Shared Buffers Data
   1332	 * Sampling (SBDS) are similar to SRBDS. Give SBDS same treatment as
   1333	 * SRBDS.
   1334	 */
   1335	if ((cpu_has(c, X86_FEATURE_RDRAND) ||
   1336	     cpu_has(c, X86_FEATURE_RDSEED)) &&
   1337	    cpu_matches(cpu_vuln_blacklist, SRBDS | MMIO_SBDS))
   1338		    setup_force_cpu_bug(X86_BUG_SRBDS);
   1339
   1340	/*
   1341	 * Processor MMIO Stale Data bug enumeration
   1342	 *
   1343	 * Affected CPU list is generally enough to enumerate the vulnerability,
   1344	 * but for virtualization case check for ARCH_CAP MSR bits also, VMM may
   1345	 * not want the guest to enumerate the bug.
   1346	 */
   1347	if (cpu_matches(cpu_vuln_blacklist, MMIO) &&
   1348	    !arch_cap_mmio_immune(ia32_cap))
   1349		setup_force_cpu_bug(X86_BUG_MMIO_STALE_DATA);
   1350
   1351	if (cpu_matches(cpu_vuln_whitelist, NO_MELTDOWN))
   1352		return;
   1353
   1354	/* Rogue Data Cache Load? No! */
   1355	if (ia32_cap & ARCH_CAP_RDCL_NO)
   1356		return;
   1357
   1358	setup_force_cpu_bug(X86_BUG_CPU_MELTDOWN);
   1359
   1360	if (cpu_matches(cpu_vuln_whitelist, NO_L1TF))
   1361		return;
   1362
   1363	setup_force_cpu_bug(X86_BUG_L1TF);
   1364}
   1365
   1366/*
   1367 * The NOPL instruction is supposed to exist on all CPUs of family >= 6;
   1368 * unfortunately, that's not true in practice because of early VIA
   1369 * chips and (more importantly) broken virtualizers that are not easy
   1370 * to detect. In the latter case it doesn't even *fail* reliably, so
   1371 * probing for it doesn't even work. Disable it completely on 32-bit
   1372 * unless we can find a reliable way to detect all the broken cases.
   1373 * Enable it explicitly on 64-bit for non-constant inputs of cpu_has().
   1374 */
   1375static void detect_nopl(void)
   1376{
   1377#ifdef CONFIG_X86_32
   1378	setup_clear_cpu_cap(X86_FEATURE_NOPL);
   1379#else
   1380	setup_force_cpu_cap(X86_FEATURE_NOPL);
   1381#endif
   1382}
   1383
   1384/*
   1385 * We parse cpu parameters early because fpu__init_system() is executed
   1386 * before parse_early_param().
   1387 */
   1388static void __init cpu_parse_early_param(void)
   1389{
   1390	char arg[128];
   1391	char *argptr = arg, *opt;
   1392	int arglen, taint = 0;
   1393
   1394#ifdef CONFIG_X86_32
   1395	if (cmdline_find_option_bool(boot_command_line, "no387"))
   1396#ifdef CONFIG_MATH_EMULATION
   1397		setup_clear_cpu_cap(X86_FEATURE_FPU);
   1398#else
   1399		pr_err("Option 'no387' required CONFIG_MATH_EMULATION enabled.\n");
   1400#endif
   1401
   1402	if (cmdline_find_option_bool(boot_command_line, "nofxsr"))
   1403		setup_clear_cpu_cap(X86_FEATURE_FXSR);
   1404#endif
   1405
   1406	if (cmdline_find_option_bool(boot_command_line, "noxsave"))
   1407		setup_clear_cpu_cap(X86_FEATURE_XSAVE);
   1408
   1409	if (cmdline_find_option_bool(boot_command_line, "noxsaveopt"))
   1410		setup_clear_cpu_cap(X86_FEATURE_XSAVEOPT);
   1411
   1412	if (cmdline_find_option_bool(boot_command_line, "noxsaves"))
   1413		setup_clear_cpu_cap(X86_FEATURE_XSAVES);
   1414
   1415	arglen = cmdline_find_option(boot_command_line, "clearcpuid", arg, sizeof(arg));
   1416	if (arglen <= 0)
   1417		return;
   1418
   1419	pr_info("Clearing CPUID bits:");
   1420
   1421	while (argptr) {
   1422		bool found __maybe_unused = false;
   1423		unsigned int bit;
   1424
   1425		opt = strsep(&argptr, ",");
   1426
   1427		/*
   1428		 * Handle naked numbers first for feature flags which don't
   1429		 * have names.
   1430		 */
   1431		if (!kstrtouint(opt, 10, &bit)) {
   1432			if (bit < NCAPINTS * 32) {
   1433
   1434#ifdef CONFIG_X86_FEATURE_NAMES
   1435				/* empty-string, i.e., ""-defined feature flags */
   1436				if (!x86_cap_flags[bit])
   1437					pr_cont(" " X86_CAP_FMT_NUM, x86_cap_flag_num(bit));
   1438				else
   1439#endif
   1440					pr_cont(" " X86_CAP_FMT, x86_cap_flag(bit));
   1441
   1442				setup_clear_cpu_cap(bit);
   1443				taint++;
   1444			}
   1445			/*
   1446			 * The assumption is that there are no feature names with only
   1447			 * numbers in the name thus go to the next argument.
   1448			 */
   1449			continue;
   1450		}
   1451
   1452#ifdef CONFIG_X86_FEATURE_NAMES
   1453		for (bit = 0; bit < 32 * NCAPINTS; bit++) {
   1454			if (!x86_cap_flag(bit))
   1455				continue;
   1456
   1457			if (strcmp(x86_cap_flag(bit), opt))
   1458				continue;
   1459
   1460			pr_cont(" %s", opt);
   1461			setup_clear_cpu_cap(bit);
   1462			taint++;
   1463			found = true;
   1464			break;
   1465		}
   1466
   1467		if (!found)
   1468			pr_cont(" (unknown: %s)", opt);
   1469#endif
   1470	}
   1471	pr_cont("\n");
   1472
   1473	if (taint)
   1474		add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK);
   1475}
   1476
   1477/*
   1478 * Do minimum CPU detection early.
   1479 * Fields really needed: vendor, cpuid_level, family, model, mask,
   1480 * cache alignment.
   1481 * The others are not touched to avoid unwanted side effects.
   1482 *
   1483 * WARNING: this function is only called on the boot CPU.  Don't add code
   1484 * here that is supposed to run on all CPUs.
   1485 */
   1486static void __init early_identify_cpu(struct cpuinfo_x86 *c)
   1487{
   1488#ifdef CONFIG_X86_64
   1489	c->x86_clflush_size = 64;
   1490	c->x86_phys_bits = 36;
   1491	c->x86_virt_bits = 48;
   1492#else
   1493	c->x86_clflush_size = 32;
   1494	c->x86_phys_bits = 32;
   1495	c->x86_virt_bits = 32;
   1496#endif
   1497	c->x86_cache_alignment = c->x86_clflush_size;
   1498
   1499	memset(&c->x86_capability, 0, sizeof(c->x86_capability));
   1500	c->extended_cpuid_level = 0;
   1501
   1502	if (!have_cpuid_p())
   1503		identify_cpu_without_cpuid(c);
   1504
   1505	/* cyrix could have cpuid enabled via c_identify()*/
   1506	if (have_cpuid_p()) {
   1507		cpu_detect(c);
   1508		get_cpu_vendor(c);
   1509		get_cpu_cap(c);
   1510		get_cpu_address_sizes(c);
   1511		setup_force_cpu_cap(X86_FEATURE_CPUID);
   1512		cpu_parse_early_param();
   1513
   1514		if (this_cpu->c_early_init)
   1515			this_cpu->c_early_init(c);
   1516
   1517		c->cpu_index = 0;
   1518		filter_cpuid_features(c, false);
   1519
   1520		if (this_cpu->c_bsp_init)
   1521			this_cpu->c_bsp_init(c);
   1522	} else {
   1523		setup_clear_cpu_cap(X86_FEATURE_CPUID);
   1524	}
   1525
   1526	setup_force_cpu_cap(X86_FEATURE_ALWAYS);
   1527
   1528	cpu_set_bug_bits(c);
   1529
   1530	sld_setup(c);
   1531
   1532	fpu__init_system(c);
   1533
   1534	init_sigframe_size();
   1535
   1536#ifdef CONFIG_X86_32
   1537	/*
   1538	 * Regardless of whether PCID is enumerated, the SDM says
   1539	 * that it can't be enabled in 32-bit mode.
   1540	 */
   1541	setup_clear_cpu_cap(X86_FEATURE_PCID);
   1542#endif
   1543
   1544	/*
   1545	 * Later in the boot process pgtable_l5_enabled() relies on
   1546	 * cpu_feature_enabled(X86_FEATURE_LA57). If 5-level paging is not
   1547	 * enabled by this point we need to clear the feature bit to avoid
   1548	 * false-positives at the later stage.
   1549	 *
   1550	 * pgtable_l5_enabled() can be false here for several reasons:
   1551	 *  - 5-level paging is disabled compile-time;
   1552	 *  - it's 32-bit kernel;
   1553	 *  - machine doesn't support 5-level paging;
   1554	 *  - user specified 'no5lvl' in kernel command line.
   1555	 */
   1556	if (!pgtable_l5_enabled())
   1557		setup_clear_cpu_cap(X86_FEATURE_LA57);
   1558
   1559	detect_nopl();
   1560}
   1561
   1562void __init early_cpu_init(void)
   1563{
   1564	const struct cpu_dev *const *cdev;
   1565	int count = 0;
   1566
   1567#ifdef CONFIG_PROCESSOR_SELECT
   1568	pr_info("KERNEL supported cpus:\n");
   1569#endif
   1570
   1571	for (cdev = __x86_cpu_dev_start; cdev < __x86_cpu_dev_end; cdev++) {
   1572		const struct cpu_dev *cpudev = *cdev;
   1573
   1574		if (count >= X86_VENDOR_NUM)
   1575			break;
   1576		cpu_devs[count] = cpudev;
   1577		count++;
   1578
   1579#ifdef CONFIG_PROCESSOR_SELECT
   1580		{
   1581			unsigned int j;
   1582
   1583			for (j = 0; j < 2; j++) {
   1584				if (!cpudev->c_ident[j])
   1585					continue;
   1586				pr_info("  %s %s\n", cpudev->c_vendor,
   1587					cpudev->c_ident[j]);
   1588			}
   1589		}
   1590#endif
   1591	}
   1592	early_identify_cpu(&boot_cpu_data);
   1593}
   1594
   1595static bool detect_null_seg_behavior(void)
   1596{
   1597	/*
   1598	 * Empirically, writing zero to a segment selector on AMD does
   1599	 * not clear the base, whereas writing zero to a segment
   1600	 * selector on Intel does clear the base.  Intel's behavior
   1601	 * allows slightly faster context switches in the common case
   1602	 * where GS is unused by the prev and next threads.
   1603	 *
   1604	 * Since neither vendor documents this anywhere that I can see,
   1605	 * detect it directly instead of hard-coding the choice by
   1606	 * vendor.
   1607	 *
   1608	 * I've designated AMD's behavior as the "bug" because it's
   1609	 * counterintuitive and less friendly.
   1610	 */
   1611
   1612	unsigned long old_base, tmp;
   1613	rdmsrl(MSR_FS_BASE, old_base);
   1614	wrmsrl(MSR_FS_BASE, 1);
   1615	loadsegment(fs, 0);
   1616	rdmsrl(MSR_FS_BASE, tmp);
   1617	wrmsrl(MSR_FS_BASE, old_base);
   1618	return tmp == 0;
   1619}
   1620
   1621void check_null_seg_clears_base(struct cpuinfo_x86 *c)
   1622{
   1623	/* BUG_NULL_SEG is only relevant with 64bit userspace */
   1624	if (!IS_ENABLED(CONFIG_X86_64))
   1625		return;
   1626
   1627	/* Zen3 CPUs advertise Null Selector Clears Base in CPUID. */
   1628	if (c->extended_cpuid_level >= 0x80000021 &&
   1629	    cpuid_eax(0x80000021) & BIT(6))
   1630		return;
   1631
   1632	/*
   1633	 * CPUID bit above wasn't set. If this kernel is still running
   1634	 * as a HV guest, then the HV has decided not to advertize
   1635	 * that CPUID bit for whatever reason.	For example, one
   1636	 * member of the migration pool might be vulnerable.  Which
   1637	 * means, the bug is present: set the BUG flag and return.
   1638	 */
   1639	if (cpu_has(c, X86_FEATURE_HYPERVISOR)) {
   1640		set_cpu_bug(c, X86_BUG_NULL_SEG);
   1641		return;
   1642	}
   1643
   1644	/*
   1645	 * Zen2 CPUs also have this behaviour, but no CPUID bit.
   1646	 * 0x18 is the respective family for Hygon.
   1647	 */
   1648	if ((c->x86 == 0x17 || c->x86 == 0x18) &&
   1649	    detect_null_seg_behavior())
   1650		return;
   1651
   1652	/* All the remaining ones are affected */
   1653	set_cpu_bug(c, X86_BUG_NULL_SEG);
   1654}
   1655
   1656static void generic_identify(struct cpuinfo_x86 *c)
   1657{
   1658	c->extended_cpuid_level = 0;
   1659
   1660	if (!have_cpuid_p())
   1661		identify_cpu_without_cpuid(c);
   1662
   1663	/* cyrix could have cpuid enabled via c_identify()*/
   1664	if (!have_cpuid_p())
   1665		return;
   1666
   1667	cpu_detect(c);
   1668
   1669	get_cpu_vendor(c);
   1670
   1671	get_cpu_cap(c);
   1672
   1673	get_cpu_address_sizes(c);
   1674
   1675	if (c->cpuid_level >= 0x00000001) {
   1676		c->initial_apicid = (cpuid_ebx(1) >> 24) & 0xFF;
   1677#ifdef CONFIG_X86_32
   1678# ifdef CONFIG_SMP
   1679		c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
   1680# else
   1681		c->apicid = c->initial_apicid;
   1682# endif
   1683#endif
   1684		c->phys_proc_id = c->initial_apicid;
   1685	}
   1686
   1687	get_model_name(c); /* Default name */
   1688
   1689	/*
   1690	 * ESPFIX is a strange bug.  All real CPUs have it.  Paravirt
   1691	 * systems that run Linux at CPL > 0 may or may not have the
   1692	 * issue, but, even if they have the issue, there's absolutely
   1693	 * nothing we can do about it because we can't use the real IRET
   1694	 * instruction.
   1695	 *
   1696	 * NB: For the time being, only 32-bit kernels support
   1697	 * X86_BUG_ESPFIX as such.  64-bit kernels directly choose
   1698	 * whether to apply espfix using paravirt hooks.  If any
   1699	 * non-paravirt system ever shows up that does *not* have the
   1700	 * ESPFIX issue, we can change this.
   1701	 */
   1702#ifdef CONFIG_X86_32
   1703	set_cpu_bug(c, X86_BUG_ESPFIX);
   1704#endif
   1705}
   1706
   1707/*
   1708 * Validate that ACPI/mptables have the same information about the
   1709 * effective APIC id and update the package map.
   1710 */
   1711static void validate_apic_and_package_id(struct cpuinfo_x86 *c)
   1712{
   1713#ifdef CONFIG_SMP
   1714	unsigned int apicid, cpu = smp_processor_id();
   1715
   1716	apicid = apic->cpu_present_to_apicid(cpu);
   1717
   1718	if (apicid != c->apicid) {
   1719		pr_err(FW_BUG "CPU%u: APIC id mismatch. Firmware: %x APIC: %x\n",
   1720		       cpu, apicid, c->initial_apicid);
   1721	}
   1722	BUG_ON(topology_update_package_map(c->phys_proc_id, cpu));
   1723	BUG_ON(topology_update_die_map(c->cpu_die_id, cpu));
   1724#else
   1725	c->logical_proc_id = 0;
   1726#endif
   1727}
   1728
   1729/*
   1730 * This does the hard work of actually picking apart the CPU stuff...
   1731 */
   1732static void identify_cpu(struct cpuinfo_x86 *c)
   1733{
   1734	int i;
   1735
   1736	c->loops_per_jiffy = loops_per_jiffy;
   1737	c->x86_cache_size = 0;
   1738	c->x86_vendor = X86_VENDOR_UNKNOWN;
   1739	c->x86_model = c->x86_stepping = 0;	/* So far unknown... */
   1740	c->x86_vendor_id[0] = '\0'; /* Unset */
   1741	c->x86_model_id[0] = '\0';  /* Unset */
   1742	c->x86_max_cores = 1;
   1743	c->x86_coreid_bits = 0;
   1744	c->cu_id = 0xff;
   1745#ifdef CONFIG_X86_64
   1746	c->x86_clflush_size = 64;
   1747	c->x86_phys_bits = 36;
   1748	c->x86_virt_bits = 48;
   1749#else
   1750	c->cpuid_level = -1;	/* CPUID not detected */
   1751	c->x86_clflush_size = 32;
   1752	c->x86_phys_bits = 32;
   1753	c->x86_virt_bits = 32;
   1754#endif
   1755	c->x86_cache_alignment = c->x86_clflush_size;
   1756	memset(&c->x86_capability, 0, sizeof(c->x86_capability));
   1757#ifdef CONFIG_X86_VMX_FEATURE_NAMES
   1758	memset(&c->vmx_capability, 0, sizeof(c->vmx_capability));
   1759#endif
   1760
   1761	generic_identify(c);
   1762
   1763	if (this_cpu->c_identify)
   1764		this_cpu->c_identify(c);
   1765
   1766	/* Clear/Set all flags overridden by options, after probe */
   1767	apply_forced_caps(c);
   1768
   1769#ifdef CONFIG_X86_64
   1770	c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
   1771#endif
   1772
   1773	/*
   1774	 * Vendor-specific initialization.  In this section we
   1775	 * canonicalize the feature flags, meaning if there are
   1776	 * features a certain CPU supports which CPUID doesn't
   1777	 * tell us, CPUID claiming incorrect flags, or other bugs,
   1778	 * we handle them here.
   1779	 *
   1780	 * At the end of this section, c->x86_capability better
   1781	 * indicate the features this CPU genuinely supports!
   1782	 */
   1783	if (this_cpu->c_init)
   1784		this_cpu->c_init(c);
   1785
   1786	/* Disable the PN if appropriate */
   1787	squash_the_stupid_serial_number(c);
   1788
   1789	/* Set up SMEP/SMAP/UMIP */
   1790	setup_smep(c);
   1791	setup_smap(c);
   1792	setup_umip(c);
   1793
   1794	/* Enable FSGSBASE instructions if available. */
   1795	if (cpu_has(c, X86_FEATURE_FSGSBASE)) {
   1796		cr4_set_bits(X86_CR4_FSGSBASE);
   1797		elf_hwcap2 |= HWCAP2_FSGSBASE;
   1798	}
   1799
   1800	/*
   1801	 * The vendor-specific functions might have changed features.
   1802	 * Now we do "generic changes."
   1803	 */
   1804
   1805	/* Filter out anything that depends on CPUID levels we don't have */
   1806	filter_cpuid_features(c, true);
   1807
   1808	/* If the model name is still unset, do table lookup. */
   1809	if (!c->x86_model_id[0]) {
   1810		const char *p;
   1811		p = table_lookup_model(c);
   1812		if (p)
   1813			strcpy(c->x86_model_id, p);
   1814		else
   1815			/* Last resort... */
   1816			sprintf(c->x86_model_id, "%02x/%02x",
   1817				c->x86, c->x86_model);
   1818	}
   1819
   1820#ifdef CONFIG_X86_64
   1821	detect_ht(c);
   1822#endif
   1823
   1824	x86_init_rdrand(c);
   1825	setup_pku(c);
   1826	setup_cet(c);
   1827
   1828	/*
   1829	 * Clear/Set all flags overridden by options, need do it
   1830	 * before following smp all cpus cap AND.
   1831	 */
   1832	apply_forced_caps(c);
   1833
   1834	/*
   1835	 * On SMP, boot_cpu_data holds the common feature set between
   1836	 * all CPUs; so make sure that we indicate which features are
   1837	 * common between the CPUs.  The first time this routine gets
   1838	 * executed, c == &boot_cpu_data.
   1839	 */
   1840	if (c != &boot_cpu_data) {
   1841		/* AND the already accumulated flags with these */
   1842		for (i = 0; i < NCAPINTS; i++)
   1843			boot_cpu_data.x86_capability[i] &= c->x86_capability[i];
   1844
   1845		/* OR, i.e. replicate the bug flags */
   1846		for (i = NCAPINTS; i < NCAPINTS + NBUGINTS; i++)
   1847			c->x86_capability[i] |= boot_cpu_data.x86_capability[i];
   1848	}
   1849
   1850	ppin_init(c);
   1851
   1852	/* Init Machine Check Exception if available. */
   1853	mcheck_cpu_init(c);
   1854
   1855	select_idle_routine(c);
   1856
   1857#ifdef CONFIG_NUMA
   1858	numa_add_cpu(smp_processor_id());
   1859#endif
   1860}
   1861
   1862/*
   1863 * Set up the CPU state needed to execute SYSENTER/SYSEXIT instructions
   1864 * on 32-bit kernels:
   1865 */
   1866#ifdef CONFIG_X86_32
   1867void enable_sep_cpu(void)
   1868{
   1869	struct tss_struct *tss;
   1870	int cpu;
   1871
   1872	if (!boot_cpu_has(X86_FEATURE_SEP))
   1873		return;
   1874
   1875	cpu = get_cpu();
   1876	tss = &per_cpu(cpu_tss_rw, cpu);
   1877
   1878	/*
   1879	 * We cache MSR_IA32_SYSENTER_CS's value in the TSS's ss1 field --
   1880	 * see the big comment in struct x86_hw_tss's definition.
   1881	 */
   1882
   1883	tss->x86_tss.ss1 = __KERNEL_CS;
   1884	wrmsr(MSR_IA32_SYSENTER_CS, tss->x86_tss.ss1, 0);
   1885	wrmsr(MSR_IA32_SYSENTER_ESP, (unsigned long)(cpu_entry_stack(cpu) + 1), 0);
   1886	wrmsr(MSR_IA32_SYSENTER_EIP, (unsigned long)entry_SYSENTER_32, 0);
   1887
   1888	put_cpu();
   1889}
   1890#endif
   1891
   1892void __init identify_boot_cpu(void)
   1893{
   1894	identify_cpu(&boot_cpu_data);
   1895	if (HAS_KERNEL_IBT && cpu_feature_enabled(X86_FEATURE_IBT))
   1896		pr_info("CET detected: Indirect Branch Tracking enabled\n");
   1897#ifdef CONFIG_X86_32
   1898	sysenter_setup();
   1899	enable_sep_cpu();
   1900#endif
   1901	cpu_detect_tlb(&boot_cpu_data);
   1902	setup_cr_pinning();
   1903
   1904	tsx_init();
   1905}
   1906
   1907void identify_secondary_cpu(struct cpuinfo_x86 *c)
   1908{
   1909	BUG_ON(c == &boot_cpu_data);
   1910	identify_cpu(c);
   1911#ifdef CONFIG_X86_32
   1912	enable_sep_cpu();
   1913#endif
   1914	mtrr_ap_init();
   1915	validate_apic_and_package_id(c);
   1916	x86_spec_ctrl_setup_ap();
   1917	update_srbds_msr();
   1918
   1919	tsx_ap_init();
   1920}
   1921
   1922void print_cpu_info(struct cpuinfo_x86 *c)
   1923{
   1924	const char *vendor = NULL;
   1925
   1926	if (c->x86_vendor < X86_VENDOR_NUM) {
   1927		vendor = this_cpu->c_vendor;
   1928	} else {
   1929		if (c->cpuid_level >= 0)
   1930			vendor = c->x86_vendor_id;
   1931	}
   1932
   1933	if (vendor && !strstr(c->x86_model_id, vendor))
   1934		pr_cont("%s ", vendor);
   1935
   1936	if (c->x86_model_id[0])
   1937		pr_cont("%s", c->x86_model_id);
   1938	else
   1939		pr_cont("%d86", c->x86);
   1940
   1941	pr_cont(" (family: 0x%x, model: 0x%x", c->x86, c->x86_model);
   1942
   1943	if (c->x86_stepping || c->cpuid_level >= 0)
   1944		pr_cont(", stepping: 0x%x)\n", c->x86_stepping);
   1945	else
   1946		pr_cont(")\n");
   1947}
   1948
   1949/*
   1950 * clearcpuid= was already parsed in cpu_parse_early_param().  This dummy
   1951 * function prevents it from becoming an environment variable for init.
   1952 */
   1953static __init int setup_clearcpuid(char *arg)
   1954{
   1955	return 1;
   1956}
   1957__setup("clearcpuid=", setup_clearcpuid);
   1958
   1959#ifdef CONFIG_X86_64
   1960DEFINE_PER_CPU_FIRST(struct fixed_percpu_data,
   1961		     fixed_percpu_data) __aligned(PAGE_SIZE) __visible;
   1962EXPORT_PER_CPU_SYMBOL_GPL(fixed_percpu_data);
   1963
   1964/*
   1965 * The following percpu variables are hot.  Align current_task to
   1966 * cacheline size such that they fall in the same cacheline.
   1967 */
   1968DEFINE_PER_CPU(struct task_struct *, current_task) ____cacheline_aligned =
   1969	&init_task;
   1970EXPORT_PER_CPU_SYMBOL(current_task);
   1971
   1972DEFINE_PER_CPU(void *, hardirq_stack_ptr);
   1973DEFINE_PER_CPU(bool, hardirq_stack_inuse);
   1974
   1975DEFINE_PER_CPU(int, __preempt_count) = INIT_PREEMPT_COUNT;
   1976EXPORT_PER_CPU_SYMBOL(__preempt_count);
   1977
   1978DEFINE_PER_CPU(unsigned long, cpu_current_top_of_stack) = TOP_OF_INIT_STACK;
   1979
   1980static void wrmsrl_cstar(unsigned long val)
   1981{
   1982	/*
   1983	 * Intel CPUs do not support 32-bit SYSCALL. Writing to MSR_CSTAR
   1984	 * is so far ignored by the CPU, but raises a #VE trap in a TDX
   1985	 * guest. Avoid the pointless write on all Intel CPUs.
   1986	 */
   1987	if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
   1988		wrmsrl(MSR_CSTAR, val);
   1989}
   1990
   1991/* May not be marked __init: used by software suspend */
   1992void syscall_init(void)
   1993{
   1994	wrmsr(MSR_STAR, 0, (__USER32_CS << 16) | __KERNEL_CS);
   1995	wrmsrl(MSR_LSTAR, (unsigned long)entry_SYSCALL_64);
   1996
   1997#ifdef CONFIG_IA32_EMULATION
   1998	wrmsrl_cstar((unsigned long)entry_SYSCALL_compat);
   1999	/*
   2000	 * This only works on Intel CPUs.
   2001	 * On AMD CPUs these MSRs are 32-bit, CPU truncates MSR_IA32_SYSENTER_EIP.
   2002	 * This does not cause SYSENTER to jump to the wrong location, because
   2003	 * AMD doesn't allow SYSENTER in long mode (either 32- or 64-bit).
   2004	 */
   2005	wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)__KERNEL_CS);
   2006	wrmsrl_safe(MSR_IA32_SYSENTER_ESP,
   2007		    (unsigned long)(cpu_entry_stack(smp_processor_id()) + 1));
   2008	wrmsrl_safe(MSR_IA32_SYSENTER_EIP, (u64)entry_SYSENTER_compat);
   2009#else
   2010	wrmsrl_cstar((unsigned long)ignore_sysret);
   2011	wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)GDT_ENTRY_INVALID_SEG);
   2012	wrmsrl_safe(MSR_IA32_SYSENTER_ESP, 0ULL);
   2013	wrmsrl_safe(MSR_IA32_SYSENTER_EIP, 0ULL);
   2014#endif
   2015
   2016	/*
   2017	 * Flags to clear on syscall; clear as much as possible
   2018	 * to minimize user space-kernel interference.
   2019	 */
   2020	wrmsrl(MSR_SYSCALL_MASK,
   2021	       X86_EFLAGS_CF|X86_EFLAGS_PF|X86_EFLAGS_AF|
   2022	       X86_EFLAGS_ZF|X86_EFLAGS_SF|X86_EFLAGS_TF|
   2023	       X86_EFLAGS_IF|X86_EFLAGS_DF|X86_EFLAGS_OF|
   2024	       X86_EFLAGS_IOPL|X86_EFLAGS_NT|X86_EFLAGS_RF|
   2025	       X86_EFLAGS_AC|X86_EFLAGS_ID);
   2026}
   2027
   2028#else	/* CONFIG_X86_64 */
   2029
   2030DEFINE_PER_CPU(struct task_struct *, current_task) = &init_task;
   2031EXPORT_PER_CPU_SYMBOL(current_task);
   2032DEFINE_PER_CPU(int, __preempt_count) = INIT_PREEMPT_COUNT;
   2033EXPORT_PER_CPU_SYMBOL(__preempt_count);
   2034
   2035/*
   2036 * On x86_32, vm86 modifies tss.sp0, so sp0 isn't a reliable way to find
   2037 * the top of the kernel stack.  Use an extra percpu variable to track the
   2038 * top of the kernel stack directly.
   2039 */
   2040DEFINE_PER_CPU(unsigned long, cpu_current_top_of_stack) =
   2041	(unsigned long)&init_thread_union + THREAD_SIZE;
   2042EXPORT_PER_CPU_SYMBOL(cpu_current_top_of_stack);
   2043
   2044#ifdef CONFIG_STACKPROTECTOR
   2045DEFINE_PER_CPU(unsigned long, __stack_chk_guard);
   2046EXPORT_PER_CPU_SYMBOL(__stack_chk_guard);
   2047#endif
   2048
   2049#endif	/* CONFIG_X86_64 */
   2050
   2051/*
   2052 * Clear all 6 debug registers:
   2053 */
   2054static void clear_all_debug_regs(void)
   2055{
   2056	int i;
   2057
   2058	for (i = 0; i < 8; i++) {
   2059		/* Ignore db4, db5 */
   2060		if ((i == 4) || (i == 5))
   2061			continue;
   2062
   2063		set_debugreg(0, i);
   2064	}
   2065}
   2066
   2067#ifdef CONFIG_KGDB
   2068/*
   2069 * Restore debug regs if using kgdbwait and you have a kernel debugger
   2070 * connection established.
   2071 */
   2072static void dbg_restore_debug_regs(void)
   2073{
   2074	if (unlikely(kgdb_connected && arch_kgdb_ops.correct_hw_break))
   2075		arch_kgdb_ops.correct_hw_break();
   2076}
   2077#else /* ! CONFIG_KGDB */
   2078#define dbg_restore_debug_regs()
   2079#endif /* ! CONFIG_KGDB */
   2080
   2081static void wait_for_master_cpu(int cpu)
   2082{
   2083#ifdef CONFIG_SMP
   2084	/*
   2085	 * wait for ACK from master CPU before continuing
   2086	 * with AP initialization
   2087	 */
   2088	WARN_ON(cpumask_test_and_set_cpu(cpu, cpu_initialized_mask));
   2089	while (!cpumask_test_cpu(cpu, cpu_callout_mask))
   2090		cpu_relax();
   2091#endif
   2092}
   2093
   2094#ifdef CONFIG_X86_64
   2095static inline void setup_getcpu(int cpu)
   2096{
   2097	unsigned long cpudata = vdso_encode_cpunode(cpu, early_cpu_to_node(cpu));
   2098	struct desc_struct d = { };
   2099
   2100	if (boot_cpu_has(X86_FEATURE_RDTSCP) || boot_cpu_has(X86_FEATURE_RDPID))
   2101		wrmsr(MSR_TSC_AUX, cpudata, 0);
   2102
   2103	/* Store CPU and node number in limit. */
   2104	d.limit0 = cpudata;
   2105	d.limit1 = cpudata >> 16;
   2106
   2107	d.type = 5;		/* RO data, expand down, accessed */
   2108	d.dpl = 3;		/* Visible to user code */
   2109	d.s = 1;		/* Not a system segment */
   2110	d.p = 1;		/* Present */
   2111	d.d = 1;		/* 32-bit */
   2112
   2113	write_gdt_entry(get_cpu_gdt_rw(cpu), GDT_ENTRY_CPUNODE, &d, DESCTYPE_S);
   2114}
   2115
   2116static inline void ucode_cpu_init(int cpu)
   2117{
   2118	if (cpu)
   2119		load_ucode_ap();
   2120}
   2121
   2122static inline void tss_setup_ist(struct tss_struct *tss)
   2123{
   2124	/* Set up the per-CPU TSS IST stacks */
   2125	tss->x86_tss.ist[IST_INDEX_DF] = __this_cpu_ist_top_va(DF);
   2126	tss->x86_tss.ist[IST_INDEX_NMI] = __this_cpu_ist_top_va(NMI);
   2127	tss->x86_tss.ist[IST_INDEX_DB] = __this_cpu_ist_top_va(DB);
   2128	tss->x86_tss.ist[IST_INDEX_MCE] = __this_cpu_ist_top_va(MCE);
   2129	/* Only mapped when SEV-ES is active */
   2130	tss->x86_tss.ist[IST_INDEX_VC] = __this_cpu_ist_top_va(VC);
   2131}
   2132
   2133#else /* CONFIG_X86_64 */
   2134
   2135static inline void setup_getcpu(int cpu) { }
   2136
   2137static inline void ucode_cpu_init(int cpu)
   2138{
   2139	show_ucode_info_early();
   2140}
   2141
   2142static inline void tss_setup_ist(struct tss_struct *tss) { }
   2143
   2144#endif /* !CONFIG_X86_64 */
   2145
   2146static inline void tss_setup_io_bitmap(struct tss_struct *tss)
   2147{
   2148	tss->x86_tss.io_bitmap_base = IO_BITMAP_OFFSET_INVALID;
   2149
   2150#ifdef CONFIG_X86_IOPL_IOPERM
   2151	tss->io_bitmap.prev_max = 0;
   2152	tss->io_bitmap.prev_sequence = 0;
   2153	memset(tss->io_bitmap.bitmap, 0xff, sizeof(tss->io_bitmap.bitmap));
   2154	/*
   2155	 * Invalidate the extra array entry past the end of the all
   2156	 * permission bitmap as required by the hardware.
   2157	 */
   2158	tss->io_bitmap.mapall[IO_BITMAP_LONGS] = ~0UL;
   2159#endif
   2160}
   2161
   2162/*
   2163 * Setup everything needed to handle exceptions from the IDT, including the IST
   2164 * exceptions which use paranoid_entry().
   2165 */
   2166void cpu_init_exception_handling(void)
   2167{
   2168	struct tss_struct *tss = this_cpu_ptr(&cpu_tss_rw);
   2169	int cpu = raw_smp_processor_id();
   2170
   2171	/* paranoid_entry() gets the CPU number from the GDT */
   2172	setup_getcpu(cpu);
   2173
   2174	/* IST vectors need TSS to be set up. */
   2175	tss_setup_ist(tss);
   2176	tss_setup_io_bitmap(tss);
   2177	set_tss_desc(cpu, &get_cpu_entry_area(cpu)->tss.x86_tss);
   2178
   2179	load_TR_desc();
   2180
   2181	/* GHCB needs to be setup to handle #VC. */
   2182	setup_ghcb();
   2183
   2184	/* Finally load the IDT */
   2185	load_current_idt();
   2186}
   2187
   2188/*
   2189 * cpu_init() initializes state that is per-CPU. Some data is already
   2190 * initialized (naturally) in the bootstrap process, such as the GDT.  We
   2191 * reload it nevertheless, this function acts as a 'CPU state barrier',
   2192 * nothing should get across.
   2193 */
   2194void cpu_init(void)
   2195{
   2196	struct task_struct *cur = current;
   2197	int cpu = raw_smp_processor_id();
   2198
   2199	wait_for_master_cpu(cpu);
   2200
   2201	ucode_cpu_init(cpu);
   2202
   2203#ifdef CONFIG_NUMA
   2204	if (this_cpu_read(numa_node) == 0 &&
   2205	    early_cpu_to_node(cpu) != NUMA_NO_NODE)
   2206		set_numa_node(early_cpu_to_node(cpu));
   2207#endif
   2208	pr_debug("Initializing CPU#%d\n", cpu);
   2209
   2210	if (IS_ENABLED(CONFIG_X86_64) || cpu_feature_enabled(X86_FEATURE_VME) ||
   2211	    boot_cpu_has(X86_FEATURE_TSC) || boot_cpu_has(X86_FEATURE_DE))
   2212		cr4_clear_bits(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
   2213
   2214	/*
   2215	 * Initialize the per-CPU GDT with the boot GDT,
   2216	 * and set up the GDT descriptor:
   2217	 */
   2218	switch_to_new_gdt(cpu);
   2219
   2220	if (IS_ENABLED(CONFIG_X86_64)) {
   2221		loadsegment(fs, 0);
   2222		memset(cur->thread.tls_array, 0, GDT_ENTRY_TLS_ENTRIES * 8);
   2223		syscall_init();
   2224
   2225		wrmsrl(MSR_FS_BASE, 0);
   2226		wrmsrl(MSR_KERNEL_GS_BASE, 0);
   2227		barrier();
   2228
   2229		x2apic_setup();
   2230	}
   2231
   2232	mmgrab(&init_mm);
   2233	cur->active_mm = &init_mm;
   2234	BUG_ON(cur->mm);
   2235	initialize_tlbstate_and_flush();
   2236	enter_lazy_tlb(&init_mm, cur);
   2237
   2238	/*
   2239	 * sp0 points to the entry trampoline stack regardless of what task
   2240	 * is running.
   2241	 */
   2242	load_sp0((unsigned long)(cpu_entry_stack(cpu) + 1));
   2243
   2244	load_mm_ldt(&init_mm);
   2245
   2246	clear_all_debug_regs();
   2247	dbg_restore_debug_regs();
   2248
   2249	doublefault_init_cpu_tss();
   2250
   2251	fpu__init_cpu();
   2252
   2253	if (is_uv_system())
   2254		uv_cpu_init();
   2255
   2256	load_fixmap_gdt(cpu);
   2257}
   2258
   2259#ifdef CONFIG_SMP
   2260void cpu_init_secondary(void)
   2261{
   2262	/*
   2263	 * Relies on the BP having set-up the IDT tables, which are loaded
   2264	 * on this CPU in cpu_init_exception_handling().
   2265	 */
   2266	cpu_init_exception_handling();
   2267	cpu_init();
   2268}
   2269#endif
   2270
   2271#ifdef CONFIG_MICROCODE_LATE_LOADING
   2272/*
   2273 * The microcode loader calls this upon late microcode load to recheck features,
   2274 * only when microcode has been updated. Caller holds microcode_mutex and CPU
   2275 * hotplug lock.
   2276 */
   2277void microcode_check(void)
   2278{
   2279	struct cpuinfo_x86 info;
   2280
   2281	perf_check_microcode();
   2282
   2283	/* Reload CPUID max function as it might've changed. */
   2284	info.cpuid_level = cpuid_eax(0);
   2285
   2286	/*
   2287	 * Copy all capability leafs to pick up the synthetic ones so that
   2288	 * memcmp() below doesn't fail on that. The ones coming from CPUID will
   2289	 * get overwritten in get_cpu_cap().
   2290	 */
   2291	memcpy(&info.x86_capability, &boot_cpu_data.x86_capability, sizeof(info.x86_capability));
   2292
   2293	get_cpu_cap(&info);
   2294
   2295	if (!memcmp(&info.x86_capability, &boot_cpu_data.x86_capability, sizeof(info.x86_capability)))
   2296		return;
   2297
   2298	pr_warn("x86/CPU: CPU features have changed after loading microcode, but might not take effect.\n");
   2299	pr_warn("x86/CPU: Please consider either early loading through initrd/built-in or a potential BIOS update.\n");
   2300}
   2301#endif
   2302
   2303/*
   2304 * Invoked from core CPU hotplug code after hotplug operations
   2305 */
   2306void arch_smt_update(void)
   2307{
   2308	/* Handle the speculative execution misfeatures */
   2309	cpu_bugs_smt_update();
   2310	/* Check whether IPI broadcasting can be enabled */
   2311	apic_smt_update();
   2312}