cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

intel.c (39340B)


      1// SPDX-License-Identifier: GPL-2.0
      2#include <linux/kernel.h>
      3#include <linux/pgtable.h>
      4
      5#include <linux/string.h>
      6#include <linux/bitops.h>
      7#include <linux/smp.h>
      8#include <linux/sched.h>
      9#include <linux/sched/clock.h>
     10#include <linux/semaphore.h>
     11#include <linux/thread_info.h>
     12#include <linux/init.h>
     13#include <linux/uaccess.h>
     14#include <linux/workqueue.h>
     15#include <linux/delay.h>
     16#include <linux/cpuhotplug.h>
     17
     18#include <asm/cpufeature.h>
     19#include <asm/msr.h>
     20#include <asm/bugs.h>
     21#include <asm/cpu.h>
     22#include <asm/intel-family.h>
     23#include <asm/microcode_intel.h>
     24#include <asm/hwcap2.h>
     25#include <asm/elf.h>
     26#include <asm/cpu_device_id.h>
     27#include <asm/cmdline.h>
     28#include <asm/traps.h>
     29#include <asm/resctrl.h>
     30#include <asm/numa.h>
     31#include <asm/thermal.h>
     32
     33#ifdef CONFIG_X86_64
     34#include <linux/topology.h>
     35#endif
     36
     37#include "cpu.h"
     38
     39#ifdef CONFIG_X86_LOCAL_APIC
     40#include <asm/mpspec.h>
     41#include <asm/apic.h>
     42#endif
     43
     44enum split_lock_detect_state {
     45	sld_off = 0,
     46	sld_warn,
     47	sld_fatal,
     48	sld_ratelimit,
     49};
     50
     51/*
     52 * Default to sld_off because most systems do not support split lock detection.
     53 * sld_state_setup() will switch this to sld_warn on systems that support
     54 * split lock/bus lock detect, unless there is a command line override.
     55 */
     56static enum split_lock_detect_state sld_state __ro_after_init = sld_off;
     57static u64 msr_test_ctrl_cache __ro_after_init;
     58
     59/*
     60 * With a name like MSR_TEST_CTL it should go without saying, but don't touch
     61 * MSR_TEST_CTL unless the CPU is one of the whitelisted models.  Writing it
     62 * on CPUs that do not support SLD can cause fireworks, even when writing '0'.
     63 */
     64static bool cpu_model_supports_sld __ro_after_init;
     65
     66/*
     67 * Processors which have self-snooping capability can handle conflicting
     68 * memory type across CPUs by snooping its own cache. However, there exists
     69 * CPU models in which having conflicting memory types still leads to
     70 * unpredictable behavior, machine check errors, or hangs. Clear this
     71 * feature to prevent its use on machines with known erratas.
     72 */
     73static void check_memory_type_self_snoop_errata(struct cpuinfo_x86 *c)
     74{
     75	switch (c->x86_model) {
     76	case INTEL_FAM6_CORE_YONAH:
     77	case INTEL_FAM6_CORE2_MEROM:
     78	case INTEL_FAM6_CORE2_MEROM_L:
     79	case INTEL_FAM6_CORE2_PENRYN:
     80	case INTEL_FAM6_CORE2_DUNNINGTON:
     81	case INTEL_FAM6_NEHALEM:
     82	case INTEL_FAM6_NEHALEM_G:
     83	case INTEL_FAM6_NEHALEM_EP:
     84	case INTEL_FAM6_NEHALEM_EX:
     85	case INTEL_FAM6_WESTMERE:
     86	case INTEL_FAM6_WESTMERE_EP:
     87	case INTEL_FAM6_SANDYBRIDGE:
     88		setup_clear_cpu_cap(X86_FEATURE_SELFSNOOP);
     89	}
     90}
     91
     92static bool ring3mwait_disabled __read_mostly;
     93
     94static int __init ring3mwait_disable(char *__unused)
     95{
     96	ring3mwait_disabled = true;
     97	return 1;
     98}
     99__setup("ring3mwait=disable", ring3mwait_disable);
    100
    101static void probe_xeon_phi_r3mwait(struct cpuinfo_x86 *c)
    102{
    103	/*
    104	 * Ring 3 MONITOR/MWAIT feature cannot be detected without
    105	 * cpu model and family comparison.
    106	 */
    107	if (c->x86 != 6)
    108		return;
    109	switch (c->x86_model) {
    110	case INTEL_FAM6_XEON_PHI_KNL:
    111	case INTEL_FAM6_XEON_PHI_KNM:
    112		break;
    113	default:
    114		return;
    115	}
    116
    117	if (ring3mwait_disabled)
    118		return;
    119
    120	set_cpu_cap(c, X86_FEATURE_RING3MWAIT);
    121	this_cpu_or(msr_misc_features_shadow,
    122		    1UL << MSR_MISC_FEATURES_ENABLES_RING3MWAIT_BIT);
    123
    124	if (c == &boot_cpu_data)
    125		ELF_HWCAP2 |= HWCAP2_RING3MWAIT;
    126}
    127
    128/*
    129 * Early microcode releases for the Spectre v2 mitigation were broken.
    130 * Information taken from;
    131 * - https://newsroom.intel.com/wp-content/uploads/sites/11/2018/03/microcode-update-guidance.pdf
    132 * - https://kb.vmware.com/s/article/52345
    133 * - Microcode revisions observed in the wild
    134 * - Release note from 20180108 microcode release
    135 */
    136struct sku_microcode {
    137	u8 model;
    138	u8 stepping;
    139	u32 microcode;
    140};
    141static const struct sku_microcode spectre_bad_microcodes[] = {
    142	{ INTEL_FAM6_KABYLAKE,		0x0B,	0x80 },
    143	{ INTEL_FAM6_KABYLAKE,		0x0A,	0x80 },
    144	{ INTEL_FAM6_KABYLAKE,		0x09,	0x80 },
    145	{ INTEL_FAM6_KABYLAKE_L,	0x0A,	0x80 },
    146	{ INTEL_FAM6_KABYLAKE_L,	0x09,	0x80 },
    147	{ INTEL_FAM6_SKYLAKE_X,		0x03,	0x0100013e },
    148	{ INTEL_FAM6_SKYLAKE_X,		0x04,	0x0200003c },
    149	{ INTEL_FAM6_BROADWELL,		0x04,	0x28 },
    150	{ INTEL_FAM6_BROADWELL_G,	0x01,	0x1b },
    151	{ INTEL_FAM6_BROADWELL_D,	0x02,	0x14 },
    152	{ INTEL_FAM6_BROADWELL_D,	0x03,	0x07000011 },
    153	{ INTEL_FAM6_BROADWELL_X,	0x01,	0x0b000025 },
    154	{ INTEL_FAM6_HASWELL_L,		0x01,	0x21 },
    155	{ INTEL_FAM6_HASWELL_G,		0x01,	0x18 },
    156	{ INTEL_FAM6_HASWELL,		0x03,	0x23 },
    157	{ INTEL_FAM6_HASWELL_X,		0x02,	0x3b },
    158	{ INTEL_FAM6_HASWELL_X,		0x04,	0x10 },
    159	{ INTEL_FAM6_IVYBRIDGE_X,	0x04,	0x42a },
    160	/* Observed in the wild */
    161	{ INTEL_FAM6_SANDYBRIDGE_X,	0x06,	0x61b },
    162	{ INTEL_FAM6_SANDYBRIDGE_X,	0x07,	0x712 },
    163};
    164
    165static bool bad_spectre_microcode(struct cpuinfo_x86 *c)
    166{
    167	int i;
    168
    169	/*
    170	 * We know that the hypervisor lie to us on the microcode version so
    171	 * we may as well hope that it is running the correct version.
    172	 */
    173	if (cpu_has(c, X86_FEATURE_HYPERVISOR))
    174		return false;
    175
    176	if (c->x86 != 6)
    177		return false;
    178
    179	for (i = 0; i < ARRAY_SIZE(spectre_bad_microcodes); i++) {
    180		if (c->x86_model == spectre_bad_microcodes[i].model &&
    181		    c->x86_stepping == spectre_bad_microcodes[i].stepping)
    182			return (c->microcode <= spectre_bad_microcodes[i].microcode);
    183	}
    184	return false;
    185}
    186
    187int intel_cpu_collect_info(struct ucode_cpu_info *uci)
    188{
    189	unsigned int val[2];
    190	unsigned int family, model;
    191	struct cpu_signature csig = { 0 };
    192	unsigned int eax, ebx, ecx, edx;
    193
    194	memset(uci, 0, sizeof(*uci));
    195
    196	eax = 0x00000001;
    197	ecx = 0;
    198	native_cpuid(&eax, &ebx, &ecx, &edx);
    199	csig.sig = eax;
    200
    201	family = x86_family(eax);
    202	model  = x86_model(eax);
    203
    204	if (model >= 5 || family > 6) {
    205		/* get processor flags from MSR 0x17 */
    206		native_rdmsr(MSR_IA32_PLATFORM_ID, val[0], val[1]);
    207		csig.pf = 1 << ((val[1] >> 18) & 7);
    208	}
    209
    210	csig.rev = intel_get_microcode_revision();
    211
    212	uci->cpu_sig = csig;
    213	uci->valid = 1;
    214
    215	return 0;
    216}
    217EXPORT_SYMBOL_GPL(intel_cpu_collect_info);
    218
    219static void early_init_intel(struct cpuinfo_x86 *c)
    220{
    221	u64 misc_enable;
    222
    223	/* Unmask CPUID levels if masked: */
    224	if (c->x86 > 6 || (c->x86 == 6 && c->x86_model >= 0xd)) {
    225		if (msr_clear_bit(MSR_IA32_MISC_ENABLE,
    226				  MSR_IA32_MISC_ENABLE_LIMIT_CPUID_BIT) > 0) {
    227			c->cpuid_level = cpuid_eax(0);
    228			get_cpu_cap(c);
    229		}
    230	}
    231
    232	if ((c->x86 == 0xf && c->x86_model >= 0x03) ||
    233		(c->x86 == 0x6 && c->x86_model >= 0x0e))
    234		set_cpu_cap(c, X86_FEATURE_CONSTANT_TSC);
    235
    236	if (c->x86 >= 6 && !cpu_has(c, X86_FEATURE_IA64))
    237		c->microcode = intel_get_microcode_revision();
    238
    239	/* Now if any of them are set, check the blacklist and clear the lot */
    240	if ((cpu_has(c, X86_FEATURE_SPEC_CTRL) ||
    241	     cpu_has(c, X86_FEATURE_INTEL_STIBP) ||
    242	     cpu_has(c, X86_FEATURE_IBRS) || cpu_has(c, X86_FEATURE_IBPB) ||
    243	     cpu_has(c, X86_FEATURE_STIBP)) && bad_spectre_microcode(c)) {
    244		pr_warn("Intel Spectre v2 broken microcode detected; disabling Speculation Control\n");
    245		setup_clear_cpu_cap(X86_FEATURE_IBRS);
    246		setup_clear_cpu_cap(X86_FEATURE_IBPB);
    247		setup_clear_cpu_cap(X86_FEATURE_STIBP);
    248		setup_clear_cpu_cap(X86_FEATURE_SPEC_CTRL);
    249		setup_clear_cpu_cap(X86_FEATURE_MSR_SPEC_CTRL);
    250		setup_clear_cpu_cap(X86_FEATURE_INTEL_STIBP);
    251		setup_clear_cpu_cap(X86_FEATURE_SSBD);
    252		setup_clear_cpu_cap(X86_FEATURE_SPEC_CTRL_SSBD);
    253	}
    254
    255	/*
    256	 * Atom erratum AAE44/AAF40/AAG38/AAH41:
    257	 *
    258	 * A race condition between speculative fetches and invalidating
    259	 * a large page.  This is worked around in microcode, but we
    260	 * need the microcode to have already been loaded... so if it is
    261	 * not, recommend a BIOS update and disable large pages.
    262	 */
    263	if (c->x86 == 6 && c->x86_model == 0x1c && c->x86_stepping <= 2 &&
    264	    c->microcode < 0x20e) {
    265		pr_warn("Atom PSE erratum detected, BIOS microcode update recommended\n");
    266		clear_cpu_cap(c, X86_FEATURE_PSE);
    267	}
    268
    269#ifdef CONFIG_X86_64
    270	set_cpu_cap(c, X86_FEATURE_SYSENTER32);
    271#else
    272	/* Netburst reports 64 bytes clflush size, but does IO in 128 bytes */
    273	if (c->x86 == 15 && c->x86_cache_alignment == 64)
    274		c->x86_cache_alignment = 128;
    275#endif
    276
    277	/* CPUID workaround for 0F33/0F34 CPU */
    278	if (c->x86 == 0xF && c->x86_model == 0x3
    279	    && (c->x86_stepping == 0x3 || c->x86_stepping == 0x4))
    280		c->x86_phys_bits = 36;
    281
    282	/*
    283	 * c->x86_power is 8000_0007 edx. Bit 8 is TSC runs at constant rate
    284	 * with P/T states and does not stop in deep C-states.
    285	 *
    286	 * It is also reliable across cores and sockets. (but not across
    287	 * cabinets - we turn it off in that case explicitly.)
    288	 */
    289	if (c->x86_power & (1 << 8)) {
    290		set_cpu_cap(c, X86_FEATURE_CONSTANT_TSC);
    291		set_cpu_cap(c, X86_FEATURE_NONSTOP_TSC);
    292	}
    293
    294	/* Penwell and Cloverview have the TSC which doesn't sleep on S3 */
    295	if (c->x86 == 6) {
    296		switch (c->x86_model) {
    297		case INTEL_FAM6_ATOM_SALTWELL_MID:
    298		case INTEL_FAM6_ATOM_SALTWELL_TABLET:
    299		case INTEL_FAM6_ATOM_SILVERMONT_MID:
    300		case INTEL_FAM6_ATOM_AIRMONT_NP:
    301			set_cpu_cap(c, X86_FEATURE_NONSTOP_TSC_S3);
    302			break;
    303		default:
    304			break;
    305		}
    306	}
    307
    308	/*
    309	 * There is a known erratum on Pentium III and Core Solo
    310	 * and Core Duo CPUs.
    311	 * " Page with PAT set to WC while associated MTRR is UC
    312	 *   may consolidate to UC "
    313	 * Because of this erratum, it is better to stick with
    314	 * setting WC in MTRR rather than using PAT on these CPUs.
    315	 *
    316	 * Enable PAT WC only on P4, Core 2 or later CPUs.
    317	 */
    318	if (c->x86 == 6 && c->x86_model < 15)
    319		clear_cpu_cap(c, X86_FEATURE_PAT);
    320
    321	/*
    322	 * If fast string is not enabled in IA32_MISC_ENABLE for any reason,
    323	 * clear the fast string and enhanced fast string CPU capabilities.
    324	 */
    325	if (c->x86 > 6 || (c->x86 == 6 && c->x86_model >= 0xd)) {
    326		rdmsrl(MSR_IA32_MISC_ENABLE, misc_enable);
    327		if (!(misc_enable & MSR_IA32_MISC_ENABLE_FAST_STRING)) {
    328			pr_info("Disabled fast string operations\n");
    329			setup_clear_cpu_cap(X86_FEATURE_REP_GOOD);
    330			setup_clear_cpu_cap(X86_FEATURE_ERMS);
    331		}
    332	}
    333
    334	/*
    335	 * Intel Quark Core DevMan_001.pdf section 6.4.11
    336	 * "The operating system also is required to invalidate (i.e., flush)
    337	 *  the TLB when any changes are made to any of the page table entries.
    338	 *  The operating system must reload CR3 to cause the TLB to be flushed"
    339	 *
    340	 * As a result, boot_cpu_has(X86_FEATURE_PGE) in arch/x86/include/asm/tlbflush.h
    341	 * should be false so that __flush_tlb_all() causes CR3 instead of CR4.PGE
    342	 * to be modified.
    343	 */
    344	if (c->x86 == 5 && c->x86_model == 9) {
    345		pr_info("Disabling PGE capability bit\n");
    346		setup_clear_cpu_cap(X86_FEATURE_PGE);
    347	}
    348
    349	if (c->cpuid_level >= 0x00000001) {
    350		u32 eax, ebx, ecx, edx;
    351
    352		cpuid(0x00000001, &eax, &ebx, &ecx, &edx);
    353		/*
    354		 * If HTT (EDX[28]) is set EBX[16:23] contain the number of
    355		 * apicids which are reserved per package. Store the resulting
    356		 * shift value for the package management code.
    357		 */
    358		if (edx & (1U << 28))
    359			c->x86_coreid_bits = get_count_order((ebx >> 16) & 0xff);
    360	}
    361
    362	check_memory_type_self_snoop_errata(c);
    363
    364	/*
    365	 * Get the number of SMT siblings early from the extended topology
    366	 * leaf, if available. Otherwise try the legacy SMT detection.
    367	 */
    368	if (detect_extended_topology_early(c) < 0)
    369		detect_ht_early(c);
    370}
    371
    372static void bsp_init_intel(struct cpuinfo_x86 *c)
    373{
    374	resctrl_cpu_detect(c);
    375}
    376
    377#ifdef CONFIG_X86_32
    378/*
    379 *	Early probe support logic for ppro memory erratum #50
    380 *
    381 *	This is called before we do cpu ident work
    382 */
    383
    384int ppro_with_ram_bug(void)
    385{
    386	/* Uses data from early_cpu_detect now */
    387	if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL &&
    388	    boot_cpu_data.x86 == 6 &&
    389	    boot_cpu_data.x86_model == 1 &&
    390	    boot_cpu_data.x86_stepping < 8) {
    391		pr_info("Pentium Pro with Errata#50 detected. Taking evasive action.\n");
    392		return 1;
    393	}
    394	return 0;
    395}
    396
    397static void intel_smp_check(struct cpuinfo_x86 *c)
    398{
    399	/* calling is from identify_secondary_cpu() ? */
    400	if (!c->cpu_index)
    401		return;
    402
    403	/*
    404	 * Mask B, Pentium, but not Pentium MMX
    405	 */
    406	if (c->x86 == 5 &&
    407	    c->x86_stepping >= 1 && c->x86_stepping <= 4 &&
    408	    c->x86_model <= 3) {
    409		/*
    410		 * Remember we have B step Pentia with bugs
    411		 */
    412		WARN_ONCE(1, "WARNING: SMP operation may be unreliable"
    413				    "with B stepping processors.\n");
    414	}
    415}
    416
    417static int forcepae;
    418static int __init forcepae_setup(char *__unused)
    419{
    420	forcepae = 1;
    421	return 1;
    422}
    423__setup("forcepae", forcepae_setup);
    424
    425static void intel_workarounds(struct cpuinfo_x86 *c)
    426{
    427#ifdef CONFIG_X86_F00F_BUG
    428	/*
    429	 * All models of Pentium and Pentium with MMX technology CPUs
    430	 * have the F0 0F bug, which lets nonprivileged users lock up the
    431	 * system. Announce that the fault handler will be checking for it.
    432	 * The Quark is also family 5, but does not have the same bug.
    433	 */
    434	clear_cpu_bug(c, X86_BUG_F00F);
    435	if (c->x86 == 5 && c->x86_model < 9) {
    436		static int f00f_workaround_enabled;
    437
    438		set_cpu_bug(c, X86_BUG_F00F);
    439		if (!f00f_workaround_enabled) {
    440			pr_notice("Intel Pentium with F0 0F bug - workaround enabled.\n");
    441			f00f_workaround_enabled = 1;
    442		}
    443	}
    444#endif
    445
    446	/*
    447	 * SEP CPUID bug: Pentium Pro reports SEP but doesn't have it until
    448	 * model 3 mask 3
    449	 */
    450	if ((c->x86<<8 | c->x86_model<<4 | c->x86_stepping) < 0x633)
    451		clear_cpu_cap(c, X86_FEATURE_SEP);
    452
    453	/*
    454	 * PAE CPUID issue: many Pentium M report no PAE but may have a
    455	 * functionally usable PAE implementation.
    456	 * Forcefully enable PAE if kernel parameter "forcepae" is present.
    457	 */
    458	if (forcepae) {
    459		pr_warn("PAE forced!\n");
    460		set_cpu_cap(c, X86_FEATURE_PAE);
    461		add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_NOW_UNRELIABLE);
    462	}
    463
    464	/*
    465	 * P4 Xeon erratum 037 workaround.
    466	 * Hardware prefetcher may cause stale data to be loaded into the cache.
    467	 */
    468	if ((c->x86 == 15) && (c->x86_model == 1) && (c->x86_stepping == 1)) {
    469		if (msr_set_bit(MSR_IA32_MISC_ENABLE,
    470				MSR_IA32_MISC_ENABLE_PREFETCH_DISABLE_BIT) > 0) {
    471			pr_info("CPU: C0 stepping P4 Xeon detected.\n");
    472			pr_info("CPU: Disabling hardware prefetching (Erratum 037)\n");
    473		}
    474	}
    475
    476	/*
    477	 * See if we have a good local APIC by checking for buggy Pentia,
    478	 * i.e. all B steppings and the C2 stepping of P54C when using their
    479	 * integrated APIC (see 11AP erratum in "Pentium Processor
    480	 * Specification Update").
    481	 */
    482	if (boot_cpu_has(X86_FEATURE_APIC) && (c->x86<<8 | c->x86_model<<4) == 0x520 &&
    483	    (c->x86_stepping < 0x6 || c->x86_stepping == 0xb))
    484		set_cpu_bug(c, X86_BUG_11AP);
    485
    486
    487#ifdef CONFIG_X86_INTEL_USERCOPY
    488	/*
    489	 * Set up the preferred alignment for movsl bulk memory moves
    490	 */
    491	switch (c->x86) {
    492	case 4:		/* 486: untested */
    493		break;
    494	case 5:		/* Old Pentia: untested */
    495		break;
    496	case 6:		/* PII/PIII only like movsl with 8-byte alignment */
    497		movsl_mask.mask = 7;
    498		break;
    499	case 15:	/* P4 is OK down to 8-byte alignment */
    500		movsl_mask.mask = 7;
    501		break;
    502	}
    503#endif
    504
    505	intel_smp_check(c);
    506}
    507#else
    508static void intel_workarounds(struct cpuinfo_x86 *c)
    509{
    510}
    511#endif
    512
    513static void srat_detect_node(struct cpuinfo_x86 *c)
    514{
    515#ifdef CONFIG_NUMA
    516	unsigned node;
    517	int cpu = smp_processor_id();
    518
    519	/* Don't do the funky fallback heuristics the AMD version employs
    520	   for now. */
    521	node = numa_cpu_node(cpu);
    522	if (node == NUMA_NO_NODE || !node_online(node)) {
    523		/* reuse the value from init_cpu_to_node() */
    524		node = cpu_to_node(cpu);
    525	}
    526	numa_set_node(cpu, node);
    527#endif
    528}
    529
    530#define MSR_IA32_TME_ACTIVATE		0x982
    531
    532/* Helpers to access TME_ACTIVATE MSR */
    533#define TME_ACTIVATE_LOCKED(x)		(x & 0x1)
    534#define TME_ACTIVATE_ENABLED(x)		(x & 0x2)
    535
    536#define TME_ACTIVATE_POLICY(x)		((x >> 4) & 0xf)	/* Bits 7:4 */
    537#define TME_ACTIVATE_POLICY_AES_XTS_128	0
    538
    539#define TME_ACTIVATE_KEYID_BITS(x)	((x >> 32) & 0xf)	/* Bits 35:32 */
    540
    541#define TME_ACTIVATE_CRYPTO_ALGS(x)	((x >> 48) & 0xffff)	/* Bits 63:48 */
    542#define TME_ACTIVATE_CRYPTO_AES_XTS_128	1
    543
    544/* Values for mktme_status (SW only construct) */
    545#define MKTME_ENABLED			0
    546#define MKTME_DISABLED			1
    547#define MKTME_UNINITIALIZED		2
    548static int mktme_status = MKTME_UNINITIALIZED;
    549
    550static void detect_tme(struct cpuinfo_x86 *c)
    551{
    552	u64 tme_activate, tme_policy, tme_crypto_algs;
    553	int keyid_bits = 0, nr_keyids = 0;
    554	static u64 tme_activate_cpu0 = 0;
    555
    556	rdmsrl(MSR_IA32_TME_ACTIVATE, tme_activate);
    557
    558	if (mktme_status != MKTME_UNINITIALIZED) {
    559		if (tme_activate != tme_activate_cpu0) {
    560			/* Broken BIOS? */
    561			pr_err_once("x86/tme: configuration is inconsistent between CPUs\n");
    562			pr_err_once("x86/tme: MKTME is not usable\n");
    563			mktme_status = MKTME_DISABLED;
    564
    565			/* Proceed. We may need to exclude bits from x86_phys_bits. */
    566		}
    567	} else {
    568		tme_activate_cpu0 = tme_activate;
    569	}
    570
    571	if (!TME_ACTIVATE_LOCKED(tme_activate) || !TME_ACTIVATE_ENABLED(tme_activate)) {
    572		pr_info_once("x86/tme: not enabled by BIOS\n");
    573		mktme_status = MKTME_DISABLED;
    574		return;
    575	}
    576
    577	if (mktme_status != MKTME_UNINITIALIZED)
    578		goto detect_keyid_bits;
    579
    580	pr_info("x86/tme: enabled by BIOS\n");
    581
    582	tme_policy = TME_ACTIVATE_POLICY(tme_activate);
    583	if (tme_policy != TME_ACTIVATE_POLICY_AES_XTS_128)
    584		pr_warn("x86/tme: Unknown policy is active: %#llx\n", tme_policy);
    585
    586	tme_crypto_algs = TME_ACTIVATE_CRYPTO_ALGS(tme_activate);
    587	if (!(tme_crypto_algs & TME_ACTIVATE_CRYPTO_AES_XTS_128)) {
    588		pr_err("x86/mktme: No known encryption algorithm is supported: %#llx\n",
    589				tme_crypto_algs);
    590		mktme_status = MKTME_DISABLED;
    591	}
    592detect_keyid_bits:
    593	keyid_bits = TME_ACTIVATE_KEYID_BITS(tme_activate);
    594	nr_keyids = (1UL << keyid_bits) - 1;
    595	if (nr_keyids) {
    596		pr_info_once("x86/mktme: enabled by BIOS\n");
    597		pr_info_once("x86/mktme: %d KeyIDs available\n", nr_keyids);
    598	} else {
    599		pr_info_once("x86/mktme: disabled by BIOS\n");
    600	}
    601
    602	if (mktme_status == MKTME_UNINITIALIZED) {
    603		/* MKTME is usable */
    604		mktme_status = MKTME_ENABLED;
    605	}
    606
    607	/*
    608	 * KeyID bits effectively lower the number of physical address
    609	 * bits.  Update cpuinfo_x86::x86_phys_bits accordingly.
    610	 */
    611	c->x86_phys_bits -= keyid_bits;
    612}
    613
    614static void init_cpuid_fault(struct cpuinfo_x86 *c)
    615{
    616	u64 msr;
    617
    618	if (!rdmsrl_safe(MSR_PLATFORM_INFO, &msr)) {
    619		if (msr & MSR_PLATFORM_INFO_CPUID_FAULT)
    620			set_cpu_cap(c, X86_FEATURE_CPUID_FAULT);
    621	}
    622}
    623
    624static void init_intel_misc_features(struct cpuinfo_x86 *c)
    625{
    626	u64 msr;
    627
    628	if (rdmsrl_safe(MSR_MISC_FEATURES_ENABLES, &msr))
    629		return;
    630
    631	/* Clear all MISC features */
    632	this_cpu_write(msr_misc_features_shadow, 0);
    633
    634	/* Check features and update capabilities and shadow control bits */
    635	init_cpuid_fault(c);
    636	probe_xeon_phi_r3mwait(c);
    637
    638	msr = this_cpu_read(msr_misc_features_shadow);
    639	wrmsrl(MSR_MISC_FEATURES_ENABLES, msr);
    640}
    641
    642static void split_lock_init(void);
    643static void bus_lock_init(void);
    644
    645static void init_intel(struct cpuinfo_x86 *c)
    646{
    647	early_init_intel(c);
    648
    649	intel_workarounds(c);
    650
    651	/*
    652	 * Detect the extended topology information if available. This
    653	 * will reinitialise the initial_apicid which will be used
    654	 * in init_intel_cacheinfo()
    655	 */
    656	detect_extended_topology(c);
    657
    658	if (!cpu_has(c, X86_FEATURE_XTOPOLOGY)) {
    659		/*
    660		 * let's use the legacy cpuid vector 0x1 and 0x4 for topology
    661		 * detection.
    662		 */
    663		detect_num_cpu_cores(c);
    664#ifdef CONFIG_X86_32
    665		detect_ht(c);
    666#endif
    667	}
    668
    669	init_intel_cacheinfo(c);
    670
    671	if (c->cpuid_level > 9) {
    672		unsigned eax = cpuid_eax(10);
    673		/* Check for version and the number of counters */
    674		if ((eax & 0xff) && (((eax>>8) & 0xff) > 1))
    675			set_cpu_cap(c, X86_FEATURE_ARCH_PERFMON);
    676	}
    677
    678	if (cpu_has(c, X86_FEATURE_XMM2))
    679		set_cpu_cap(c, X86_FEATURE_LFENCE_RDTSC);
    680
    681	if (boot_cpu_has(X86_FEATURE_DS)) {
    682		unsigned int l1, l2;
    683
    684		rdmsr(MSR_IA32_MISC_ENABLE, l1, l2);
    685		if (!(l1 & (1<<11)))
    686			set_cpu_cap(c, X86_FEATURE_BTS);
    687		if (!(l1 & (1<<12)))
    688			set_cpu_cap(c, X86_FEATURE_PEBS);
    689	}
    690
    691	if (c->x86 == 6 && boot_cpu_has(X86_FEATURE_CLFLUSH) &&
    692	    (c->x86_model == 29 || c->x86_model == 46 || c->x86_model == 47))
    693		set_cpu_bug(c, X86_BUG_CLFLUSH_MONITOR);
    694
    695	if (c->x86 == 6 && boot_cpu_has(X86_FEATURE_MWAIT) &&
    696		((c->x86_model == INTEL_FAM6_ATOM_GOLDMONT)))
    697		set_cpu_bug(c, X86_BUG_MONITOR);
    698
    699#ifdef CONFIG_X86_64
    700	if (c->x86 == 15)
    701		c->x86_cache_alignment = c->x86_clflush_size * 2;
    702	if (c->x86 == 6)
    703		set_cpu_cap(c, X86_FEATURE_REP_GOOD);
    704#else
    705	/*
    706	 * Names for the Pentium II/Celeron processors
    707	 * detectable only by also checking the cache size.
    708	 * Dixon is NOT a Celeron.
    709	 */
    710	if (c->x86 == 6) {
    711		unsigned int l2 = c->x86_cache_size;
    712		char *p = NULL;
    713
    714		switch (c->x86_model) {
    715		case 5:
    716			if (l2 == 0)
    717				p = "Celeron (Covington)";
    718			else if (l2 == 256)
    719				p = "Mobile Pentium II (Dixon)";
    720			break;
    721
    722		case 6:
    723			if (l2 == 128)
    724				p = "Celeron (Mendocino)";
    725			else if (c->x86_stepping == 0 || c->x86_stepping == 5)
    726				p = "Celeron-A";
    727			break;
    728
    729		case 8:
    730			if (l2 == 128)
    731				p = "Celeron (Coppermine)";
    732			break;
    733		}
    734
    735		if (p)
    736			strcpy(c->x86_model_id, p);
    737	}
    738
    739	if (c->x86 == 15)
    740		set_cpu_cap(c, X86_FEATURE_P4);
    741	if (c->x86 == 6)
    742		set_cpu_cap(c, X86_FEATURE_P3);
    743#endif
    744
    745	/* Work around errata */
    746	srat_detect_node(c);
    747
    748	init_ia32_feat_ctl(c);
    749
    750	if (cpu_has(c, X86_FEATURE_TME))
    751		detect_tme(c);
    752
    753	init_intel_misc_features(c);
    754
    755	split_lock_init();
    756	bus_lock_init();
    757
    758	intel_init_thermal(c);
    759}
    760
    761#ifdef CONFIG_X86_32
    762static unsigned int intel_size_cache(struct cpuinfo_x86 *c, unsigned int size)
    763{
    764	/*
    765	 * Intel PIII Tualatin. This comes in two flavours.
    766	 * One has 256kb of cache, the other 512. We have no way
    767	 * to determine which, so we use a boottime override
    768	 * for the 512kb model, and assume 256 otherwise.
    769	 */
    770	if ((c->x86 == 6) && (c->x86_model == 11) && (size == 0))
    771		size = 256;
    772
    773	/*
    774	 * Intel Quark SoC X1000 contains a 4-way set associative
    775	 * 16K cache with a 16 byte cache line and 256 lines per tag
    776	 */
    777	if ((c->x86 == 5) && (c->x86_model == 9))
    778		size = 16;
    779	return size;
    780}
    781#endif
    782
    783#define TLB_INST_4K	0x01
    784#define TLB_INST_4M	0x02
    785#define TLB_INST_2M_4M	0x03
    786
    787#define TLB_INST_ALL	0x05
    788#define TLB_INST_1G	0x06
    789
    790#define TLB_DATA_4K	0x11
    791#define TLB_DATA_4M	0x12
    792#define TLB_DATA_2M_4M	0x13
    793#define TLB_DATA_4K_4M	0x14
    794
    795#define TLB_DATA_1G	0x16
    796
    797#define TLB_DATA0_4K	0x21
    798#define TLB_DATA0_4M	0x22
    799#define TLB_DATA0_2M_4M	0x23
    800
    801#define STLB_4K		0x41
    802#define STLB_4K_2M	0x42
    803
    804static const struct _tlb_table intel_tlb_table[] = {
    805	{ 0x01, TLB_INST_4K,		32,	" TLB_INST 4 KByte pages, 4-way set associative" },
    806	{ 0x02, TLB_INST_4M,		2,	" TLB_INST 4 MByte pages, full associative" },
    807	{ 0x03, TLB_DATA_4K,		64,	" TLB_DATA 4 KByte pages, 4-way set associative" },
    808	{ 0x04, TLB_DATA_4M,		8,	" TLB_DATA 4 MByte pages, 4-way set associative" },
    809	{ 0x05, TLB_DATA_4M,		32,	" TLB_DATA 4 MByte pages, 4-way set associative" },
    810	{ 0x0b, TLB_INST_4M,		4,	" TLB_INST 4 MByte pages, 4-way set associative" },
    811	{ 0x4f, TLB_INST_4K,		32,	" TLB_INST 4 KByte pages" },
    812	{ 0x50, TLB_INST_ALL,		64,	" TLB_INST 4 KByte and 2-MByte or 4-MByte pages" },
    813	{ 0x51, TLB_INST_ALL,		128,	" TLB_INST 4 KByte and 2-MByte or 4-MByte pages" },
    814	{ 0x52, TLB_INST_ALL,		256,	" TLB_INST 4 KByte and 2-MByte or 4-MByte pages" },
    815	{ 0x55, TLB_INST_2M_4M,		7,	" TLB_INST 2-MByte or 4-MByte pages, fully associative" },
    816	{ 0x56, TLB_DATA0_4M,		16,	" TLB_DATA0 4 MByte pages, 4-way set associative" },
    817	{ 0x57, TLB_DATA0_4K,		16,	" TLB_DATA0 4 KByte pages, 4-way associative" },
    818	{ 0x59, TLB_DATA0_4K,		16,	" TLB_DATA0 4 KByte pages, fully associative" },
    819	{ 0x5a, TLB_DATA0_2M_4M,	32,	" TLB_DATA0 2-MByte or 4 MByte pages, 4-way set associative" },
    820	{ 0x5b, TLB_DATA_4K_4M,		64,	" TLB_DATA 4 KByte and 4 MByte pages" },
    821	{ 0x5c, TLB_DATA_4K_4M,		128,	" TLB_DATA 4 KByte and 4 MByte pages" },
    822	{ 0x5d, TLB_DATA_4K_4M,		256,	" TLB_DATA 4 KByte and 4 MByte pages" },
    823	{ 0x61, TLB_INST_4K,		48,	" TLB_INST 4 KByte pages, full associative" },
    824	{ 0x63, TLB_DATA_1G,		4,	" TLB_DATA 1 GByte pages, 4-way set associative" },
    825	{ 0x6b, TLB_DATA_4K,		256,	" TLB_DATA 4 KByte pages, 8-way associative" },
    826	{ 0x6c, TLB_DATA_2M_4M,		128,	" TLB_DATA 2 MByte or 4 MByte pages, 8-way associative" },
    827	{ 0x6d, TLB_DATA_1G,		16,	" TLB_DATA 1 GByte pages, fully associative" },
    828	{ 0x76, TLB_INST_2M_4M,		8,	" TLB_INST 2-MByte or 4-MByte pages, fully associative" },
    829	{ 0xb0, TLB_INST_4K,		128,	" TLB_INST 4 KByte pages, 4-way set associative" },
    830	{ 0xb1, TLB_INST_2M_4M,		4,	" TLB_INST 2M pages, 4-way, 8 entries or 4M pages, 4-way entries" },
    831	{ 0xb2, TLB_INST_4K,		64,	" TLB_INST 4KByte pages, 4-way set associative" },
    832	{ 0xb3, TLB_DATA_4K,		128,	" TLB_DATA 4 KByte pages, 4-way set associative" },
    833	{ 0xb4, TLB_DATA_4K,		256,	" TLB_DATA 4 KByte pages, 4-way associative" },
    834	{ 0xb5, TLB_INST_4K,		64,	" TLB_INST 4 KByte pages, 8-way set associative" },
    835	{ 0xb6, TLB_INST_4K,		128,	" TLB_INST 4 KByte pages, 8-way set associative" },
    836	{ 0xba, TLB_DATA_4K,		64,	" TLB_DATA 4 KByte pages, 4-way associative" },
    837	{ 0xc0, TLB_DATA_4K_4M,		8,	" TLB_DATA 4 KByte and 4 MByte pages, 4-way associative" },
    838	{ 0xc1, STLB_4K_2M,		1024,	" STLB 4 KByte and 2 MByte pages, 8-way associative" },
    839	{ 0xc2, TLB_DATA_2M_4M,		16,	" TLB_DATA 2 MByte/4MByte pages, 4-way associative" },
    840	{ 0xca, STLB_4K,		512,	" STLB 4 KByte pages, 4-way associative" },
    841	{ 0x00, 0, 0 }
    842};
    843
    844static void intel_tlb_lookup(const unsigned char desc)
    845{
    846	unsigned char k;
    847	if (desc == 0)
    848		return;
    849
    850	/* look up this descriptor in the table */
    851	for (k = 0; intel_tlb_table[k].descriptor != desc &&
    852	     intel_tlb_table[k].descriptor != 0; k++)
    853		;
    854
    855	if (intel_tlb_table[k].tlb_type == 0)
    856		return;
    857
    858	switch (intel_tlb_table[k].tlb_type) {
    859	case STLB_4K:
    860		if (tlb_lli_4k[ENTRIES] < intel_tlb_table[k].entries)
    861			tlb_lli_4k[ENTRIES] = intel_tlb_table[k].entries;
    862		if (tlb_lld_4k[ENTRIES] < intel_tlb_table[k].entries)
    863			tlb_lld_4k[ENTRIES] = intel_tlb_table[k].entries;
    864		break;
    865	case STLB_4K_2M:
    866		if (tlb_lli_4k[ENTRIES] < intel_tlb_table[k].entries)
    867			tlb_lli_4k[ENTRIES] = intel_tlb_table[k].entries;
    868		if (tlb_lld_4k[ENTRIES] < intel_tlb_table[k].entries)
    869			tlb_lld_4k[ENTRIES] = intel_tlb_table[k].entries;
    870		if (tlb_lli_2m[ENTRIES] < intel_tlb_table[k].entries)
    871			tlb_lli_2m[ENTRIES] = intel_tlb_table[k].entries;
    872		if (tlb_lld_2m[ENTRIES] < intel_tlb_table[k].entries)
    873			tlb_lld_2m[ENTRIES] = intel_tlb_table[k].entries;
    874		if (tlb_lli_4m[ENTRIES] < intel_tlb_table[k].entries)
    875			tlb_lli_4m[ENTRIES] = intel_tlb_table[k].entries;
    876		if (tlb_lld_4m[ENTRIES] < intel_tlb_table[k].entries)
    877			tlb_lld_4m[ENTRIES] = intel_tlb_table[k].entries;
    878		break;
    879	case TLB_INST_ALL:
    880		if (tlb_lli_4k[ENTRIES] < intel_tlb_table[k].entries)
    881			tlb_lli_4k[ENTRIES] = intel_tlb_table[k].entries;
    882		if (tlb_lli_2m[ENTRIES] < intel_tlb_table[k].entries)
    883			tlb_lli_2m[ENTRIES] = intel_tlb_table[k].entries;
    884		if (tlb_lli_4m[ENTRIES] < intel_tlb_table[k].entries)
    885			tlb_lli_4m[ENTRIES] = intel_tlb_table[k].entries;
    886		break;
    887	case TLB_INST_4K:
    888		if (tlb_lli_4k[ENTRIES] < intel_tlb_table[k].entries)
    889			tlb_lli_4k[ENTRIES] = intel_tlb_table[k].entries;
    890		break;
    891	case TLB_INST_4M:
    892		if (tlb_lli_4m[ENTRIES] < intel_tlb_table[k].entries)
    893			tlb_lli_4m[ENTRIES] = intel_tlb_table[k].entries;
    894		break;
    895	case TLB_INST_2M_4M:
    896		if (tlb_lli_2m[ENTRIES] < intel_tlb_table[k].entries)
    897			tlb_lli_2m[ENTRIES] = intel_tlb_table[k].entries;
    898		if (tlb_lli_4m[ENTRIES] < intel_tlb_table[k].entries)
    899			tlb_lli_4m[ENTRIES] = intel_tlb_table[k].entries;
    900		break;
    901	case TLB_DATA_4K:
    902	case TLB_DATA0_4K:
    903		if (tlb_lld_4k[ENTRIES] < intel_tlb_table[k].entries)
    904			tlb_lld_4k[ENTRIES] = intel_tlb_table[k].entries;
    905		break;
    906	case TLB_DATA_4M:
    907	case TLB_DATA0_4M:
    908		if (tlb_lld_4m[ENTRIES] < intel_tlb_table[k].entries)
    909			tlb_lld_4m[ENTRIES] = intel_tlb_table[k].entries;
    910		break;
    911	case TLB_DATA_2M_4M:
    912	case TLB_DATA0_2M_4M:
    913		if (tlb_lld_2m[ENTRIES] < intel_tlb_table[k].entries)
    914			tlb_lld_2m[ENTRIES] = intel_tlb_table[k].entries;
    915		if (tlb_lld_4m[ENTRIES] < intel_tlb_table[k].entries)
    916			tlb_lld_4m[ENTRIES] = intel_tlb_table[k].entries;
    917		break;
    918	case TLB_DATA_4K_4M:
    919		if (tlb_lld_4k[ENTRIES] < intel_tlb_table[k].entries)
    920			tlb_lld_4k[ENTRIES] = intel_tlb_table[k].entries;
    921		if (tlb_lld_4m[ENTRIES] < intel_tlb_table[k].entries)
    922			tlb_lld_4m[ENTRIES] = intel_tlb_table[k].entries;
    923		break;
    924	case TLB_DATA_1G:
    925		if (tlb_lld_1g[ENTRIES] < intel_tlb_table[k].entries)
    926			tlb_lld_1g[ENTRIES] = intel_tlb_table[k].entries;
    927		break;
    928	}
    929}
    930
    931static void intel_detect_tlb(struct cpuinfo_x86 *c)
    932{
    933	int i, j, n;
    934	unsigned int regs[4];
    935	unsigned char *desc = (unsigned char *)regs;
    936
    937	if (c->cpuid_level < 2)
    938		return;
    939
    940	/* Number of times to iterate */
    941	n = cpuid_eax(2) & 0xFF;
    942
    943	for (i = 0 ; i < n ; i++) {
    944		cpuid(2, &regs[0], &regs[1], &regs[2], &regs[3]);
    945
    946		/* If bit 31 is set, this is an unknown format */
    947		for (j = 0 ; j < 3 ; j++)
    948			if (regs[j] & (1 << 31))
    949				regs[j] = 0;
    950
    951		/* Byte 0 is level count, not a descriptor */
    952		for (j = 1 ; j < 16 ; j++)
    953			intel_tlb_lookup(desc[j]);
    954	}
    955}
    956
    957static const struct cpu_dev intel_cpu_dev = {
    958	.c_vendor	= "Intel",
    959	.c_ident	= { "GenuineIntel" },
    960#ifdef CONFIG_X86_32
    961	.legacy_models = {
    962		{ .family = 4, .model_names =
    963		  {
    964			  [0] = "486 DX-25/33",
    965			  [1] = "486 DX-50",
    966			  [2] = "486 SX",
    967			  [3] = "486 DX/2",
    968			  [4] = "486 SL",
    969			  [5] = "486 SX/2",
    970			  [7] = "486 DX/2-WB",
    971			  [8] = "486 DX/4",
    972			  [9] = "486 DX/4-WB"
    973		  }
    974		},
    975		{ .family = 5, .model_names =
    976		  {
    977			  [0] = "Pentium 60/66 A-step",
    978			  [1] = "Pentium 60/66",
    979			  [2] = "Pentium 75 - 200",
    980			  [3] = "OverDrive PODP5V83",
    981			  [4] = "Pentium MMX",
    982			  [7] = "Mobile Pentium 75 - 200",
    983			  [8] = "Mobile Pentium MMX",
    984			  [9] = "Quark SoC X1000",
    985		  }
    986		},
    987		{ .family = 6, .model_names =
    988		  {
    989			  [0] = "Pentium Pro A-step",
    990			  [1] = "Pentium Pro",
    991			  [3] = "Pentium II (Klamath)",
    992			  [4] = "Pentium II (Deschutes)",
    993			  [5] = "Pentium II (Deschutes)",
    994			  [6] = "Mobile Pentium II",
    995			  [7] = "Pentium III (Katmai)",
    996			  [8] = "Pentium III (Coppermine)",
    997			  [10] = "Pentium III (Cascades)",
    998			  [11] = "Pentium III (Tualatin)",
    999		  }
   1000		},
   1001		{ .family = 15, .model_names =
   1002		  {
   1003			  [0] = "Pentium 4 (Unknown)",
   1004			  [1] = "Pentium 4 (Willamette)",
   1005			  [2] = "Pentium 4 (Northwood)",
   1006			  [4] = "Pentium 4 (Foster)",
   1007			  [5] = "Pentium 4 (Foster)",
   1008		  }
   1009		},
   1010	},
   1011	.legacy_cache_size = intel_size_cache,
   1012#endif
   1013	.c_detect_tlb	= intel_detect_tlb,
   1014	.c_early_init   = early_init_intel,
   1015	.c_bsp_init	= bsp_init_intel,
   1016	.c_init		= init_intel,
   1017	.c_x86_vendor	= X86_VENDOR_INTEL,
   1018};
   1019
   1020cpu_dev_register(intel_cpu_dev);
   1021
   1022#undef pr_fmt
   1023#define pr_fmt(fmt) "x86/split lock detection: " fmt
   1024
   1025static const struct {
   1026	const char			*option;
   1027	enum split_lock_detect_state	state;
   1028} sld_options[] __initconst = {
   1029	{ "off",	sld_off   },
   1030	{ "warn",	sld_warn  },
   1031	{ "fatal",	sld_fatal },
   1032	{ "ratelimit:", sld_ratelimit },
   1033};
   1034
   1035static struct ratelimit_state bld_ratelimit;
   1036
   1037static DEFINE_SEMAPHORE(buslock_sem);
   1038
   1039static inline bool match_option(const char *arg, int arglen, const char *opt)
   1040{
   1041	int len = strlen(opt), ratelimit;
   1042
   1043	if (strncmp(arg, opt, len))
   1044		return false;
   1045
   1046	/*
   1047	 * Min ratelimit is 1 bus lock/sec.
   1048	 * Max ratelimit is 1000 bus locks/sec.
   1049	 */
   1050	if (sscanf(arg, "ratelimit:%d", &ratelimit) == 1 &&
   1051	    ratelimit > 0 && ratelimit <= 1000) {
   1052		ratelimit_state_init(&bld_ratelimit, HZ, ratelimit);
   1053		ratelimit_set_flags(&bld_ratelimit, RATELIMIT_MSG_ON_RELEASE);
   1054		return true;
   1055	}
   1056
   1057	return len == arglen;
   1058}
   1059
   1060static bool split_lock_verify_msr(bool on)
   1061{
   1062	u64 ctrl, tmp;
   1063
   1064	if (rdmsrl_safe(MSR_TEST_CTRL, &ctrl))
   1065		return false;
   1066	if (on)
   1067		ctrl |= MSR_TEST_CTRL_SPLIT_LOCK_DETECT;
   1068	else
   1069		ctrl &= ~MSR_TEST_CTRL_SPLIT_LOCK_DETECT;
   1070	if (wrmsrl_safe(MSR_TEST_CTRL, ctrl))
   1071		return false;
   1072	rdmsrl(MSR_TEST_CTRL, tmp);
   1073	return ctrl == tmp;
   1074}
   1075
   1076static void __init sld_state_setup(void)
   1077{
   1078	enum split_lock_detect_state state = sld_warn;
   1079	char arg[20];
   1080	int i, ret;
   1081
   1082	if (!boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT) &&
   1083	    !boot_cpu_has(X86_FEATURE_BUS_LOCK_DETECT))
   1084		return;
   1085
   1086	ret = cmdline_find_option(boot_command_line, "split_lock_detect",
   1087				  arg, sizeof(arg));
   1088	if (ret >= 0) {
   1089		for (i = 0; i < ARRAY_SIZE(sld_options); i++) {
   1090			if (match_option(arg, ret, sld_options[i].option)) {
   1091				state = sld_options[i].state;
   1092				break;
   1093			}
   1094		}
   1095	}
   1096	sld_state = state;
   1097}
   1098
   1099static void __init __split_lock_setup(void)
   1100{
   1101	if (!split_lock_verify_msr(false)) {
   1102		pr_info("MSR access failed: Disabled\n");
   1103		return;
   1104	}
   1105
   1106	rdmsrl(MSR_TEST_CTRL, msr_test_ctrl_cache);
   1107
   1108	if (!split_lock_verify_msr(true)) {
   1109		pr_info("MSR access failed: Disabled\n");
   1110		return;
   1111	}
   1112
   1113	/* Restore the MSR to its cached value. */
   1114	wrmsrl(MSR_TEST_CTRL, msr_test_ctrl_cache);
   1115
   1116	setup_force_cpu_cap(X86_FEATURE_SPLIT_LOCK_DETECT);
   1117}
   1118
   1119/*
   1120 * MSR_TEST_CTRL is per core, but we treat it like a per CPU MSR. Locking
   1121 * is not implemented as one thread could undo the setting of the other
   1122 * thread immediately after dropping the lock anyway.
   1123 */
   1124static void sld_update_msr(bool on)
   1125{
   1126	u64 test_ctrl_val = msr_test_ctrl_cache;
   1127
   1128	if (on)
   1129		test_ctrl_val |= MSR_TEST_CTRL_SPLIT_LOCK_DETECT;
   1130
   1131	wrmsrl(MSR_TEST_CTRL, test_ctrl_val);
   1132}
   1133
   1134static void split_lock_init(void)
   1135{
   1136	/*
   1137	 * #DB for bus lock handles ratelimit and #AC for split lock is
   1138	 * disabled.
   1139	 */
   1140	if (sld_state == sld_ratelimit) {
   1141		split_lock_verify_msr(false);
   1142		return;
   1143	}
   1144
   1145	if (cpu_model_supports_sld)
   1146		split_lock_verify_msr(sld_state != sld_off);
   1147}
   1148
   1149static void __split_lock_reenable(struct work_struct *work)
   1150{
   1151	sld_update_msr(true);
   1152	up(&buslock_sem);
   1153}
   1154
   1155/*
   1156 * If a CPU goes offline with pending delayed work to re-enable split lock
   1157 * detection then the delayed work will be executed on some other CPU. That
   1158 * handles releasing the buslock_sem, but because it executes on a
   1159 * different CPU probably won't re-enable split lock detection. This is a
   1160 * problem on HT systems since the sibling CPU on the same core may then be
   1161 * left running with split lock detection disabled.
   1162 *
   1163 * Unconditionally re-enable detection here.
   1164 */
   1165static int splitlock_cpu_offline(unsigned int cpu)
   1166{
   1167	sld_update_msr(true);
   1168
   1169	return 0;
   1170}
   1171
   1172static DECLARE_DELAYED_WORK(split_lock_reenable, __split_lock_reenable);
   1173
   1174static void split_lock_warn(unsigned long ip)
   1175{
   1176	int cpu;
   1177
   1178	if (!current->reported_split_lock)
   1179		pr_warn_ratelimited("#AC: %s/%d took a split_lock trap at address: 0x%lx\n",
   1180				    current->comm, current->pid, ip);
   1181	current->reported_split_lock = 1;
   1182
   1183	/* misery factor #1, sleep 10ms before trying to execute split lock */
   1184	if (msleep_interruptible(10) > 0)
   1185		return;
   1186	/* Misery factor #2, only allow one buslocked disabled core at a time */
   1187	if (down_interruptible(&buslock_sem) == -EINTR)
   1188		return;
   1189	cpu = get_cpu();
   1190	schedule_delayed_work_on(cpu, &split_lock_reenable, 2);
   1191
   1192	/* Disable split lock detection on this CPU to make progress */
   1193	sld_update_msr(false);
   1194	put_cpu();
   1195}
   1196
   1197bool handle_guest_split_lock(unsigned long ip)
   1198{
   1199	if (sld_state == sld_warn) {
   1200		split_lock_warn(ip);
   1201		return true;
   1202	}
   1203
   1204	pr_warn_once("#AC: %s/%d %s split_lock trap at address: 0x%lx\n",
   1205		     current->comm, current->pid,
   1206		     sld_state == sld_fatal ? "fatal" : "bogus", ip);
   1207
   1208	current->thread.error_code = 0;
   1209	current->thread.trap_nr = X86_TRAP_AC;
   1210	force_sig_fault(SIGBUS, BUS_ADRALN, NULL);
   1211	return false;
   1212}
   1213EXPORT_SYMBOL_GPL(handle_guest_split_lock);
   1214
   1215static void bus_lock_init(void)
   1216{
   1217	u64 val;
   1218
   1219	/*
   1220	 * Warn and fatal are handled by #AC for split lock if #AC for
   1221	 * split lock is supported.
   1222	 */
   1223	if (!boot_cpu_has(X86_FEATURE_BUS_LOCK_DETECT) ||
   1224	    (boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT) &&
   1225	    (sld_state == sld_warn || sld_state == sld_fatal)) ||
   1226	    sld_state == sld_off)
   1227		return;
   1228
   1229	/*
   1230	 * Enable #DB for bus lock. All bus locks are handled in #DB except
   1231	 * split locks are handled in #AC in the fatal case.
   1232	 */
   1233	rdmsrl(MSR_IA32_DEBUGCTLMSR, val);
   1234	val |= DEBUGCTLMSR_BUS_LOCK_DETECT;
   1235	wrmsrl(MSR_IA32_DEBUGCTLMSR, val);
   1236}
   1237
   1238bool handle_user_split_lock(struct pt_regs *regs, long error_code)
   1239{
   1240	if ((regs->flags & X86_EFLAGS_AC) || sld_state == sld_fatal)
   1241		return false;
   1242	split_lock_warn(regs->ip);
   1243	return true;
   1244}
   1245
   1246void handle_bus_lock(struct pt_regs *regs)
   1247{
   1248	switch (sld_state) {
   1249	case sld_off:
   1250		break;
   1251	case sld_ratelimit:
   1252		/* Enforce no more than bld_ratelimit bus locks/sec. */
   1253		while (!__ratelimit(&bld_ratelimit))
   1254			msleep(20);
   1255		/* Warn on the bus lock. */
   1256		fallthrough;
   1257	case sld_warn:
   1258		pr_warn_ratelimited("#DB: %s/%d took a bus_lock trap at address: 0x%lx\n",
   1259				    current->comm, current->pid, regs->ip);
   1260		break;
   1261	case sld_fatal:
   1262		force_sig_fault(SIGBUS, BUS_ADRALN, NULL);
   1263		break;
   1264	}
   1265}
   1266
   1267/*
   1268 * Bits in the IA32_CORE_CAPABILITIES are not architectural, so they should
   1269 * only be trusted if it is confirmed that a CPU model implements a
   1270 * specific feature at a particular bit position.
   1271 *
   1272 * The possible driver data field values:
   1273 *
   1274 * - 0: CPU models that are known to have the per-core split-lock detection
   1275 *	feature even though they do not enumerate IA32_CORE_CAPABILITIES.
   1276 *
   1277 * - 1: CPU models which may enumerate IA32_CORE_CAPABILITIES and if so use
   1278 *      bit 5 to enumerate the per-core split-lock detection feature.
   1279 */
   1280static const struct x86_cpu_id split_lock_cpu_ids[] __initconst = {
   1281	X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_X,		0),
   1282	X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_L,		0),
   1283	X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_D,		0),
   1284	X86_MATCH_INTEL_FAM6_MODEL(ATOM_TREMONT,	1),
   1285	X86_MATCH_INTEL_FAM6_MODEL(ATOM_TREMONT_D,	1),
   1286	X86_MATCH_INTEL_FAM6_MODEL(ATOM_TREMONT_L,	1),
   1287	X86_MATCH_INTEL_FAM6_MODEL(TIGERLAKE_L,		1),
   1288	X86_MATCH_INTEL_FAM6_MODEL(TIGERLAKE,		1),
   1289	X86_MATCH_INTEL_FAM6_MODEL(SAPPHIRERAPIDS_X,	1),
   1290	X86_MATCH_INTEL_FAM6_MODEL(ALDERLAKE,		1),
   1291	X86_MATCH_INTEL_FAM6_MODEL(ALDERLAKE_L,		1),
   1292	X86_MATCH_INTEL_FAM6_MODEL(RAPTORLAKE,		1),
   1293	{}
   1294};
   1295
   1296static void __init split_lock_setup(struct cpuinfo_x86 *c)
   1297{
   1298	const struct x86_cpu_id *m;
   1299	u64 ia32_core_caps;
   1300
   1301	if (boot_cpu_has(X86_FEATURE_HYPERVISOR))
   1302		return;
   1303
   1304	m = x86_match_cpu(split_lock_cpu_ids);
   1305	if (!m)
   1306		return;
   1307
   1308	switch (m->driver_data) {
   1309	case 0:
   1310		break;
   1311	case 1:
   1312		if (!cpu_has(c, X86_FEATURE_CORE_CAPABILITIES))
   1313			return;
   1314		rdmsrl(MSR_IA32_CORE_CAPS, ia32_core_caps);
   1315		if (!(ia32_core_caps & MSR_IA32_CORE_CAPS_SPLIT_LOCK_DETECT))
   1316			return;
   1317		break;
   1318	default:
   1319		return;
   1320	}
   1321
   1322	cpu_model_supports_sld = true;
   1323	__split_lock_setup();
   1324}
   1325
   1326static void sld_state_show(void)
   1327{
   1328	if (!boot_cpu_has(X86_FEATURE_BUS_LOCK_DETECT) &&
   1329	    !boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT))
   1330		return;
   1331
   1332	switch (sld_state) {
   1333	case sld_off:
   1334		pr_info("disabled\n");
   1335		break;
   1336	case sld_warn:
   1337		if (boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT)) {
   1338			pr_info("#AC: crashing the kernel on kernel split_locks and warning on user-space split_locks\n");
   1339			if (cpuhp_setup_state(CPUHP_AP_ONLINE_DYN,
   1340					      "x86/splitlock", NULL, splitlock_cpu_offline) < 0)
   1341				pr_warn("No splitlock CPU offline handler\n");
   1342		} else if (boot_cpu_has(X86_FEATURE_BUS_LOCK_DETECT)) {
   1343			pr_info("#DB: warning on user-space bus_locks\n");
   1344		}
   1345		break;
   1346	case sld_fatal:
   1347		if (boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT)) {
   1348			pr_info("#AC: crashing the kernel on kernel split_locks and sending SIGBUS on user-space split_locks\n");
   1349		} else if (boot_cpu_has(X86_FEATURE_BUS_LOCK_DETECT)) {
   1350			pr_info("#DB: sending SIGBUS on user-space bus_locks%s\n",
   1351				boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT) ?
   1352				" from non-WB" : "");
   1353		}
   1354		break;
   1355	case sld_ratelimit:
   1356		if (boot_cpu_has(X86_FEATURE_BUS_LOCK_DETECT))
   1357			pr_info("#DB: setting system wide bus lock rate limit to %u/sec\n", bld_ratelimit.burst);
   1358		break;
   1359	}
   1360}
   1361
   1362void __init sld_setup(struct cpuinfo_x86 *c)
   1363{
   1364	split_lock_setup(c);
   1365	sld_state_setup();
   1366	sld_state_show();
   1367}
   1368
   1369#define X86_HYBRID_CPU_TYPE_ID_SHIFT	24
   1370
   1371/**
   1372 * get_this_hybrid_cpu_type() - Get the type of this hybrid CPU
   1373 *
   1374 * Returns the CPU type [31:24] (i.e., Atom or Core) of a CPU in
   1375 * a hybrid processor. If the processor is not hybrid, returns 0.
   1376 */
   1377u8 get_this_hybrid_cpu_type(void)
   1378{
   1379	if (!cpu_feature_enabled(X86_FEATURE_HYBRID_CPU))
   1380		return 0;
   1381
   1382	return cpuid_eax(0x0000001a) >> X86_HYBRID_CPU_TYPE_ID_SHIFT;
   1383}