amd.c (22348B)
1// SPDX-License-Identifier: GPL-2.0-only 2/* 3 * AMD CPU Microcode Update Driver for Linux 4 * 5 * This driver allows to upgrade microcode on F10h AMD 6 * CPUs and later. 7 * 8 * Copyright (C) 2008-2011 Advanced Micro Devices Inc. 9 * 2013-2018 Borislav Petkov <bp@alien8.de> 10 * 11 * Author: Peter Oruba <peter.oruba@amd.com> 12 * 13 * Based on work by: 14 * Tigran Aivazian <aivazian.tigran@gmail.com> 15 * 16 * early loader: 17 * Copyright (C) 2013 Advanced Micro Devices, Inc. 18 * 19 * Author: Jacob Shin <jacob.shin@amd.com> 20 * Fixes: Borislav Petkov <bp@suse.de> 21 */ 22#define pr_fmt(fmt) "microcode: " fmt 23 24#include <linux/earlycpio.h> 25#include <linux/firmware.h> 26#include <linux/uaccess.h> 27#include <linux/vmalloc.h> 28#include <linux/initrd.h> 29#include <linux/kernel.h> 30#include <linux/pci.h> 31 32#include <asm/microcode_amd.h> 33#include <asm/microcode.h> 34#include <asm/processor.h> 35#include <asm/setup.h> 36#include <asm/cpu.h> 37#include <asm/msr.h> 38 39static struct equiv_cpu_table { 40 unsigned int num_entries; 41 struct equiv_cpu_entry *entry; 42} equiv_table; 43 44/* 45 * This points to the current valid container of microcode patches which we will 46 * save from the initrd/builtin before jettisoning its contents. @mc is the 47 * microcode patch we found to match. 48 */ 49struct cont_desc { 50 struct microcode_amd *mc; 51 u32 cpuid_1_eax; 52 u32 psize; 53 u8 *data; 54 size_t size; 55}; 56 57static u32 ucode_new_rev; 58static u8 amd_ucode_patch[PATCH_MAX_SIZE]; 59 60/* 61 * Microcode patch container file is prepended to the initrd in cpio 62 * format. See Documentation/x86/microcode.rst 63 */ 64static const char 65ucode_path[] __maybe_unused = "kernel/x86/microcode/AuthenticAMD.bin"; 66 67static u16 find_equiv_id(struct equiv_cpu_table *et, u32 sig) 68{ 69 unsigned int i; 70 71 if (!et || !et->num_entries) 72 return 0; 73 74 for (i = 0; i < et->num_entries; i++) { 75 struct equiv_cpu_entry *e = &et->entry[i]; 76 77 if (sig == e->installed_cpu) 78 return e->equiv_cpu; 79 80 e++; 81 } 82 return 0; 83} 84 85/* 86 * Check whether there is a valid microcode container file at the beginning 87 * of @buf of size @buf_size. Set @early to use this function in the early path. 88 */ 89static bool verify_container(const u8 *buf, size_t buf_size, bool early) 90{ 91 u32 cont_magic; 92 93 if (buf_size <= CONTAINER_HDR_SZ) { 94 if (!early) 95 pr_debug("Truncated microcode container header.\n"); 96 97 return false; 98 } 99 100 cont_magic = *(const u32 *)buf; 101 if (cont_magic != UCODE_MAGIC) { 102 if (!early) 103 pr_debug("Invalid magic value (0x%08x).\n", cont_magic); 104 105 return false; 106 } 107 108 return true; 109} 110 111/* 112 * Check whether there is a valid, non-truncated CPU equivalence table at the 113 * beginning of @buf of size @buf_size. Set @early to use this function in the 114 * early path. 115 */ 116static bool verify_equivalence_table(const u8 *buf, size_t buf_size, bool early) 117{ 118 const u32 *hdr = (const u32 *)buf; 119 u32 cont_type, equiv_tbl_len; 120 121 if (!verify_container(buf, buf_size, early)) 122 return false; 123 124 cont_type = hdr[1]; 125 if (cont_type != UCODE_EQUIV_CPU_TABLE_TYPE) { 126 if (!early) 127 pr_debug("Wrong microcode container equivalence table type: %u.\n", 128 cont_type); 129 130 return false; 131 } 132 133 buf_size -= CONTAINER_HDR_SZ; 134 135 equiv_tbl_len = hdr[2]; 136 if (equiv_tbl_len < sizeof(struct equiv_cpu_entry) || 137 buf_size < equiv_tbl_len) { 138 if (!early) 139 pr_debug("Truncated equivalence table.\n"); 140 141 return false; 142 } 143 144 return true; 145} 146 147/* 148 * Check whether there is a valid, non-truncated microcode patch section at the 149 * beginning of @buf of size @buf_size. Set @early to use this function in the 150 * early path. 151 * 152 * On success, @sh_psize returns the patch size according to the section header, 153 * to the caller. 154 */ 155static bool 156__verify_patch_section(const u8 *buf, size_t buf_size, u32 *sh_psize, bool early) 157{ 158 u32 p_type, p_size; 159 const u32 *hdr; 160 161 if (buf_size < SECTION_HDR_SIZE) { 162 if (!early) 163 pr_debug("Truncated patch section.\n"); 164 165 return false; 166 } 167 168 hdr = (const u32 *)buf; 169 p_type = hdr[0]; 170 p_size = hdr[1]; 171 172 if (p_type != UCODE_UCODE_TYPE) { 173 if (!early) 174 pr_debug("Invalid type field (0x%x) in container file section header.\n", 175 p_type); 176 177 return false; 178 } 179 180 if (p_size < sizeof(struct microcode_header_amd)) { 181 if (!early) 182 pr_debug("Patch of size %u too short.\n", p_size); 183 184 return false; 185 } 186 187 *sh_psize = p_size; 188 189 return true; 190} 191 192/* 193 * Check whether the passed remaining file @buf_size is large enough to contain 194 * a patch of the indicated @sh_psize (and also whether this size does not 195 * exceed the per-family maximum). @sh_psize is the size read from the section 196 * header. 197 */ 198static unsigned int __verify_patch_size(u8 family, u32 sh_psize, size_t buf_size) 199{ 200 u32 max_size; 201 202 if (family >= 0x15) 203 return min_t(u32, sh_psize, buf_size); 204 205#define F1XH_MPB_MAX_SIZE 2048 206#define F14H_MPB_MAX_SIZE 1824 207 208 switch (family) { 209 case 0x10 ... 0x12: 210 max_size = F1XH_MPB_MAX_SIZE; 211 break; 212 case 0x14: 213 max_size = F14H_MPB_MAX_SIZE; 214 break; 215 default: 216 WARN(1, "%s: WTF family: 0x%x\n", __func__, family); 217 return 0; 218 } 219 220 if (sh_psize > min_t(u32, buf_size, max_size)) 221 return 0; 222 223 return sh_psize; 224} 225 226/* 227 * Verify the patch in @buf. 228 * 229 * Returns: 230 * negative: on error 231 * positive: patch is not for this family, skip it 232 * 0: success 233 */ 234static int 235verify_patch(u8 family, const u8 *buf, size_t buf_size, u32 *patch_size, bool early) 236{ 237 struct microcode_header_amd *mc_hdr; 238 unsigned int ret; 239 u32 sh_psize; 240 u16 proc_id; 241 u8 patch_fam; 242 243 if (!__verify_patch_section(buf, buf_size, &sh_psize, early)) 244 return -1; 245 246 /* 247 * The section header length is not included in this indicated size 248 * but is present in the leftover file length so we need to subtract 249 * it before passing this value to the function below. 250 */ 251 buf_size -= SECTION_HDR_SIZE; 252 253 /* 254 * Check if the remaining buffer is big enough to contain a patch of 255 * size sh_psize, as the section claims. 256 */ 257 if (buf_size < sh_psize) { 258 if (!early) 259 pr_debug("Patch of size %u truncated.\n", sh_psize); 260 261 return -1; 262 } 263 264 ret = __verify_patch_size(family, sh_psize, buf_size); 265 if (!ret) { 266 if (!early) 267 pr_debug("Per-family patch size mismatch.\n"); 268 return -1; 269 } 270 271 *patch_size = sh_psize; 272 273 mc_hdr = (struct microcode_header_amd *)(buf + SECTION_HDR_SIZE); 274 if (mc_hdr->nb_dev_id || mc_hdr->sb_dev_id) { 275 if (!early) 276 pr_err("Patch-ID 0x%08x: chipset-specific code unsupported.\n", mc_hdr->patch_id); 277 return -1; 278 } 279 280 proc_id = mc_hdr->processor_rev_id; 281 patch_fam = 0xf + (proc_id >> 12); 282 if (patch_fam != family) 283 return 1; 284 285 return 0; 286} 287 288/* 289 * This scans the ucode blob for the proper container as we can have multiple 290 * containers glued together. Returns the equivalence ID from the equivalence 291 * table or 0 if none found. 292 * Returns the amount of bytes consumed while scanning. @desc contains all the 293 * data we're going to use in later stages of the application. 294 */ 295static size_t parse_container(u8 *ucode, size_t size, struct cont_desc *desc) 296{ 297 struct equiv_cpu_table table; 298 size_t orig_size = size; 299 u32 *hdr = (u32 *)ucode; 300 u16 eq_id; 301 u8 *buf; 302 303 if (!verify_equivalence_table(ucode, size, true)) 304 return 0; 305 306 buf = ucode; 307 308 table.entry = (struct equiv_cpu_entry *)(buf + CONTAINER_HDR_SZ); 309 table.num_entries = hdr[2] / sizeof(struct equiv_cpu_entry); 310 311 /* 312 * Find the equivalence ID of our CPU in this table. Even if this table 313 * doesn't contain a patch for the CPU, scan through the whole container 314 * so that it can be skipped in case there are other containers appended. 315 */ 316 eq_id = find_equiv_id(&table, desc->cpuid_1_eax); 317 318 buf += hdr[2] + CONTAINER_HDR_SZ; 319 size -= hdr[2] + CONTAINER_HDR_SZ; 320 321 /* 322 * Scan through the rest of the container to find where it ends. We do 323 * some basic sanity-checking too. 324 */ 325 while (size > 0) { 326 struct microcode_amd *mc; 327 u32 patch_size; 328 int ret; 329 330 ret = verify_patch(x86_family(desc->cpuid_1_eax), buf, size, &patch_size, true); 331 if (ret < 0) { 332 /* 333 * Patch verification failed, skip to the next 334 * container, if there's one: 335 */ 336 goto out; 337 } else if (ret > 0) { 338 goto skip; 339 } 340 341 mc = (struct microcode_amd *)(buf + SECTION_HDR_SIZE); 342 if (eq_id == mc->hdr.processor_rev_id) { 343 desc->psize = patch_size; 344 desc->mc = mc; 345 } 346 347skip: 348 /* Skip patch section header too: */ 349 buf += patch_size + SECTION_HDR_SIZE; 350 size -= patch_size + SECTION_HDR_SIZE; 351 } 352 353 /* 354 * If we have found a patch (desc->mc), it means we're looking at the 355 * container which has a patch for this CPU so return 0 to mean, @ucode 356 * already points to the proper container. Otherwise, we return the size 357 * we scanned so that we can advance to the next container in the 358 * buffer. 359 */ 360 if (desc->mc) { 361 desc->data = ucode; 362 desc->size = orig_size - size; 363 364 return 0; 365 } 366 367out: 368 return orig_size - size; 369} 370 371/* 372 * Scan the ucode blob for the proper container as we can have multiple 373 * containers glued together. 374 */ 375static void scan_containers(u8 *ucode, size_t size, struct cont_desc *desc) 376{ 377 while (size) { 378 size_t s = parse_container(ucode, size, desc); 379 if (!s) 380 return; 381 382 /* catch wraparound */ 383 if (size >= s) { 384 ucode += s; 385 size -= s; 386 } else { 387 return; 388 } 389 } 390} 391 392static int __apply_microcode_amd(struct microcode_amd *mc) 393{ 394 u32 rev, dummy; 395 396 native_wrmsrl(MSR_AMD64_PATCH_LOADER, (u64)(long)&mc->hdr.data_code); 397 398 /* verify patch application was successful */ 399 native_rdmsr(MSR_AMD64_PATCH_LEVEL, rev, dummy); 400 if (rev != mc->hdr.patch_id) 401 return -1; 402 403 return 0; 404} 405 406/* 407 * Early load occurs before we can vmalloc(). So we look for the microcode 408 * patch container file in initrd, traverse equivalent cpu table, look for a 409 * matching microcode patch, and update, all in initrd memory in place. 410 * When vmalloc() is available for use later -- on 64-bit during first AP load, 411 * and on 32-bit during save_microcode_in_initrd_amd() -- we can call 412 * load_microcode_amd() to save equivalent cpu table and microcode patches in 413 * kernel heap memory. 414 * 415 * Returns true if container found (sets @desc), false otherwise. 416 */ 417static bool 418apply_microcode_early_amd(u32 cpuid_1_eax, void *ucode, size_t size, bool save_patch) 419{ 420 struct cont_desc desc = { 0 }; 421 u8 (*patch)[PATCH_MAX_SIZE]; 422 struct microcode_amd *mc; 423 u32 rev, dummy, *new_rev; 424 bool ret = false; 425 426#ifdef CONFIG_X86_32 427 new_rev = (u32 *)__pa_nodebug(&ucode_new_rev); 428 patch = (u8 (*)[PATCH_MAX_SIZE])__pa_nodebug(&amd_ucode_patch); 429#else 430 new_rev = &ucode_new_rev; 431 patch = &amd_ucode_patch; 432#endif 433 434 desc.cpuid_1_eax = cpuid_1_eax; 435 436 scan_containers(ucode, size, &desc); 437 438 mc = desc.mc; 439 if (!mc) 440 return ret; 441 442 native_rdmsr(MSR_AMD64_PATCH_LEVEL, rev, dummy); 443 if (rev >= mc->hdr.patch_id) 444 return ret; 445 446 if (!__apply_microcode_amd(mc)) { 447 *new_rev = mc->hdr.patch_id; 448 ret = true; 449 450 if (save_patch) 451 memcpy(patch, mc, min_t(u32, desc.psize, PATCH_MAX_SIZE)); 452 } 453 454 return ret; 455} 456 457static bool get_builtin_microcode(struct cpio_data *cp, unsigned int family) 458{ 459 char fw_name[36] = "amd-ucode/microcode_amd.bin"; 460 struct firmware fw; 461 462 if (IS_ENABLED(CONFIG_X86_32)) 463 return false; 464 465 if (family >= 0x15) 466 snprintf(fw_name, sizeof(fw_name), 467 "amd-ucode/microcode_amd_fam%.2xh.bin", family); 468 469 if (firmware_request_builtin(&fw, fw_name)) { 470 cp->size = fw.size; 471 cp->data = (void *)fw.data; 472 return true; 473 } 474 475 return false; 476} 477 478static void __load_ucode_amd(unsigned int cpuid_1_eax, struct cpio_data *ret) 479{ 480 struct ucode_cpu_info *uci; 481 struct cpio_data cp; 482 const char *path; 483 bool use_pa; 484 485 if (IS_ENABLED(CONFIG_X86_32)) { 486 uci = (struct ucode_cpu_info *)__pa_nodebug(ucode_cpu_info); 487 path = (const char *)__pa_nodebug(ucode_path); 488 use_pa = true; 489 } else { 490 uci = ucode_cpu_info; 491 path = ucode_path; 492 use_pa = false; 493 } 494 495 if (!get_builtin_microcode(&cp, x86_family(cpuid_1_eax))) 496 cp = find_microcode_in_initrd(path, use_pa); 497 498 /* Needed in load_microcode_amd() */ 499 uci->cpu_sig.sig = cpuid_1_eax; 500 501 *ret = cp; 502} 503 504void __init load_ucode_amd_bsp(unsigned int cpuid_1_eax) 505{ 506 struct cpio_data cp = { }; 507 508 __load_ucode_amd(cpuid_1_eax, &cp); 509 if (!(cp.data && cp.size)) 510 return; 511 512 apply_microcode_early_amd(cpuid_1_eax, cp.data, cp.size, true); 513} 514 515void load_ucode_amd_ap(unsigned int cpuid_1_eax) 516{ 517 struct microcode_amd *mc; 518 struct cpio_data cp; 519 u32 *new_rev, rev, dummy; 520 521 if (IS_ENABLED(CONFIG_X86_32)) { 522 mc = (struct microcode_amd *)__pa_nodebug(amd_ucode_patch); 523 new_rev = (u32 *)__pa_nodebug(&ucode_new_rev); 524 } else { 525 mc = (struct microcode_amd *)amd_ucode_patch; 526 new_rev = &ucode_new_rev; 527 } 528 529 native_rdmsr(MSR_AMD64_PATCH_LEVEL, rev, dummy); 530 531 /* Check whether we have saved a new patch already: */ 532 if (*new_rev && rev < mc->hdr.patch_id) { 533 if (!__apply_microcode_amd(mc)) { 534 *new_rev = mc->hdr.patch_id; 535 return; 536 } 537 } 538 539 __load_ucode_amd(cpuid_1_eax, &cp); 540 if (!(cp.data && cp.size)) 541 return; 542 543 apply_microcode_early_amd(cpuid_1_eax, cp.data, cp.size, false); 544} 545 546static enum ucode_state 547load_microcode_amd(bool save, u8 family, const u8 *data, size_t size); 548 549int __init save_microcode_in_initrd_amd(unsigned int cpuid_1_eax) 550{ 551 struct cont_desc desc = { 0 }; 552 enum ucode_state ret; 553 struct cpio_data cp; 554 555 cp = find_microcode_in_initrd(ucode_path, false); 556 if (!(cp.data && cp.size)) 557 return -EINVAL; 558 559 desc.cpuid_1_eax = cpuid_1_eax; 560 561 scan_containers(cp.data, cp.size, &desc); 562 if (!desc.mc) 563 return -EINVAL; 564 565 ret = load_microcode_amd(true, x86_family(cpuid_1_eax), desc.data, desc.size); 566 if (ret > UCODE_UPDATED) 567 return -EINVAL; 568 569 return 0; 570} 571 572void reload_ucode_amd(void) 573{ 574 struct microcode_amd *mc; 575 u32 rev, dummy __always_unused; 576 577 mc = (struct microcode_amd *)amd_ucode_patch; 578 579 rdmsr(MSR_AMD64_PATCH_LEVEL, rev, dummy); 580 581 if (rev < mc->hdr.patch_id) { 582 if (!__apply_microcode_amd(mc)) { 583 ucode_new_rev = mc->hdr.patch_id; 584 pr_info("reload patch_level=0x%08x\n", ucode_new_rev); 585 } 586 } 587} 588static u16 __find_equiv_id(unsigned int cpu) 589{ 590 struct ucode_cpu_info *uci = ucode_cpu_info + cpu; 591 return find_equiv_id(&equiv_table, uci->cpu_sig.sig); 592} 593 594/* 595 * a small, trivial cache of per-family ucode patches 596 */ 597static struct ucode_patch *cache_find_patch(u16 equiv_cpu) 598{ 599 struct ucode_patch *p; 600 601 list_for_each_entry(p, µcode_cache, plist) 602 if (p->equiv_cpu == equiv_cpu) 603 return p; 604 return NULL; 605} 606 607static void update_cache(struct ucode_patch *new_patch) 608{ 609 struct ucode_patch *p; 610 611 list_for_each_entry(p, µcode_cache, plist) { 612 if (p->equiv_cpu == new_patch->equiv_cpu) { 613 if (p->patch_id >= new_patch->patch_id) { 614 /* we already have the latest patch */ 615 kfree(new_patch->data); 616 kfree(new_patch); 617 return; 618 } 619 620 list_replace(&p->plist, &new_patch->plist); 621 kfree(p->data); 622 kfree(p); 623 return; 624 } 625 } 626 /* no patch found, add it */ 627 list_add_tail(&new_patch->plist, µcode_cache); 628} 629 630static void free_cache(void) 631{ 632 struct ucode_patch *p, *tmp; 633 634 list_for_each_entry_safe(p, tmp, µcode_cache, plist) { 635 __list_del(p->plist.prev, p->plist.next); 636 kfree(p->data); 637 kfree(p); 638 } 639} 640 641static struct ucode_patch *find_patch(unsigned int cpu) 642{ 643 u16 equiv_id; 644 645 equiv_id = __find_equiv_id(cpu); 646 if (!equiv_id) 647 return NULL; 648 649 return cache_find_patch(equiv_id); 650} 651 652static int collect_cpu_info_amd(int cpu, struct cpu_signature *csig) 653{ 654 struct cpuinfo_x86 *c = &cpu_data(cpu); 655 struct ucode_cpu_info *uci = ucode_cpu_info + cpu; 656 struct ucode_patch *p; 657 658 csig->sig = cpuid_eax(0x00000001); 659 csig->rev = c->microcode; 660 661 /* 662 * a patch could have been loaded early, set uci->mc so that 663 * mc_bp_resume() can call apply_microcode() 664 */ 665 p = find_patch(cpu); 666 if (p && (p->patch_id == csig->rev)) 667 uci->mc = p->data; 668 669 pr_info("CPU%d: patch_level=0x%08x\n", cpu, csig->rev); 670 671 return 0; 672} 673 674static enum ucode_state apply_microcode_amd(int cpu) 675{ 676 struct cpuinfo_x86 *c = &cpu_data(cpu); 677 struct microcode_amd *mc_amd; 678 struct ucode_cpu_info *uci; 679 struct ucode_patch *p; 680 enum ucode_state ret; 681 u32 rev, dummy __always_unused; 682 683 BUG_ON(raw_smp_processor_id() != cpu); 684 685 uci = ucode_cpu_info + cpu; 686 687 p = find_patch(cpu); 688 if (!p) 689 return UCODE_NFOUND; 690 691 mc_amd = p->data; 692 uci->mc = p->data; 693 694 rdmsr(MSR_AMD64_PATCH_LEVEL, rev, dummy); 695 696 /* need to apply patch? */ 697 if (rev >= mc_amd->hdr.patch_id) { 698 ret = UCODE_OK; 699 goto out; 700 } 701 702 if (__apply_microcode_amd(mc_amd)) { 703 pr_err("CPU%d: update failed for patch_level=0x%08x\n", 704 cpu, mc_amd->hdr.patch_id); 705 return UCODE_ERROR; 706 } 707 708 rev = mc_amd->hdr.patch_id; 709 ret = UCODE_UPDATED; 710 711 pr_info("CPU%d: new patch_level=0x%08x\n", cpu, rev); 712 713out: 714 uci->cpu_sig.rev = rev; 715 c->microcode = rev; 716 717 /* Update boot_cpu_data's revision too, if we're on the BSP: */ 718 if (c->cpu_index == boot_cpu_data.cpu_index) 719 boot_cpu_data.microcode = rev; 720 721 return ret; 722} 723 724static size_t install_equiv_cpu_table(const u8 *buf, size_t buf_size) 725{ 726 u32 equiv_tbl_len; 727 const u32 *hdr; 728 729 if (!verify_equivalence_table(buf, buf_size, false)) 730 return 0; 731 732 hdr = (const u32 *)buf; 733 equiv_tbl_len = hdr[2]; 734 735 equiv_table.entry = vmalloc(equiv_tbl_len); 736 if (!equiv_table.entry) { 737 pr_err("failed to allocate equivalent CPU table\n"); 738 return 0; 739 } 740 741 memcpy(equiv_table.entry, buf + CONTAINER_HDR_SZ, equiv_tbl_len); 742 equiv_table.num_entries = equiv_tbl_len / sizeof(struct equiv_cpu_entry); 743 744 /* add header length */ 745 return equiv_tbl_len + CONTAINER_HDR_SZ; 746} 747 748static void free_equiv_cpu_table(void) 749{ 750 vfree(equiv_table.entry); 751 memset(&equiv_table, 0, sizeof(equiv_table)); 752} 753 754static void cleanup(void) 755{ 756 free_equiv_cpu_table(); 757 free_cache(); 758} 759 760/* 761 * Return a non-negative value even if some of the checks failed so that 762 * we can skip over the next patch. If we return a negative value, we 763 * signal a grave error like a memory allocation has failed and the 764 * driver cannot continue functioning normally. In such cases, we tear 765 * down everything we've used up so far and exit. 766 */ 767static int verify_and_add_patch(u8 family, u8 *fw, unsigned int leftover, 768 unsigned int *patch_size) 769{ 770 struct microcode_header_amd *mc_hdr; 771 struct ucode_patch *patch; 772 u16 proc_id; 773 int ret; 774 775 ret = verify_patch(family, fw, leftover, patch_size, false); 776 if (ret) 777 return ret; 778 779 patch = kzalloc(sizeof(*patch), GFP_KERNEL); 780 if (!patch) { 781 pr_err("Patch allocation failure.\n"); 782 return -EINVAL; 783 } 784 785 patch->data = kmemdup(fw + SECTION_HDR_SIZE, *patch_size, GFP_KERNEL); 786 if (!patch->data) { 787 pr_err("Patch data allocation failure.\n"); 788 kfree(patch); 789 return -EINVAL; 790 } 791 792 mc_hdr = (struct microcode_header_amd *)(fw + SECTION_HDR_SIZE); 793 proc_id = mc_hdr->processor_rev_id; 794 795 INIT_LIST_HEAD(&patch->plist); 796 patch->patch_id = mc_hdr->patch_id; 797 patch->equiv_cpu = proc_id; 798 799 pr_debug("%s: Added patch_id: 0x%08x, proc_id: 0x%04x\n", 800 __func__, patch->patch_id, proc_id); 801 802 /* ... and add to cache. */ 803 update_cache(patch); 804 805 return 0; 806} 807 808static enum ucode_state __load_microcode_amd(u8 family, const u8 *data, 809 size_t size) 810{ 811 u8 *fw = (u8 *)data; 812 size_t offset; 813 814 offset = install_equiv_cpu_table(data, size); 815 if (!offset) 816 return UCODE_ERROR; 817 818 fw += offset; 819 size -= offset; 820 821 if (*(u32 *)fw != UCODE_UCODE_TYPE) { 822 pr_err("invalid type field in container file section header\n"); 823 free_equiv_cpu_table(); 824 return UCODE_ERROR; 825 } 826 827 while (size > 0) { 828 unsigned int crnt_size = 0; 829 int ret; 830 831 ret = verify_and_add_patch(family, fw, size, &crnt_size); 832 if (ret < 0) 833 return UCODE_ERROR; 834 835 fw += crnt_size + SECTION_HDR_SIZE; 836 size -= (crnt_size + SECTION_HDR_SIZE); 837 } 838 839 return UCODE_OK; 840} 841 842static enum ucode_state 843load_microcode_amd(bool save, u8 family, const u8 *data, size_t size) 844{ 845 struct ucode_patch *p; 846 enum ucode_state ret; 847 848 /* free old equiv table */ 849 free_equiv_cpu_table(); 850 851 ret = __load_microcode_amd(family, data, size); 852 if (ret != UCODE_OK) { 853 cleanup(); 854 return ret; 855 } 856 857 p = find_patch(0); 858 if (!p) { 859 return ret; 860 } else { 861 if (boot_cpu_data.microcode >= p->patch_id) 862 return ret; 863 864 ret = UCODE_NEW; 865 } 866 867 /* save BSP's matching patch for early load */ 868 if (!save) 869 return ret; 870 871 memset(amd_ucode_patch, 0, PATCH_MAX_SIZE); 872 memcpy(amd_ucode_patch, p->data, min_t(u32, ksize(p->data), PATCH_MAX_SIZE)); 873 874 return ret; 875} 876 877/* 878 * AMD microcode firmware naming convention, up to family 15h they are in 879 * the legacy file: 880 * 881 * amd-ucode/microcode_amd.bin 882 * 883 * This legacy file is always smaller than 2K in size. 884 * 885 * Beginning with family 15h, they are in family-specific firmware files: 886 * 887 * amd-ucode/microcode_amd_fam15h.bin 888 * amd-ucode/microcode_amd_fam16h.bin 889 * ... 890 * 891 * These might be larger than 2K. 892 */ 893static enum ucode_state request_microcode_amd(int cpu, struct device *device, 894 bool refresh_fw) 895{ 896 char fw_name[36] = "amd-ucode/microcode_amd.bin"; 897 struct cpuinfo_x86 *c = &cpu_data(cpu); 898 bool bsp = c->cpu_index == boot_cpu_data.cpu_index; 899 enum ucode_state ret = UCODE_NFOUND; 900 const struct firmware *fw; 901 902 /* reload ucode container only on the boot cpu */ 903 if (!refresh_fw || !bsp) 904 return UCODE_OK; 905 906 if (c->x86 >= 0x15) 907 snprintf(fw_name, sizeof(fw_name), "amd-ucode/microcode_amd_fam%.2xh.bin", c->x86); 908 909 if (request_firmware_direct(&fw, (const char *)fw_name, device)) { 910 pr_debug("failed to load file %s\n", fw_name); 911 goto out; 912 } 913 914 ret = UCODE_ERROR; 915 if (!verify_container(fw->data, fw->size, false)) 916 goto fw_release; 917 918 ret = load_microcode_amd(bsp, c->x86, fw->data, fw->size); 919 920 fw_release: 921 release_firmware(fw); 922 923 out: 924 return ret; 925} 926 927static enum ucode_state 928request_microcode_user(int cpu, const void __user *buf, size_t size) 929{ 930 return UCODE_ERROR; 931} 932 933static void microcode_fini_cpu_amd(int cpu) 934{ 935 struct ucode_cpu_info *uci = ucode_cpu_info + cpu; 936 937 uci->mc = NULL; 938} 939 940static struct microcode_ops microcode_amd_ops = { 941 .request_microcode_user = request_microcode_user, 942 .request_microcode_fw = request_microcode_amd, 943 .collect_cpu_info = collect_cpu_info_amd, 944 .apply_microcode = apply_microcode_amd, 945 .microcode_fini_cpu = microcode_fini_cpu_amd, 946}; 947 948struct microcode_ops * __init init_amd_microcode(void) 949{ 950 struct cpuinfo_x86 *c = &boot_cpu_data; 951 952 if (c->x86_vendor != X86_VENDOR_AMD || c->x86 < 0x10) { 953 pr_warn("AMD CPU family 0x%x not supported\n", c->x86); 954 return NULL; 955 } 956 957 if (ucode_new_rev) 958 pr_info_once("microcode updated early to new patch_level=0x%08x\n", 959 ucode_new_rev); 960 961 return µcode_amd_ops; 962} 963 964void __exit exit_amd_microcode(void) 965{ 966 cleanup(); 967}