cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

mtrr.c (23782B)


      1/*  Generic MTRR (Memory Type Range Register) driver.
      2
      3    Copyright (C) 1997-2000  Richard Gooch
      4    Copyright (c) 2002	     Patrick Mochel
      5
      6    This library is free software; you can redistribute it and/or
      7    modify it under the terms of the GNU Library General Public
      8    License as published by the Free Software Foundation; either
      9    version 2 of the License, or (at your option) any later version.
     10
     11    This library is distributed in the hope that it will be useful,
     12    but WITHOUT ANY WARRANTY; without even the implied warranty of
     13    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
     14    Library General Public License for more details.
     15
     16    You should have received a copy of the GNU Library General Public
     17    License along with this library; if not, write to the Free
     18    Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
     19
     20    Richard Gooch may be reached by email at  rgooch@atnf.csiro.au
     21    The postal address is:
     22      Richard Gooch, c/o ATNF, P. O. Box 76, Epping, N.S.W., 2121, Australia.
     23
     24    Source: "Pentium Pro Family Developer's Manual, Volume 3:
     25    Operating System Writer's Guide" (Intel document number 242692),
     26    section 11.11.7
     27
     28    This was cleaned and made readable by Patrick Mochel <mochel@osdl.org>
     29    on 6-7 March 2002.
     30    Source: Intel Architecture Software Developers Manual, Volume 3:
     31    System Programming Guide; Section 9.11. (1997 edition - PPro).
     32*/
     33
     34#include <linux/types.h> /* FIXME: kvm_para.h needs this */
     35
     36#include <linux/stop_machine.h>
     37#include <linux/kvm_para.h>
     38#include <linux/uaccess.h>
     39#include <linux/export.h>
     40#include <linux/mutex.h>
     41#include <linux/init.h>
     42#include <linux/sort.h>
     43#include <linux/cpu.h>
     44#include <linux/pci.h>
     45#include <linux/smp.h>
     46#include <linux/syscore_ops.h>
     47#include <linux/rcupdate.h>
     48
     49#include <asm/cpufeature.h>
     50#include <asm/e820/api.h>
     51#include <asm/mtrr.h>
     52#include <asm/msr.h>
     53#include <asm/memtype.h>
     54
     55#include "mtrr.h"
     56
     57/* arch_phys_wc_add returns an MTRR register index plus this offset. */
     58#define MTRR_TO_PHYS_WC_OFFSET 1000
     59
     60u32 num_var_ranges;
     61static bool __mtrr_enabled;
     62
     63static bool mtrr_enabled(void)
     64{
     65	return __mtrr_enabled;
     66}
     67
     68unsigned int mtrr_usage_table[MTRR_MAX_VAR_RANGES];
     69static DEFINE_MUTEX(mtrr_mutex);
     70
     71u64 size_or_mask, size_and_mask;
     72static bool mtrr_aps_delayed_init;
     73
     74static const struct mtrr_ops *mtrr_ops[X86_VENDOR_NUM] __ro_after_init;
     75
     76const struct mtrr_ops *mtrr_if;
     77
     78static void set_mtrr(unsigned int reg, unsigned long base,
     79		     unsigned long size, mtrr_type type);
     80
     81void __init set_mtrr_ops(const struct mtrr_ops *ops)
     82{
     83	if (ops->vendor && ops->vendor < X86_VENDOR_NUM)
     84		mtrr_ops[ops->vendor] = ops;
     85}
     86
     87/*  Returns non-zero if we have the write-combining memory type  */
     88static int have_wrcomb(void)
     89{
     90	struct pci_dev *dev;
     91
     92	dev = pci_get_class(PCI_CLASS_BRIDGE_HOST << 8, NULL);
     93	if (dev != NULL) {
     94		/*
     95		 * ServerWorks LE chipsets < rev 6 have problems with
     96		 * write-combining. Don't allow it and leave room for other
     97		 * chipsets to be tagged
     98		 */
     99		if (dev->vendor == PCI_VENDOR_ID_SERVERWORKS &&
    100		    dev->device == PCI_DEVICE_ID_SERVERWORKS_LE &&
    101		    dev->revision <= 5) {
    102			pr_info("Serverworks LE rev < 6 detected. Write-combining disabled.\n");
    103			pci_dev_put(dev);
    104			return 0;
    105		}
    106		/*
    107		 * Intel 450NX errata # 23. Non ascending cacheline evictions to
    108		 * write combining memory may resulting in data corruption
    109		 */
    110		if (dev->vendor == PCI_VENDOR_ID_INTEL &&
    111		    dev->device == PCI_DEVICE_ID_INTEL_82451NX) {
    112			pr_info("Intel 450NX MMC detected. Write-combining disabled.\n");
    113			pci_dev_put(dev);
    114			return 0;
    115		}
    116		pci_dev_put(dev);
    117	}
    118	return mtrr_if->have_wrcomb ? mtrr_if->have_wrcomb() : 0;
    119}
    120
    121/*  This function returns the number of variable MTRRs  */
    122static void __init set_num_var_ranges(void)
    123{
    124	unsigned long config = 0, dummy;
    125
    126	if (use_intel())
    127		rdmsr(MSR_MTRRcap, config, dummy);
    128	else if (is_cpu(AMD) || is_cpu(HYGON))
    129		config = 2;
    130	else if (is_cpu(CYRIX) || is_cpu(CENTAUR))
    131		config = 8;
    132
    133	num_var_ranges = config & 0xff;
    134}
    135
    136static void __init init_table(void)
    137{
    138	int i, max;
    139
    140	max = num_var_ranges;
    141	for (i = 0; i < max; i++)
    142		mtrr_usage_table[i] = 1;
    143}
    144
    145struct set_mtrr_data {
    146	unsigned long	smp_base;
    147	unsigned long	smp_size;
    148	unsigned int	smp_reg;
    149	mtrr_type	smp_type;
    150};
    151
    152/**
    153 * mtrr_rendezvous_handler - Work done in the synchronization handler. Executed
    154 * by all the CPUs.
    155 * @info: pointer to mtrr configuration data
    156 *
    157 * Returns nothing.
    158 */
    159static int mtrr_rendezvous_handler(void *info)
    160{
    161	struct set_mtrr_data *data = info;
    162
    163	/*
    164	 * We use this same function to initialize the mtrrs during boot,
    165	 * resume, runtime cpu online and on an explicit request to set a
    166	 * specific MTRR.
    167	 *
    168	 * During boot or suspend, the state of the boot cpu's mtrrs has been
    169	 * saved, and we want to replicate that across all the cpus that come
    170	 * online (either at the end of boot or resume or during a runtime cpu
    171	 * online). If we're doing that, @reg is set to something special and on
    172	 * all the cpu's we do mtrr_if->set_all() (On the logical cpu that
    173	 * started the boot/resume sequence, this might be a duplicate
    174	 * set_all()).
    175	 */
    176	if (data->smp_reg != ~0U) {
    177		mtrr_if->set(data->smp_reg, data->smp_base,
    178			     data->smp_size, data->smp_type);
    179	} else if (mtrr_aps_delayed_init || !cpu_online(smp_processor_id())) {
    180		mtrr_if->set_all();
    181	}
    182	return 0;
    183}
    184
    185static inline int types_compatible(mtrr_type type1, mtrr_type type2)
    186{
    187	return type1 == MTRR_TYPE_UNCACHABLE ||
    188	       type2 == MTRR_TYPE_UNCACHABLE ||
    189	       (type1 == MTRR_TYPE_WRTHROUGH && type2 == MTRR_TYPE_WRBACK) ||
    190	       (type1 == MTRR_TYPE_WRBACK && type2 == MTRR_TYPE_WRTHROUGH);
    191}
    192
    193/**
    194 * set_mtrr - update mtrrs on all processors
    195 * @reg:	mtrr in question
    196 * @base:	mtrr base
    197 * @size:	mtrr size
    198 * @type:	mtrr type
    199 *
    200 * This is kinda tricky, but fortunately, Intel spelled it out for us cleanly:
    201 *
    202 * 1. Queue work to do the following on all processors:
    203 * 2. Disable Interrupts
    204 * 3. Wait for all procs to do so
    205 * 4. Enter no-fill cache mode
    206 * 5. Flush caches
    207 * 6. Clear PGE bit
    208 * 7. Flush all TLBs
    209 * 8. Disable all range registers
    210 * 9. Update the MTRRs
    211 * 10. Enable all range registers
    212 * 11. Flush all TLBs and caches again
    213 * 12. Enter normal cache mode and reenable caching
    214 * 13. Set PGE
    215 * 14. Wait for buddies to catch up
    216 * 15. Enable interrupts.
    217 *
    218 * What does that mean for us? Well, stop_machine() will ensure that
    219 * the rendezvous handler is started on each CPU. And in lockstep they
    220 * do the state transition of disabling interrupts, updating MTRR's
    221 * (the CPU vendors may each do it differently, so we call mtrr_if->set()
    222 * callback and let them take care of it.) and enabling interrupts.
    223 *
    224 * Note that the mechanism is the same for UP systems, too; all the SMP stuff
    225 * becomes nops.
    226 */
    227static void
    228set_mtrr(unsigned int reg, unsigned long base, unsigned long size, mtrr_type type)
    229{
    230	struct set_mtrr_data data = { .smp_reg = reg,
    231				      .smp_base = base,
    232				      .smp_size = size,
    233				      .smp_type = type
    234				    };
    235
    236	stop_machine(mtrr_rendezvous_handler, &data, cpu_online_mask);
    237}
    238
    239static void set_mtrr_cpuslocked(unsigned int reg, unsigned long base,
    240				unsigned long size, mtrr_type type)
    241{
    242	struct set_mtrr_data data = { .smp_reg = reg,
    243				      .smp_base = base,
    244				      .smp_size = size,
    245				      .smp_type = type
    246				    };
    247
    248	stop_machine_cpuslocked(mtrr_rendezvous_handler, &data, cpu_online_mask);
    249}
    250
    251static void set_mtrr_from_inactive_cpu(unsigned int reg, unsigned long base,
    252				      unsigned long size, mtrr_type type)
    253{
    254	struct set_mtrr_data data = { .smp_reg = reg,
    255				      .smp_base = base,
    256				      .smp_size = size,
    257				      .smp_type = type
    258				    };
    259
    260	stop_machine_from_inactive_cpu(mtrr_rendezvous_handler, &data,
    261				       cpu_callout_mask);
    262}
    263
    264/**
    265 * mtrr_add_page - Add a memory type region
    266 * @base: Physical base address of region in pages (in units of 4 kB!)
    267 * @size: Physical size of region in pages (4 kB)
    268 * @type: Type of MTRR desired
    269 * @increment: If this is true do usage counting on the region
    270 *
    271 * Memory type region registers control the caching on newer Intel and
    272 * non Intel processors. This function allows drivers to request an
    273 * MTRR is added. The details and hardware specifics of each processor's
    274 * implementation are hidden from the caller, but nevertheless the
    275 * caller should expect to need to provide a power of two size on an
    276 * equivalent power of two boundary.
    277 *
    278 * If the region cannot be added either because all regions are in use
    279 * or the CPU cannot support it a negative value is returned. On success
    280 * the register number for this entry is returned, but should be treated
    281 * as a cookie only.
    282 *
    283 * On a multiprocessor machine the changes are made to all processors.
    284 * This is required on x86 by the Intel processors.
    285 *
    286 * The available types are
    287 *
    288 * %MTRR_TYPE_UNCACHABLE - No caching
    289 *
    290 * %MTRR_TYPE_WRBACK - Write data back in bursts whenever
    291 *
    292 * %MTRR_TYPE_WRCOMB - Write data back soon but allow bursts
    293 *
    294 * %MTRR_TYPE_WRTHROUGH - Cache reads but not writes
    295 *
    296 * BUGS: Needs a quiet flag for the cases where drivers do not mind
    297 * failures and do not wish system log messages to be sent.
    298 */
    299int mtrr_add_page(unsigned long base, unsigned long size,
    300		  unsigned int type, bool increment)
    301{
    302	unsigned long lbase, lsize;
    303	int i, replace, error;
    304	mtrr_type ltype;
    305
    306	if (!mtrr_enabled())
    307		return -ENXIO;
    308
    309	error = mtrr_if->validate_add_page(base, size, type);
    310	if (error)
    311		return error;
    312
    313	if (type >= MTRR_NUM_TYPES) {
    314		pr_warn("type: %u invalid\n", type);
    315		return -EINVAL;
    316	}
    317
    318	/* If the type is WC, check that this processor supports it */
    319	if ((type == MTRR_TYPE_WRCOMB) && !have_wrcomb()) {
    320		pr_warn("your processor doesn't support write-combining\n");
    321		return -ENOSYS;
    322	}
    323
    324	if (!size) {
    325		pr_warn("zero sized request\n");
    326		return -EINVAL;
    327	}
    328
    329	if ((base | (base + size - 1)) >>
    330	    (boot_cpu_data.x86_phys_bits - PAGE_SHIFT)) {
    331		pr_warn("base or size exceeds the MTRR width\n");
    332		return -EINVAL;
    333	}
    334
    335	error = -EINVAL;
    336	replace = -1;
    337
    338	/* No CPU hotplug when we change MTRR entries */
    339	cpus_read_lock();
    340
    341	/* Search for existing MTRR  */
    342	mutex_lock(&mtrr_mutex);
    343	for (i = 0; i < num_var_ranges; ++i) {
    344		mtrr_if->get(i, &lbase, &lsize, &ltype);
    345		if (!lsize || base > lbase + lsize - 1 ||
    346		    base + size - 1 < lbase)
    347			continue;
    348		/*
    349		 * At this point we know there is some kind of
    350		 * overlap/enclosure
    351		 */
    352		if (base < lbase || base + size - 1 > lbase + lsize - 1) {
    353			if (base <= lbase &&
    354			    base + size - 1 >= lbase + lsize - 1) {
    355				/*  New region encloses an existing region  */
    356				if (type == ltype) {
    357					replace = replace == -1 ? i : -2;
    358					continue;
    359				} else if (types_compatible(type, ltype))
    360					continue;
    361			}
    362			pr_warn("0x%lx000,0x%lx000 overlaps existing 0x%lx000,0x%lx000\n", base, size, lbase,
    363				lsize);
    364			goto out;
    365		}
    366		/* New region is enclosed by an existing region */
    367		if (ltype != type) {
    368			if (types_compatible(type, ltype))
    369				continue;
    370			pr_warn("type mismatch for %lx000,%lx000 old: %s new: %s\n",
    371				base, size, mtrr_attrib_to_str(ltype),
    372				mtrr_attrib_to_str(type));
    373			goto out;
    374		}
    375		if (increment)
    376			++mtrr_usage_table[i];
    377		error = i;
    378		goto out;
    379	}
    380	/* Search for an empty MTRR */
    381	i = mtrr_if->get_free_region(base, size, replace);
    382	if (i >= 0) {
    383		set_mtrr_cpuslocked(i, base, size, type);
    384		if (likely(replace < 0)) {
    385			mtrr_usage_table[i] = 1;
    386		} else {
    387			mtrr_usage_table[i] = mtrr_usage_table[replace];
    388			if (increment)
    389				mtrr_usage_table[i]++;
    390			if (unlikely(replace != i)) {
    391				set_mtrr_cpuslocked(replace, 0, 0, 0);
    392				mtrr_usage_table[replace] = 0;
    393			}
    394		}
    395	} else {
    396		pr_info("no more MTRRs available\n");
    397	}
    398	error = i;
    399 out:
    400	mutex_unlock(&mtrr_mutex);
    401	cpus_read_unlock();
    402	return error;
    403}
    404
    405static int mtrr_check(unsigned long base, unsigned long size)
    406{
    407	if ((base & (PAGE_SIZE - 1)) || (size & (PAGE_SIZE - 1))) {
    408		pr_warn("size and base must be multiples of 4 kiB\n");
    409		pr_debug("size: 0x%lx  base: 0x%lx\n", size, base);
    410		dump_stack();
    411		return -1;
    412	}
    413	return 0;
    414}
    415
    416/**
    417 * mtrr_add - Add a memory type region
    418 * @base: Physical base address of region
    419 * @size: Physical size of region
    420 * @type: Type of MTRR desired
    421 * @increment: If this is true do usage counting on the region
    422 *
    423 * Memory type region registers control the caching on newer Intel and
    424 * non Intel processors. This function allows drivers to request an
    425 * MTRR is added. The details and hardware specifics of each processor's
    426 * implementation are hidden from the caller, but nevertheless the
    427 * caller should expect to need to provide a power of two size on an
    428 * equivalent power of two boundary.
    429 *
    430 * If the region cannot be added either because all regions are in use
    431 * or the CPU cannot support it a negative value is returned. On success
    432 * the register number for this entry is returned, but should be treated
    433 * as a cookie only.
    434 *
    435 * On a multiprocessor machine the changes are made to all processors.
    436 * This is required on x86 by the Intel processors.
    437 *
    438 * The available types are
    439 *
    440 * %MTRR_TYPE_UNCACHABLE - No caching
    441 *
    442 * %MTRR_TYPE_WRBACK - Write data back in bursts whenever
    443 *
    444 * %MTRR_TYPE_WRCOMB - Write data back soon but allow bursts
    445 *
    446 * %MTRR_TYPE_WRTHROUGH - Cache reads but not writes
    447 *
    448 * BUGS: Needs a quiet flag for the cases where drivers do not mind
    449 * failures and do not wish system log messages to be sent.
    450 */
    451int mtrr_add(unsigned long base, unsigned long size, unsigned int type,
    452	     bool increment)
    453{
    454	if (!mtrr_enabled())
    455		return -ENODEV;
    456	if (mtrr_check(base, size))
    457		return -EINVAL;
    458	return mtrr_add_page(base >> PAGE_SHIFT, size >> PAGE_SHIFT, type,
    459			     increment);
    460}
    461
    462/**
    463 * mtrr_del_page - delete a memory type region
    464 * @reg: Register returned by mtrr_add
    465 * @base: Physical base address
    466 * @size: Size of region
    467 *
    468 * If register is supplied then base and size are ignored. This is
    469 * how drivers should call it.
    470 *
    471 * Releases an MTRR region. If the usage count drops to zero the
    472 * register is freed and the region returns to default state.
    473 * On success the register is returned, on failure a negative error
    474 * code.
    475 */
    476int mtrr_del_page(int reg, unsigned long base, unsigned long size)
    477{
    478	int i, max;
    479	mtrr_type ltype;
    480	unsigned long lbase, lsize;
    481	int error = -EINVAL;
    482
    483	if (!mtrr_enabled())
    484		return -ENODEV;
    485
    486	max = num_var_ranges;
    487	/* No CPU hotplug when we change MTRR entries */
    488	cpus_read_lock();
    489	mutex_lock(&mtrr_mutex);
    490	if (reg < 0) {
    491		/*  Search for existing MTRR  */
    492		for (i = 0; i < max; ++i) {
    493			mtrr_if->get(i, &lbase, &lsize, &ltype);
    494			if (lbase == base && lsize == size) {
    495				reg = i;
    496				break;
    497			}
    498		}
    499		if (reg < 0) {
    500			pr_debug("no MTRR for %lx000,%lx000 found\n",
    501				 base, size);
    502			goto out;
    503		}
    504	}
    505	if (reg >= max) {
    506		pr_warn("register: %d too big\n", reg);
    507		goto out;
    508	}
    509	mtrr_if->get(reg, &lbase, &lsize, &ltype);
    510	if (lsize < 1) {
    511		pr_warn("MTRR %d not used\n", reg);
    512		goto out;
    513	}
    514	if (mtrr_usage_table[reg] < 1) {
    515		pr_warn("reg: %d has count=0\n", reg);
    516		goto out;
    517	}
    518	if (--mtrr_usage_table[reg] < 1)
    519		set_mtrr_cpuslocked(reg, 0, 0, 0);
    520	error = reg;
    521 out:
    522	mutex_unlock(&mtrr_mutex);
    523	cpus_read_unlock();
    524	return error;
    525}
    526
    527/**
    528 * mtrr_del - delete a memory type region
    529 * @reg: Register returned by mtrr_add
    530 * @base: Physical base address
    531 * @size: Size of region
    532 *
    533 * If register is supplied then base and size are ignored. This is
    534 * how drivers should call it.
    535 *
    536 * Releases an MTRR region. If the usage count drops to zero the
    537 * register is freed and the region returns to default state.
    538 * On success the register is returned, on failure a negative error
    539 * code.
    540 */
    541int mtrr_del(int reg, unsigned long base, unsigned long size)
    542{
    543	if (!mtrr_enabled())
    544		return -ENODEV;
    545	if (mtrr_check(base, size))
    546		return -EINVAL;
    547	return mtrr_del_page(reg, base >> PAGE_SHIFT, size >> PAGE_SHIFT);
    548}
    549
    550/**
    551 * arch_phys_wc_add - add a WC MTRR and handle errors if PAT is unavailable
    552 * @base: Physical base address
    553 * @size: Size of region
    554 *
    555 * If PAT is available, this does nothing.  If PAT is unavailable, it
    556 * attempts to add a WC MTRR covering size bytes starting at base and
    557 * logs an error if this fails.
    558 *
    559 * The called should provide a power of two size on an equivalent
    560 * power of two boundary.
    561 *
    562 * Drivers must store the return value to pass to mtrr_del_wc_if_needed,
    563 * but drivers should not try to interpret that return value.
    564 */
    565int arch_phys_wc_add(unsigned long base, unsigned long size)
    566{
    567	int ret;
    568
    569	if (pat_enabled() || !mtrr_enabled())
    570		return 0;  /* Success!  (We don't need to do anything.) */
    571
    572	ret = mtrr_add(base, size, MTRR_TYPE_WRCOMB, true);
    573	if (ret < 0) {
    574		pr_warn("Failed to add WC MTRR for [%p-%p]; performance may suffer.",
    575			(void *)base, (void *)(base + size - 1));
    576		return ret;
    577	}
    578	return ret + MTRR_TO_PHYS_WC_OFFSET;
    579}
    580EXPORT_SYMBOL(arch_phys_wc_add);
    581
    582/*
    583 * arch_phys_wc_del - undoes arch_phys_wc_add
    584 * @handle: Return value from arch_phys_wc_add
    585 *
    586 * This cleans up after mtrr_add_wc_if_needed.
    587 *
    588 * The API guarantees that mtrr_del_wc_if_needed(error code) and
    589 * mtrr_del_wc_if_needed(0) do nothing.
    590 */
    591void arch_phys_wc_del(int handle)
    592{
    593	if (handle >= 1) {
    594		WARN_ON(handle < MTRR_TO_PHYS_WC_OFFSET);
    595		mtrr_del(handle - MTRR_TO_PHYS_WC_OFFSET, 0, 0);
    596	}
    597}
    598EXPORT_SYMBOL(arch_phys_wc_del);
    599
    600/*
    601 * arch_phys_wc_index - translates arch_phys_wc_add's return value
    602 * @handle: Return value from arch_phys_wc_add
    603 *
    604 * This will turn the return value from arch_phys_wc_add into an mtrr
    605 * index suitable for debugging.
    606 *
    607 * Note: There is no legitimate use for this function, except possibly
    608 * in printk line.  Alas there is an illegitimate use in some ancient
    609 * drm ioctls.
    610 */
    611int arch_phys_wc_index(int handle)
    612{
    613	if (handle < MTRR_TO_PHYS_WC_OFFSET)
    614		return -1;
    615	else
    616		return handle - MTRR_TO_PHYS_WC_OFFSET;
    617}
    618EXPORT_SYMBOL_GPL(arch_phys_wc_index);
    619
    620/*
    621 * HACK ALERT!
    622 * These should be called implicitly, but we can't yet until all the initcall
    623 * stuff is done...
    624 */
    625static void __init init_ifs(void)
    626{
    627#ifndef CONFIG_X86_64
    628	amd_init_mtrr();
    629	cyrix_init_mtrr();
    630	centaur_init_mtrr();
    631#endif
    632}
    633
    634/* The suspend/resume methods are only for CPU without MTRR. CPU using generic
    635 * MTRR driver doesn't require this
    636 */
    637struct mtrr_value {
    638	mtrr_type	ltype;
    639	unsigned long	lbase;
    640	unsigned long	lsize;
    641};
    642
    643static struct mtrr_value mtrr_value[MTRR_MAX_VAR_RANGES];
    644
    645static int mtrr_save(void)
    646{
    647	int i;
    648
    649	for (i = 0; i < num_var_ranges; i++) {
    650		mtrr_if->get(i, &mtrr_value[i].lbase,
    651				&mtrr_value[i].lsize,
    652				&mtrr_value[i].ltype);
    653	}
    654	return 0;
    655}
    656
    657static void mtrr_restore(void)
    658{
    659	int i;
    660
    661	for (i = 0; i < num_var_ranges; i++) {
    662		if (mtrr_value[i].lsize) {
    663			set_mtrr(i, mtrr_value[i].lbase,
    664				    mtrr_value[i].lsize,
    665				    mtrr_value[i].ltype);
    666		}
    667	}
    668}
    669
    670
    671
    672static struct syscore_ops mtrr_syscore_ops = {
    673	.suspend	= mtrr_save,
    674	.resume		= mtrr_restore,
    675};
    676
    677int __initdata changed_by_mtrr_cleanup;
    678
    679#define SIZE_OR_MASK_BITS(n)  (~((1ULL << ((n) - PAGE_SHIFT)) - 1))
    680/**
    681 * mtrr_bp_init - initialize mtrrs on the boot CPU
    682 *
    683 * This needs to be called early; before any of the other CPUs are
    684 * initialized (i.e. before smp_init()).
    685 *
    686 */
    687void __init mtrr_bp_init(void)
    688{
    689	u32 phys_addr;
    690
    691	init_ifs();
    692
    693	phys_addr = 32;
    694
    695	if (boot_cpu_has(X86_FEATURE_MTRR)) {
    696		mtrr_if = &generic_mtrr_ops;
    697		size_or_mask = SIZE_OR_MASK_BITS(36);
    698		size_and_mask = 0x00f00000;
    699		phys_addr = 36;
    700
    701		/*
    702		 * This is an AMD specific MSR, but we assume(hope?) that
    703		 * Intel will implement it too when they extend the address
    704		 * bus of the Xeon.
    705		 */
    706		if (cpuid_eax(0x80000000) >= 0x80000008) {
    707			phys_addr = cpuid_eax(0x80000008) & 0xff;
    708			/* CPUID workaround for Intel 0F33/0F34 CPU */
    709			if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL &&
    710			    boot_cpu_data.x86 == 0xF &&
    711			    boot_cpu_data.x86_model == 0x3 &&
    712			    (boot_cpu_data.x86_stepping == 0x3 ||
    713			     boot_cpu_data.x86_stepping == 0x4))
    714				phys_addr = 36;
    715
    716			size_or_mask = SIZE_OR_MASK_BITS(phys_addr);
    717			size_and_mask = ~size_or_mask & 0xfffff00000ULL;
    718		} else if (boot_cpu_data.x86_vendor == X86_VENDOR_CENTAUR &&
    719			   boot_cpu_data.x86 == 6) {
    720			/*
    721			 * VIA C* family have Intel style MTRRs,
    722			 * but don't support PAE
    723			 */
    724			size_or_mask = SIZE_OR_MASK_BITS(32);
    725			size_and_mask = 0;
    726			phys_addr = 32;
    727		}
    728	} else {
    729		switch (boot_cpu_data.x86_vendor) {
    730		case X86_VENDOR_AMD:
    731			if (cpu_feature_enabled(X86_FEATURE_K6_MTRR)) {
    732				/* Pre-Athlon (K6) AMD CPU MTRRs */
    733				mtrr_if = mtrr_ops[X86_VENDOR_AMD];
    734				size_or_mask = SIZE_OR_MASK_BITS(32);
    735				size_and_mask = 0;
    736			}
    737			break;
    738		case X86_VENDOR_CENTAUR:
    739			if (cpu_feature_enabled(X86_FEATURE_CENTAUR_MCR)) {
    740				mtrr_if = mtrr_ops[X86_VENDOR_CENTAUR];
    741				size_or_mask = SIZE_OR_MASK_BITS(32);
    742				size_and_mask = 0;
    743			}
    744			break;
    745		case X86_VENDOR_CYRIX:
    746			if (cpu_feature_enabled(X86_FEATURE_CYRIX_ARR)) {
    747				mtrr_if = mtrr_ops[X86_VENDOR_CYRIX];
    748				size_or_mask = SIZE_OR_MASK_BITS(32);
    749				size_and_mask = 0;
    750			}
    751			break;
    752		default:
    753			break;
    754		}
    755	}
    756
    757	if (mtrr_if) {
    758		__mtrr_enabled = true;
    759		set_num_var_ranges();
    760		init_table();
    761		if (use_intel()) {
    762			/* BIOS may override */
    763			__mtrr_enabled = get_mtrr_state();
    764
    765			if (mtrr_enabled())
    766				mtrr_bp_pat_init();
    767
    768			if (mtrr_cleanup(phys_addr)) {
    769				changed_by_mtrr_cleanup = 1;
    770				mtrr_if->set_all();
    771			}
    772		}
    773	}
    774
    775	if (!mtrr_enabled()) {
    776		pr_info("Disabled\n");
    777
    778		/*
    779		 * PAT initialization relies on MTRR's rendezvous handler.
    780		 * Skip PAT init until the handler can initialize both
    781		 * features independently.
    782		 */
    783		pat_disable("MTRRs disabled, skipping PAT initialization too.");
    784	}
    785}
    786
    787void mtrr_ap_init(void)
    788{
    789	if (!mtrr_enabled())
    790		return;
    791
    792	if (!use_intel() || mtrr_aps_delayed_init)
    793		return;
    794
    795	/*
    796	 * Ideally we should hold mtrr_mutex here to avoid mtrr entries
    797	 * changed, but this routine will be called in cpu boot time,
    798	 * holding the lock breaks it.
    799	 *
    800	 * This routine is called in two cases:
    801	 *
    802	 *   1. very early time of software resume, when there absolutely
    803	 *      isn't mtrr entry changes;
    804	 *
    805	 *   2. cpu hotadd time. We let mtrr_add/del_page hold cpuhotplug
    806	 *      lock to prevent mtrr entry changes
    807	 */
    808	set_mtrr_from_inactive_cpu(~0U, 0, 0, 0);
    809}
    810
    811/**
    812 * mtrr_save_state - Save current fixed-range MTRR state of the first
    813 *	cpu in cpu_online_mask.
    814 */
    815void mtrr_save_state(void)
    816{
    817	int first_cpu;
    818
    819	if (!mtrr_enabled())
    820		return;
    821
    822	first_cpu = cpumask_first(cpu_online_mask);
    823	smp_call_function_single(first_cpu, mtrr_save_fixed_ranges, NULL, 1);
    824}
    825
    826void set_mtrr_aps_delayed_init(void)
    827{
    828	if (!mtrr_enabled())
    829		return;
    830	if (!use_intel())
    831		return;
    832
    833	mtrr_aps_delayed_init = true;
    834}
    835
    836/*
    837 * Delayed MTRR initialization for all AP's
    838 */
    839void mtrr_aps_init(void)
    840{
    841	if (!use_intel() || !mtrr_enabled())
    842		return;
    843
    844	/*
    845	 * Check if someone has requested the delay of AP MTRR initialization,
    846	 * by doing set_mtrr_aps_delayed_init(), prior to this point. If not,
    847	 * then we are done.
    848	 */
    849	if (!mtrr_aps_delayed_init)
    850		return;
    851
    852	set_mtrr(~0U, 0, 0, 0);
    853	mtrr_aps_delayed_init = false;
    854}
    855
    856void mtrr_bp_restore(void)
    857{
    858	if (!use_intel() || !mtrr_enabled())
    859		return;
    860
    861	mtrr_if->set_all();
    862}
    863
    864static int __init mtrr_init_finialize(void)
    865{
    866	if (!mtrr_enabled())
    867		return 0;
    868
    869	if (use_intel()) {
    870		if (!changed_by_mtrr_cleanup)
    871			mtrr_state_warn();
    872		return 0;
    873	}
    874
    875	/*
    876	 * The CPU has no MTRR and seems to not support SMP. They have
    877	 * specific drivers, we use a tricky method to support
    878	 * suspend/resume for them.
    879	 *
    880	 * TBD: is there any system with such CPU which supports
    881	 * suspend/resume? If no, we should remove the code.
    882	 */
    883	register_syscore_ops(&mtrr_syscore_ops);
    884
    885	return 0;
    886}
    887subsys_initcall(mtrr_init_finialize);