cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

monitor.c (19450B)


      1// SPDX-License-Identifier: GPL-2.0-only
      2/*
      3 * Resource Director Technology(RDT)
      4 * - Monitoring code
      5 *
      6 * Copyright (C) 2017 Intel Corporation
      7 *
      8 * Author:
      9 *    Vikas Shivappa <vikas.shivappa@intel.com>
     10 *
     11 * This replaces the cqm.c based on perf but we reuse a lot of
     12 * code and datastructures originally from Peter Zijlstra and Matt Fleming.
     13 *
     14 * More information about RDT be found in the Intel (R) x86 Architecture
     15 * Software Developer Manual June 2016, volume 3, section 17.17.
     16 */
     17
     18#include <linux/module.h>
     19#include <linux/slab.h>
     20#include <asm/cpu_device_id.h>
     21#include "internal.h"
     22
     23struct rmid_entry {
     24	u32				rmid;
     25	int				busy;
     26	struct list_head		list;
     27};
     28
     29/**
     30 * @rmid_free_lru    A least recently used list of free RMIDs
     31 *     These RMIDs are guaranteed to have an occupancy less than the
     32 *     threshold occupancy
     33 */
     34static LIST_HEAD(rmid_free_lru);
     35
     36/**
     37 * @rmid_limbo_count     count of currently unused but (potentially)
     38 *     dirty RMIDs.
     39 *     This counts RMIDs that no one is currently using but that
     40 *     may have a occupancy value > intel_cqm_threshold. User can change
     41 *     the threshold occupancy value.
     42 */
     43static unsigned int rmid_limbo_count;
     44
     45/**
     46 * @rmid_entry - The entry in the limbo and free lists.
     47 */
     48static struct rmid_entry	*rmid_ptrs;
     49
     50/*
     51 * Global boolean for rdt_monitor which is true if any
     52 * resource monitoring is enabled.
     53 */
     54bool rdt_mon_capable;
     55
     56/*
     57 * Global to indicate which monitoring events are enabled.
     58 */
     59unsigned int rdt_mon_features;
     60
     61/*
     62 * This is the threshold cache occupancy at which we will consider an
     63 * RMID available for re-allocation.
     64 */
     65unsigned int resctrl_cqm_threshold;
     66
     67#define CF(cf)	((unsigned long)(1048576 * (cf) + 0.5))
     68
     69/*
     70 * The correction factor table is documented in Documentation/x86/resctrl.rst.
     71 * If rmid > rmid threshold, MBM total and local values should be multiplied
     72 * by the correction factor.
     73 *
     74 * The original table is modified for better code:
     75 *
     76 * 1. The threshold 0 is changed to rmid count - 1 so don't do correction
     77 *    for the case.
     78 * 2. MBM total and local correction table indexed by core counter which is
     79 *    equal to (x86_cache_max_rmid + 1) / 8 - 1 and is from 0 up to 27.
     80 * 3. The correction factor is normalized to 2^20 (1048576) so it's faster
     81 *    to calculate corrected value by shifting:
     82 *    corrected_value = (original_value * correction_factor) >> 20
     83 */
     84static const struct mbm_correction_factor_table {
     85	u32 rmidthreshold;
     86	u64 cf;
     87} mbm_cf_table[] __initconst = {
     88	{7,	CF(1.000000)},
     89	{15,	CF(1.000000)},
     90	{15,	CF(0.969650)},
     91	{31,	CF(1.000000)},
     92	{31,	CF(1.066667)},
     93	{31,	CF(0.969650)},
     94	{47,	CF(1.142857)},
     95	{63,	CF(1.000000)},
     96	{63,	CF(1.185115)},
     97	{63,	CF(1.066553)},
     98	{79,	CF(1.454545)},
     99	{95,	CF(1.000000)},
    100	{95,	CF(1.230769)},
    101	{95,	CF(1.142857)},
    102	{95,	CF(1.066667)},
    103	{127,	CF(1.000000)},
    104	{127,	CF(1.254863)},
    105	{127,	CF(1.185255)},
    106	{151,	CF(1.000000)},
    107	{127,	CF(1.066667)},
    108	{167,	CF(1.000000)},
    109	{159,	CF(1.454334)},
    110	{183,	CF(1.000000)},
    111	{127,	CF(0.969744)},
    112	{191,	CF(1.280246)},
    113	{191,	CF(1.230921)},
    114	{215,	CF(1.000000)},
    115	{191,	CF(1.143118)},
    116};
    117
    118static u32 mbm_cf_rmidthreshold __read_mostly = UINT_MAX;
    119static u64 mbm_cf __read_mostly;
    120
    121static inline u64 get_corrected_mbm_count(u32 rmid, unsigned long val)
    122{
    123	/* Correct MBM value. */
    124	if (rmid > mbm_cf_rmidthreshold)
    125		val = (val * mbm_cf) >> 20;
    126
    127	return val;
    128}
    129
    130static inline struct rmid_entry *__rmid_entry(u32 rmid)
    131{
    132	struct rmid_entry *entry;
    133
    134	entry = &rmid_ptrs[rmid];
    135	WARN_ON(entry->rmid != rmid);
    136
    137	return entry;
    138}
    139
    140static u64 __rmid_read(u32 rmid, u32 eventid)
    141{
    142	u64 val;
    143
    144	/*
    145	 * As per the SDM, when IA32_QM_EVTSEL.EvtID (bits 7:0) is configured
    146	 * with a valid event code for supported resource type and the bits
    147	 * IA32_QM_EVTSEL.RMID (bits 41:32) are configured with valid RMID,
    148	 * IA32_QM_CTR.data (bits 61:0) reports the monitored data.
    149	 * IA32_QM_CTR.Error (bit 63) and IA32_QM_CTR.Unavailable (bit 62)
    150	 * are error bits.
    151	 */
    152	wrmsr(MSR_IA32_QM_EVTSEL, eventid, rmid);
    153	rdmsrl(MSR_IA32_QM_CTR, val);
    154
    155	return val;
    156}
    157
    158static bool rmid_dirty(struct rmid_entry *entry)
    159{
    160	u64 val = __rmid_read(entry->rmid, QOS_L3_OCCUP_EVENT_ID);
    161
    162	return val >= resctrl_cqm_threshold;
    163}
    164
    165/*
    166 * Check the RMIDs that are marked as busy for this domain. If the
    167 * reported LLC occupancy is below the threshold clear the busy bit and
    168 * decrement the count. If the busy count gets to zero on an RMID, we
    169 * free the RMID
    170 */
    171void __check_limbo(struct rdt_domain *d, bool force_free)
    172{
    173	struct rmid_entry *entry;
    174	struct rdt_resource *r;
    175	u32 crmid = 1, nrmid;
    176
    177	r = &rdt_resources_all[RDT_RESOURCE_L3].r_resctrl;
    178
    179	/*
    180	 * Skip RMID 0 and start from RMID 1 and check all the RMIDs that
    181	 * are marked as busy for occupancy < threshold. If the occupancy
    182	 * is less than the threshold decrement the busy counter of the
    183	 * RMID and move it to the free list when the counter reaches 0.
    184	 */
    185	for (;;) {
    186		nrmid = find_next_bit(d->rmid_busy_llc, r->num_rmid, crmid);
    187		if (nrmid >= r->num_rmid)
    188			break;
    189
    190		entry = __rmid_entry(nrmid);
    191		if (force_free || !rmid_dirty(entry)) {
    192			clear_bit(entry->rmid, d->rmid_busy_llc);
    193			if (!--entry->busy) {
    194				rmid_limbo_count--;
    195				list_add_tail(&entry->list, &rmid_free_lru);
    196			}
    197		}
    198		crmid = nrmid + 1;
    199	}
    200}
    201
    202bool has_busy_rmid(struct rdt_resource *r, struct rdt_domain *d)
    203{
    204	return find_first_bit(d->rmid_busy_llc, r->num_rmid) != r->num_rmid;
    205}
    206
    207/*
    208 * As of now the RMIDs allocation is global.
    209 * However we keep track of which packages the RMIDs
    210 * are used to optimize the limbo list management.
    211 */
    212int alloc_rmid(void)
    213{
    214	struct rmid_entry *entry;
    215
    216	lockdep_assert_held(&rdtgroup_mutex);
    217
    218	if (list_empty(&rmid_free_lru))
    219		return rmid_limbo_count ? -EBUSY : -ENOSPC;
    220
    221	entry = list_first_entry(&rmid_free_lru,
    222				 struct rmid_entry, list);
    223	list_del(&entry->list);
    224
    225	return entry->rmid;
    226}
    227
    228static void add_rmid_to_limbo(struct rmid_entry *entry)
    229{
    230	struct rdt_resource *r;
    231	struct rdt_domain *d;
    232	int cpu;
    233	u64 val;
    234
    235	r = &rdt_resources_all[RDT_RESOURCE_L3].r_resctrl;
    236
    237	entry->busy = 0;
    238	cpu = get_cpu();
    239	list_for_each_entry(d, &r->domains, list) {
    240		if (cpumask_test_cpu(cpu, &d->cpu_mask)) {
    241			val = __rmid_read(entry->rmid, QOS_L3_OCCUP_EVENT_ID);
    242			if (val <= resctrl_cqm_threshold)
    243				continue;
    244		}
    245
    246		/*
    247		 * For the first limbo RMID in the domain,
    248		 * setup up the limbo worker.
    249		 */
    250		if (!has_busy_rmid(r, d))
    251			cqm_setup_limbo_handler(d, CQM_LIMBOCHECK_INTERVAL);
    252		set_bit(entry->rmid, d->rmid_busy_llc);
    253		entry->busy++;
    254	}
    255	put_cpu();
    256
    257	if (entry->busy)
    258		rmid_limbo_count++;
    259	else
    260		list_add_tail(&entry->list, &rmid_free_lru);
    261}
    262
    263void free_rmid(u32 rmid)
    264{
    265	struct rmid_entry *entry;
    266
    267	if (!rmid)
    268		return;
    269
    270	lockdep_assert_held(&rdtgroup_mutex);
    271
    272	entry = __rmid_entry(rmid);
    273
    274	if (is_llc_occupancy_enabled())
    275		add_rmid_to_limbo(entry);
    276	else
    277		list_add_tail(&entry->list, &rmid_free_lru);
    278}
    279
    280static u64 mbm_overflow_count(u64 prev_msr, u64 cur_msr, unsigned int width)
    281{
    282	u64 shift = 64 - width, chunks;
    283
    284	chunks = (cur_msr << shift) - (prev_msr << shift);
    285	return chunks >> shift;
    286}
    287
    288static u64 __mon_event_count(u32 rmid, struct rmid_read *rr)
    289{
    290	struct rdt_hw_resource *hw_res = resctrl_to_arch_res(rr->r);
    291	struct mbm_state *m;
    292	u64 chunks, tval;
    293
    294	tval = __rmid_read(rmid, rr->evtid);
    295	if (tval & (RMID_VAL_ERROR | RMID_VAL_UNAVAIL)) {
    296		return tval;
    297	}
    298	switch (rr->evtid) {
    299	case QOS_L3_OCCUP_EVENT_ID:
    300		rr->val += tval;
    301		return 0;
    302	case QOS_L3_MBM_TOTAL_EVENT_ID:
    303		m = &rr->d->mbm_total[rmid];
    304		break;
    305	case QOS_L3_MBM_LOCAL_EVENT_ID:
    306		m = &rr->d->mbm_local[rmid];
    307		break;
    308	default:
    309		/*
    310		 * Code would never reach here because an invalid
    311		 * event id would fail the __rmid_read.
    312		 */
    313		return RMID_VAL_ERROR;
    314	}
    315
    316	if (rr->first) {
    317		memset(m, 0, sizeof(struct mbm_state));
    318		m->prev_bw_msr = m->prev_msr = tval;
    319		return 0;
    320	}
    321
    322	chunks = mbm_overflow_count(m->prev_msr, tval, hw_res->mbm_width);
    323	m->chunks += chunks;
    324	m->prev_msr = tval;
    325
    326	rr->val += get_corrected_mbm_count(rmid, m->chunks);
    327
    328	return 0;
    329}
    330
    331/*
    332 * Supporting function to calculate the memory bandwidth
    333 * and delta bandwidth in MBps.
    334 */
    335static void mbm_bw_count(u32 rmid, struct rmid_read *rr)
    336{
    337	struct rdt_hw_resource *hw_res = resctrl_to_arch_res(rr->r);
    338	struct mbm_state *m = &rr->d->mbm_local[rmid];
    339	u64 tval, cur_bw, chunks;
    340
    341	tval = __rmid_read(rmid, rr->evtid);
    342	if (tval & (RMID_VAL_ERROR | RMID_VAL_UNAVAIL))
    343		return;
    344
    345	chunks = mbm_overflow_count(m->prev_bw_msr, tval, hw_res->mbm_width);
    346	cur_bw = (get_corrected_mbm_count(rmid, chunks) * hw_res->mon_scale) >> 20;
    347
    348	if (m->delta_comp)
    349		m->delta_bw = abs(cur_bw - m->prev_bw);
    350	m->delta_comp = false;
    351	m->prev_bw = cur_bw;
    352	m->prev_bw_msr = tval;
    353}
    354
    355/*
    356 * This is called via IPI to read the CQM/MBM counters
    357 * on a domain.
    358 */
    359void mon_event_count(void *info)
    360{
    361	struct rdtgroup *rdtgrp, *entry;
    362	struct rmid_read *rr = info;
    363	struct list_head *head;
    364	u64 ret_val;
    365
    366	rdtgrp = rr->rgrp;
    367
    368	ret_val = __mon_event_count(rdtgrp->mon.rmid, rr);
    369
    370	/*
    371	 * For Ctrl groups read data from child monitor groups and
    372	 * add them together. Count events which are read successfully.
    373	 * Discard the rmid_read's reporting errors.
    374	 */
    375	head = &rdtgrp->mon.crdtgrp_list;
    376
    377	if (rdtgrp->type == RDTCTRL_GROUP) {
    378		list_for_each_entry(entry, head, mon.crdtgrp_list) {
    379			if (__mon_event_count(entry->mon.rmid, rr) == 0)
    380				ret_val = 0;
    381		}
    382	}
    383
    384	/* Report error if none of rmid_reads are successful */
    385	if (ret_val)
    386		rr->val = ret_val;
    387}
    388
    389/*
    390 * Feedback loop for MBA software controller (mba_sc)
    391 *
    392 * mba_sc is a feedback loop where we periodically read MBM counters and
    393 * adjust the bandwidth percentage values via the IA32_MBA_THRTL_MSRs so
    394 * that:
    395 *
    396 *   current bandwidth(cur_bw) < user specified bandwidth(user_bw)
    397 *
    398 * This uses the MBM counters to measure the bandwidth and MBA throttle
    399 * MSRs to control the bandwidth for a particular rdtgrp. It builds on the
    400 * fact that resctrl rdtgroups have both monitoring and control.
    401 *
    402 * The frequency of the checks is 1s and we just tag along the MBM overflow
    403 * timer. Having 1s interval makes the calculation of bandwidth simpler.
    404 *
    405 * Although MBA's goal is to restrict the bandwidth to a maximum, there may
    406 * be a need to increase the bandwidth to avoid unnecessarily restricting
    407 * the L2 <-> L3 traffic.
    408 *
    409 * Since MBA controls the L2 external bandwidth where as MBM measures the
    410 * L3 external bandwidth the following sequence could lead to such a
    411 * situation.
    412 *
    413 * Consider an rdtgroup which had high L3 <-> memory traffic in initial
    414 * phases -> mba_sc kicks in and reduced bandwidth percentage values -> but
    415 * after some time rdtgroup has mostly L2 <-> L3 traffic.
    416 *
    417 * In this case we may restrict the rdtgroup's L2 <-> L3 traffic as its
    418 * throttle MSRs already have low percentage values.  To avoid
    419 * unnecessarily restricting such rdtgroups, we also increase the bandwidth.
    420 */
    421static void update_mba_bw(struct rdtgroup *rgrp, struct rdt_domain *dom_mbm)
    422{
    423	u32 closid, rmid, cur_msr, cur_msr_val, new_msr_val;
    424	struct mbm_state *pmbm_data, *cmbm_data;
    425	struct rdt_hw_resource *hw_r_mba;
    426	struct rdt_hw_domain *hw_dom_mba;
    427	u32 cur_bw, delta_bw, user_bw;
    428	struct rdt_resource *r_mba;
    429	struct rdt_domain *dom_mba;
    430	struct list_head *head;
    431	struct rdtgroup *entry;
    432
    433	if (!is_mbm_local_enabled())
    434		return;
    435
    436	hw_r_mba = &rdt_resources_all[RDT_RESOURCE_MBA];
    437	r_mba = &hw_r_mba->r_resctrl;
    438	closid = rgrp->closid;
    439	rmid = rgrp->mon.rmid;
    440	pmbm_data = &dom_mbm->mbm_local[rmid];
    441
    442	dom_mba = get_domain_from_cpu(smp_processor_id(), r_mba);
    443	if (!dom_mba) {
    444		pr_warn_once("Failure to get domain for MBA update\n");
    445		return;
    446	}
    447	hw_dom_mba = resctrl_to_arch_dom(dom_mba);
    448
    449	cur_bw = pmbm_data->prev_bw;
    450	user_bw = resctrl_arch_get_config(r_mba, dom_mba, closid, CDP_NONE);
    451	delta_bw = pmbm_data->delta_bw;
    452	/*
    453	 * resctrl_arch_get_config() chooses the mbps/ctrl value to return
    454	 * based on is_mba_sc(). For now, reach into the hw_dom.
    455	 */
    456	cur_msr_val = hw_dom_mba->ctrl_val[closid];
    457
    458	/*
    459	 * For Ctrl groups read data from child monitor groups.
    460	 */
    461	head = &rgrp->mon.crdtgrp_list;
    462	list_for_each_entry(entry, head, mon.crdtgrp_list) {
    463		cmbm_data = &dom_mbm->mbm_local[entry->mon.rmid];
    464		cur_bw += cmbm_data->prev_bw;
    465		delta_bw += cmbm_data->delta_bw;
    466	}
    467
    468	/*
    469	 * Scale up/down the bandwidth linearly for the ctrl group.  The
    470	 * bandwidth step is the bandwidth granularity specified by the
    471	 * hardware.
    472	 *
    473	 * The delta_bw is used when increasing the bandwidth so that we
    474	 * dont alternately increase and decrease the control values
    475	 * continuously.
    476	 *
    477	 * For ex: consider cur_bw = 90MBps, user_bw = 100MBps and if
    478	 * bandwidth step is 20MBps(> user_bw - cur_bw), we would keep
    479	 * switching between 90 and 110 continuously if we only check
    480	 * cur_bw < user_bw.
    481	 */
    482	if (cur_msr_val > r_mba->membw.min_bw && user_bw < cur_bw) {
    483		new_msr_val = cur_msr_val - r_mba->membw.bw_gran;
    484	} else if (cur_msr_val < MAX_MBA_BW &&
    485		   (user_bw > (cur_bw + delta_bw))) {
    486		new_msr_val = cur_msr_val + r_mba->membw.bw_gran;
    487	} else {
    488		return;
    489	}
    490
    491	cur_msr = hw_r_mba->msr_base + closid;
    492	wrmsrl(cur_msr, delay_bw_map(new_msr_val, r_mba));
    493	hw_dom_mba->ctrl_val[closid] = new_msr_val;
    494
    495	/*
    496	 * Delta values are updated dynamically package wise for each
    497	 * rdtgrp every time the throttle MSR changes value.
    498	 *
    499	 * This is because (1)the increase in bandwidth is not perfectly
    500	 * linear and only "approximately" linear even when the hardware
    501	 * says it is linear.(2)Also since MBA is a core specific
    502	 * mechanism, the delta values vary based on number of cores used
    503	 * by the rdtgrp.
    504	 */
    505	pmbm_data->delta_comp = true;
    506	list_for_each_entry(entry, head, mon.crdtgrp_list) {
    507		cmbm_data = &dom_mbm->mbm_local[entry->mon.rmid];
    508		cmbm_data->delta_comp = true;
    509	}
    510}
    511
    512static void mbm_update(struct rdt_resource *r, struct rdt_domain *d, int rmid)
    513{
    514	struct rmid_read rr;
    515
    516	rr.first = false;
    517	rr.r = r;
    518	rr.d = d;
    519
    520	/*
    521	 * This is protected from concurrent reads from user
    522	 * as both the user and we hold the global mutex.
    523	 */
    524	if (is_mbm_total_enabled()) {
    525		rr.evtid = QOS_L3_MBM_TOTAL_EVENT_ID;
    526		__mon_event_count(rmid, &rr);
    527	}
    528	if (is_mbm_local_enabled()) {
    529		rr.evtid = QOS_L3_MBM_LOCAL_EVENT_ID;
    530		__mon_event_count(rmid, &rr);
    531
    532		/*
    533		 * Call the MBA software controller only for the
    534		 * control groups and when user has enabled
    535		 * the software controller explicitly.
    536		 */
    537		if (is_mba_sc(NULL))
    538			mbm_bw_count(rmid, &rr);
    539	}
    540}
    541
    542/*
    543 * Handler to scan the limbo list and move the RMIDs
    544 * to free list whose occupancy < threshold_occupancy.
    545 */
    546void cqm_handle_limbo(struct work_struct *work)
    547{
    548	unsigned long delay = msecs_to_jiffies(CQM_LIMBOCHECK_INTERVAL);
    549	int cpu = smp_processor_id();
    550	struct rdt_resource *r;
    551	struct rdt_domain *d;
    552
    553	mutex_lock(&rdtgroup_mutex);
    554
    555	r = &rdt_resources_all[RDT_RESOURCE_L3].r_resctrl;
    556	d = container_of(work, struct rdt_domain, cqm_limbo.work);
    557
    558	__check_limbo(d, false);
    559
    560	if (has_busy_rmid(r, d))
    561		schedule_delayed_work_on(cpu, &d->cqm_limbo, delay);
    562
    563	mutex_unlock(&rdtgroup_mutex);
    564}
    565
    566void cqm_setup_limbo_handler(struct rdt_domain *dom, unsigned long delay_ms)
    567{
    568	unsigned long delay = msecs_to_jiffies(delay_ms);
    569	int cpu;
    570
    571	cpu = cpumask_any(&dom->cpu_mask);
    572	dom->cqm_work_cpu = cpu;
    573
    574	schedule_delayed_work_on(cpu, &dom->cqm_limbo, delay);
    575}
    576
    577void mbm_handle_overflow(struct work_struct *work)
    578{
    579	unsigned long delay = msecs_to_jiffies(MBM_OVERFLOW_INTERVAL);
    580	struct rdtgroup *prgrp, *crgrp;
    581	int cpu = smp_processor_id();
    582	struct list_head *head;
    583	struct rdt_resource *r;
    584	struct rdt_domain *d;
    585
    586	mutex_lock(&rdtgroup_mutex);
    587
    588	if (!static_branch_likely(&rdt_mon_enable_key))
    589		goto out_unlock;
    590
    591	r = &rdt_resources_all[RDT_RESOURCE_L3].r_resctrl;
    592	d = container_of(work, struct rdt_domain, mbm_over.work);
    593
    594	list_for_each_entry(prgrp, &rdt_all_groups, rdtgroup_list) {
    595		mbm_update(r, d, prgrp->mon.rmid);
    596
    597		head = &prgrp->mon.crdtgrp_list;
    598		list_for_each_entry(crgrp, head, mon.crdtgrp_list)
    599			mbm_update(r, d, crgrp->mon.rmid);
    600
    601		if (is_mba_sc(NULL))
    602			update_mba_bw(prgrp, d);
    603	}
    604
    605	schedule_delayed_work_on(cpu, &d->mbm_over, delay);
    606
    607out_unlock:
    608	mutex_unlock(&rdtgroup_mutex);
    609}
    610
    611void mbm_setup_overflow_handler(struct rdt_domain *dom, unsigned long delay_ms)
    612{
    613	unsigned long delay = msecs_to_jiffies(delay_ms);
    614	int cpu;
    615
    616	if (!static_branch_likely(&rdt_mon_enable_key))
    617		return;
    618	cpu = cpumask_any(&dom->cpu_mask);
    619	dom->mbm_work_cpu = cpu;
    620	schedule_delayed_work_on(cpu, &dom->mbm_over, delay);
    621}
    622
    623static int dom_data_init(struct rdt_resource *r)
    624{
    625	struct rmid_entry *entry = NULL;
    626	int i, nr_rmids;
    627
    628	nr_rmids = r->num_rmid;
    629	rmid_ptrs = kcalloc(nr_rmids, sizeof(struct rmid_entry), GFP_KERNEL);
    630	if (!rmid_ptrs)
    631		return -ENOMEM;
    632
    633	for (i = 0; i < nr_rmids; i++) {
    634		entry = &rmid_ptrs[i];
    635		INIT_LIST_HEAD(&entry->list);
    636
    637		entry->rmid = i;
    638		list_add_tail(&entry->list, &rmid_free_lru);
    639	}
    640
    641	/*
    642	 * RMID 0 is special and is always allocated. It's used for all
    643	 * tasks that are not monitored.
    644	 */
    645	entry = __rmid_entry(0);
    646	list_del(&entry->list);
    647
    648	return 0;
    649}
    650
    651static struct mon_evt llc_occupancy_event = {
    652	.name		= "llc_occupancy",
    653	.evtid		= QOS_L3_OCCUP_EVENT_ID,
    654};
    655
    656static struct mon_evt mbm_total_event = {
    657	.name		= "mbm_total_bytes",
    658	.evtid		= QOS_L3_MBM_TOTAL_EVENT_ID,
    659};
    660
    661static struct mon_evt mbm_local_event = {
    662	.name		= "mbm_local_bytes",
    663	.evtid		= QOS_L3_MBM_LOCAL_EVENT_ID,
    664};
    665
    666/*
    667 * Initialize the event list for the resource.
    668 *
    669 * Note that MBM events are also part of RDT_RESOURCE_L3 resource
    670 * because as per the SDM the total and local memory bandwidth
    671 * are enumerated as part of L3 monitoring.
    672 */
    673static void l3_mon_evt_init(struct rdt_resource *r)
    674{
    675	INIT_LIST_HEAD(&r->evt_list);
    676
    677	if (is_llc_occupancy_enabled())
    678		list_add_tail(&llc_occupancy_event.list, &r->evt_list);
    679	if (is_mbm_total_enabled())
    680		list_add_tail(&mbm_total_event.list, &r->evt_list);
    681	if (is_mbm_local_enabled())
    682		list_add_tail(&mbm_local_event.list, &r->evt_list);
    683}
    684
    685int rdt_get_mon_l3_config(struct rdt_resource *r)
    686{
    687	unsigned int mbm_offset = boot_cpu_data.x86_cache_mbm_width_offset;
    688	struct rdt_hw_resource *hw_res = resctrl_to_arch_res(r);
    689	unsigned int cl_size = boot_cpu_data.x86_cache_size;
    690	int ret;
    691
    692	hw_res->mon_scale = boot_cpu_data.x86_cache_occ_scale;
    693	r->num_rmid = boot_cpu_data.x86_cache_max_rmid + 1;
    694	hw_res->mbm_width = MBM_CNTR_WIDTH_BASE;
    695
    696	if (mbm_offset > 0 && mbm_offset <= MBM_CNTR_WIDTH_OFFSET_MAX)
    697		hw_res->mbm_width += mbm_offset;
    698	else if (mbm_offset > MBM_CNTR_WIDTH_OFFSET_MAX)
    699		pr_warn("Ignoring impossible MBM counter offset\n");
    700
    701	/*
    702	 * A reasonable upper limit on the max threshold is the number
    703	 * of lines tagged per RMID if all RMIDs have the same number of
    704	 * lines tagged in the LLC.
    705	 *
    706	 * For a 35MB LLC and 56 RMIDs, this is ~1.8% of the LLC.
    707	 */
    708	resctrl_cqm_threshold = cl_size * 1024 / r->num_rmid;
    709
    710	/* h/w works in units of "boot_cpu_data.x86_cache_occ_scale" */
    711	resctrl_cqm_threshold /= hw_res->mon_scale;
    712
    713	ret = dom_data_init(r);
    714	if (ret)
    715		return ret;
    716
    717	l3_mon_evt_init(r);
    718
    719	r->mon_capable = true;
    720	r->mon_enabled = true;
    721
    722	return 0;
    723}
    724
    725void __init intel_rdt_mbm_apply_quirk(void)
    726{
    727	int cf_index;
    728
    729	cf_index = (boot_cpu_data.x86_cache_max_rmid + 1) / 8 - 1;
    730	if (cf_index >= ARRAY_SIZE(mbm_cf_table)) {
    731		pr_info("No MBM correction factor available\n");
    732		return;
    733	}
    734
    735	mbm_cf_rmidthreshold = mbm_cf_table[cf_index].rmidthreshold;
    736	mbm_cf = mbm_cf_table[cf_index].cf;
    737}