cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

pseudo_lock.c (44519B)


      1// SPDX-License-Identifier: GPL-2.0
      2/*
      3 * Resource Director Technology (RDT)
      4 *
      5 * Pseudo-locking support built on top of Cache Allocation Technology (CAT)
      6 *
      7 * Copyright (C) 2018 Intel Corporation
      8 *
      9 * Author: Reinette Chatre <reinette.chatre@intel.com>
     10 */
     11
     12#define pr_fmt(fmt)	KBUILD_MODNAME ": " fmt
     13
     14#include <linux/cacheinfo.h>
     15#include <linux/cpu.h>
     16#include <linux/cpumask.h>
     17#include <linux/debugfs.h>
     18#include <linux/kthread.h>
     19#include <linux/mman.h>
     20#include <linux/perf_event.h>
     21#include <linux/pm_qos.h>
     22#include <linux/slab.h>
     23#include <linux/uaccess.h>
     24
     25#include <asm/cacheflush.h>
     26#include <asm/intel-family.h>
     27#include <asm/resctrl.h>
     28#include <asm/perf_event.h>
     29
     30#include "../../events/perf_event.h" /* For X86_CONFIG() */
     31#include "internal.h"
     32
     33#define CREATE_TRACE_POINTS
     34#include "pseudo_lock_event.h"
     35
     36/*
     37 * The bits needed to disable hardware prefetching varies based on the
     38 * platform. During initialization we will discover which bits to use.
     39 */
     40static u64 prefetch_disable_bits;
     41
     42/*
     43 * Major number assigned to and shared by all devices exposing
     44 * pseudo-locked regions.
     45 */
     46static unsigned int pseudo_lock_major;
     47static unsigned long pseudo_lock_minor_avail = GENMASK(MINORBITS, 0);
     48static struct class *pseudo_lock_class;
     49
     50/**
     51 * get_prefetch_disable_bits - prefetch disable bits of supported platforms
     52 * @void: It takes no parameters.
     53 *
     54 * Capture the list of platforms that have been validated to support
     55 * pseudo-locking. This includes testing to ensure pseudo-locked regions
     56 * with low cache miss rates can be created under variety of load conditions
     57 * as well as that these pseudo-locked regions can maintain their low cache
     58 * miss rates under variety of load conditions for significant lengths of time.
     59 *
     60 * After a platform has been validated to support pseudo-locking its
     61 * hardware prefetch disable bits are included here as they are documented
     62 * in the SDM.
     63 *
     64 * When adding a platform here also add support for its cache events to
     65 * measure_cycles_perf_fn()
     66 *
     67 * Return:
     68 * If platform is supported, the bits to disable hardware prefetchers, 0
     69 * if platform is not supported.
     70 */
     71static u64 get_prefetch_disable_bits(void)
     72{
     73	if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL ||
     74	    boot_cpu_data.x86 != 6)
     75		return 0;
     76
     77	switch (boot_cpu_data.x86_model) {
     78	case INTEL_FAM6_BROADWELL_X:
     79		/*
     80		 * SDM defines bits of MSR_MISC_FEATURE_CONTROL register
     81		 * as:
     82		 * 0    L2 Hardware Prefetcher Disable (R/W)
     83		 * 1    L2 Adjacent Cache Line Prefetcher Disable (R/W)
     84		 * 2    DCU Hardware Prefetcher Disable (R/W)
     85		 * 3    DCU IP Prefetcher Disable (R/W)
     86		 * 63:4 Reserved
     87		 */
     88		return 0xF;
     89	case INTEL_FAM6_ATOM_GOLDMONT:
     90	case INTEL_FAM6_ATOM_GOLDMONT_PLUS:
     91		/*
     92		 * SDM defines bits of MSR_MISC_FEATURE_CONTROL register
     93		 * as:
     94		 * 0     L2 Hardware Prefetcher Disable (R/W)
     95		 * 1     Reserved
     96		 * 2     DCU Hardware Prefetcher Disable (R/W)
     97		 * 63:3  Reserved
     98		 */
     99		return 0x5;
    100	}
    101
    102	return 0;
    103}
    104
    105/**
    106 * pseudo_lock_minor_get - Obtain available minor number
    107 * @minor: Pointer to where new minor number will be stored
    108 *
    109 * A bitmask is used to track available minor numbers. Here the next free
    110 * minor number is marked as unavailable and returned.
    111 *
    112 * Return: 0 on success, <0 on failure.
    113 */
    114static int pseudo_lock_minor_get(unsigned int *minor)
    115{
    116	unsigned long first_bit;
    117
    118	first_bit = find_first_bit(&pseudo_lock_minor_avail, MINORBITS);
    119
    120	if (first_bit == MINORBITS)
    121		return -ENOSPC;
    122
    123	__clear_bit(first_bit, &pseudo_lock_minor_avail);
    124	*minor = first_bit;
    125
    126	return 0;
    127}
    128
    129/**
    130 * pseudo_lock_minor_release - Return minor number to available
    131 * @minor: The minor number made available
    132 */
    133static void pseudo_lock_minor_release(unsigned int minor)
    134{
    135	__set_bit(minor, &pseudo_lock_minor_avail);
    136}
    137
    138/**
    139 * region_find_by_minor - Locate a pseudo-lock region by inode minor number
    140 * @minor: The minor number of the device representing pseudo-locked region
    141 *
    142 * When the character device is accessed we need to determine which
    143 * pseudo-locked region it belongs to. This is done by matching the minor
    144 * number of the device to the pseudo-locked region it belongs.
    145 *
    146 * Minor numbers are assigned at the time a pseudo-locked region is associated
    147 * with a cache instance.
    148 *
    149 * Return: On success return pointer to resource group owning the pseudo-locked
    150 *         region, NULL on failure.
    151 */
    152static struct rdtgroup *region_find_by_minor(unsigned int minor)
    153{
    154	struct rdtgroup *rdtgrp, *rdtgrp_match = NULL;
    155
    156	list_for_each_entry(rdtgrp, &rdt_all_groups, rdtgroup_list) {
    157		if (rdtgrp->plr && rdtgrp->plr->minor == minor) {
    158			rdtgrp_match = rdtgrp;
    159			break;
    160		}
    161	}
    162	return rdtgrp_match;
    163}
    164
    165/**
    166 * struct pseudo_lock_pm_req - A power management QoS request list entry
    167 * @list:	Entry within the @pm_reqs list for a pseudo-locked region
    168 * @req:	PM QoS request
    169 */
    170struct pseudo_lock_pm_req {
    171	struct list_head list;
    172	struct dev_pm_qos_request req;
    173};
    174
    175static void pseudo_lock_cstates_relax(struct pseudo_lock_region *plr)
    176{
    177	struct pseudo_lock_pm_req *pm_req, *next;
    178
    179	list_for_each_entry_safe(pm_req, next, &plr->pm_reqs, list) {
    180		dev_pm_qos_remove_request(&pm_req->req);
    181		list_del(&pm_req->list);
    182		kfree(pm_req);
    183	}
    184}
    185
    186/**
    187 * pseudo_lock_cstates_constrain - Restrict cores from entering C6
    188 * @plr: Pseudo-locked region
    189 *
    190 * To prevent the cache from being affected by power management entering
    191 * C6 has to be avoided. This is accomplished by requesting a latency
    192 * requirement lower than lowest C6 exit latency of all supported
    193 * platforms as found in the cpuidle state tables in the intel_idle driver.
    194 * At this time it is possible to do so with a single latency requirement
    195 * for all supported platforms.
    196 *
    197 * Since Goldmont is supported, which is affected by X86_BUG_MONITOR,
    198 * the ACPI latencies need to be considered while keeping in mind that C2
    199 * may be set to map to deeper sleep states. In this case the latency
    200 * requirement needs to prevent entering C2 also.
    201 *
    202 * Return: 0 on success, <0 on failure
    203 */
    204static int pseudo_lock_cstates_constrain(struct pseudo_lock_region *plr)
    205{
    206	struct pseudo_lock_pm_req *pm_req;
    207	int cpu;
    208	int ret;
    209
    210	for_each_cpu(cpu, &plr->d->cpu_mask) {
    211		pm_req = kzalloc(sizeof(*pm_req), GFP_KERNEL);
    212		if (!pm_req) {
    213			rdt_last_cmd_puts("Failure to allocate memory for PM QoS\n");
    214			ret = -ENOMEM;
    215			goto out_err;
    216		}
    217		ret = dev_pm_qos_add_request(get_cpu_device(cpu),
    218					     &pm_req->req,
    219					     DEV_PM_QOS_RESUME_LATENCY,
    220					     30);
    221		if (ret < 0) {
    222			rdt_last_cmd_printf("Failed to add latency req CPU%d\n",
    223					    cpu);
    224			kfree(pm_req);
    225			ret = -1;
    226			goto out_err;
    227		}
    228		list_add(&pm_req->list, &plr->pm_reqs);
    229	}
    230
    231	return 0;
    232
    233out_err:
    234	pseudo_lock_cstates_relax(plr);
    235	return ret;
    236}
    237
    238/**
    239 * pseudo_lock_region_clear - Reset pseudo-lock region data
    240 * @plr: pseudo-lock region
    241 *
    242 * All content of the pseudo-locked region is reset - any memory allocated
    243 * freed.
    244 *
    245 * Return: void
    246 */
    247static void pseudo_lock_region_clear(struct pseudo_lock_region *plr)
    248{
    249	plr->size = 0;
    250	plr->line_size = 0;
    251	kfree(plr->kmem);
    252	plr->kmem = NULL;
    253	plr->s = NULL;
    254	if (plr->d)
    255		plr->d->plr = NULL;
    256	plr->d = NULL;
    257	plr->cbm = 0;
    258	plr->debugfs_dir = NULL;
    259}
    260
    261/**
    262 * pseudo_lock_region_init - Initialize pseudo-lock region information
    263 * @plr: pseudo-lock region
    264 *
    265 * Called after user provided a schemata to be pseudo-locked. From the
    266 * schemata the &struct pseudo_lock_region is on entry already initialized
    267 * with the resource, domain, and capacity bitmask. Here the information
    268 * required for pseudo-locking is deduced from this data and &struct
    269 * pseudo_lock_region initialized further. This information includes:
    270 * - size in bytes of the region to be pseudo-locked
    271 * - cache line size to know the stride with which data needs to be accessed
    272 *   to be pseudo-locked
    273 * - a cpu associated with the cache instance on which the pseudo-locking
    274 *   flow can be executed
    275 *
    276 * Return: 0 on success, <0 on failure. Descriptive error will be written
    277 * to last_cmd_status buffer.
    278 */
    279static int pseudo_lock_region_init(struct pseudo_lock_region *plr)
    280{
    281	struct cpu_cacheinfo *ci;
    282	int ret;
    283	int i;
    284
    285	/* Pick the first cpu we find that is associated with the cache. */
    286	plr->cpu = cpumask_first(&plr->d->cpu_mask);
    287
    288	if (!cpu_online(plr->cpu)) {
    289		rdt_last_cmd_printf("CPU %u associated with cache not online\n",
    290				    plr->cpu);
    291		ret = -ENODEV;
    292		goto out_region;
    293	}
    294
    295	ci = get_cpu_cacheinfo(plr->cpu);
    296
    297	plr->size = rdtgroup_cbm_to_size(plr->s->res, plr->d, plr->cbm);
    298
    299	for (i = 0; i < ci->num_leaves; i++) {
    300		if (ci->info_list[i].level == plr->s->res->cache_level) {
    301			plr->line_size = ci->info_list[i].coherency_line_size;
    302			return 0;
    303		}
    304	}
    305
    306	ret = -1;
    307	rdt_last_cmd_puts("Unable to determine cache line size\n");
    308out_region:
    309	pseudo_lock_region_clear(plr);
    310	return ret;
    311}
    312
    313/**
    314 * pseudo_lock_init - Initialize a pseudo-lock region
    315 * @rdtgrp: resource group to which new pseudo-locked region will belong
    316 *
    317 * A pseudo-locked region is associated with a resource group. When this
    318 * association is created the pseudo-locked region is initialized. The
    319 * details of the pseudo-locked region are not known at this time so only
    320 * allocation is done and association established.
    321 *
    322 * Return: 0 on success, <0 on failure
    323 */
    324static int pseudo_lock_init(struct rdtgroup *rdtgrp)
    325{
    326	struct pseudo_lock_region *plr;
    327
    328	plr = kzalloc(sizeof(*plr), GFP_KERNEL);
    329	if (!plr)
    330		return -ENOMEM;
    331
    332	init_waitqueue_head(&plr->lock_thread_wq);
    333	INIT_LIST_HEAD(&plr->pm_reqs);
    334	rdtgrp->plr = plr;
    335	return 0;
    336}
    337
    338/**
    339 * pseudo_lock_region_alloc - Allocate kernel memory that will be pseudo-locked
    340 * @plr: pseudo-lock region
    341 *
    342 * Initialize the details required to set up the pseudo-locked region and
    343 * allocate the contiguous memory that will be pseudo-locked to the cache.
    344 *
    345 * Return: 0 on success, <0 on failure.  Descriptive error will be written
    346 * to last_cmd_status buffer.
    347 */
    348static int pseudo_lock_region_alloc(struct pseudo_lock_region *plr)
    349{
    350	int ret;
    351
    352	ret = pseudo_lock_region_init(plr);
    353	if (ret < 0)
    354		return ret;
    355
    356	/*
    357	 * We do not yet support contiguous regions larger than
    358	 * KMALLOC_MAX_SIZE.
    359	 */
    360	if (plr->size > KMALLOC_MAX_SIZE) {
    361		rdt_last_cmd_puts("Requested region exceeds maximum size\n");
    362		ret = -E2BIG;
    363		goto out_region;
    364	}
    365
    366	plr->kmem = kzalloc(plr->size, GFP_KERNEL);
    367	if (!plr->kmem) {
    368		rdt_last_cmd_puts("Unable to allocate memory\n");
    369		ret = -ENOMEM;
    370		goto out_region;
    371	}
    372
    373	ret = 0;
    374	goto out;
    375out_region:
    376	pseudo_lock_region_clear(plr);
    377out:
    378	return ret;
    379}
    380
    381/**
    382 * pseudo_lock_free - Free a pseudo-locked region
    383 * @rdtgrp: resource group to which pseudo-locked region belonged
    384 *
    385 * The pseudo-locked region's resources have already been released, or not
    386 * yet created at this point. Now it can be freed and disassociated from the
    387 * resource group.
    388 *
    389 * Return: void
    390 */
    391static void pseudo_lock_free(struct rdtgroup *rdtgrp)
    392{
    393	pseudo_lock_region_clear(rdtgrp->plr);
    394	kfree(rdtgrp->plr);
    395	rdtgrp->plr = NULL;
    396}
    397
    398/**
    399 * pseudo_lock_fn - Load kernel memory into cache
    400 * @_rdtgrp: resource group to which pseudo-lock region belongs
    401 *
    402 * This is the core pseudo-locking flow.
    403 *
    404 * First we ensure that the kernel memory cannot be found in the cache.
    405 * Then, while taking care that there will be as little interference as
    406 * possible, the memory to be loaded is accessed while core is running
    407 * with class of service set to the bitmask of the pseudo-locked region.
    408 * After this is complete no future CAT allocations will be allowed to
    409 * overlap with this bitmask.
    410 *
    411 * Local register variables are utilized to ensure that the memory region
    412 * to be locked is the only memory access made during the critical locking
    413 * loop.
    414 *
    415 * Return: 0. Waiter on waitqueue will be woken on completion.
    416 */
    417static int pseudo_lock_fn(void *_rdtgrp)
    418{
    419	struct rdtgroup *rdtgrp = _rdtgrp;
    420	struct pseudo_lock_region *plr = rdtgrp->plr;
    421	u32 rmid_p, closid_p;
    422	unsigned long i;
    423#ifdef CONFIG_KASAN
    424	/*
    425	 * The registers used for local register variables are also used
    426	 * when KASAN is active. When KASAN is active we use a regular
    427	 * variable to ensure we always use a valid pointer, but the cost
    428	 * is that this variable will enter the cache through evicting the
    429	 * memory we are trying to lock into the cache. Thus expect lower
    430	 * pseudo-locking success rate when KASAN is active.
    431	 */
    432	unsigned int line_size;
    433	unsigned int size;
    434	void *mem_r;
    435#else
    436	register unsigned int line_size asm("esi");
    437	register unsigned int size asm("edi");
    438	register void *mem_r asm(_ASM_BX);
    439#endif /* CONFIG_KASAN */
    440
    441	/*
    442	 * Make sure none of the allocated memory is cached. If it is we
    443	 * will get a cache hit in below loop from outside of pseudo-locked
    444	 * region.
    445	 * wbinvd (as opposed to clflush/clflushopt) is required to
    446	 * increase likelihood that allocated cache portion will be filled
    447	 * with associated memory.
    448	 */
    449	native_wbinvd();
    450
    451	/*
    452	 * Always called with interrupts enabled. By disabling interrupts
    453	 * ensure that we will not be preempted during this critical section.
    454	 */
    455	local_irq_disable();
    456
    457	/*
    458	 * Call wrmsr and rdmsr as directly as possible to avoid tracing
    459	 * clobbering local register variables or affecting cache accesses.
    460	 *
    461	 * Disable the hardware prefetcher so that when the end of the memory
    462	 * being pseudo-locked is reached the hardware will not read beyond
    463	 * the buffer and evict pseudo-locked memory read earlier from the
    464	 * cache.
    465	 */
    466	__wrmsr(MSR_MISC_FEATURE_CONTROL, prefetch_disable_bits, 0x0);
    467	closid_p = this_cpu_read(pqr_state.cur_closid);
    468	rmid_p = this_cpu_read(pqr_state.cur_rmid);
    469	mem_r = plr->kmem;
    470	size = plr->size;
    471	line_size = plr->line_size;
    472	/*
    473	 * Critical section begin: start by writing the closid associated
    474	 * with the capacity bitmask of the cache region being
    475	 * pseudo-locked followed by reading of kernel memory to load it
    476	 * into the cache.
    477	 */
    478	__wrmsr(IA32_PQR_ASSOC, rmid_p, rdtgrp->closid);
    479	/*
    480	 * Cache was flushed earlier. Now access kernel memory to read it
    481	 * into cache region associated with just activated plr->closid.
    482	 * Loop over data twice:
    483	 * - In first loop the cache region is shared with the page walker
    484	 *   as it populates the paging structure caches (including TLB).
    485	 * - In the second loop the paging structure caches are used and
    486	 *   cache region is populated with the memory being referenced.
    487	 */
    488	for (i = 0; i < size; i += PAGE_SIZE) {
    489		/*
    490		 * Add a barrier to prevent speculative execution of this
    491		 * loop reading beyond the end of the buffer.
    492		 */
    493		rmb();
    494		asm volatile("mov (%0,%1,1), %%eax\n\t"
    495			:
    496			: "r" (mem_r), "r" (i)
    497			: "%eax", "memory");
    498	}
    499	for (i = 0; i < size; i += line_size) {
    500		/*
    501		 * Add a barrier to prevent speculative execution of this
    502		 * loop reading beyond the end of the buffer.
    503		 */
    504		rmb();
    505		asm volatile("mov (%0,%1,1), %%eax\n\t"
    506			:
    507			: "r" (mem_r), "r" (i)
    508			: "%eax", "memory");
    509	}
    510	/*
    511	 * Critical section end: restore closid with capacity bitmask that
    512	 * does not overlap with pseudo-locked region.
    513	 */
    514	__wrmsr(IA32_PQR_ASSOC, rmid_p, closid_p);
    515
    516	/* Re-enable the hardware prefetcher(s) */
    517	wrmsr(MSR_MISC_FEATURE_CONTROL, 0x0, 0x0);
    518	local_irq_enable();
    519
    520	plr->thread_done = 1;
    521	wake_up_interruptible(&plr->lock_thread_wq);
    522	return 0;
    523}
    524
    525/**
    526 * rdtgroup_monitor_in_progress - Test if monitoring in progress
    527 * @rdtgrp: resource group being queried
    528 *
    529 * Return: 1 if monitor groups have been created for this resource
    530 * group, 0 otherwise.
    531 */
    532static int rdtgroup_monitor_in_progress(struct rdtgroup *rdtgrp)
    533{
    534	return !list_empty(&rdtgrp->mon.crdtgrp_list);
    535}
    536
    537/**
    538 * rdtgroup_locksetup_user_restrict - Restrict user access to group
    539 * @rdtgrp: resource group needing access restricted
    540 *
    541 * A resource group used for cache pseudo-locking cannot have cpus or tasks
    542 * assigned to it. This is communicated to the user by restricting access
    543 * to all the files that can be used to make such changes.
    544 *
    545 * Permissions restored with rdtgroup_locksetup_user_restore()
    546 *
    547 * Return: 0 on success, <0 on failure. If a failure occurs during the
    548 * restriction of access an attempt will be made to restore permissions but
    549 * the state of the mode of these files will be uncertain when a failure
    550 * occurs.
    551 */
    552static int rdtgroup_locksetup_user_restrict(struct rdtgroup *rdtgrp)
    553{
    554	int ret;
    555
    556	ret = rdtgroup_kn_mode_restrict(rdtgrp, "tasks");
    557	if (ret)
    558		return ret;
    559
    560	ret = rdtgroup_kn_mode_restrict(rdtgrp, "cpus");
    561	if (ret)
    562		goto err_tasks;
    563
    564	ret = rdtgroup_kn_mode_restrict(rdtgrp, "cpus_list");
    565	if (ret)
    566		goto err_cpus;
    567
    568	if (rdt_mon_capable) {
    569		ret = rdtgroup_kn_mode_restrict(rdtgrp, "mon_groups");
    570		if (ret)
    571			goto err_cpus_list;
    572	}
    573
    574	ret = 0;
    575	goto out;
    576
    577err_cpus_list:
    578	rdtgroup_kn_mode_restore(rdtgrp, "cpus_list", 0777);
    579err_cpus:
    580	rdtgroup_kn_mode_restore(rdtgrp, "cpus", 0777);
    581err_tasks:
    582	rdtgroup_kn_mode_restore(rdtgrp, "tasks", 0777);
    583out:
    584	return ret;
    585}
    586
    587/**
    588 * rdtgroup_locksetup_user_restore - Restore user access to group
    589 * @rdtgrp: resource group needing access restored
    590 *
    591 * Restore all file access previously removed using
    592 * rdtgroup_locksetup_user_restrict()
    593 *
    594 * Return: 0 on success, <0 on failure.  If a failure occurs during the
    595 * restoration of access an attempt will be made to restrict permissions
    596 * again but the state of the mode of these files will be uncertain when
    597 * a failure occurs.
    598 */
    599static int rdtgroup_locksetup_user_restore(struct rdtgroup *rdtgrp)
    600{
    601	int ret;
    602
    603	ret = rdtgroup_kn_mode_restore(rdtgrp, "tasks", 0777);
    604	if (ret)
    605		return ret;
    606
    607	ret = rdtgroup_kn_mode_restore(rdtgrp, "cpus", 0777);
    608	if (ret)
    609		goto err_tasks;
    610
    611	ret = rdtgroup_kn_mode_restore(rdtgrp, "cpus_list", 0777);
    612	if (ret)
    613		goto err_cpus;
    614
    615	if (rdt_mon_capable) {
    616		ret = rdtgroup_kn_mode_restore(rdtgrp, "mon_groups", 0777);
    617		if (ret)
    618			goto err_cpus_list;
    619	}
    620
    621	ret = 0;
    622	goto out;
    623
    624err_cpus_list:
    625	rdtgroup_kn_mode_restrict(rdtgrp, "cpus_list");
    626err_cpus:
    627	rdtgroup_kn_mode_restrict(rdtgrp, "cpus");
    628err_tasks:
    629	rdtgroup_kn_mode_restrict(rdtgrp, "tasks");
    630out:
    631	return ret;
    632}
    633
    634/**
    635 * rdtgroup_locksetup_enter - Resource group enters locksetup mode
    636 * @rdtgrp: resource group requested to enter locksetup mode
    637 *
    638 * A resource group enters locksetup mode to reflect that it would be used
    639 * to represent a pseudo-locked region and is in the process of being set
    640 * up to do so. A resource group used for a pseudo-locked region would
    641 * lose the closid associated with it so we cannot allow it to have any
    642 * tasks or cpus assigned nor permit tasks or cpus to be assigned in the
    643 * future. Monitoring of a pseudo-locked region is not allowed either.
    644 *
    645 * The above and more restrictions on a pseudo-locked region are checked
    646 * for and enforced before the resource group enters the locksetup mode.
    647 *
    648 * Returns: 0 if the resource group successfully entered locksetup mode, <0
    649 * on failure. On failure the last_cmd_status buffer is updated with text to
    650 * communicate details of failure to the user.
    651 */
    652int rdtgroup_locksetup_enter(struct rdtgroup *rdtgrp)
    653{
    654	int ret;
    655
    656	/*
    657	 * The default resource group can neither be removed nor lose the
    658	 * default closid associated with it.
    659	 */
    660	if (rdtgrp == &rdtgroup_default) {
    661		rdt_last_cmd_puts("Cannot pseudo-lock default group\n");
    662		return -EINVAL;
    663	}
    664
    665	/*
    666	 * Cache Pseudo-locking not supported when CDP is enabled.
    667	 *
    668	 * Some things to consider if you would like to enable this
    669	 * support (using L3 CDP as example):
    670	 * - When CDP is enabled two separate resources are exposed,
    671	 *   L3DATA and L3CODE, but they are actually on the same cache.
    672	 *   The implication for pseudo-locking is that if a
    673	 *   pseudo-locked region is created on a domain of one
    674	 *   resource (eg. L3CODE), then a pseudo-locked region cannot
    675	 *   be created on that same domain of the other resource
    676	 *   (eg. L3DATA). This is because the creation of a
    677	 *   pseudo-locked region involves a call to wbinvd that will
    678	 *   affect all cache allocations on particular domain.
    679	 * - Considering the previous, it may be possible to only
    680	 *   expose one of the CDP resources to pseudo-locking and
    681	 *   hide the other. For example, we could consider to only
    682	 *   expose L3DATA and since the L3 cache is unified it is
    683	 *   still possible to place instructions there are execute it.
    684	 * - If only one region is exposed to pseudo-locking we should
    685	 *   still keep in mind that availability of a portion of cache
    686	 *   for pseudo-locking should take into account both resources.
    687	 *   Similarly, if a pseudo-locked region is created in one
    688	 *   resource, the portion of cache used by it should be made
    689	 *   unavailable to all future allocations from both resources.
    690	 */
    691	if (resctrl_arch_get_cdp_enabled(RDT_RESOURCE_L3) ||
    692	    resctrl_arch_get_cdp_enabled(RDT_RESOURCE_L2)) {
    693		rdt_last_cmd_puts("CDP enabled\n");
    694		return -EINVAL;
    695	}
    696
    697	/*
    698	 * Not knowing the bits to disable prefetching implies that this
    699	 * platform does not support Cache Pseudo-Locking.
    700	 */
    701	prefetch_disable_bits = get_prefetch_disable_bits();
    702	if (prefetch_disable_bits == 0) {
    703		rdt_last_cmd_puts("Pseudo-locking not supported\n");
    704		return -EINVAL;
    705	}
    706
    707	if (rdtgroup_monitor_in_progress(rdtgrp)) {
    708		rdt_last_cmd_puts("Monitoring in progress\n");
    709		return -EINVAL;
    710	}
    711
    712	if (rdtgroup_tasks_assigned(rdtgrp)) {
    713		rdt_last_cmd_puts("Tasks assigned to resource group\n");
    714		return -EINVAL;
    715	}
    716
    717	if (!cpumask_empty(&rdtgrp->cpu_mask)) {
    718		rdt_last_cmd_puts("CPUs assigned to resource group\n");
    719		return -EINVAL;
    720	}
    721
    722	if (rdtgroup_locksetup_user_restrict(rdtgrp)) {
    723		rdt_last_cmd_puts("Unable to modify resctrl permissions\n");
    724		return -EIO;
    725	}
    726
    727	ret = pseudo_lock_init(rdtgrp);
    728	if (ret) {
    729		rdt_last_cmd_puts("Unable to init pseudo-lock region\n");
    730		goto out_release;
    731	}
    732
    733	/*
    734	 * If this system is capable of monitoring a rmid would have been
    735	 * allocated when the control group was created. This is not needed
    736	 * anymore when this group would be used for pseudo-locking. This
    737	 * is safe to call on platforms not capable of monitoring.
    738	 */
    739	free_rmid(rdtgrp->mon.rmid);
    740
    741	ret = 0;
    742	goto out;
    743
    744out_release:
    745	rdtgroup_locksetup_user_restore(rdtgrp);
    746out:
    747	return ret;
    748}
    749
    750/**
    751 * rdtgroup_locksetup_exit - resource group exist locksetup mode
    752 * @rdtgrp: resource group
    753 *
    754 * When a resource group exits locksetup mode the earlier restrictions are
    755 * lifted.
    756 *
    757 * Return: 0 on success, <0 on failure
    758 */
    759int rdtgroup_locksetup_exit(struct rdtgroup *rdtgrp)
    760{
    761	int ret;
    762
    763	if (rdt_mon_capable) {
    764		ret = alloc_rmid();
    765		if (ret < 0) {
    766			rdt_last_cmd_puts("Out of RMIDs\n");
    767			return ret;
    768		}
    769		rdtgrp->mon.rmid = ret;
    770	}
    771
    772	ret = rdtgroup_locksetup_user_restore(rdtgrp);
    773	if (ret) {
    774		free_rmid(rdtgrp->mon.rmid);
    775		return ret;
    776	}
    777
    778	pseudo_lock_free(rdtgrp);
    779	return 0;
    780}
    781
    782/**
    783 * rdtgroup_cbm_overlaps_pseudo_locked - Test if CBM or portion is pseudo-locked
    784 * @d: RDT domain
    785 * @cbm: CBM to test
    786 *
    787 * @d represents a cache instance and @cbm a capacity bitmask that is
    788 * considered for it. Determine if @cbm overlaps with any existing
    789 * pseudo-locked region on @d.
    790 *
    791 * @cbm is unsigned long, even if only 32 bits are used, to make the
    792 * bitmap functions work correctly.
    793 *
    794 * Return: true if @cbm overlaps with pseudo-locked region on @d, false
    795 * otherwise.
    796 */
    797bool rdtgroup_cbm_overlaps_pseudo_locked(struct rdt_domain *d, unsigned long cbm)
    798{
    799	unsigned int cbm_len;
    800	unsigned long cbm_b;
    801
    802	if (d->plr) {
    803		cbm_len = d->plr->s->res->cache.cbm_len;
    804		cbm_b = d->plr->cbm;
    805		if (bitmap_intersects(&cbm, &cbm_b, cbm_len))
    806			return true;
    807	}
    808	return false;
    809}
    810
    811/**
    812 * rdtgroup_pseudo_locked_in_hierarchy - Pseudo-locked region in cache hierarchy
    813 * @d: RDT domain under test
    814 *
    815 * The setup of a pseudo-locked region affects all cache instances within
    816 * the hierarchy of the region. It is thus essential to know if any
    817 * pseudo-locked regions exist within a cache hierarchy to prevent any
    818 * attempts to create new pseudo-locked regions in the same hierarchy.
    819 *
    820 * Return: true if a pseudo-locked region exists in the hierarchy of @d or
    821 *         if it is not possible to test due to memory allocation issue,
    822 *         false otherwise.
    823 */
    824bool rdtgroup_pseudo_locked_in_hierarchy(struct rdt_domain *d)
    825{
    826	cpumask_var_t cpu_with_psl;
    827	struct rdt_resource *r;
    828	struct rdt_domain *d_i;
    829	bool ret = false;
    830
    831	if (!zalloc_cpumask_var(&cpu_with_psl, GFP_KERNEL))
    832		return true;
    833
    834	/*
    835	 * First determine which cpus have pseudo-locked regions
    836	 * associated with them.
    837	 */
    838	for_each_alloc_enabled_rdt_resource(r) {
    839		list_for_each_entry(d_i, &r->domains, list) {
    840			if (d_i->plr)
    841				cpumask_or(cpu_with_psl, cpu_with_psl,
    842					   &d_i->cpu_mask);
    843		}
    844	}
    845
    846	/*
    847	 * Next test if new pseudo-locked region would intersect with
    848	 * existing region.
    849	 */
    850	if (cpumask_intersects(&d->cpu_mask, cpu_with_psl))
    851		ret = true;
    852
    853	free_cpumask_var(cpu_with_psl);
    854	return ret;
    855}
    856
    857/**
    858 * measure_cycles_lat_fn - Measure cycle latency to read pseudo-locked memory
    859 * @_plr: pseudo-lock region to measure
    860 *
    861 * There is no deterministic way to test if a memory region is cached. One
    862 * way is to measure how long it takes to read the memory, the speed of
    863 * access is a good way to learn how close to the cpu the data was. Even
    864 * more, if the prefetcher is disabled and the memory is read at a stride
    865 * of half the cache line, then a cache miss will be easy to spot since the
    866 * read of the first half would be significantly slower than the read of
    867 * the second half.
    868 *
    869 * Return: 0. Waiter on waitqueue will be woken on completion.
    870 */
    871static int measure_cycles_lat_fn(void *_plr)
    872{
    873	struct pseudo_lock_region *plr = _plr;
    874	unsigned long i;
    875	u64 start, end;
    876	void *mem_r;
    877
    878	local_irq_disable();
    879	/*
    880	 * Disable hardware prefetchers.
    881	 */
    882	wrmsr(MSR_MISC_FEATURE_CONTROL, prefetch_disable_bits, 0x0);
    883	mem_r = READ_ONCE(plr->kmem);
    884	/*
    885	 * Dummy execute of the time measurement to load the needed
    886	 * instructions into the L1 instruction cache.
    887	 */
    888	start = rdtsc_ordered();
    889	for (i = 0; i < plr->size; i += 32) {
    890		start = rdtsc_ordered();
    891		asm volatile("mov (%0,%1,1), %%eax\n\t"
    892			     :
    893			     : "r" (mem_r), "r" (i)
    894			     : "%eax", "memory");
    895		end = rdtsc_ordered();
    896		trace_pseudo_lock_mem_latency((u32)(end - start));
    897	}
    898	wrmsr(MSR_MISC_FEATURE_CONTROL, 0x0, 0x0);
    899	local_irq_enable();
    900	plr->thread_done = 1;
    901	wake_up_interruptible(&plr->lock_thread_wq);
    902	return 0;
    903}
    904
    905/*
    906 * Create a perf_event_attr for the hit and miss perf events that will
    907 * be used during the performance measurement. A perf_event maintains
    908 * a pointer to its perf_event_attr so a unique attribute structure is
    909 * created for each perf_event.
    910 *
    911 * The actual configuration of the event is set right before use in order
    912 * to use the X86_CONFIG macro.
    913 */
    914static struct perf_event_attr perf_miss_attr = {
    915	.type		= PERF_TYPE_RAW,
    916	.size		= sizeof(struct perf_event_attr),
    917	.pinned		= 1,
    918	.disabled	= 0,
    919	.exclude_user	= 1,
    920};
    921
    922static struct perf_event_attr perf_hit_attr = {
    923	.type		= PERF_TYPE_RAW,
    924	.size		= sizeof(struct perf_event_attr),
    925	.pinned		= 1,
    926	.disabled	= 0,
    927	.exclude_user	= 1,
    928};
    929
    930struct residency_counts {
    931	u64 miss_before, hits_before;
    932	u64 miss_after,  hits_after;
    933};
    934
    935static int measure_residency_fn(struct perf_event_attr *miss_attr,
    936				struct perf_event_attr *hit_attr,
    937				struct pseudo_lock_region *plr,
    938				struct residency_counts *counts)
    939{
    940	u64 hits_before = 0, hits_after = 0, miss_before = 0, miss_after = 0;
    941	struct perf_event *miss_event, *hit_event;
    942	int hit_pmcnum, miss_pmcnum;
    943	unsigned int line_size;
    944	unsigned int size;
    945	unsigned long i;
    946	void *mem_r;
    947	u64 tmp;
    948
    949	miss_event = perf_event_create_kernel_counter(miss_attr, plr->cpu,
    950						      NULL, NULL, NULL);
    951	if (IS_ERR(miss_event))
    952		goto out;
    953
    954	hit_event = perf_event_create_kernel_counter(hit_attr, plr->cpu,
    955						     NULL, NULL, NULL);
    956	if (IS_ERR(hit_event))
    957		goto out_miss;
    958
    959	local_irq_disable();
    960	/*
    961	 * Check any possible error state of events used by performing
    962	 * one local read.
    963	 */
    964	if (perf_event_read_local(miss_event, &tmp, NULL, NULL)) {
    965		local_irq_enable();
    966		goto out_hit;
    967	}
    968	if (perf_event_read_local(hit_event, &tmp, NULL, NULL)) {
    969		local_irq_enable();
    970		goto out_hit;
    971	}
    972
    973	/*
    974	 * Disable hardware prefetchers.
    975	 */
    976	wrmsr(MSR_MISC_FEATURE_CONTROL, prefetch_disable_bits, 0x0);
    977
    978	/* Initialize rest of local variables */
    979	/*
    980	 * Performance event has been validated right before this with
    981	 * interrupts disabled - it is thus safe to read the counter index.
    982	 */
    983	miss_pmcnum = x86_perf_rdpmc_index(miss_event);
    984	hit_pmcnum = x86_perf_rdpmc_index(hit_event);
    985	line_size = READ_ONCE(plr->line_size);
    986	mem_r = READ_ONCE(plr->kmem);
    987	size = READ_ONCE(plr->size);
    988
    989	/*
    990	 * Read counter variables twice - first to load the instructions
    991	 * used in L1 cache, second to capture accurate value that does not
    992	 * include cache misses incurred because of instruction loads.
    993	 */
    994	rdpmcl(hit_pmcnum, hits_before);
    995	rdpmcl(miss_pmcnum, miss_before);
    996	/*
    997	 * From SDM: Performing back-to-back fast reads are not guaranteed
    998	 * to be monotonic.
    999	 * Use LFENCE to ensure all previous instructions are retired
   1000	 * before proceeding.
   1001	 */
   1002	rmb();
   1003	rdpmcl(hit_pmcnum, hits_before);
   1004	rdpmcl(miss_pmcnum, miss_before);
   1005	/*
   1006	 * Use LFENCE to ensure all previous instructions are retired
   1007	 * before proceeding.
   1008	 */
   1009	rmb();
   1010	for (i = 0; i < size; i += line_size) {
   1011		/*
   1012		 * Add a barrier to prevent speculative execution of this
   1013		 * loop reading beyond the end of the buffer.
   1014		 */
   1015		rmb();
   1016		asm volatile("mov (%0,%1,1), %%eax\n\t"
   1017			     :
   1018			     : "r" (mem_r), "r" (i)
   1019			     : "%eax", "memory");
   1020	}
   1021	/*
   1022	 * Use LFENCE to ensure all previous instructions are retired
   1023	 * before proceeding.
   1024	 */
   1025	rmb();
   1026	rdpmcl(hit_pmcnum, hits_after);
   1027	rdpmcl(miss_pmcnum, miss_after);
   1028	/*
   1029	 * Use LFENCE to ensure all previous instructions are retired
   1030	 * before proceeding.
   1031	 */
   1032	rmb();
   1033	/* Re-enable hardware prefetchers */
   1034	wrmsr(MSR_MISC_FEATURE_CONTROL, 0x0, 0x0);
   1035	local_irq_enable();
   1036out_hit:
   1037	perf_event_release_kernel(hit_event);
   1038out_miss:
   1039	perf_event_release_kernel(miss_event);
   1040out:
   1041	/*
   1042	 * All counts will be zero on failure.
   1043	 */
   1044	counts->miss_before = miss_before;
   1045	counts->hits_before = hits_before;
   1046	counts->miss_after  = miss_after;
   1047	counts->hits_after  = hits_after;
   1048	return 0;
   1049}
   1050
   1051static int measure_l2_residency(void *_plr)
   1052{
   1053	struct pseudo_lock_region *plr = _plr;
   1054	struct residency_counts counts = {0};
   1055
   1056	/*
   1057	 * Non-architectural event for the Goldmont Microarchitecture
   1058	 * from Intel x86 Architecture Software Developer Manual (SDM):
   1059	 * MEM_LOAD_UOPS_RETIRED D1H (event number)
   1060	 * Umask values:
   1061	 *     L2_HIT   02H
   1062	 *     L2_MISS  10H
   1063	 */
   1064	switch (boot_cpu_data.x86_model) {
   1065	case INTEL_FAM6_ATOM_GOLDMONT:
   1066	case INTEL_FAM6_ATOM_GOLDMONT_PLUS:
   1067		perf_miss_attr.config = X86_CONFIG(.event = 0xd1,
   1068						   .umask = 0x10);
   1069		perf_hit_attr.config = X86_CONFIG(.event = 0xd1,
   1070						  .umask = 0x2);
   1071		break;
   1072	default:
   1073		goto out;
   1074	}
   1075
   1076	measure_residency_fn(&perf_miss_attr, &perf_hit_attr, plr, &counts);
   1077	/*
   1078	 * If a failure prevented the measurements from succeeding
   1079	 * tracepoints will still be written and all counts will be zero.
   1080	 */
   1081	trace_pseudo_lock_l2(counts.hits_after - counts.hits_before,
   1082			     counts.miss_after - counts.miss_before);
   1083out:
   1084	plr->thread_done = 1;
   1085	wake_up_interruptible(&plr->lock_thread_wq);
   1086	return 0;
   1087}
   1088
   1089static int measure_l3_residency(void *_plr)
   1090{
   1091	struct pseudo_lock_region *plr = _plr;
   1092	struct residency_counts counts = {0};
   1093
   1094	/*
   1095	 * On Broadwell Microarchitecture the MEM_LOAD_UOPS_RETIRED event
   1096	 * has two "no fix" errata associated with it: BDM35 and BDM100. On
   1097	 * this platform the following events are used instead:
   1098	 * LONGEST_LAT_CACHE 2EH (Documented in SDM)
   1099	 *       REFERENCE 4FH
   1100	 *       MISS      41H
   1101	 */
   1102
   1103	switch (boot_cpu_data.x86_model) {
   1104	case INTEL_FAM6_BROADWELL_X:
   1105		/* On BDW the hit event counts references, not hits */
   1106		perf_hit_attr.config = X86_CONFIG(.event = 0x2e,
   1107						  .umask = 0x4f);
   1108		perf_miss_attr.config = X86_CONFIG(.event = 0x2e,
   1109						   .umask = 0x41);
   1110		break;
   1111	default:
   1112		goto out;
   1113	}
   1114
   1115	measure_residency_fn(&perf_miss_attr, &perf_hit_attr, plr, &counts);
   1116	/*
   1117	 * If a failure prevented the measurements from succeeding
   1118	 * tracepoints will still be written and all counts will be zero.
   1119	 */
   1120
   1121	counts.miss_after -= counts.miss_before;
   1122	if (boot_cpu_data.x86_model == INTEL_FAM6_BROADWELL_X) {
   1123		/*
   1124		 * On BDW references and misses are counted, need to adjust.
   1125		 * Sometimes the "hits" counter is a bit more than the
   1126		 * references, for example, x references but x + 1 hits.
   1127		 * To not report invalid hit values in this case we treat
   1128		 * that as misses equal to references.
   1129		 */
   1130		/* First compute the number of cache references measured */
   1131		counts.hits_after -= counts.hits_before;
   1132		/* Next convert references to cache hits */
   1133		counts.hits_after -= min(counts.miss_after, counts.hits_after);
   1134	} else {
   1135		counts.hits_after -= counts.hits_before;
   1136	}
   1137
   1138	trace_pseudo_lock_l3(counts.hits_after, counts.miss_after);
   1139out:
   1140	plr->thread_done = 1;
   1141	wake_up_interruptible(&plr->lock_thread_wq);
   1142	return 0;
   1143}
   1144
   1145/**
   1146 * pseudo_lock_measure_cycles - Trigger latency measure to pseudo-locked region
   1147 * @rdtgrp: Resource group to which the pseudo-locked region belongs.
   1148 * @sel: Selector of which measurement to perform on a pseudo-locked region.
   1149 *
   1150 * The measurement of latency to access a pseudo-locked region should be
   1151 * done from a cpu that is associated with that pseudo-locked region.
   1152 * Determine which cpu is associated with this region and start a thread on
   1153 * that cpu to perform the measurement, wait for that thread to complete.
   1154 *
   1155 * Return: 0 on success, <0 on failure
   1156 */
   1157static int pseudo_lock_measure_cycles(struct rdtgroup *rdtgrp, int sel)
   1158{
   1159	struct pseudo_lock_region *plr = rdtgrp->plr;
   1160	struct task_struct *thread;
   1161	unsigned int cpu;
   1162	int ret = -1;
   1163
   1164	cpus_read_lock();
   1165	mutex_lock(&rdtgroup_mutex);
   1166
   1167	if (rdtgrp->flags & RDT_DELETED) {
   1168		ret = -ENODEV;
   1169		goto out;
   1170	}
   1171
   1172	if (!plr->d) {
   1173		ret = -ENODEV;
   1174		goto out;
   1175	}
   1176
   1177	plr->thread_done = 0;
   1178	cpu = cpumask_first(&plr->d->cpu_mask);
   1179	if (!cpu_online(cpu)) {
   1180		ret = -ENODEV;
   1181		goto out;
   1182	}
   1183
   1184	plr->cpu = cpu;
   1185
   1186	if (sel == 1)
   1187		thread = kthread_create_on_node(measure_cycles_lat_fn, plr,
   1188						cpu_to_node(cpu),
   1189						"pseudo_lock_measure/%u",
   1190						cpu);
   1191	else if (sel == 2)
   1192		thread = kthread_create_on_node(measure_l2_residency, plr,
   1193						cpu_to_node(cpu),
   1194						"pseudo_lock_measure/%u",
   1195						cpu);
   1196	else if (sel == 3)
   1197		thread = kthread_create_on_node(measure_l3_residency, plr,
   1198						cpu_to_node(cpu),
   1199						"pseudo_lock_measure/%u",
   1200						cpu);
   1201	else
   1202		goto out;
   1203
   1204	if (IS_ERR(thread)) {
   1205		ret = PTR_ERR(thread);
   1206		goto out;
   1207	}
   1208	kthread_bind(thread, cpu);
   1209	wake_up_process(thread);
   1210
   1211	ret = wait_event_interruptible(plr->lock_thread_wq,
   1212				       plr->thread_done == 1);
   1213	if (ret < 0)
   1214		goto out;
   1215
   1216	ret = 0;
   1217
   1218out:
   1219	mutex_unlock(&rdtgroup_mutex);
   1220	cpus_read_unlock();
   1221	return ret;
   1222}
   1223
   1224static ssize_t pseudo_lock_measure_trigger(struct file *file,
   1225					   const char __user *user_buf,
   1226					   size_t count, loff_t *ppos)
   1227{
   1228	struct rdtgroup *rdtgrp = file->private_data;
   1229	size_t buf_size;
   1230	char buf[32];
   1231	int ret;
   1232	int sel;
   1233
   1234	buf_size = min(count, (sizeof(buf) - 1));
   1235	if (copy_from_user(buf, user_buf, buf_size))
   1236		return -EFAULT;
   1237
   1238	buf[buf_size] = '\0';
   1239	ret = kstrtoint(buf, 10, &sel);
   1240	if (ret == 0) {
   1241		if (sel != 1 && sel != 2 && sel != 3)
   1242			return -EINVAL;
   1243		ret = debugfs_file_get(file->f_path.dentry);
   1244		if (ret)
   1245			return ret;
   1246		ret = pseudo_lock_measure_cycles(rdtgrp, sel);
   1247		if (ret == 0)
   1248			ret = count;
   1249		debugfs_file_put(file->f_path.dentry);
   1250	}
   1251
   1252	return ret;
   1253}
   1254
   1255static const struct file_operations pseudo_measure_fops = {
   1256	.write = pseudo_lock_measure_trigger,
   1257	.open = simple_open,
   1258	.llseek = default_llseek,
   1259};
   1260
   1261/**
   1262 * rdtgroup_pseudo_lock_create - Create a pseudo-locked region
   1263 * @rdtgrp: resource group to which pseudo-lock region belongs
   1264 *
   1265 * Called when a resource group in the pseudo-locksetup mode receives a
   1266 * valid schemata that should be pseudo-locked. Since the resource group is
   1267 * in pseudo-locksetup mode the &struct pseudo_lock_region has already been
   1268 * allocated and initialized with the essential information. If a failure
   1269 * occurs the resource group remains in the pseudo-locksetup mode with the
   1270 * &struct pseudo_lock_region associated with it, but cleared from all
   1271 * information and ready for the user to re-attempt pseudo-locking by
   1272 * writing the schemata again.
   1273 *
   1274 * Return: 0 if the pseudo-locked region was successfully pseudo-locked, <0
   1275 * on failure. Descriptive error will be written to last_cmd_status buffer.
   1276 */
   1277int rdtgroup_pseudo_lock_create(struct rdtgroup *rdtgrp)
   1278{
   1279	struct pseudo_lock_region *plr = rdtgrp->plr;
   1280	struct task_struct *thread;
   1281	unsigned int new_minor;
   1282	struct device *dev;
   1283	int ret;
   1284
   1285	ret = pseudo_lock_region_alloc(plr);
   1286	if (ret < 0)
   1287		return ret;
   1288
   1289	ret = pseudo_lock_cstates_constrain(plr);
   1290	if (ret < 0) {
   1291		ret = -EINVAL;
   1292		goto out_region;
   1293	}
   1294
   1295	plr->thread_done = 0;
   1296
   1297	thread = kthread_create_on_node(pseudo_lock_fn, rdtgrp,
   1298					cpu_to_node(plr->cpu),
   1299					"pseudo_lock/%u", plr->cpu);
   1300	if (IS_ERR(thread)) {
   1301		ret = PTR_ERR(thread);
   1302		rdt_last_cmd_printf("Locking thread returned error %d\n", ret);
   1303		goto out_cstates;
   1304	}
   1305
   1306	kthread_bind(thread, plr->cpu);
   1307	wake_up_process(thread);
   1308
   1309	ret = wait_event_interruptible(plr->lock_thread_wq,
   1310				       plr->thread_done == 1);
   1311	if (ret < 0) {
   1312		/*
   1313		 * If the thread does not get on the CPU for whatever
   1314		 * reason and the process which sets up the region is
   1315		 * interrupted then this will leave the thread in runnable
   1316		 * state and once it gets on the CPU it will dereference
   1317		 * the cleared, but not freed, plr struct resulting in an
   1318		 * empty pseudo-locking loop.
   1319		 */
   1320		rdt_last_cmd_puts("Locking thread interrupted\n");
   1321		goto out_cstates;
   1322	}
   1323
   1324	ret = pseudo_lock_minor_get(&new_minor);
   1325	if (ret < 0) {
   1326		rdt_last_cmd_puts("Unable to obtain a new minor number\n");
   1327		goto out_cstates;
   1328	}
   1329
   1330	/*
   1331	 * Unlock access but do not release the reference. The
   1332	 * pseudo-locked region will still be here on return.
   1333	 *
   1334	 * The mutex has to be released temporarily to avoid a potential
   1335	 * deadlock with the mm->mmap_lock which is obtained in the
   1336	 * device_create() and debugfs_create_dir() callpath below as well as
   1337	 * before the mmap() callback is called.
   1338	 */
   1339	mutex_unlock(&rdtgroup_mutex);
   1340
   1341	if (!IS_ERR_OR_NULL(debugfs_resctrl)) {
   1342		plr->debugfs_dir = debugfs_create_dir(rdtgrp->kn->name,
   1343						      debugfs_resctrl);
   1344		if (!IS_ERR_OR_NULL(plr->debugfs_dir))
   1345			debugfs_create_file("pseudo_lock_measure", 0200,
   1346					    plr->debugfs_dir, rdtgrp,
   1347					    &pseudo_measure_fops);
   1348	}
   1349
   1350	dev = device_create(pseudo_lock_class, NULL,
   1351			    MKDEV(pseudo_lock_major, new_minor),
   1352			    rdtgrp, "%s", rdtgrp->kn->name);
   1353
   1354	mutex_lock(&rdtgroup_mutex);
   1355
   1356	if (IS_ERR(dev)) {
   1357		ret = PTR_ERR(dev);
   1358		rdt_last_cmd_printf("Failed to create character device: %d\n",
   1359				    ret);
   1360		goto out_debugfs;
   1361	}
   1362
   1363	/* We released the mutex - check if group was removed while we did so */
   1364	if (rdtgrp->flags & RDT_DELETED) {
   1365		ret = -ENODEV;
   1366		goto out_device;
   1367	}
   1368
   1369	plr->minor = new_minor;
   1370
   1371	rdtgrp->mode = RDT_MODE_PSEUDO_LOCKED;
   1372	closid_free(rdtgrp->closid);
   1373	rdtgroup_kn_mode_restore(rdtgrp, "cpus", 0444);
   1374	rdtgroup_kn_mode_restore(rdtgrp, "cpus_list", 0444);
   1375
   1376	ret = 0;
   1377	goto out;
   1378
   1379out_device:
   1380	device_destroy(pseudo_lock_class, MKDEV(pseudo_lock_major, new_minor));
   1381out_debugfs:
   1382	debugfs_remove_recursive(plr->debugfs_dir);
   1383	pseudo_lock_minor_release(new_minor);
   1384out_cstates:
   1385	pseudo_lock_cstates_relax(plr);
   1386out_region:
   1387	pseudo_lock_region_clear(plr);
   1388out:
   1389	return ret;
   1390}
   1391
   1392/**
   1393 * rdtgroup_pseudo_lock_remove - Remove a pseudo-locked region
   1394 * @rdtgrp: resource group to which the pseudo-locked region belongs
   1395 *
   1396 * The removal of a pseudo-locked region can be initiated when the resource
   1397 * group is removed from user space via a "rmdir" from userspace or the
   1398 * unmount of the resctrl filesystem. On removal the resource group does
   1399 * not go back to pseudo-locksetup mode before it is removed, instead it is
   1400 * removed directly. There is thus asymmetry with the creation where the
   1401 * &struct pseudo_lock_region is removed here while it was not created in
   1402 * rdtgroup_pseudo_lock_create().
   1403 *
   1404 * Return: void
   1405 */
   1406void rdtgroup_pseudo_lock_remove(struct rdtgroup *rdtgrp)
   1407{
   1408	struct pseudo_lock_region *plr = rdtgrp->plr;
   1409
   1410	if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) {
   1411		/*
   1412		 * Default group cannot be a pseudo-locked region so we can
   1413		 * free closid here.
   1414		 */
   1415		closid_free(rdtgrp->closid);
   1416		goto free;
   1417	}
   1418
   1419	pseudo_lock_cstates_relax(plr);
   1420	debugfs_remove_recursive(rdtgrp->plr->debugfs_dir);
   1421	device_destroy(pseudo_lock_class, MKDEV(pseudo_lock_major, plr->minor));
   1422	pseudo_lock_minor_release(plr->minor);
   1423
   1424free:
   1425	pseudo_lock_free(rdtgrp);
   1426}
   1427
   1428static int pseudo_lock_dev_open(struct inode *inode, struct file *filp)
   1429{
   1430	struct rdtgroup *rdtgrp;
   1431
   1432	mutex_lock(&rdtgroup_mutex);
   1433
   1434	rdtgrp = region_find_by_minor(iminor(inode));
   1435	if (!rdtgrp) {
   1436		mutex_unlock(&rdtgroup_mutex);
   1437		return -ENODEV;
   1438	}
   1439
   1440	filp->private_data = rdtgrp;
   1441	atomic_inc(&rdtgrp->waitcount);
   1442	/* Perform a non-seekable open - llseek is not supported */
   1443	filp->f_mode &= ~(FMODE_LSEEK | FMODE_PREAD | FMODE_PWRITE);
   1444
   1445	mutex_unlock(&rdtgroup_mutex);
   1446
   1447	return 0;
   1448}
   1449
   1450static int pseudo_lock_dev_release(struct inode *inode, struct file *filp)
   1451{
   1452	struct rdtgroup *rdtgrp;
   1453
   1454	mutex_lock(&rdtgroup_mutex);
   1455	rdtgrp = filp->private_data;
   1456	WARN_ON(!rdtgrp);
   1457	if (!rdtgrp) {
   1458		mutex_unlock(&rdtgroup_mutex);
   1459		return -ENODEV;
   1460	}
   1461	filp->private_data = NULL;
   1462	atomic_dec(&rdtgrp->waitcount);
   1463	mutex_unlock(&rdtgroup_mutex);
   1464	return 0;
   1465}
   1466
   1467static int pseudo_lock_dev_mremap(struct vm_area_struct *area)
   1468{
   1469	/* Not supported */
   1470	return -EINVAL;
   1471}
   1472
   1473static const struct vm_operations_struct pseudo_mmap_ops = {
   1474	.mremap = pseudo_lock_dev_mremap,
   1475};
   1476
   1477static int pseudo_lock_dev_mmap(struct file *filp, struct vm_area_struct *vma)
   1478{
   1479	unsigned long vsize = vma->vm_end - vma->vm_start;
   1480	unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
   1481	struct pseudo_lock_region *plr;
   1482	struct rdtgroup *rdtgrp;
   1483	unsigned long physical;
   1484	unsigned long psize;
   1485
   1486	mutex_lock(&rdtgroup_mutex);
   1487
   1488	rdtgrp = filp->private_data;
   1489	WARN_ON(!rdtgrp);
   1490	if (!rdtgrp) {
   1491		mutex_unlock(&rdtgroup_mutex);
   1492		return -ENODEV;
   1493	}
   1494
   1495	plr = rdtgrp->plr;
   1496
   1497	if (!plr->d) {
   1498		mutex_unlock(&rdtgroup_mutex);
   1499		return -ENODEV;
   1500	}
   1501
   1502	/*
   1503	 * Task is required to run with affinity to the cpus associated
   1504	 * with the pseudo-locked region. If this is not the case the task
   1505	 * may be scheduled elsewhere and invalidate entries in the
   1506	 * pseudo-locked region.
   1507	 */
   1508	if (!cpumask_subset(current->cpus_ptr, &plr->d->cpu_mask)) {
   1509		mutex_unlock(&rdtgroup_mutex);
   1510		return -EINVAL;
   1511	}
   1512
   1513	physical = __pa(plr->kmem) >> PAGE_SHIFT;
   1514	psize = plr->size - off;
   1515
   1516	if (off > plr->size) {
   1517		mutex_unlock(&rdtgroup_mutex);
   1518		return -ENOSPC;
   1519	}
   1520
   1521	/*
   1522	 * Ensure changes are carried directly to the memory being mapped,
   1523	 * do not allow copy-on-write mapping.
   1524	 */
   1525	if (!(vma->vm_flags & VM_SHARED)) {
   1526		mutex_unlock(&rdtgroup_mutex);
   1527		return -EINVAL;
   1528	}
   1529
   1530	if (vsize > psize) {
   1531		mutex_unlock(&rdtgroup_mutex);
   1532		return -ENOSPC;
   1533	}
   1534
   1535	memset(plr->kmem + off, 0, vsize);
   1536
   1537	if (remap_pfn_range(vma, vma->vm_start, physical + vma->vm_pgoff,
   1538			    vsize, vma->vm_page_prot)) {
   1539		mutex_unlock(&rdtgroup_mutex);
   1540		return -EAGAIN;
   1541	}
   1542	vma->vm_ops = &pseudo_mmap_ops;
   1543	mutex_unlock(&rdtgroup_mutex);
   1544	return 0;
   1545}
   1546
   1547static const struct file_operations pseudo_lock_dev_fops = {
   1548	.owner =	THIS_MODULE,
   1549	.llseek =	no_llseek,
   1550	.read =		NULL,
   1551	.write =	NULL,
   1552	.open =		pseudo_lock_dev_open,
   1553	.release =	pseudo_lock_dev_release,
   1554	.mmap =		pseudo_lock_dev_mmap,
   1555};
   1556
   1557static char *pseudo_lock_devnode(struct device *dev, umode_t *mode)
   1558{
   1559	struct rdtgroup *rdtgrp;
   1560
   1561	rdtgrp = dev_get_drvdata(dev);
   1562	if (mode)
   1563		*mode = 0600;
   1564	return kasprintf(GFP_KERNEL, "pseudo_lock/%s", rdtgrp->kn->name);
   1565}
   1566
   1567int rdt_pseudo_lock_init(void)
   1568{
   1569	int ret;
   1570
   1571	ret = register_chrdev(0, "pseudo_lock", &pseudo_lock_dev_fops);
   1572	if (ret < 0)
   1573		return ret;
   1574
   1575	pseudo_lock_major = ret;
   1576
   1577	pseudo_lock_class = class_create(THIS_MODULE, "pseudo_lock");
   1578	if (IS_ERR(pseudo_lock_class)) {
   1579		ret = PTR_ERR(pseudo_lock_class);
   1580		unregister_chrdev(pseudo_lock_major, "pseudo_lock");
   1581		return ret;
   1582	}
   1583
   1584	pseudo_lock_class->devnode = pseudo_lock_devnode;
   1585	return 0;
   1586}
   1587
   1588void rdt_pseudo_lock_release(void)
   1589{
   1590	class_destroy(pseudo_lock_class);
   1591	pseudo_lock_class = NULL;
   1592	unregister_chrdev(pseudo_lock_major, "pseudo_lock");
   1593	pseudo_lock_major = 0;
   1594}