cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

main.c (25311B)


      1// SPDX-License-Identifier: GPL-2.0
      2/*  Copyright(c) 2016-20 Intel Corporation. */
      3
      4#include <linux/file.h>
      5#include <linux/freezer.h>
      6#include <linux/highmem.h>
      7#include <linux/kthread.h>
      8#include <linux/miscdevice.h>
      9#include <linux/node.h>
     10#include <linux/pagemap.h>
     11#include <linux/ratelimit.h>
     12#include <linux/sched/mm.h>
     13#include <linux/sched/signal.h>
     14#include <linux/slab.h>
     15#include <linux/sysfs.h>
     16#include <asm/sgx.h>
     17#include "driver.h"
     18#include "encl.h"
     19#include "encls.h"
     20
     21struct sgx_epc_section sgx_epc_sections[SGX_MAX_EPC_SECTIONS];
     22static int sgx_nr_epc_sections;
     23static struct task_struct *ksgxd_tsk;
     24static DECLARE_WAIT_QUEUE_HEAD(ksgxd_waitq);
     25static DEFINE_XARRAY(sgx_epc_address_space);
     26
     27/*
     28 * These variables are part of the state of the reclaimer, and must be accessed
     29 * with sgx_reclaimer_lock acquired.
     30 */
     31static LIST_HEAD(sgx_active_page_list);
     32static DEFINE_SPINLOCK(sgx_reclaimer_lock);
     33
     34static atomic_long_t sgx_nr_free_pages = ATOMIC_LONG_INIT(0);
     35
     36/* Nodes with one or more EPC sections. */
     37static nodemask_t sgx_numa_mask;
     38
     39/*
     40 * Array with one list_head for each possible NUMA node.  Each
     41 * list contains all the sgx_epc_section's which are on that
     42 * node.
     43 */
     44static struct sgx_numa_node *sgx_numa_nodes;
     45
     46static LIST_HEAD(sgx_dirty_page_list);
     47
     48/*
     49 * Reset post-kexec EPC pages to the uninitialized state. The pages are removed
     50 * from the input list, and made available for the page allocator. SECS pages
     51 * prepending their children in the input list are left intact.
     52 */
     53static void __sgx_sanitize_pages(struct list_head *dirty_page_list)
     54{
     55	struct sgx_epc_page *page;
     56	LIST_HEAD(dirty);
     57	int ret;
     58
     59	/* dirty_page_list is thread-local, no need for a lock: */
     60	while (!list_empty(dirty_page_list)) {
     61		if (kthread_should_stop())
     62			return;
     63
     64		page = list_first_entry(dirty_page_list, struct sgx_epc_page, list);
     65
     66		/*
     67		 * Checking page->poison without holding the node->lock
     68		 * is racy, but losing the race (i.e. poison is set just
     69		 * after the check) just means __eremove() will be uselessly
     70		 * called for a page that sgx_free_epc_page() will put onto
     71		 * the node->sgx_poison_page_list later.
     72		 */
     73		if (page->poison) {
     74			struct sgx_epc_section *section = &sgx_epc_sections[page->section];
     75			struct sgx_numa_node *node = section->node;
     76
     77			spin_lock(&node->lock);
     78			list_move(&page->list, &node->sgx_poison_page_list);
     79			spin_unlock(&node->lock);
     80
     81			continue;
     82		}
     83
     84		ret = __eremove(sgx_get_epc_virt_addr(page));
     85		if (!ret) {
     86			/*
     87			 * page is now sanitized.  Make it available via the SGX
     88			 * page allocator:
     89			 */
     90			list_del(&page->list);
     91			sgx_free_epc_page(page);
     92		} else {
     93			/* The page is not yet clean - move to the dirty list. */
     94			list_move_tail(&page->list, &dirty);
     95		}
     96
     97		cond_resched();
     98	}
     99
    100	list_splice(&dirty, dirty_page_list);
    101}
    102
    103static bool sgx_reclaimer_age(struct sgx_epc_page *epc_page)
    104{
    105	struct sgx_encl_page *page = epc_page->owner;
    106	struct sgx_encl *encl = page->encl;
    107	struct sgx_encl_mm *encl_mm;
    108	bool ret = true;
    109	int idx;
    110
    111	idx = srcu_read_lock(&encl->srcu);
    112
    113	list_for_each_entry_rcu(encl_mm, &encl->mm_list, list) {
    114		if (!mmget_not_zero(encl_mm->mm))
    115			continue;
    116
    117		mmap_read_lock(encl_mm->mm);
    118		ret = !sgx_encl_test_and_clear_young(encl_mm->mm, page);
    119		mmap_read_unlock(encl_mm->mm);
    120
    121		mmput_async(encl_mm->mm);
    122
    123		if (!ret)
    124			break;
    125	}
    126
    127	srcu_read_unlock(&encl->srcu, idx);
    128
    129	if (!ret)
    130		return false;
    131
    132	return true;
    133}
    134
    135static void sgx_reclaimer_block(struct sgx_epc_page *epc_page)
    136{
    137	struct sgx_encl_page *page = epc_page->owner;
    138	unsigned long addr = page->desc & PAGE_MASK;
    139	struct sgx_encl *encl = page->encl;
    140	unsigned long mm_list_version;
    141	struct sgx_encl_mm *encl_mm;
    142	struct vm_area_struct *vma;
    143	int idx, ret;
    144
    145	do {
    146		mm_list_version = encl->mm_list_version;
    147
    148		/* Pairs with smp_rmb() in sgx_encl_mm_add(). */
    149		smp_rmb();
    150
    151		idx = srcu_read_lock(&encl->srcu);
    152
    153		list_for_each_entry_rcu(encl_mm, &encl->mm_list, list) {
    154			if (!mmget_not_zero(encl_mm->mm))
    155				continue;
    156
    157			mmap_read_lock(encl_mm->mm);
    158
    159			ret = sgx_encl_find(encl_mm->mm, addr, &vma);
    160			if (!ret && encl == vma->vm_private_data)
    161				zap_vma_ptes(vma, addr, PAGE_SIZE);
    162
    163			mmap_read_unlock(encl_mm->mm);
    164
    165			mmput_async(encl_mm->mm);
    166		}
    167
    168		srcu_read_unlock(&encl->srcu, idx);
    169	} while (unlikely(encl->mm_list_version != mm_list_version));
    170
    171	mutex_lock(&encl->lock);
    172
    173	ret = __eblock(sgx_get_epc_virt_addr(epc_page));
    174	if (encls_failed(ret))
    175		ENCLS_WARN(ret, "EBLOCK");
    176
    177	mutex_unlock(&encl->lock);
    178}
    179
    180static int __sgx_encl_ewb(struct sgx_epc_page *epc_page, void *va_slot,
    181			  struct sgx_backing *backing)
    182{
    183	struct sgx_pageinfo pginfo;
    184	int ret;
    185
    186	pginfo.addr = 0;
    187	pginfo.secs = 0;
    188
    189	pginfo.contents = (unsigned long)kmap_atomic(backing->contents);
    190	pginfo.metadata = (unsigned long)kmap_atomic(backing->pcmd) +
    191			  backing->pcmd_offset;
    192
    193	ret = __ewb(&pginfo, sgx_get_epc_virt_addr(epc_page), va_slot);
    194	set_page_dirty(backing->pcmd);
    195	set_page_dirty(backing->contents);
    196
    197	kunmap_atomic((void *)(unsigned long)(pginfo.metadata -
    198					      backing->pcmd_offset));
    199	kunmap_atomic((void *)(unsigned long)pginfo.contents);
    200
    201	return ret;
    202}
    203
    204static void sgx_ipi_cb(void *info)
    205{
    206}
    207
    208static const cpumask_t *sgx_encl_ewb_cpumask(struct sgx_encl *encl)
    209{
    210	cpumask_t *cpumask = &encl->cpumask;
    211	struct sgx_encl_mm *encl_mm;
    212	int idx;
    213
    214	/*
    215	 * Can race with sgx_encl_mm_add(), but ETRACK has already been
    216	 * executed, which means that the CPUs running in the new mm will enter
    217	 * into the enclave with a fresh epoch.
    218	 */
    219	cpumask_clear(cpumask);
    220
    221	idx = srcu_read_lock(&encl->srcu);
    222
    223	list_for_each_entry_rcu(encl_mm, &encl->mm_list, list) {
    224		if (!mmget_not_zero(encl_mm->mm))
    225			continue;
    226
    227		cpumask_or(cpumask, cpumask, mm_cpumask(encl_mm->mm));
    228
    229		mmput_async(encl_mm->mm);
    230	}
    231
    232	srcu_read_unlock(&encl->srcu, idx);
    233
    234	return cpumask;
    235}
    236
    237/*
    238 * Swap page to the regular memory transformed to the blocked state by using
    239 * EBLOCK, which means that it can no longer be referenced (no new TLB entries).
    240 *
    241 * The first trial just tries to write the page assuming that some other thread
    242 * has reset the count for threads inside the enclave by using ETRACK, and
    243 * previous thread count has been zeroed out. The second trial calls ETRACK
    244 * before EWB. If that fails we kick all the HW threads out, and then do EWB,
    245 * which should be guaranteed the succeed.
    246 */
    247static void sgx_encl_ewb(struct sgx_epc_page *epc_page,
    248			 struct sgx_backing *backing)
    249{
    250	struct sgx_encl_page *encl_page = epc_page->owner;
    251	struct sgx_encl *encl = encl_page->encl;
    252	struct sgx_va_page *va_page;
    253	unsigned int va_offset;
    254	void *va_slot;
    255	int ret;
    256
    257	encl_page->desc &= ~SGX_ENCL_PAGE_BEING_RECLAIMED;
    258
    259	va_page = list_first_entry(&encl->va_pages, struct sgx_va_page,
    260				   list);
    261	va_offset = sgx_alloc_va_slot(va_page);
    262	va_slot = sgx_get_epc_virt_addr(va_page->epc_page) + va_offset;
    263	if (sgx_va_page_full(va_page))
    264		list_move_tail(&va_page->list, &encl->va_pages);
    265
    266	ret = __sgx_encl_ewb(epc_page, va_slot, backing);
    267	if (ret == SGX_NOT_TRACKED) {
    268		ret = __etrack(sgx_get_epc_virt_addr(encl->secs.epc_page));
    269		if (ret) {
    270			if (encls_failed(ret))
    271				ENCLS_WARN(ret, "ETRACK");
    272		}
    273
    274		ret = __sgx_encl_ewb(epc_page, va_slot, backing);
    275		if (ret == SGX_NOT_TRACKED) {
    276			/*
    277			 * Slow path, send IPIs to kick cpus out of the
    278			 * enclave.  Note, it's imperative that the cpu
    279			 * mask is generated *after* ETRACK, else we'll
    280			 * miss cpus that entered the enclave between
    281			 * generating the mask and incrementing epoch.
    282			 */
    283			on_each_cpu_mask(sgx_encl_ewb_cpumask(encl),
    284					 sgx_ipi_cb, NULL, 1);
    285			ret = __sgx_encl_ewb(epc_page, va_slot, backing);
    286		}
    287	}
    288
    289	if (ret) {
    290		if (encls_failed(ret))
    291			ENCLS_WARN(ret, "EWB");
    292
    293		sgx_free_va_slot(va_page, va_offset);
    294	} else {
    295		encl_page->desc |= va_offset;
    296		encl_page->va_page = va_page;
    297	}
    298}
    299
    300static void sgx_reclaimer_write(struct sgx_epc_page *epc_page,
    301				struct sgx_backing *backing)
    302{
    303	struct sgx_encl_page *encl_page = epc_page->owner;
    304	struct sgx_encl *encl = encl_page->encl;
    305	struct sgx_backing secs_backing;
    306	int ret;
    307
    308	mutex_lock(&encl->lock);
    309
    310	sgx_encl_ewb(epc_page, backing);
    311	encl_page->epc_page = NULL;
    312	encl->secs_child_cnt--;
    313	sgx_encl_put_backing(backing);
    314
    315	if (!encl->secs_child_cnt && test_bit(SGX_ENCL_INITIALIZED, &encl->flags)) {
    316		ret = sgx_encl_alloc_backing(encl, PFN_DOWN(encl->size),
    317					   &secs_backing);
    318		if (ret)
    319			goto out;
    320
    321		sgx_encl_ewb(encl->secs.epc_page, &secs_backing);
    322
    323		sgx_encl_free_epc_page(encl->secs.epc_page);
    324		encl->secs.epc_page = NULL;
    325
    326		sgx_encl_put_backing(&secs_backing);
    327	}
    328
    329out:
    330	mutex_unlock(&encl->lock);
    331}
    332
    333/*
    334 * Take a fixed number of pages from the head of the active page pool and
    335 * reclaim them to the enclave's private shmem files. Skip the pages, which have
    336 * been accessed since the last scan. Move those pages to the tail of active
    337 * page pool so that the pages get scanned in LRU like fashion.
    338 *
    339 * Batch process a chunk of pages (at the moment 16) in order to degrade amount
    340 * of IPI's and ETRACK's potentially required. sgx_encl_ewb() does degrade a bit
    341 * among the HW threads with three stage EWB pipeline (EWB, ETRACK + EWB and IPI
    342 * + EWB) but not sufficiently. Reclaiming one page at a time would also be
    343 * problematic as it would increase the lock contention too much, which would
    344 * halt forward progress.
    345 */
    346static void sgx_reclaim_pages(void)
    347{
    348	struct sgx_epc_page *chunk[SGX_NR_TO_SCAN];
    349	struct sgx_backing backing[SGX_NR_TO_SCAN];
    350	struct sgx_encl_page *encl_page;
    351	struct sgx_epc_page *epc_page;
    352	pgoff_t page_index;
    353	int cnt = 0;
    354	int ret;
    355	int i;
    356
    357	spin_lock(&sgx_reclaimer_lock);
    358	for (i = 0; i < SGX_NR_TO_SCAN; i++) {
    359		if (list_empty(&sgx_active_page_list))
    360			break;
    361
    362		epc_page = list_first_entry(&sgx_active_page_list,
    363					    struct sgx_epc_page, list);
    364		list_del_init(&epc_page->list);
    365		encl_page = epc_page->owner;
    366
    367		if (kref_get_unless_zero(&encl_page->encl->refcount) != 0)
    368			chunk[cnt++] = epc_page;
    369		else
    370			/* The owner is freeing the page. No need to add the
    371			 * page back to the list of reclaimable pages.
    372			 */
    373			epc_page->flags &= ~SGX_EPC_PAGE_RECLAIMER_TRACKED;
    374	}
    375	spin_unlock(&sgx_reclaimer_lock);
    376
    377	for (i = 0; i < cnt; i++) {
    378		epc_page = chunk[i];
    379		encl_page = epc_page->owner;
    380
    381		if (!sgx_reclaimer_age(epc_page))
    382			goto skip;
    383
    384		page_index = PFN_DOWN(encl_page->desc - encl_page->encl->base);
    385
    386		mutex_lock(&encl_page->encl->lock);
    387		ret = sgx_encl_alloc_backing(encl_page->encl, page_index, &backing[i]);
    388		if (ret) {
    389			mutex_unlock(&encl_page->encl->lock);
    390			goto skip;
    391		}
    392
    393		encl_page->desc |= SGX_ENCL_PAGE_BEING_RECLAIMED;
    394		mutex_unlock(&encl_page->encl->lock);
    395		continue;
    396
    397skip:
    398		spin_lock(&sgx_reclaimer_lock);
    399		list_add_tail(&epc_page->list, &sgx_active_page_list);
    400		spin_unlock(&sgx_reclaimer_lock);
    401
    402		kref_put(&encl_page->encl->refcount, sgx_encl_release);
    403
    404		chunk[i] = NULL;
    405	}
    406
    407	for (i = 0; i < cnt; i++) {
    408		epc_page = chunk[i];
    409		if (epc_page)
    410			sgx_reclaimer_block(epc_page);
    411	}
    412
    413	for (i = 0; i < cnt; i++) {
    414		epc_page = chunk[i];
    415		if (!epc_page)
    416			continue;
    417
    418		encl_page = epc_page->owner;
    419		sgx_reclaimer_write(epc_page, &backing[i]);
    420
    421		kref_put(&encl_page->encl->refcount, sgx_encl_release);
    422		epc_page->flags &= ~SGX_EPC_PAGE_RECLAIMER_TRACKED;
    423
    424		sgx_free_epc_page(epc_page);
    425	}
    426}
    427
    428static bool sgx_should_reclaim(unsigned long watermark)
    429{
    430	return atomic_long_read(&sgx_nr_free_pages) < watermark &&
    431	       !list_empty(&sgx_active_page_list);
    432}
    433
    434static int ksgxd(void *p)
    435{
    436	set_freezable();
    437
    438	/*
    439	 * Sanitize pages in order to recover from kexec(). The 2nd pass is
    440	 * required for SECS pages, whose child pages blocked EREMOVE.
    441	 */
    442	__sgx_sanitize_pages(&sgx_dirty_page_list);
    443	__sgx_sanitize_pages(&sgx_dirty_page_list);
    444
    445	/* sanity check: */
    446	WARN_ON(!list_empty(&sgx_dirty_page_list));
    447
    448	while (!kthread_should_stop()) {
    449		if (try_to_freeze())
    450			continue;
    451
    452		wait_event_freezable(ksgxd_waitq,
    453				     kthread_should_stop() ||
    454				     sgx_should_reclaim(SGX_NR_HIGH_PAGES));
    455
    456		if (sgx_should_reclaim(SGX_NR_HIGH_PAGES))
    457			sgx_reclaim_pages();
    458
    459		cond_resched();
    460	}
    461
    462	return 0;
    463}
    464
    465static bool __init sgx_page_reclaimer_init(void)
    466{
    467	struct task_struct *tsk;
    468
    469	tsk = kthread_run(ksgxd, NULL, "ksgxd");
    470	if (IS_ERR(tsk))
    471		return false;
    472
    473	ksgxd_tsk = tsk;
    474
    475	return true;
    476}
    477
    478bool current_is_ksgxd(void)
    479{
    480	return current == ksgxd_tsk;
    481}
    482
    483static struct sgx_epc_page *__sgx_alloc_epc_page_from_node(int nid)
    484{
    485	struct sgx_numa_node *node = &sgx_numa_nodes[nid];
    486	struct sgx_epc_page *page = NULL;
    487
    488	spin_lock(&node->lock);
    489
    490	if (list_empty(&node->free_page_list)) {
    491		spin_unlock(&node->lock);
    492		return NULL;
    493	}
    494
    495	page = list_first_entry(&node->free_page_list, struct sgx_epc_page, list);
    496	list_del_init(&page->list);
    497	page->flags = 0;
    498
    499	spin_unlock(&node->lock);
    500	atomic_long_dec(&sgx_nr_free_pages);
    501
    502	return page;
    503}
    504
    505/**
    506 * __sgx_alloc_epc_page() - Allocate an EPC page
    507 *
    508 * Iterate through NUMA nodes and reserve ia free EPC page to the caller. Start
    509 * from the NUMA node, where the caller is executing.
    510 *
    511 * Return:
    512 * - an EPC page:	A borrowed EPC pages were available.
    513 * - NULL:		Out of EPC pages.
    514 */
    515struct sgx_epc_page *__sgx_alloc_epc_page(void)
    516{
    517	struct sgx_epc_page *page;
    518	int nid_of_current = numa_node_id();
    519	int nid = nid_of_current;
    520
    521	if (node_isset(nid_of_current, sgx_numa_mask)) {
    522		page = __sgx_alloc_epc_page_from_node(nid_of_current);
    523		if (page)
    524			return page;
    525	}
    526
    527	/* Fall back to the non-local NUMA nodes: */
    528	while (true) {
    529		nid = next_node_in(nid, sgx_numa_mask);
    530		if (nid == nid_of_current)
    531			break;
    532
    533		page = __sgx_alloc_epc_page_from_node(nid);
    534		if (page)
    535			return page;
    536	}
    537
    538	return ERR_PTR(-ENOMEM);
    539}
    540
    541/**
    542 * sgx_mark_page_reclaimable() - Mark a page as reclaimable
    543 * @page:	EPC page
    544 *
    545 * Mark a page as reclaimable and add it to the active page list. Pages
    546 * are automatically removed from the active list when freed.
    547 */
    548void sgx_mark_page_reclaimable(struct sgx_epc_page *page)
    549{
    550	spin_lock(&sgx_reclaimer_lock);
    551	page->flags |= SGX_EPC_PAGE_RECLAIMER_TRACKED;
    552	list_add_tail(&page->list, &sgx_active_page_list);
    553	spin_unlock(&sgx_reclaimer_lock);
    554}
    555
    556/**
    557 * sgx_unmark_page_reclaimable() - Remove a page from the reclaim list
    558 * @page:	EPC page
    559 *
    560 * Clear the reclaimable flag and remove the page from the active page list.
    561 *
    562 * Return:
    563 *   0 on success,
    564 *   -EBUSY if the page is in the process of being reclaimed
    565 */
    566int sgx_unmark_page_reclaimable(struct sgx_epc_page *page)
    567{
    568	spin_lock(&sgx_reclaimer_lock);
    569	if (page->flags & SGX_EPC_PAGE_RECLAIMER_TRACKED) {
    570		/* The page is being reclaimed. */
    571		if (list_empty(&page->list)) {
    572			spin_unlock(&sgx_reclaimer_lock);
    573			return -EBUSY;
    574		}
    575
    576		list_del(&page->list);
    577		page->flags &= ~SGX_EPC_PAGE_RECLAIMER_TRACKED;
    578	}
    579	spin_unlock(&sgx_reclaimer_lock);
    580
    581	return 0;
    582}
    583
    584/**
    585 * sgx_alloc_epc_page() - Allocate an EPC page
    586 * @owner:	the owner of the EPC page
    587 * @reclaim:	reclaim pages if necessary
    588 *
    589 * Iterate through EPC sections and borrow a free EPC page to the caller. When a
    590 * page is no longer needed it must be released with sgx_free_epc_page(). If
    591 * @reclaim is set to true, directly reclaim pages when we are out of pages. No
    592 * mm's can be locked when @reclaim is set to true.
    593 *
    594 * Finally, wake up ksgxd when the number of pages goes below the watermark
    595 * before returning back to the caller.
    596 *
    597 * Return:
    598 *   an EPC page,
    599 *   -errno on error
    600 */
    601struct sgx_epc_page *sgx_alloc_epc_page(void *owner, bool reclaim)
    602{
    603	struct sgx_epc_page *page;
    604
    605	for ( ; ; ) {
    606		page = __sgx_alloc_epc_page();
    607		if (!IS_ERR(page)) {
    608			page->owner = owner;
    609			break;
    610		}
    611
    612		if (list_empty(&sgx_active_page_list))
    613			return ERR_PTR(-ENOMEM);
    614
    615		if (!reclaim) {
    616			page = ERR_PTR(-EBUSY);
    617			break;
    618		}
    619
    620		if (signal_pending(current)) {
    621			page = ERR_PTR(-ERESTARTSYS);
    622			break;
    623		}
    624
    625		sgx_reclaim_pages();
    626		cond_resched();
    627	}
    628
    629	if (sgx_should_reclaim(SGX_NR_LOW_PAGES))
    630		wake_up(&ksgxd_waitq);
    631
    632	return page;
    633}
    634
    635/**
    636 * sgx_free_epc_page() - Free an EPC page
    637 * @page:	an EPC page
    638 *
    639 * Put the EPC page back to the list of free pages. It's the caller's
    640 * responsibility to make sure that the page is in uninitialized state. In other
    641 * words, do EREMOVE, EWB or whatever operation is necessary before calling
    642 * this function.
    643 */
    644void sgx_free_epc_page(struct sgx_epc_page *page)
    645{
    646	struct sgx_epc_section *section = &sgx_epc_sections[page->section];
    647	struct sgx_numa_node *node = section->node;
    648
    649	spin_lock(&node->lock);
    650
    651	page->owner = NULL;
    652	if (page->poison)
    653		list_add(&page->list, &node->sgx_poison_page_list);
    654	else
    655		list_add_tail(&page->list, &node->free_page_list);
    656	page->flags = SGX_EPC_PAGE_IS_FREE;
    657
    658	spin_unlock(&node->lock);
    659	atomic_long_inc(&sgx_nr_free_pages);
    660}
    661
    662static bool __init sgx_setup_epc_section(u64 phys_addr, u64 size,
    663					 unsigned long index,
    664					 struct sgx_epc_section *section)
    665{
    666	unsigned long nr_pages = size >> PAGE_SHIFT;
    667	unsigned long i;
    668
    669	section->virt_addr = memremap(phys_addr, size, MEMREMAP_WB);
    670	if (!section->virt_addr)
    671		return false;
    672
    673	section->pages = vmalloc(nr_pages * sizeof(struct sgx_epc_page));
    674	if (!section->pages) {
    675		memunmap(section->virt_addr);
    676		return false;
    677	}
    678
    679	section->phys_addr = phys_addr;
    680	xa_store_range(&sgx_epc_address_space, section->phys_addr,
    681		       phys_addr + size - 1, section, GFP_KERNEL);
    682
    683	for (i = 0; i < nr_pages; i++) {
    684		section->pages[i].section = index;
    685		section->pages[i].flags = 0;
    686		section->pages[i].owner = NULL;
    687		section->pages[i].poison = 0;
    688		list_add_tail(&section->pages[i].list, &sgx_dirty_page_list);
    689	}
    690
    691	return true;
    692}
    693
    694bool arch_is_platform_page(u64 paddr)
    695{
    696	return !!xa_load(&sgx_epc_address_space, paddr);
    697}
    698EXPORT_SYMBOL_GPL(arch_is_platform_page);
    699
    700static struct sgx_epc_page *sgx_paddr_to_page(u64 paddr)
    701{
    702	struct sgx_epc_section *section;
    703
    704	section = xa_load(&sgx_epc_address_space, paddr);
    705	if (!section)
    706		return NULL;
    707
    708	return &section->pages[PFN_DOWN(paddr - section->phys_addr)];
    709}
    710
    711/*
    712 * Called in process context to handle a hardware reported
    713 * error in an SGX EPC page.
    714 * If the MF_ACTION_REQUIRED bit is set in flags, then the
    715 * context is the task that consumed the poison data. Otherwise
    716 * this is called from a kernel thread unrelated to the page.
    717 */
    718int arch_memory_failure(unsigned long pfn, int flags)
    719{
    720	struct sgx_epc_page *page = sgx_paddr_to_page(pfn << PAGE_SHIFT);
    721	struct sgx_epc_section *section;
    722	struct sgx_numa_node *node;
    723
    724	/*
    725	 * mm/memory-failure.c calls this routine for all errors
    726	 * where there isn't a "struct page" for the address. But that
    727	 * includes other address ranges besides SGX.
    728	 */
    729	if (!page)
    730		return -ENXIO;
    731
    732	/*
    733	 * If poison was consumed synchronously. Send a SIGBUS to
    734	 * the task. Hardware has already exited the SGX enclave and
    735	 * will not allow re-entry to an enclave that has a memory
    736	 * error. The signal may help the task understand why the
    737	 * enclave is broken.
    738	 */
    739	if (flags & MF_ACTION_REQUIRED)
    740		force_sig(SIGBUS);
    741
    742	section = &sgx_epc_sections[page->section];
    743	node = section->node;
    744
    745	spin_lock(&node->lock);
    746
    747	/* Already poisoned? Nothing more to do */
    748	if (page->poison)
    749		goto out;
    750
    751	page->poison = 1;
    752
    753	/*
    754	 * If the page is on a free list, move it to the per-node
    755	 * poison page list.
    756	 */
    757	if (page->flags & SGX_EPC_PAGE_IS_FREE) {
    758		list_move(&page->list, &node->sgx_poison_page_list);
    759		goto out;
    760	}
    761
    762	/*
    763	 * TBD: Add additional plumbing to enable pre-emptive
    764	 * action for asynchronous poison notification. Until
    765	 * then just hope that the poison:
    766	 * a) is not accessed - sgx_free_epc_page() will deal with it
    767	 *    when the user gives it back
    768	 * b) results in a recoverable machine check rather than
    769	 *    a fatal one
    770	 */
    771out:
    772	spin_unlock(&node->lock);
    773	return 0;
    774}
    775
    776/**
    777 * A section metric is concatenated in a way that @low bits 12-31 define the
    778 * bits 12-31 of the metric and @high bits 0-19 define the bits 32-51 of the
    779 * metric.
    780 */
    781static inline u64 __init sgx_calc_section_metric(u64 low, u64 high)
    782{
    783	return (low & GENMASK_ULL(31, 12)) +
    784	       ((high & GENMASK_ULL(19, 0)) << 32);
    785}
    786
    787#ifdef CONFIG_NUMA
    788static ssize_t sgx_total_bytes_show(struct device *dev, struct device_attribute *attr, char *buf)
    789{
    790	return sysfs_emit(buf, "%lu\n", sgx_numa_nodes[dev->id].size);
    791}
    792static DEVICE_ATTR_RO(sgx_total_bytes);
    793
    794static umode_t arch_node_attr_is_visible(struct kobject *kobj,
    795		struct attribute *attr, int idx)
    796{
    797	/* Make all x86/ attributes invisible when SGX is not initialized: */
    798	if (nodes_empty(sgx_numa_mask))
    799		return 0;
    800
    801	return attr->mode;
    802}
    803
    804static struct attribute *arch_node_dev_attrs[] = {
    805	&dev_attr_sgx_total_bytes.attr,
    806	NULL,
    807};
    808
    809const struct attribute_group arch_node_dev_group = {
    810	.name = "x86",
    811	.attrs = arch_node_dev_attrs,
    812	.is_visible = arch_node_attr_is_visible,
    813};
    814
    815static void __init arch_update_sysfs_visibility(int nid)
    816{
    817	struct node *node = node_devices[nid];
    818	int ret;
    819
    820	ret = sysfs_update_group(&node->dev.kobj, &arch_node_dev_group);
    821
    822	if (ret)
    823		pr_err("sysfs update failed (%d), files may be invisible", ret);
    824}
    825#else /* !CONFIG_NUMA */
    826static void __init arch_update_sysfs_visibility(int nid) {}
    827#endif
    828
    829static bool __init sgx_page_cache_init(void)
    830{
    831	u32 eax, ebx, ecx, edx, type;
    832	u64 pa, size;
    833	int nid;
    834	int i;
    835
    836	sgx_numa_nodes = kmalloc_array(num_possible_nodes(), sizeof(*sgx_numa_nodes), GFP_KERNEL);
    837	if (!sgx_numa_nodes)
    838		return false;
    839
    840	for (i = 0; i < ARRAY_SIZE(sgx_epc_sections); i++) {
    841		cpuid_count(SGX_CPUID, i + SGX_CPUID_EPC, &eax, &ebx, &ecx, &edx);
    842
    843		type = eax & SGX_CPUID_EPC_MASK;
    844		if (type == SGX_CPUID_EPC_INVALID)
    845			break;
    846
    847		if (type != SGX_CPUID_EPC_SECTION) {
    848			pr_err_once("Unknown EPC section type: %u\n", type);
    849			break;
    850		}
    851
    852		pa   = sgx_calc_section_metric(eax, ebx);
    853		size = sgx_calc_section_metric(ecx, edx);
    854
    855		pr_info("EPC section 0x%llx-0x%llx\n", pa, pa + size - 1);
    856
    857		if (!sgx_setup_epc_section(pa, size, i, &sgx_epc_sections[i])) {
    858			pr_err("No free memory for an EPC section\n");
    859			break;
    860		}
    861
    862		nid = numa_map_to_online_node(phys_to_target_node(pa));
    863		if (nid == NUMA_NO_NODE) {
    864			/* The physical address is already printed above. */
    865			pr_warn(FW_BUG "Unable to map EPC section to online node. Fallback to the NUMA node 0.\n");
    866			nid = 0;
    867		}
    868
    869		if (!node_isset(nid, sgx_numa_mask)) {
    870			spin_lock_init(&sgx_numa_nodes[nid].lock);
    871			INIT_LIST_HEAD(&sgx_numa_nodes[nid].free_page_list);
    872			INIT_LIST_HEAD(&sgx_numa_nodes[nid].sgx_poison_page_list);
    873			node_set(nid, sgx_numa_mask);
    874			sgx_numa_nodes[nid].size = 0;
    875
    876			/* Make SGX-specific node sysfs files visible: */
    877			arch_update_sysfs_visibility(nid);
    878		}
    879
    880		sgx_epc_sections[i].node =  &sgx_numa_nodes[nid];
    881		sgx_numa_nodes[nid].size += size;
    882
    883		sgx_nr_epc_sections++;
    884	}
    885
    886	if (!sgx_nr_epc_sections) {
    887		pr_err("There are zero EPC sections.\n");
    888		return false;
    889	}
    890
    891	return true;
    892}
    893
    894/*
    895 * Update the SGX_LEPUBKEYHASH MSRs to the values specified by caller.
    896 * Bare-metal driver requires to update them to hash of enclave's signer
    897 * before EINIT. KVM needs to update them to guest's virtual MSR values
    898 * before doing EINIT from guest.
    899 */
    900void sgx_update_lepubkeyhash(u64 *lepubkeyhash)
    901{
    902	int i;
    903
    904	WARN_ON_ONCE(preemptible());
    905
    906	for (i = 0; i < 4; i++)
    907		wrmsrl(MSR_IA32_SGXLEPUBKEYHASH0 + i, lepubkeyhash[i]);
    908}
    909
    910const struct file_operations sgx_provision_fops = {
    911	.owner			= THIS_MODULE,
    912};
    913
    914static struct miscdevice sgx_dev_provision = {
    915	.minor = MISC_DYNAMIC_MINOR,
    916	.name = "sgx_provision",
    917	.nodename = "sgx_provision",
    918	.fops = &sgx_provision_fops,
    919};
    920
    921/**
    922 * sgx_set_attribute() - Update allowed attributes given file descriptor
    923 * @allowed_attributes:		Pointer to allowed enclave attributes
    924 * @attribute_fd:		File descriptor for specific attribute
    925 *
    926 * Append enclave attribute indicated by file descriptor to allowed
    927 * attributes. Currently only SGX_ATTR_PROVISIONKEY indicated by
    928 * /dev/sgx_provision is supported.
    929 *
    930 * Return:
    931 * -0:		SGX_ATTR_PROVISIONKEY is appended to allowed_attributes
    932 * -EINVAL:	Invalid, or not supported file descriptor
    933 */
    934int sgx_set_attribute(unsigned long *allowed_attributes,
    935		      unsigned int attribute_fd)
    936{
    937	struct file *file;
    938
    939	file = fget(attribute_fd);
    940	if (!file)
    941		return -EINVAL;
    942
    943	if (file->f_op != &sgx_provision_fops) {
    944		fput(file);
    945		return -EINVAL;
    946	}
    947
    948	*allowed_attributes |= SGX_ATTR_PROVISIONKEY;
    949
    950	fput(file);
    951	return 0;
    952}
    953EXPORT_SYMBOL_GPL(sgx_set_attribute);
    954
    955static int __init sgx_init(void)
    956{
    957	int ret;
    958	int i;
    959
    960	if (!cpu_feature_enabled(X86_FEATURE_SGX))
    961		return -ENODEV;
    962
    963	if (!sgx_page_cache_init())
    964		return -ENOMEM;
    965
    966	if (!sgx_page_reclaimer_init()) {
    967		ret = -ENOMEM;
    968		goto err_page_cache;
    969	}
    970
    971	ret = misc_register(&sgx_dev_provision);
    972	if (ret)
    973		goto err_kthread;
    974
    975	/*
    976	 * Always try to initialize the native *and* KVM drivers.
    977	 * The KVM driver is less picky than the native one and
    978	 * can function if the native one is not supported on the
    979	 * current system or fails to initialize.
    980	 *
    981	 * Error out only if both fail to initialize.
    982	 */
    983	ret = sgx_drv_init();
    984
    985	if (sgx_vepc_init() && ret)
    986		goto err_provision;
    987
    988	return 0;
    989
    990err_provision:
    991	misc_deregister(&sgx_dev_provision);
    992
    993err_kthread:
    994	kthread_stop(ksgxd_tsk);
    995
    996err_page_cache:
    997	for (i = 0; i < sgx_nr_epc_sections; i++) {
    998		vfree(sgx_epc_sections[i].pages);
    999		memunmap(sgx_epc_sections[i].virt_addr);
   1000	}
   1001
   1002	return ret;
   1003}
   1004
   1005device_initcall(sgx_init);