cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

e820.c (37913B)


      1// SPDX-License-Identifier: GPL-2.0-only
      2/*
      3 * Low level x86 E820 memory map handling functions.
      4 *
      5 * The firmware and bootloader passes us the "E820 table", which is the primary
      6 * physical memory layout description available about x86 systems.
      7 *
      8 * The kernel takes the E820 memory layout and optionally modifies it with
      9 * quirks and other tweaks, and feeds that into the generic Linux memory
     10 * allocation code routines via a platform independent interface (memblock, etc.).
     11 */
     12#include <linux/crash_dump.h>
     13#include <linux/memblock.h>
     14#include <linux/suspend.h>
     15#include <linux/acpi.h>
     16#include <linux/firmware-map.h>
     17#include <linux/sort.h>
     18#include <linux/memory_hotplug.h>
     19
     20#include <asm/e820/api.h>
     21#include <asm/setup.h>
     22
     23/*
     24 * We organize the E820 table into three main data structures:
     25 *
     26 * - 'e820_table_firmware': the original firmware version passed to us by the
     27 *   bootloader - not modified by the kernel. It is composed of two parts:
     28 *   the first 128 E820 memory entries in boot_params.e820_table and the remaining
     29 *   (if any) entries of the SETUP_E820_EXT nodes. We use this to:
     30 *
     31 *       - inform the user about the firmware's notion of memory layout
     32 *         via /sys/firmware/memmap
     33 *
     34 *       - the hibernation code uses it to generate a kernel-independent CRC32
     35 *         checksum of the physical memory layout of a system.
     36 *
     37 * - 'e820_table_kexec': a slightly modified (by the kernel) firmware version
     38 *   passed to us by the bootloader - the major difference between
     39 *   e820_table_firmware[] and this one is that, the latter marks the setup_data
     40 *   list created by the EFI boot stub as reserved, so that kexec can reuse the
     41 *   setup_data information in the second kernel. Besides, e820_table_kexec[]
     42 *   might also be modified by the kexec itself to fake a mptable.
     43 *   We use this to:
     44 *
     45 *       - kexec, which is a bootloader in disguise, uses the original E820
     46 *         layout to pass to the kexec-ed kernel. This way the original kernel
     47 *         can have a restricted E820 map while the kexec()-ed kexec-kernel
     48 *         can have access to full memory - etc.
     49 *
     50 * - 'e820_table': this is the main E820 table that is massaged by the
     51 *   low level x86 platform code, or modified by boot parameters, before
     52 *   passed on to higher level MM layers.
     53 *
     54 * Once the E820 map has been converted to the standard Linux memory layout
     55 * information its role stops - modifying it has no effect and does not get
     56 * re-propagated. So itsmain role is a temporary bootstrap storage of firmware
     57 * specific memory layout data during early bootup.
     58 */
     59static struct e820_table e820_table_init		__initdata;
     60static struct e820_table e820_table_kexec_init		__initdata;
     61static struct e820_table e820_table_firmware_init	__initdata;
     62
     63struct e820_table *e820_table __refdata			= &e820_table_init;
     64struct e820_table *e820_table_kexec __refdata		= &e820_table_kexec_init;
     65struct e820_table *e820_table_firmware __refdata	= &e820_table_firmware_init;
     66
     67/* For PCI or other memory-mapped resources */
     68unsigned long pci_mem_start = 0xaeedbabe;
     69#ifdef CONFIG_PCI
     70EXPORT_SYMBOL(pci_mem_start);
     71#endif
     72
     73/*
     74 * This function checks if any part of the range <start,end> is mapped
     75 * with type.
     76 */
     77static bool _e820__mapped_any(struct e820_table *table,
     78			      u64 start, u64 end, enum e820_type type)
     79{
     80	int i;
     81
     82	for (i = 0; i < table->nr_entries; i++) {
     83		struct e820_entry *entry = &table->entries[i];
     84
     85		if (type && entry->type != type)
     86			continue;
     87		if (entry->addr >= end || entry->addr + entry->size <= start)
     88			continue;
     89		return true;
     90	}
     91	return false;
     92}
     93
     94bool e820__mapped_raw_any(u64 start, u64 end, enum e820_type type)
     95{
     96	return _e820__mapped_any(e820_table_firmware, start, end, type);
     97}
     98EXPORT_SYMBOL_GPL(e820__mapped_raw_any);
     99
    100bool e820__mapped_any(u64 start, u64 end, enum e820_type type)
    101{
    102	return _e820__mapped_any(e820_table, start, end, type);
    103}
    104EXPORT_SYMBOL_GPL(e820__mapped_any);
    105
    106/*
    107 * This function checks if the entire <start,end> range is mapped with 'type'.
    108 *
    109 * Note: this function only works correctly once the E820 table is sorted and
    110 * not-overlapping (at least for the range specified), which is the case normally.
    111 */
    112static struct e820_entry *__e820__mapped_all(u64 start, u64 end,
    113					     enum e820_type type)
    114{
    115	int i;
    116
    117	for (i = 0; i < e820_table->nr_entries; i++) {
    118		struct e820_entry *entry = &e820_table->entries[i];
    119
    120		if (type && entry->type != type)
    121			continue;
    122
    123		/* Is the region (part) in overlap with the current region? */
    124		if (entry->addr >= end || entry->addr + entry->size <= start)
    125			continue;
    126
    127		/*
    128		 * If the region is at the beginning of <start,end> we move
    129		 * 'start' to the end of the region since it's ok until there
    130		 */
    131		if (entry->addr <= start)
    132			start = entry->addr + entry->size;
    133
    134		/*
    135		 * If 'start' is now at or beyond 'end', we're done, full
    136		 * coverage of the desired range exists:
    137		 */
    138		if (start >= end)
    139			return entry;
    140	}
    141
    142	return NULL;
    143}
    144
    145/*
    146 * This function checks if the entire range <start,end> is mapped with type.
    147 */
    148bool __init e820__mapped_all(u64 start, u64 end, enum e820_type type)
    149{
    150	return __e820__mapped_all(start, end, type);
    151}
    152
    153/*
    154 * This function returns the type associated with the range <start,end>.
    155 */
    156int e820__get_entry_type(u64 start, u64 end)
    157{
    158	struct e820_entry *entry = __e820__mapped_all(start, end, 0);
    159
    160	return entry ? entry->type : -EINVAL;
    161}
    162
    163/*
    164 * Add a memory region to the kernel E820 map.
    165 */
    166static void __init __e820__range_add(struct e820_table *table, u64 start, u64 size, enum e820_type type)
    167{
    168	int x = table->nr_entries;
    169
    170	if (x >= ARRAY_SIZE(table->entries)) {
    171		pr_err("too many entries; ignoring [mem %#010llx-%#010llx]\n",
    172		       start, start + size - 1);
    173		return;
    174	}
    175
    176	table->entries[x].addr = start;
    177	table->entries[x].size = size;
    178	table->entries[x].type = type;
    179	table->nr_entries++;
    180}
    181
    182void __init e820__range_add(u64 start, u64 size, enum e820_type type)
    183{
    184	__e820__range_add(e820_table, start, size, type);
    185}
    186
    187static void __init e820_print_type(enum e820_type type)
    188{
    189	switch (type) {
    190	case E820_TYPE_RAM:		/* Fall through: */
    191	case E820_TYPE_RESERVED_KERN:	pr_cont("usable");			break;
    192	case E820_TYPE_RESERVED:	pr_cont("reserved");			break;
    193	case E820_TYPE_SOFT_RESERVED:	pr_cont("soft reserved");		break;
    194	case E820_TYPE_ACPI:		pr_cont("ACPI data");			break;
    195	case E820_TYPE_NVS:		pr_cont("ACPI NVS");			break;
    196	case E820_TYPE_UNUSABLE:	pr_cont("unusable");			break;
    197	case E820_TYPE_PMEM:		/* Fall through: */
    198	case E820_TYPE_PRAM:		pr_cont("persistent (type %u)", type);	break;
    199	default:			pr_cont("type %u", type);		break;
    200	}
    201}
    202
    203void __init e820__print_table(char *who)
    204{
    205	int i;
    206
    207	for (i = 0; i < e820_table->nr_entries; i++) {
    208		pr_info("%s: [mem %#018Lx-%#018Lx] ",
    209			who,
    210			e820_table->entries[i].addr,
    211			e820_table->entries[i].addr + e820_table->entries[i].size - 1);
    212
    213		e820_print_type(e820_table->entries[i].type);
    214		pr_cont("\n");
    215	}
    216}
    217
    218/*
    219 * Sanitize an E820 map.
    220 *
    221 * Some E820 layouts include overlapping entries. The following
    222 * replaces the original E820 map with a new one, removing overlaps,
    223 * and resolving conflicting memory types in favor of highest
    224 * numbered type.
    225 *
    226 * The input parameter 'entries' points to an array of 'struct
    227 * e820_entry' which on entry has elements in the range [0, *nr_entries)
    228 * valid, and which has space for up to max_nr_entries entries.
    229 * On return, the resulting sanitized E820 map entries will be in
    230 * overwritten in the same location, starting at 'entries'.
    231 *
    232 * The integer pointed to by nr_entries must be valid on entry (the
    233 * current number of valid entries located at 'entries'). If the
    234 * sanitizing succeeds the *nr_entries will be updated with the new
    235 * number of valid entries (something no more than max_nr_entries).
    236 *
    237 * The return value from e820__update_table() is zero if it
    238 * successfully 'sanitized' the map entries passed in, and is -1
    239 * if it did nothing, which can happen if either of (1) it was
    240 * only passed one map entry, or (2) any of the input map entries
    241 * were invalid (start + size < start, meaning that the size was
    242 * so big the described memory range wrapped around through zero.)
    243 *
    244 *	Visually we're performing the following
    245 *	(1,2,3,4 = memory types)...
    246 *
    247 *	Sample memory map (w/overlaps):
    248 *	   ____22__________________
    249 *	   ______________________4_
    250 *	   ____1111________________
    251 *	   _44_____________________
    252 *	   11111111________________
    253 *	   ____________________33__
    254 *	   ___________44___________
    255 *	   __________33333_________
    256 *	   ______________22________
    257 *	   ___________________2222_
    258 *	   _________111111111______
    259 *	   _____________________11_
    260 *	   _________________4______
    261 *
    262 *	Sanitized equivalent (no overlap):
    263 *	   1_______________________
    264 *	   _44_____________________
    265 *	   ___1____________________
    266 *	   ____22__________________
    267 *	   ______11________________
    268 *	   _________1______________
    269 *	   __________3_____________
    270 *	   ___________44___________
    271 *	   _____________33_________
    272 *	   _______________2________
    273 *	   ________________1_______
    274 *	   _________________4______
    275 *	   ___________________2____
    276 *	   ____________________33__
    277 *	   ______________________4_
    278 */
    279struct change_member {
    280	/* Pointer to the original entry: */
    281	struct e820_entry	*entry;
    282	/* Address for this change point: */
    283	unsigned long long	addr;
    284};
    285
    286static struct change_member	change_point_list[2*E820_MAX_ENTRIES]	__initdata;
    287static struct change_member	*change_point[2*E820_MAX_ENTRIES]	__initdata;
    288static struct e820_entry	*overlap_list[E820_MAX_ENTRIES]		__initdata;
    289static struct e820_entry	new_entries[E820_MAX_ENTRIES]		__initdata;
    290
    291static int __init cpcompare(const void *a, const void *b)
    292{
    293	struct change_member * const *app = a, * const *bpp = b;
    294	const struct change_member *ap = *app, *bp = *bpp;
    295
    296	/*
    297	 * Inputs are pointers to two elements of change_point[].  If their
    298	 * addresses are not equal, their difference dominates.  If the addresses
    299	 * are equal, then consider one that represents the end of its region
    300	 * to be greater than one that does not.
    301	 */
    302	if (ap->addr != bp->addr)
    303		return ap->addr > bp->addr ? 1 : -1;
    304
    305	return (ap->addr != ap->entry->addr) - (bp->addr != bp->entry->addr);
    306}
    307
    308static bool e820_nomerge(enum e820_type type)
    309{
    310	/*
    311	 * These types may indicate distinct platform ranges aligned to
    312	 * numa node, protection domain, performance domain, or other
    313	 * boundaries. Do not merge them.
    314	 */
    315	if (type == E820_TYPE_PRAM)
    316		return true;
    317	if (type == E820_TYPE_SOFT_RESERVED)
    318		return true;
    319	return false;
    320}
    321
    322int __init e820__update_table(struct e820_table *table)
    323{
    324	struct e820_entry *entries = table->entries;
    325	u32 max_nr_entries = ARRAY_SIZE(table->entries);
    326	enum e820_type current_type, last_type;
    327	unsigned long long last_addr;
    328	u32 new_nr_entries, overlap_entries;
    329	u32 i, chg_idx, chg_nr;
    330
    331	/* If there's only one memory region, don't bother: */
    332	if (table->nr_entries < 2)
    333		return -1;
    334
    335	BUG_ON(table->nr_entries > max_nr_entries);
    336
    337	/* Bail out if we find any unreasonable addresses in the map: */
    338	for (i = 0; i < table->nr_entries; i++) {
    339		if (entries[i].addr + entries[i].size < entries[i].addr)
    340			return -1;
    341	}
    342
    343	/* Create pointers for initial change-point information (for sorting): */
    344	for (i = 0; i < 2 * table->nr_entries; i++)
    345		change_point[i] = &change_point_list[i];
    346
    347	/*
    348	 * Record all known change-points (starting and ending addresses),
    349	 * omitting empty memory regions:
    350	 */
    351	chg_idx = 0;
    352	for (i = 0; i < table->nr_entries; i++)	{
    353		if (entries[i].size != 0) {
    354			change_point[chg_idx]->addr	= entries[i].addr;
    355			change_point[chg_idx++]->entry	= &entries[i];
    356			change_point[chg_idx]->addr	= entries[i].addr + entries[i].size;
    357			change_point[chg_idx++]->entry	= &entries[i];
    358		}
    359	}
    360	chg_nr = chg_idx;
    361
    362	/* Sort change-point list by memory addresses (low -> high): */
    363	sort(change_point, chg_nr, sizeof(*change_point), cpcompare, NULL);
    364
    365	/* Create a new memory map, removing overlaps: */
    366	overlap_entries = 0;	 /* Number of entries in the overlap table */
    367	new_nr_entries = 0;	 /* Index for creating new map entries */
    368	last_type = 0;		 /* Start with undefined memory type */
    369	last_addr = 0;		 /* Start with 0 as last starting address */
    370
    371	/* Loop through change-points, determining effect on the new map: */
    372	for (chg_idx = 0; chg_idx < chg_nr; chg_idx++) {
    373		/* Keep track of all overlapping entries */
    374		if (change_point[chg_idx]->addr == change_point[chg_idx]->entry->addr) {
    375			/* Add map entry to overlap list (> 1 entry implies an overlap) */
    376			overlap_list[overlap_entries++] = change_point[chg_idx]->entry;
    377		} else {
    378			/* Remove entry from list (order independent, so swap with last): */
    379			for (i = 0; i < overlap_entries; i++) {
    380				if (overlap_list[i] == change_point[chg_idx]->entry)
    381					overlap_list[i] = overlap_list[overlap_entries-1];
    382			}
    383			overlap_entries--;
    384		}
    385		/*
    386		 * If there are overlapping entries, decide which
    387		 * "type" to use (larger value takes precedence --
    388		 * 1=usable, 2,3,4,4+=unusable)
    389		 */
    390		current_type = 0;
    391		for (i = 0; i < overlap_entries; i++) {
    392			if (overlap_list[i]->type > current_type)
    393				current_type = overlap_list[i]->type;
    394		}
    395
    396		/* Continue building up new map based on this information: */
    397		if (current_type != last_type || e820_nomerge(current_type)) {
    398			if (last_type != 0)	 {
    399				new_entries[new_nr_entries].size = change_point[chg_idx]->addr - last_addr;
    400				/* Move forward only if the new size was non-zero: */
    401				if (new_entries[new_nr_entries].size != 0)
    402					/* No more space left for new entries? */
    403					if (++new_nr_entries >= max_nr_entries)
    404						break;
    405			}
    406			if (current_type != 0)	{
    407				new_entries[new_nr_entries].addr = change_point[chg_idx]->addr;
    408				new_entries[new_nr_entries].type = current_type;
    409				last_addr = change_point[chg_idx]->addr;
    410			}
    411			last_type = current_type;
    412		}
    413	}
    414
    415	/* Copy the new entries into the original location: */
    416	memcpy(entries, new_entries, new_nr_entries*sizeof(*entries));
    417	table->nr_entries = new_nr_entries;
    418
    419	return 0;
    420}
    421
    422static int __init __append_e820_table(struct boot_e820_entry *entries, u32 nr_entries)
    423{
    424	struct boot_e820_entry *entry = entries;
    425
    426	while (nr_entries) {
    427		u64 start = entry->addr;
    428		u64 size = entry->size;
    429		u64 end = start + size - 1;
    430		u32 type = entry->type;
    431
    432		/* Ignore the entry on 64-bit overflow: */
    433		if (start > end && likely(size))
    434			return -1;
    435
    436		e820__range_add(start, size, type);
    437
    438		entry++;
    439		nr_entries--;
    440	}
    441	return 0;
    442}
    443
    444/*
    445 * Copy the BIOS E820 map into a safe place.
    446 *
    447 * Sanity-check it while we're at it..
    448 *
    449 * If we're lucky and live on a modern system, the setup code
    450 * will have given us a memory map that we can use to properly
    451 * set up memory.  If we aren't, we'll fake a memory map.
    452 */
    453static int __init append_e820_table(struct boot_e820_entry *entries, u32 nr_entries)
    454{
    455	/* Only one memory region (or negative)? Ignore it */
    456	if (nr_entries < 2)
    457		return -1;
    458
    459	return __append_e820_table(entries, nr_entries);
    460}
    461
    462static u64 __init
    463__e820__range_update(struct e820_table *table, u64 start, u64 size, enum e820_type old_type, enum e820_type new_type)
    464{
    465	u64 end;
    466	unsigned int i;
    467	u64 real_updated_size = 0;
    468
    469	BUG_ON(old_type == new_type);
    470
    471	if (size > (ULLONG_MAX - start))
    472		size = ULLONG_MAX - start;
    473
    474	end = start + size;
    475	printk(KERN_DEBUG "e820: update [mem %#010Lx-%#010Lx] ", start, end - 1);
    476	e820_print_type(old_type);
    477	pr_cont(" ==> ");
    478	e820_print_type(new_type);
    479	pr_cont("\n");
    480
    481	for (i = 0; i < table->nr_entries; i++) {
    482		struct e820_entry *entry = &table->entries[i];
    483		u64 final_start, final_end;
    484		u64 entry_end;
    485
    486		if (entry->type != old_type)
    487			continue;
    488
    489		entry_end = entry->addr + entry->size;
    490
    491		/* Completely covered by new range? */
    492		if (entry->addr >= start && entry_end <= end) {
    493			entry->type = new_type;
    494			real_updated_size += entry->size;
    495			continue;
    496		}
    497
    498		/* New range is completely covered? */
    499		if (entry->addr < start && entry_end > end) {
    500			__e820__range_add(table, start, size, new_type);
    501			__e820__range_add(table, end, entry_end - end, entry->type);
    502			entry->size = start - entry->addr;
    503			real_updated_size += size;
    504			continue;
    505		}
    506
    507		/* Partially covered: */
    508		final_start = max(start, entry->addr);
    509		final_end = min(end, entry_end);
    510		if (final_start >= final_end)
    511			continue;
    512
    513		__e820__range_add(table, final_start, final_end - final_start, new_type);
    514
    515		real_updated_size += final_end - final_start;
    516
    517		/*
    518		 * Left range could be head or tail, so need to update
    519		 * its size first:
    520		 */
    521		entry->size -= final_end - final_start;
    522		if (entry->addr < final_start)
    523			continue;
    524
    525		entry->addr = final_end;
    526	}
    527	return real_updated_size;
    528}
    529
    530u64 __init e820__range_update(u64 start, u64 size, enum e820_type old_type, enum e820_type new_type)
    531{
    532	return __e820__range_update(e820_table, start, size, old_type, new_type);
    533}
    534
    535static u64 __init e820__range_update_kexec(u64 start, u64 size, enum e820_type old_type, enum e820_type  new_type)
    536{
    537	return __e820__range_update(e820_table_kexec, start, size, old_type, new_type);
    538}
    539
    540/* Remove a range of memory from the E820 table: */
    541u64 __init e820__range_remove(u64 start, u64 size, enum e820_type old_type, bool check_type)
    542{
    543	int i;
    544	u64 end;
    545	u64 real_removed_size = 0;
    546
    547	if (size > (ULLONG_MAX - start))
    548		size = ULLONG_MAX - start;
    549
    550	end = start + size;
    551	printk(KERN_DEBUG "e820: remove [mem %#010Lx-%#010Lx] ", start, end - 1);
    552	if (check_type)
    553		e820_print_type(old_type);
    554	pr_cont("\n");
    555
    556	for (i = 0; i < e820_table->nr_entries; i++) {
    557		struct e820_entry *entry = &e820_table->entries[i];
    558		u64 final_start, final_end;
    559		u64 entry_end;
    560
    561		if (check_type && entry->type != old_type)
    562			continue;
    563
    564		entry_end = entry->addr + entry->size;
    565
    566		/* Completely covered? */
    567		if (entry->addr >= start && entry_end <= end) {
    568			real_removed_size += entry->size;
    569			memset(entry, 0, sizeof(*entry));
    570			continue;
    571		}
    572
    573		/* Is the new range completely covered? */
    574		if (entry->addr < start && entry_end > end) {
    575			e820__range_add(end, entry_end - end, entry->type);
    576			entry->size = start - entry->addr;
    577			real_removed_size += size;
    578			continue;
    579		}
    580
    581		/* Partially covered: */
    582		final_start = max(start, entry->addr);
    583		final_end = min(end, entry_end);
    584		if (final_start >= final_end)
    585			continue;
    586
    587		real_removed_size += final_end - final_start;
    588
    589		/*
    590		 * Left range could be head or tail, so need to update
    591		 * the size first:
    592		 */
    593		entry->size -= final_end - final_start;
    594		if (entry->addr < final_start)
    595			continue;
    596
    597		entry->addr = final_end;
    598	}
    599	return real_removed_size;
    600}
    601
    602void __init e820__update_table_print(void)
    603{
    604	if (e820__update_table(e820_table))
    605		return;
    606
    607	pr_info("modified physical RAM map:\n");
    608	e820__print_table("modified");
    609}
    610
    611static void __init e820__update_table_kexec(void)
    612{
    613	e820__update_table(e820_table_kexec);
    614}
    615
    616#define MAX_GAP_END 0x100000000ull
    617
    618/*
    619 * Search for a gap in the E820 memory space from 0 to MAX_GAP_END (4GB).
    620 */
    621static int __init e820_search_gap(unsigned long *gapstart, unsigned long *gapsize)
    622{
    623	unsigned long long last = MAX_GAP_END;
    624	int i = e820_table->nr_entries;
    625	int found = 0;
    626
    627	while (--i >= 0) {
    628		unsigned long long start = e820_table->entries[i].addr;
    629		unsigned long long end = start + e820_table->entries[i].size;
    630
    631		/*
    632		 * Since "last" is at most 4GB, we know we'll
    633		 * fit in 32 bits if this condition is true:
    634		 */
    635		if (last > end) {
    636			unsigned long gap = last - end;
    637
    638			if (gap >= *gapsize) {
    639				*gapsize = gap;
    640				*gapstart = end;
    641				found = 1;
    642			}
    643		}
    644		if (start < last)
    645			last = start;
    646	}
    647	return found;
    648}
    649
    650/*
    651 * Search for the biggest gap in the low 32 bits of the E820
    652 * memory space. We pass this space to the PCI subsystem, so
    653 * that it can assign MMIO resources for hotplug or
    654 * unconfigured devices in.
    655 *
    656 * Hopefully the BIOS let enough space left.
    657 */
    658__init void e820__setup_pci_gap(void)
    659{
    660	unsigned long gapstart, gapsize;
    661	int found;
    662
    663	gapsize = 0x400000;
    664	found  = e820_search_gap(&gapstart, &gapsize);
    665
    666	if (!found) {
    667#ifdef CONFIG_X86_64
    668		gapstart = (max_pfn << PAGE_SHIFT) + 1024*1024;
    669		pr_err("Cannot find an available gap in the 32-bit address range\n");
    670		pr_err("PCI devices with unassigned 32-bit BARs may not work!\n");
    671#else
    672		gapstart = 0x10000000;
    673#endif
    674	}
    675
    676	/*
    677	 * e820__reserve_resources_late() protects stolen RAM already:
    678	 */
    679	pci_mem_start = gapstart;
    680
    681	pr_info("[mem %#010lx-%#010lx] available for PCI devices\n",
    682		gapstart, gapstart + gapsize - 1);
    683}
    684
    685/*
    686 * Called late during init, in free_initmem().
    687 *
    688 * Initial e820_table and e820_table_kexec are largish __initdata arrays.
    689 *
    690 * Copy them to a (usually much smaller) dynamically allocated area that is
    691 * sized precisely after the number of e820 entries.
    692 *
    693 * This is done after we've performed all the fixes and tweaks to the tables.
    694 * All functions which modify them are __init functions, which won't exist
    695 * after free_initmem().
    696 */
    697__init void e820__reallocate_tables(void)
    698{
    699	struct e820_table *n;
    700	int size;
    701
    702	size = offsetof(struct e820_table, entries) + sizeof(struct e820_entry)*e820_table->nr_entries;
    703	n = kmemdup(e820_table, size, GFP_KERNEL);
    704	BUG_ON(!n);
    705	e820_table = n;
    706
    707	size = offsetof(struct e820_table, entries) + sizeof(struct e820_entry)*e820_table_kexec->nr_entries;
    708	n = kmemdup(e820_table_kexec, size, GFP_KERNEL);
    709	BUG_ON(!n);
    710	e820_table_kexec = n;
    711
    712	size = offsetof(struct e820_table, entries) + sizeof(struct e820_entry)*e820_table_firmware->nr_entries;
    713	n = kmemdup(e820_table_firmware, size, GFP_KERNEL);
    714	BUG_ON(!n);
    715	e820_table_firmware = n;
    716}
    717
    718/*
    719 * Because of the small fixed size of struct boot_params, only the first
    720 * 128 E820 memory entries are passed to the kernel via boot_params.e820_table,
    721 * the remaining (if any) entries are passed via the SETUP_E820_EXT node of
    722 * struct setup_data, which is parsed here.
    723 */
    724void __init e820__memory_setup_extended(u64 phys_addr, u32 data_len)
    725{
    726	int entries;
    727	struct boot_e820_entry *extmap;
    728	struct setup_data *sdata;
    729
    730	sdata = early_memremap(phys_addr, data_len);
    731	entries = sdata->len / sizeof(*extmap);
    732	extmap = (struct boot_e820_entry *)(sdata->data);
    733
    734	__append_e820_table(extmap, entries);
    735	e820__update_table(e820_table);
    736
    737	memcpy(e820_table_kexec, e820_table, sizeof(*e820_table_kexec));
    738	memcpy(e820_table_firmware, e820_table, sizeof(*e820_table_firmware));
    739
    740	early_memunmap(sdata, data_len);
    741	pr_info("extended physical RAM map:\n");
    742	e820__print_table("extended");
    743}
    744
    745/*
    746 * Find the ranges of physical addresses that do not correspond to
    747 * E820 RAM areas and register the corresponding pages as 'nosave' for
    748 * hibernation (32-bit) or software suspend and suspend to RAM (64-bit).
    749 *
    750 * This function requires the E820 map to be sorted and without any
    751 * overlapping entries.
    752 */
    753void __init e820__register_nosave_regions(unsigned long limit_pfn)
    754{
    755	int i;
    756	unsigned long pfn = 0;
    757
    758	for (i = 0; i < e820_table->nr_entries; i++) {
    759		struct e820_entry *entry = &e820_table->entries[i];
    760
    761		if (pfn < PFN_UP(entry->addr))
    762			register_nosave_region(pfn, PFN_UP(entry->addr));
    763
    764		pfn = PFN_DOWN(entry->addr + entry->size);
    765
    766		if (entry->type != E820_TYPE_RAM && entry->type != E820_TYPE_RESERVED_KERN)
    767			register_nosave_region(PFN_UP(entry->addr), pfn);
    768
    769		if (pfn >= limit_pfn)
    770			break;
    771	}
    772}
    773
    774#ifdef CONFIG_ACPI
    775/*
    776 * Register ACPI NVS memory regions, so that we can save/restore them during
    777 * hibernation and the subsequent resume:
    778 */
    779static int __init e820__register_nvs_regions(void)
    780{
    781	int i;
    782
    783	for (i = 0; i < e820_table->nr_entries; i++) {
    784		struct e820_entry *entry = &e820_table->entries[i];
    785
    786		if (entry->type == E820_TYPE_NVS)
    787			acpi_nvs_register(entry->addr, entry->size);
    788	}
    789
    790	return 0;
    791}
    792core_initcall(e820__register_nvs_regions);
    793#endif
    794
    795/*
    796 * Allocate the requested number of bytes with the requested alignment
    797 * and return (the physical address) to the caller. Also register this
    798 * range in the 'kexec' E820 table as a reserved range.
    799 *
    800 * This allows kexec to fake a new mptable, as if it came from the real
    801 * system.
    802 */
    803u64 __init e820__memblock_alloc_reserved(u64 size, u64 align)
    804{
    805	u64 addr;
    806
    807	addr = memblock_phys_alloc(size, align);
    808	if (addr) {
    809		e820__range_update_kexec(addr, size, E820_TYPE_RAM, E820_TYPE_RESERVED);
    810		pr_info("update e820_table_kexec for e820__memblock_alloc_reserved()\n");
    811		e820__update_table_kexec();
    812	}
    813
    814	return addr;
    815}
    816
    817#ifdef CONFIG_X86_32
    818# ifdef CONFIG_X86_PAE
    819#  define MAX_ARCH_PFN		(1ULL<<(36-PAGE_SHIFT))
    820# else
    821#  define MAX_ARCH_PFN		(1ULL<<(32-PAGE_SHIFT))
    822# endif
    823#else /* CONFIG_X86_32 */
    824# define MAX_ARCH_PFN MAXMEM>>PAGE_SHIFT
    825#endif
    826
    827/*
    828 * Find the highest page frame number we have available
    829 */
    830static unsigned long __init e820_end_pfn(unsigned long limit_pfn, enum e820_type type)
    831{
    832	int i;
    833	unsigned long last_pfn = 0;
    834	unsigned long max_arch_pfn = MAX_ARCH_PFN;
    835
    836	for (i = 0; i < e820_table->nr_entries; i++) {
    837		struct e820_entry *entry = &e820_table->entries[i];
    838		unsigned long start_pfn;
    839		unsigned long end_pfn;
    840
    841		if (entry->type != type)
    842			continue;
    843
    844		start_pfn = entry->addr >> PAGE_SHIFT;
    845		end_pfn = (entry->addr + entry->size) >> PAGE_SHIFT;
    846
    847		if (start_pfn >= limit_pfn)
    848			continue;
    849		if (end_pfn > limit_pfn) {
    850			last_pfn = limit_pfn;
    851			break;
    852		}
    853		if (end_pfn > last_pfn)
    854			last_pfn = end_pfn;
    855	}
    856
    857	if (last_pfn > max_arch_pfn)
    858		last_pfn = max_arch_pfn;
    859
    860	pr_info("last_pfn = %#lx max_arch_pfn = %#lx\n",
    861		last_pfn, max_arch_pfn);
    862	return last_pfn;
    863}
    864
    865unsigned long __init e820__end_of_ram_pfn(void)
    866{
    867	return e820_end_pfn(MAX_ARCH_PFN, E820_TYPE_RAM);
    868}
    869
    870unsigned long __init e820__end_of_low_ram_pfn(void)
    871{
    872	return e820_end_pfn(1UL << (32 - PAGE_SHIFT), E820_TYPE_RAM);
    873}
    874
    875static void __init early_panic(char *msg)
    876{
    877	early_printk(msg);
    878	panic(msg);
    879}
    880
    881static int userdef __initdata;
    882
    883/* The "mem=nopentium" boot option disables 4MB page tables on 32-bit kernels: */
    884static int __init parse_memopt(char *p)
    885{
    886	u64 mem_size;
    887
    888	if (!p)
    889		return -EINVAL;
    890
    891	if (!strcmp(p, "nopentium")) {
    892#ifdef CONFIG_X86_32
    893		setup_clear_cpu_cap(X86_FEATURE_PSE);
    894		return 0;
    895#else
    896		pr_warn("mem=nopentium ignored! (only supported on x86_32)\n");
    897		return -EINVAL;
    898#endif
    899	}
    900
    901	userdef = 1;
    902	mem_size = memparse(p, &p);
    903
    904	/* Don't remove all memory when getting "mem={invalid}" parameter: */
    905	if (mem_size == 0)
    906		return -EINVAL;
    907
    908	e820__range_remove(mem_size, ULLONG_MAX - mem_size, E820_TYPE_RAM, 1);
    909
    910#ifdef CONFIG_MEMORY_HOTPLUG
    911	max_mem_size = mem_size;
    912#endif
    913
    914	return 0;
    915}
    916early_param("mem", parse_memopt);
    917
    918static int __init parse_memmap_one(char *p)
    919{
    920	char *oldp;
    921	u64 start_at, mem_size;
    922
    923	if (!p)
    924		return -EINVAL;
    925
    926	if (!strncmp(p, "exactmap", 8)) {
    927		e820_table->nr_entries = 0;
    928		userdef = 1;
    929		return 0;
    930	}
    931
    932	oldp = p;
    933	mem_size = memparse(p, &p);
    934	if (p == oldp)
    935		return -EINVAL;
    936
    937	userdef = 1;
    938	if (*p == '@') {
    939		start_at = memparse(p+1, &p);
    940		e820__range_add(start_at, mem_size, E820_TYPE_RAM);
    941	} else if (*p == '#') {
    942		start_at = memparse(p+1, &p);
    943		e820__range_add(start_at, mem_size, E820_TYPE_ACPI);
    944	} else if (*p == '$') {
    945		start_at = memparse(p+1, &p);
    946		e820__range_add(start_at, mem_size, E820_TYPE_RESERVED);
    947	} else if (*p == '!') {
    948		start_at = memparse(p+1, &p);
    949		e820__range_add(start_at, mem_size, E820_TYPE_PRAM);
    950	} else if (*p == '%') {
    951		enum e820_type from = 0, to = 0;
    952
    953		start_at = memparse(p + 1, &p);
    954		if (*p == '-')
    955			from = simple_strtoull(p + 1, &p, 0);
    956		if (*p == '+')
    957			to = simple_strtoull(p + 1, &p, 0);
    958		if (*p != '\0')
    959			return -EINVAL;
    960		if (from && to)
    961			e820__range_update(start_at, mem_size, from, to);
    962		else if (to)
    963			e820__range_add(start_at, mem_size, to);
    964		else if (from)
    965			e820__range_remove(start_at, mem_size, from, 1);
    966		else
    967			e820__range_remove(start_at, mem_size, 0, 0);
    968	} else {
    969		e820__range_remove(mem_size, ULLONG_MAX - mem_size, E820_TYPE_RAM, 1);
    970	}
    971
    972	return *p == '\0' ? 0 : -EINVAL;
    973}
    974
    975static int __init parse_memmap_opt(char *str)
    976{
    977	while (str) {
    978		char *k = strchr(str, ',');
    979
    980		if (k)
    981			*k++ = 0;
    982
    983		parse_memmap_one(str);
    984		str = k;
    985	}
    986
    987	return 0;
    988}
    989early_param("memmap", parse_memmap_opt);
    990
    991/*
    992 * Reserve all entries from the bootloader's extensible data nodes list,
    993 * because if present we are going to use it later on to fetch e820
    994 * entries from it:
    995 */
    996void __init e820__reserve_setup_data(void)
    997{
    998	struct setup_indirect *indirect;
    999	struct setup_data *data;
   1000	u64 pa_data, pa_next;
   1001	u32 len;
   1002
   1003	pa_data = boot_params.hdr.setup_data;
   1004	if (!pa_data)
   1005		return;
   1006
   1007	while (pa_data) {
   1008		data = early_memremap(pa_data, sizeof(*data));
   1009		if (!data) {
   1010			pr_warn("e820: failed to memremap setup_data entry\n");
   1011			return;
   1012		}
   1013
   1014		len = sizeof(*data);
   1015		pa_next = data->next;
   1016
   1017		e820__range_update(pa_data, sizeof(*data)+data->len, E820_TYPE_RAM, E820_TYPE_RESERVED_KERN);
   1018
   1019		/*
   1020		 * SETUP_EFI is supplied by kexec and does not need to be
   1021		 * reserved.
   1022		 */
   1023		if (data->type != SETUP_EFI)
   1024			e820__range_update_kexec(pa_data,
   1025						 sizeof(*data) + data->len,
   1026						 E820_TYPE_RAM, E820_TYPE_RESERVED_KERN);
   1027
   1028		if (data->type == SETUP_INDIRECT) {
   1029			len += data->len;
   1030			early_memunmap(data, sizeof(*data));
   1031			data = early_memremap(pa_data, len);
   1032			if (!data) {
   1033				pr_warn("e820: failed to memremap indirect setup_data\n");
   1034				return;
   1035			}
   1036
   1037			indirect = (struct setup_indirect *)data->data;
   1038
   1039			if (indirect->type != SETUP_INDIRECT) {
   1040				e820__range_update(indirect->addr, indirect->len,
   1041						   E820_TYPE_RAM, E820_TYPE_RESERVED_KERN);
   1042				e820__range_update_kexec(indirect->addr, indirect->len,
   1043							 E820_TYPE_RAM, E820_TYPE_RESERVED_KERN);
   1044			}
   1045		}
   1046
   1047		pa_data = pa_next;
   1048		early_memunmap(data, len);
   1049	}
   1050
   1051	e820__update_table(e820_table);
   1052	e820__update_table(e820_table_kexec);
   1053
   1054	pr_info("extended physical RAM map:\n");
   1055	e820__print_table("reserve setup_data");
   1056}
   1057
   1058/*
   1059 * Called after parse_early_param(), after early parameters (such as mem=)
   1060 * have been processed, in which case we already have an E820 table filled in
   1061 * via the parameter callback function(s), but it's not sorted and printed yet:
   1062 */
   1063void __init e820__finish_early_params(void)
   1064{
   1065	if (userdef) {
   1066		if (e820__update_table(e820_table) < 0)
   1067			early_panic("Invalid user supplied memory map");
   1068
   1069		pr_info("user-defined physical RAM map:\n");
   1070		e820__print_table("user");
   1071	}
   1072}
   1073
   1074static const char *__init e820_type_to_string(struct e820_entry *entry)
   1075{
   1076	switch (entry->type) {
   1077	case E820_TYPE_RESERVED_KERN:	/* Fall-through: */
   1078	case E820_TYPE_RAM:		return "System RAM";
   1079	case E820_TYPE_ACPI:		return "ACPI Tables";
   1080	case E820_TYPE_NVS:		return "ACPI Non-volatile Storage";
   1081	case E820_TYPE_UNUSABLE:	return "Unusable memory";
   1082	case E820_TYPE_PRAM:		return "Persistent Memory (legacy)";
   1083	case E820_TYPE_PMEM:		return "Persistent Memory";
   1084	case E820_TYPE_RESERVED:	return "Reserved";
   1085	case E820_TYPE_SOFT_RESERVED:	return "Soft Reserved";
   1086	default:			return "Unknown E820 type";
   1087	}
   1088}
   1089
   1090static unsigned long __init e820_type_to_iomem_type(struct e820_entry *entry)
   1091{
   1092	switch (entry->type) {
   1093	case E820_TYPE_RESERVED_KERN:	/* Fall-through: */
   1094	case E820_TYPE_RAM:		return IORESOURCE_SYSTEM_RAM;
   1095	case E820_TYPE_ACPI:		/* Fall-through: */
   1096	case E820_TYPE_NVS:		/* Fall-through: */
   1097	case E820_TYPE_UNUSABLE:	/* Fall-through: */
   1098	case E820_TYPE_PRAM:		/* Fall-through: */
   1099	case E820_TYPE_PMEM:		/* Fall-through: */
   1100	case E820_TYPE_RESERVED:	/* Fall-through: */
   1101	case E820_TYPE_SOFT_RESERVED:	/* Fall-through: */
   1102	default:			return IORESOURCE_MEM;
   1103	}
   1104}
   1105
   1106static unsigned long __init e820_type_to_iores_desc(struct e820_entry *entry)
   1107{
   1108	switch (entry->type) {
   1109	case E820_TYPE_ACPI:		return IORES_DESC_ACPI_TABLES;
   1110	case E820_TYPE_NVS:		return IORES_DESC_ACPI_NV_STORAGE;
   1111	case E820_TYPE_PMEM:		return IORES_DESC_PERSISTENT_MEMORY;
   1112	case E820_TYPE_PRAM:		return IORES_DESC_PERSISTENT_MEMORY_LEGACY;
   1113	case E820_TYPE_RESERVED:	return IORES_DESC_RESERVED;
   1114	case E820_TYPE_SOFT_RESERVED:	return IORES_DESC_SOFT_RESERVED;
   1115	case E820_TYPE_RESERVED_KERN:	/* Fall-through: */
   1116	case E820_TYPE_RAM:		/* Fall-through: */
   1117	case E820_TYPE_UNUSABLE:	/* Fall-through: */
   1118	default:			return IORES_DESC_NONE;
   1119	}
   1120}
   1121
   1122static bool __init do_mark_busy(enum e820_type type, struct resource *res)
   1123{
   1124	/* this is the legacy bios/dos rom-shadow + mmio region */
   1125	if (res->start < (1ULL<<20))
   1126		return true;
   1127
   1128	/*
   1129	 * Treat persistent memory and other special memory ranges like
   1130	 * device memory, i.e. reserve it for exclusive use of a driver
   1131	 */
   1132	switch (type) {
   1133	case E820_TYPE_RESERVED:
   1134	case E820_TYPE_SOFT_RESERVED:
   1135	case E820_TYPE_PRAM:
   1136	case E820_TYPE_PMEM:
   1137		return false;
   1138	case E820_TYPE_RESERVED_KERN:
   1139	case E820_TYPE_RAM:
   1140	case E820_TYPE_ACPI:
   1141	case E820_TYPE_NVS:
   1142	case E820_TYPE_UNUSABLE:
   1143	default:
   1144		return true;
   1145	}
   1146}
   1147
   1148/*
   1149 * Mark E820 reserved areas as busy for the resource manager:
   1150 */
   1151
   1152static struct resource __initdata *e820_res;
   1153
   1154void __init e820__reserve_resources(void)
   1155{
   1156	int i;
   1157	struct resource *res;
   1158	u64 end;
   1159
   1160	res = memblock_alloc(sizeof(*res) * e820_table->nr_entries,
   1161			     SMP_CACHE_BYTES);
   1162	if (!res)
   1163		panic("%s: Failed to allocate %zu bytes\n", __func__,
   1164		      sizeof(*res) * e820_table->nr_entries);
   1165	e820_res = res;
   1166
   1167	for (i = 0; i < e820_table->nr_entries; i++) {
   1168		struct e820_entry *entry = e820_table->entries + i;
   1169
   1170		end = entry->addr + entry->size - 1;
   1171		if (end != (resource_size_t)end) {
   1172			res++;
   1173			continue;
   1174		}
   1175		res->start = entry->addr;
   1176		res->end   = end;
   1177		res->name  = e820_type_to_string(entry);
   1178		res->flags = e820_type_to_iomem_type(entry);
   1179		res->desc  = e820_type_to_iores_desc(entry);
   1180
   1181		/*
   1182		 * Don't register the region that could be conflicted with
   1183		 * PCI device BAR resources and insert them later in
   1184		 * pcibios_resource_survey():
   1185		 */
   1186		if (do_mark_busy(entry->type, res)) {
   1187			res->flags |= IORESOURCE_BUSY;
   1188			insert_resource(&iomem_resource, res);
   1189		}
   1190		res++;
   1191	}
   1192
   1193	/* Expose the bootloader-provided memory layout to the sysfs. */
   1194	for (i = 0; i < e820_table_firmware->nr_entries; i++) {
   1195		struct e820_entry *entry = e820_table_firmware->entries + i;
   1196
   1197		firmware_map_add_early(entry->addr, entry->addr + entry->size, e820_type_to_string(entry));
   1198	}
   1199}
   1200
   1201/*
   1202 * How much should we pad the end of RAM, depending on where it is?
   1203 */
   1204static unsigned long __init ram_alignment(resource_size_t pos)
   1205{
   1206	unsigned long mb = pos >> 20;
   1207
   1208	/* To 64kB in the first megabyte */
   1209	if (!mb)
   1210		return 64*1024;
   1211
   1212	/* To 1MB in the first 16MB */
   1213	if (mb < 16)
   1214		return 1024*1024;
   1215
   1216	/* To 64MB for anything above that */
   1217	return 64*1024*1024;
   1218}
   1219
   1220#define MAX_RESOURCE_SIZE ((resource_size_t)-1)
   1221
   1222void __init e820__reserve_resources_late(void)
   1223{
   1224	int i;
   1225	struct resource *res;
   1226
   1227	res = e820_res;
   1228	for (i = 0; i < e820_table->nr_entries; i++) {
   1229		if (!res->parent && res->end)
   1230			insert_resource_expand_to_fit(&iomem_resource, res);
   1231		res++;
   1232	}
   1233
   1234	/*
   1235	 * Try to bump up RAM regions to reasonable boundaries, to
   1236	 * avoid stolen RAM:
   1237	 */
   1238	for (i = 0; i < e820_table->nr_entries; i++) {
   1239		struct e820_entry *entry = &e820_table->entries[i];
   1240		u64 start, end;
   1241
   1242		if (entry->type != E820_TYPE_RAM)
   1243			continue;
   1244
   1245		start = entry->addr + entry->size;
   1246		end = round_up(start, ram_alignment(start)) - 1;
   1247		if (end > MAX_RESOURCE_SIZE)
   1248			end = MAX_RESOURCE_SIZE;
   1249		if (start >= end)
   1250			continue;
   1251
   1252		printk(KERN_DEBUG "e820: reserve RAM buffer [mem %#010llx-%#010llx]\n", start, end);
   1253		reserve_region_with_split(&iomem_resource, start, end, "RAM buffer");
   1254	}
   1255}
   1256
   1257/*
   1258 * Pass the firmware (bootloader) E820 map to the kernel and process it:
   1259 */
   1260char *__init e820__memory_setup_default(void)
   1261{
   1262	char *who = "BIOS-e820";
   1263
   1264	/*
   1265	 * Try to copy the BIOS-supplied E820-map.
   1266	 *
   1267	 * Otherwise fake a memory map; one section from 0k->640k,
   1268	 * the next section from 1mb->appropriate_mem_k
   1269	 */
   1270	if (append_e820_table(boot_params.e820_table, boot_params.e820_entries) < 0) {
   1271		u64 mem_size;
   1272
   1273		/* Compare results from other methods and take the one that gives more RAM: */
   1274		if (boot_params.alt_mem_k < boot_params.screen_info.ext_mem_k) {
   1275			mem_size = boot_params.screen_info.ext_mem_k;
   1276			who = "BIOS-88";
   1277		} else {
   1278			mem_size = boot_params.alt_mem_k;
   1279			who = "BIOS-e801";
   1280		}
   1281
   1282		e820_table->nr_entries = 0;
   1283		e820__range_add(0, LOWMEMSIZE(), E820_TYPE_RAM);
   1284		e820__range_add(HIGH_MEMORY, mem_size << 10, E820_TYPE_RAM);
   1285	}
   1286
   1287	/* We just appended a lot of ranges, sanitize the table: */
   1288	e820__update_table(e820_table);
   1289
   1290	return who;
   1291}
   1292
   1293/*
   1294 * Calls e820__memory_setup_default() in essence to pick up the firmware/bootloader
   1295 * E820 map - with an optional platform quirk available for virtual platforms
   1296 * to override this method of boot environment processing:
   1297 */
   1298void __init e820__memory_setup(void)
   1299{
   1300	char *who;
   1301
   1302	/* This is a firmware interface ABI - make sure we don't break it: */
   1303	BUILD_BUG_ON(sizeof(struct boot_e820_entry) != 20);
   1304
   1305	who = x86_init.resources.memory_setup();
   1306
   1307	memcpy(e820_table_kexec, e820_table, sizeof(*e820_table_kexec));
   1308	memcpy(e820_table_firmware, e820_table, sizeof(*e820_table_firmware));
   1309
   1310	pr_info("BIOS-provided physical RAM map:\n");
   1311	e820__print_table(who);
   1312}
   1313
   1314void __init e820__memblock_setup(void)
   1315{
   1316	int i;
   1317	u64 end;
   1318
   1319	/*
   1320	 * The bootstrap memblock region count maximum is 128 entries
   1321	 * (INIT_MEMBLOCK_REGIONS), but EFI might pass us more E820 entries
   1322	 * than that - so allow memblock resizing.
   1323	 *
   1324	 * This is safe, because this call happens pretty late during x86 setup,
   1325	 * so we know about reserved memory regions already. (This is important
   1326	 * so that memblock resizing does no stomp over reserved areas.)
   1327	 */
   1328	memblock_allow_resize();
   1329
   1330	for (i = 0; i < e820_table->nr_entries; i++) {
   1331		struct e820_entry *entry = &e820_table->entries[i];
   1332
   1333		end = entry->addr + entry->size;
   1334		if (end != (resource_size_t)end)
   1335			continue;
   1336
   1337		if (entry->type == E820_TYPE_SOFT_RESERVED)
   1338			memblock_reserve(entry->addr, entry->size);
   1339
   1340		if (entry->type != E820_TYPE_RAM && entry->type != E820_TYPE_RESERVED_KERN)
   1341			continue;
   1342
   1343		memblock_add(entry->addr, entry->size);
   1344	}
   1345
   1346	/* Throw away partial pages: */
   1347	memblock_trim_memory(PAGE_SIZE);
   1348
   1349	memblock_dump_all();
   1350}