e820.c (37913B)
1// SPDX-License-Identifier: GPL-2.0-only 2/* 3 * Low level x86 E820 memory map handling functions. 4 * 5 * The firmware and bootloader passes us the "E820 table", which is the primary 6 * physical memory layout description available about x86 systems. 7 * 8 * The kernel takes the E820 memory layout and optionally modifies it with 9 * quirks and other tweaks, and feeds that into the generic Linux memory 10 * allocation code routines via a platform independent interface (memblock, etc.). 11 */ 12#include <linux/crash_dump.h> 13#include <linux/memblock.h> 14#include <linux/suspend.h> 15#include <linux/acpi.h> 16#include <linux/firmware-map.h> 17#include <linux/sort.h> 18#include <linux/memory_hotplug.h> 19 20#include <asm/e820/api.h> 21#include <asm/setup.h> 22 23/* 24 * We organize the E820 table into three main data structures: 25 * 26 * - 'e820_table_firmware': the original firmware version passed to us by the 27 * bootloader - not modified by the kernel. It is composed of two parts: 28 * the first 128 E820 memory entries in boot_params.e820_table and the remaining 29 * (if any) entries of the SETUP_E820_EXT nodes. We use this to: 30 * 31 * - inform the user about the firmware's notion of memory layout 32 * via /sys/firmware/memmap 33 * 34 * - the hibernation code uses it to generate a kernel-independent CRC32 35 * checksum of the physical memory layout of a system. 36 * 37 * - 'e820_table_kexec': a slightly modified (by the kernel) firmware version 38 * passed to us by the bootloader - the major difference between 39 * e820_table_firmware[] and this one is that, the latter marks the setup_data 40 * list created by the EFI boot stub as reserved, so that kexec can reuse the 41 * setup_data information in the second kernel. Besides, e820_table_kexec[] 42 * might also be modified by the kexec itself to fake a mptable. 43 * We use this to: 44 * 45 * - kexec, which is a bootloader in disguise, uses the original E820 46 * layout to pass to the kexec-ed kernel. This way the original kernel 47 * can have a restricted E820 map while the kexec()-ed kexec-kernel 48 * can have access to full memory - etc. 49 * 50 * - 'e820_table': this is the main E820 table that is massaged by the 51 * low level x86 platform code, or modified by boot parameters, before 52 * passed on to higher level MM layers. 53 * 54 * Once the E820 map has been converted to the standard Linux memory layout 55 * information its role stops - modifying it has no effect and does not get 56 * re-propagated. So itsmain role is a temporary bootstrap storage of firmware 57 * specific memory layout data during early bootup. 58 */ 59static struct e820_table e820_table_init __initdata; 60static struct e820_table e820_table_kexec_init __initdata; 61static struct e820_table e820_table_firmware_init __initdata; 62 63struct e820_table *e820_table __refdata = &e820_table_init; 64struct e820_table *e820_table_kexec __refdata = &e820_table_kexec_init; 65struct e820_table *e820_table_firmware __refdata = &e820_table_firmware_init; 66 67/* For PCI or other memory-mapped resources */ 68unsigned long pci_mem_start = 0xaeedbabe; 69#ifdef CONFIG_PCI 70EXPORT_SYMBOL(pci_mem_start); 71#endif 72 73/* 74 * This function checks if any part of the range <start,end> is mapped 75 * with type. 76 */ 77static bool _e820__mapped_any(struct e820_table *table, 78 u64 start, u64 end, enum e820_type type) 79{ 80 int i; 81 82 for (i = 0; i < table->nr_entries; i++) { 83 struct e820_entry *entry = &table->entries[i]; 84 85 if (type && entry->type != type) 86 continue; 87 if (entry->addr >= end || entry->addr + entry->size <= start) 88 continue; 89 return true; 90 } 91 return false; 92} 93 94bool e820__mapped_raw_any(u64 start, u64 end, enum e820_type type) 95{ 96 return _e820__mapped_any(e820_table_firmware, start, end, type); 97} 98EXPORT_SYMBOL_GPL(e820__mapped_raw_any); 99 100bool e820__mapped_any(u64 start, u64 end, enum e820_type type) 101{ 102 return _e820__mapped_any(e820_table, start, end, type); 103} 104EXPORT_SYMBOL_GPL(e820__mapped_any); 105 106/* 107 * This function checks if the entire <start,end> range is mapped with 'type'. 108 * 109 * Note: this function only works correctly once the E820 table is sorted and 110 * not-overlapping (at least for the range specified), which is the case normally. 111 */ 112static struct e820_entry *__e820__mapped_all(u64 start, u64 end, 113 enum e820_type type) 114{ 115 int i; 116 117 for (i = 0; i < e820_table->nr_entries; i++) { 118 struct e820_entry *entry = &e820_table->entries[i]; 119 120 if (type && entry->type != type) 121 continue; 122 123 /* Is the region (part) in overlap with the current region? */ 124 if (entry->addr >= end || entry->addr + entry->size <= start) 125 continue; 126 127 /* 128 * If the region is at the beginning of <start,end> we move 129 * 'start' to the end of the region since it's ok until there 130 */ 131 if (entry->addr <= start) 132 start = entry->addr + entry->size; 133 134 /* 135 * If 'start' is now at or beyond 'end', we're done, full 136 * coverage of the desired range exists: 137 */ 138 if (start >= end) 139 return entry; 140 } 141 142 return NULL; 143} 144 145/* 146 * This function checks if the entire range <start,end> is mapped with type. 147 */ 148bool __init e820__mapped_all(u64 start, u64 end, enum e820_type type) 149{ 150 return __e820__mapped_all(start, end, type); 151} 152 153/* 154 * This function returns the type associated with the range <start,end>. 155 */ 156int e820__get_entry_type(u64 start, u64 end) 157{ 158 struct e820_entry *entry = __e820__mapped_all(start, end, 0); 159 160 return entry ? entry->type : -EINVAL; 161} 162 163/* 164 * Add a memory region to the kernel E820 map. 165 */ 166static void __init __e820__range_add(struct e820_table *table, u64 start, u64 size, enum e820_type type) 167{ 168 int x = table->nr_entries; 169 170 if (x >= ARRAY_SIZE(table->entries)) { 171 pr_err("too many entries; ignoring [mem %#010llx-%#010llx]\n", 172 start, start + size - 1); 173 return; 174 } 175 176 table->entries[x].addr = start; 177 table->entries[x].size = size; 178 table->entries[x].type = type; 179 table->nr_entries++; 180} 181 182void __init e820__range_add(u64 start, u64 size, enum e820_type type) 183{ 184 __e820__range_add(e820_table, start, size, type); 185} 186 187static void __init e820_print_type(enum e820_type type) 188{ 189 switch (type) { 190 case E820_TYPE_RAM: /* Fall through: */ 191 case E820_TYPE_RESERVED_KERN: pr_cont("usable"); break; 192 case E820_TYPE_RESERVED: pr_cont("reserved"); break; 193 case E820_TYPE_SOFT_RESERVED: pr_cont("soft reserved"); break; 194 case E820_TYPE_ACPI: pr_cont("ACPI data"); break; 195 case E820_TYPE_NVS: pr_cont("ACPI NVS"); break; 196 case E820_TYPE_UNUSABLE: pr_cont("unusable"); break; 197 case E820_TYPE_PMEM: /* Fall through: */ 198 case E820_TYPE_PRAM: pr_cont("persistent (type %u)", type); break; 199 default: pr_cont("type %u", type); break; 200 } 201} 202 203void __init e820__print_table(char *who) 204{ 205 int i; 206 207 for (i = 0; i < e820_table->nr_entries; i++) { 208 pr_info("%s: [mem %#018Lx-%#018Lx] ", 209 who, 210 e820_table->entries[i].addr, 211 e820_table->entries[i].addr + e820_table->entries[i].size - 1); 212 213 e820_print_type(e820_table->entries[i].type); 214 pr_cont("\n"); 215 } 216} 217 218/* 219 * Sanitize an E820 map. 220 * 221 * Some E820 layouts include overlapping entries. The following 222 * replaces the original E820 map with a new one, removing overlaps, 223 * and resolving conflicting memory types in favor of highest 224 * numbered type. 225 * 226 * The input parameter 'entries' points to an array of 'struct 227 * e820_entry' which on entry has elements in the range [0, *nr_entries) 228 * valid, and which has space for up to max_nr_entries entries. 229 * On return, the resulting sanitized E820 map entries will be in 230 * overwritten in the same location, starting at 'entries'. 231 * 232 * The integer pointed to by nr_entries must be valid on entry (the 233 * current number of valid entries located at 'entries'). If the 234 * sanitizing succeeds the *nr_entries will be updated with the new 235 * number of valid entries (something no more than max_nr_entries). 236 * 237 * The return value from e820__update_table() is zero if it 238 * successfully 'sanitized' the map entries passed in, and is -1 239 * if it did nothing, which can happen if either of (1) it was 240 * only passed one map entry, or (2) any of the input map entries 241 * were invalid (start + size < start, meaning that the size was 242 * so big the described memory range wrapped around through zero.) 243 * 244 * Visually we're performing the following 245 * (1,2,3,4 = memory types)... 246 * 247 * Sample memory map (w/overlaps): 248 * ____22__________________ 249 * ______________________4_ 250 * ____1111________________ 251 * _44_____________________ 252 * 11111111________________ 253 * ____________________33__ 254 * ___________44___________ 255 * __________33333_________ 256 * ______________22________ 257 * ___________________2222_ 258 * _________111111111______ 259 * _____________________11_ 260 * _________________4______ 261 * 262 * Sanitized equivalent (no overlap): 263 * 1_______________________ 264 * _44_____________________ 265 * ___1____________________ 266 * ____22__________________ 267 * ______11________________ 268 * _________1______________ 269 * __________3_____________ 270 * ___________44___________ 271 * _____________33_________ 272 * _______________2________ 273 * ________________1_______ 274 * _________________4______ 275 * ___________________2____ 276 * ____________________33__ 277 * ______________________4_ 278 */ 279struct change_member { 280 /* Pointer to the original entry: */ 281 struct e820_entry *entry; 282 /* Address for this change point: */ 283 unsigned long long addr; 284}; 285 286static struct change_member change_point_list[2*E820_MAX_ENTRIES] __initdata; 287static struct change_member *change_point[2*E820_MAX_ENTRIES] __initdata; 288static struct e820_entry *overlap_list[E820_MAX_ENTRIES] __initdata; 289static struct e820_entry new_entries[E820_MAX_ENTRIES] __initdata; 290 291static int __init cpcompare(const void *a, const void *b) 292{ 293 struct change_member * const *app = a, * const *bpp = b; 294 const struct change_member *ap = *app, *bp = *bpp; 295 296 /* 297 * Inputs are pointers to two elements of change_point[]. If their 298 * addresses are not equal, their difference dominates. If the addresses 299 * are equal, then consider one that represents the end of its region 300 * to be greater than one that does not. 301 */ 302 if (ap->addr != bp->addr) 303 return ap->addr > bp->addr ? 1 : -1; 304 305 return (ap->addr != ap->entry->addr) - (bp->addr != bp->entry->addr); 306} 307 308static bool e820_nomerge(enum e820_type type) 309{ 310 /* 311 * These types may indicate distinct platform ranges aligned to 312 * numa node, protection domain, performance domain, or other 313 * boundaries. Do not merge them. 314 */ 315 if (type == E820_TYPE_PRAM) 316 return true; 317 if (type == E820_TYPE_SOFT_RESERVED) 318 return true; 319 return false; 320} 321 322int __init e820__update_table(struct e820_table *table) 323{ 324 struct e820_entry *entries = table->entries; 325 u32 max_nr_entries = ARRAY_SIZE(table->entries); 326 enum e820_type current_type, last_type; 327 unsigned long long last_addr; 328 u32 new_nr_entries, overlap_entries; 329 u32 i, chg_idx, chg_nr; 330 331 /* If there's only one memory region, don't bother: */ 332 if (table->nr_entries < 2) 333 return -1; 334 335 BUG_ON(table->nr_entries > max_nr_entries); 336 337 /* Bail out if we find any unreasonable addresses in the map: */ 338 for (i = 0; i < table->nr_entries; i++) { 339 if (entries[i].addr + entries[i].size < entries[i].addr) 340 return -1; 341 } 342 343 /* Create pointers for initial change-point information (for sorting): */ 344 for (i = 0; i < 2 * table->nr_entries; i++) 345 change_point[i] = &change_point_list[i]; 346 347 /* 348 * Record all known change-points (starting and ending addresses), 349 * omitting empty memory regions: 350 */ 351 chg_idx = 0; 352 for (i = 0; i < table->nr_entries; i++) { 353 if (entries[i].size != 0) { 354 change_point[chg_idx]->addr = entries[i].addr; 355 change_point[chg_idx++]->entry = &entries[i]; 356 change_point[chg_idx]->addr = entries[i].addr + entries[i].size; 357 change_point[chg_idx++]->entry = &entries[i]; 358 } 359 } 360 chg_nr = chg_idx; 361 362 /* Sort change-point list by memory addresses (low -> high): */ 363 sort(change_point, chg_nr, sizeof(*change_point), cpcompare, NULL); 364 365 /* Create a new memory map, removing overlaps: */ 366 overlap_entries = 0; /* Number of entries in the overlap table */ 367 new_nr_entries = 0; /* Index for creating new map entries */ 368 last_type = 0; /* Start with undefined memory type */ 369 last_addr = 0; /* Start with 0 as last starting address */ 370 371 /* Loop through change-points, determining effect on the new map: */ 372 for (chg_idx = 0; chg_idx < chg_nr; chg_idx++) { 373 /* Keep track of all overlapping entries */ 374 if (change_point[chg_idx]->addr == change_point[chg_idx]->entry->addr) { 375 /* Add map entry to overlap list (> 1 entry implies an overlap) */ 376 overlap_list[overlap_entries++] = change_point[chg_idx]->entry; 377 } else { 378 /* Remove entry from list (order independent, so swap with last): */ 379 for (i = 0; i < overlap_entries; i++) { 380 if (overlap_list[i] == change_point[chg_idx]->entry) 381 overlap_list[i] = overlap_list[overlap_entries-1]; 382 } 383 overlap_entries--; 384 } 385 /* 386 * If there are overlapping entries, decide which 387 * "type" to use (larger value takes precedence -- 388 * 1=usable, 2,3,4,4+=unusable) 389 */ 390 current_type = 0; 391 for (i = 0; i < overlap_entries; i++) { 392 if (overlap_list[i]->type > current_type) 393 current_type = overlap_list[i]->type; 394 } 395 396 /* Continue building up new map based on this information: */ 397 if (current_type != last_type || e820_nomerge(current_type)) { 398 if (last_type != 0) { 399 new_entries[new_nr_entries].size = change_point[chg_idx]->addr - last_addr; 400 /* Move forward only if the new size was non-zero: */ 401 if (new_entries[new_nr_entries].size != 0) 402 /* No more space left for new entries? */ 403 if (++new_nr_entries >= max_nr_entries) 404 break; 405 } 406 if (current_type != 0) { 407 new_entries[new_nr_entries].addr = change_point[chg_idx]->addr; 408 new_entries[new_nr_entries].type = current_type; 409 last_addr = change_point[chg_idx]->addr; 410 } 411 last_type = current_type; 412 } 413 } 414 415 /* Copy the new entries into the original location: */ 416 memcpy(entries, new_entries, new_nr_entries*sizeof(*entries)); 417 table->nr_entries = new_nr_entries; 418 419 return 0; 420} 421 422static int __init __append_e820_table(struct boot_e820_entry *entries, u32 nr_entries) 423{ 424 struct boot_e820_entry *entry = entries; 425 426 while (nr_entries) { 427 u64 start = entry->addr; 428 u64 size = entry->size; 429 u64 end = start + size - 1; 430 u32 type = entry->type; 431 432 /* Ignore the entry on 64-bit overflow: */ 433 if (start > end && likely(size)) 434 return -1; 435 436 e820__range_add(start, size, type); 437 438 entry++; 439 nr_entries--; 440 } 441 return 0; 442} 443 444/* 445 * Copy the BIOS E820 map into a safe place. 446 * 447 * Sanity-check it while we're at it.. 448 * 449 * If we're lucky and live on a modern system, the setup code 450 * will have given us a memory map that we can use to properly 451 * set up memory. If we aren't, we'll fake a memory map. 452 */ 453static int __init append_e820_table(struct boot_e820_entry *entries, u32 nr_entries) 454{ 455 /* Only one memory region (or negative)? Ignore it */ 456 if (nr_entries < 2) 457 return -1; 458 459 return __append_e820_table(entries, nr_entries); 460} 461 462static u64 __init 463__e820__range_update(struct e820_table *table, u64 start, u64 size, enum e820_type old_type, enum e820_type new_type) 464{ 465 u64 end; 466 unsigned int i; 467 u64 real_updated_size = 0; 468 469 BUG_ON(old_type == new_type); 470 471 if (size > (ULLONG_MAX - start)) 472 size = ULLONG_MAX - start; 473 474 end = start + size; 475 printk(KERN_DEBUG "e820: update [mem %#010Lx-%#010Lx] ", start, end - 1); 476 e820_print_type(old_type); 477 pr_cont(" ==> "); 478 e820_print_type(new_type); 479 pr_cont("\n"); 480 481 for (i = 0; i < table->nr_entries; i++) { 482 struct e820_entry *entry = &table->entries[i]; 483 u64 final_start, final_end; 484 u64 entry_end; 485 486 if (entry->type != old_type) 487 continue; 488 489 entry_end = entry->addr + entry->size; 490 491 /* Completely covered by new range? */ 492 if (entry->addr >= start && entry_end <= end) { 493 entry->type = new_type; 494 real_updated_size += entry->size; 495 continue; 496 } 497 498 /* New range is completely covered? */ 499 if (entry->addr < start && entry_end > end) { 500 __e820__range_add(table, start, size, new_type); 501 __e820__range_add(table, end, entry_end - end, entry->type); 502 entry->size = start - entry->addr; 503 real_updated_size += size; 504 continue; 505 } 506 507 /* Partially covered: */ 508 final_start = max(start, entry->addr); 509 final_end = min(end, entry_end); 510 if (final_start >= final_end) 511 continue; 512 513 __e820__range_add(table, final_start, final_end - final_start, new_type); 514 515 real_updated_size += final_end - final_start; 516 517 /* 518 * Left range could be head or tail, so need to update 519 * its size first: 520 */ 521 entry->size -= final_end - final_start; 522 if (entry->addr < final_start) 523 continue; 524 525 entry->addr = final_end; 526 } 527 return real_updated_size; 528} 529 530u64 __init e820__range_update(u64 start, u64 size, enum e820_type old_type, enum e820_type new_type) 531{ 532 return __e820__range_update(e820_table, start, size, old_type, new_type); 533} 534 535static u64 __init e820__range_update_kexec(u64 start, u64 size, enum e820_type old_type, enum e820_type new_type) 536{ 537 return __e820__range_update(e820_table_kexec, start, size, old_type, new_type); 538} 539 540/* Remove a range of memory from the E820 table: */ 541u64 __init e820__range_remove(u64 start, u64 size, enum e820_type old_type, bool check_type) 542{ 543 int i; 544 u64 end; 545 u64 real_removed_size = 0; 546 547 if (size > (ULLONG_MAX - start)) 548 size = ULLONG_MAX - start; 549 550 end = start + size; 551 printk(KERN_DEBUG "e820: remove [mem %#010Lx-%#010Lx] ", start, end - 1); 552 if (check_type) 553 e820_print_type(old_type); 554 pr_cont("\n"); 555 556 for (i = 0; i < e820_table->nr_entries; i++) { 557 struct e820_entry *entry = &e820_table->entries[i]; 558 u64 final_start, final_end; 559 u64 entry_end; 560 561 if (check_type && entry->type != old_type) 562 continue; 563 564 entry_end = entry->addr + entry->size; 565 566 /* Completely covered? */ 567 if (entry->addr >= start && entry_end <= end) { 568 real_removed_size += entry->size; 569 memset(entry, 0, sizeof(*entry)); 570 continue; 571 } 572 573 /* Is the new range completely covered? */ 574 if (entry->addr < start && entry_end > end) { 575 e820__range_add(end, entry_end - end, entry->type); 576 entry->size = start - entry->addr; 577 real_removed_size += size; 578 continue; 579 } 580 581 /* Partially covered: */ 582 final_start = max(start, entry->addr); 583 final_end = min(end, entry_end); 584 if (final_start >= final_end) 585 continue; 586 587 real_removed_size += final_end - final_start; 588 589 /* 590 * Left range could be head or tail, so need to update 591 * the size first: 592 */ 593 entry->size -= final_end - final_start; 594 if (entry->addr < final_start) 595 continue; 596 597 entry->addr = final_end; 598 } 599 return real_removed_size; 600} 601 602void __init e820__update_table_print(void) 603{ 604 if (e820__update_table(e820_table)) 605 return; 606 607 pr_info("modified physical RAM map:\n"); 608 e820__print_table("modified"); 609} 610 611static void __init e820__update_table_kexec(void) 612{ 613 e820__update_table(e820_table_kexec); 614} 615 616#define MAX_GAP_END 0x100000000ull 617 618/* 619 * Search for a gap in the E820 memory space from 0 to MAX_GAP_END (4GB). 620 */ 621static int __init e820_search_gap(unsigned long *gapstart, unsigned long *gapsize) 622{ 623 unsigned long long last = MAX_GAP_END; 624 int i = e820_table->nr_entries; 625 int found = 0; 626 627 while (--i >= 0) { 628 unsigned long long start = e820_table->entries[i].addr; 629 unsigned long long end = start + e820_table->entries[i].size; 630 631 /* 632 * Since "last" is at most 4GB, we know we'll 633 * fit in 32 bits if this condition is true: 634 */ 635 if (last > end) { 636 unsigned long gap = last - end; 637 638 if (gap >= *gapsize) { 639 *gapsize = gap; 640 *gapstart = end; 641 found = 1; 642 } 643 } 644 if (start < last) 645 last = start; 646 } 647 return found; 648} 649 650/* 651 * Search for the biggest gap in the low 32 bits of the E820 652 * memory space. We pass this space to the PCI subsystem, so 653 * that it can assign MMIO resources for hotplug or 654 * unconfigured devices in. 655 * 656 * Hopefully the BIOS let enough space left. 657 */ 658__init void e820__setup_pci_gap(void) 659{ 660 unsigned long gapstart, gapsize; 661 int found; 662 663 gapsize = 0x400000; 664 found = e820_search_gap(&gapstart, &gapsize); 665 666 if (!found) { 667#ifdef CONFIG_X86_64 668 gapstart = (max_pfn << PAGE_SHIFT) + 1024*1024; 669 pr_err("Cannot find an available gap in the 32-bit address range\n"); 670 pr_err("PCI devices with unassigned 32-bit BARs may not work!\n"); 671#else 672 gapstart = 0x10000000; 673#endif 674 } 675 676 /* 677 * e820__reserve_resources_late() protects stolen RAM already: 678 */ 679 pci_mem_start = gapstart; 680 681 pr_info("[mem %#010lx-%#010lx] available for PCI devices\n", 682 gapstart, gapstart + gapsize - 1); 683} 684 685/* 686 * Called late during init, in free_initmem(). 687 * 688 * Initial e820_table and e820_table_kexec are largish __initdata arrays. 689 * 690 * Copy them to a (usually much smaller) dynamically allocated area that is 691 * sized precisely after the number of e820 entries. 692 * 693 * This is done after we've performed all the fixes and tweaks to the tables. 694 * All functions which modify them are __init functions, which won't exist 695 * after free_initmem(). 696 */ 697__init void e820__reallocate_tables(void) 698{ 699 struct e820_table *n; 700 int size; 701 702 size = offsetof(struct e820_table, entries) + sizeof(struct e820_entry)*e820_table->nr_entries; 703 n = kmemdup(e820_table, size, GFP_KERNEL); 704 BUG_ON(!n); 705 e820_table = n; 706 707 size = offsetof(struct e820_table, entries) + sizeof(struct e820_entry)*e820_table_kexec->nr_entries; 708 n = kmemdup(e820_table_kexec, size, GFP_KERNEL); 709 BUG_ON(!n); 710 e820_table_kexec = n; 711 712 size = offsetof(struct e820_table, entries) + sizeof(struct e820_entry)*e820_table_firmware->nr_entries; 713 n = kmemdup(e820_table_firmware, size, GFP_KERNEL); 714 BUG_ON(!n); 715 e820_table_firmware = n; 716} 717 718/* 719 * Because of the small fixed size of struct boot_params, only the first 720 * 128 E820 memory entries are passed to the kernel via boot_params.e820_table, 721 * the remaining (if any) entries are passed via the SETUP_E820_EXT node of 722 * struct setup_data, which is parsed here. 723 */ 724void __init e820__memory_setup_extended(u64 phys_addr, u32 data_len) 725{ 726 int entries; 727 struct boot_e820_entry *extmap; 728 struct setup_data *sdata; 729 730 sdata = early_memremap(phys_addr, data_len); 731 entries = sdata->len / sizeof(*extmap); 732 extmap = (struct boot_e820_entry *)(sdata->data); 733 734 __append_e820_table(extmap, entries); 735 e820__update_table(e820_table); 736 737 memcpy(e820_table_kexec, e820_table, sizeof(*e820_table_kexec)); 738 memcpy(e820_table_firmware, e820_table, sizeof(*e820_table_firmware)); 739 740 early_memunmap(sdata, data_len); 741 pr_info("extended physical RAM map:\n"); 742 e820__print_table("extended"); 743} 744 745/* 746 * Find the ranges of physical addresses that do not correspond to 747 * E820 RAM areas and register the corresponding pages as 'nosave' for 748 * hibernation (32-bit) or software suspend and suspend to RAM (64-bit). 749 * 750 * This function requires the E820 map to be sorted and without any 751 * overlapping entries. 752 */ 753void __init e820__register_nosave_regions(unsigned long limit_pfn) 754{ 755 int i; 756 unsigned long pfn = 0; 757 758 for (i = 0; i < e820_table->nr_entries; i++) { 759 struct e820_entry *entry = &e820_table->entries[i]; 760 761 if (pfn < PFN_UP(entry->addr)) 762 register_nosave_region(pfn, PFN_UP(entry->addr)); 763 764 pfn = PFN_DOWN(entry->addr + entry->size); 765 766 if (entry->type != E820_TYPE_RAM && entry->type != E820_TYPE_RESERVED_KERN) 767 register_nosave_region(PFN_UP(entry->addr), pfn); 768 769 if (pfn >= limit_pfn) 770 break; 771 } 772} 773 774#ifdef CONFIG_ACPI 775/* 776 * Register ACPI NVS memory regions, so that we can save/restore them during 777 * hibernation and the subsequent resume: 778 */ 779static int __init e820__register_nvs_regions(void) 780{ 781 int i; 782 783 for (i = 0; i < e820_table->nr_entries; i++) { 784 struct e820_entry *entry = &e820_table->entries[i]; 785 786 if (entry->type == E820_TYPE_NVS) 787 acpi_nvs_register(entry->addr, entry->size); 788 } 789 790 return 0; 791} 792core_initcall(e820__register_nvs_regions); 793#endif 794 795/* 796 * Allocate the requested number of bytes with the requested alignment 797 * and return (the physical address) to the caller. Also register this 798 * range in the 'kexec' E820 table as a reserved range. 799 * 800 * This allows kexec to fake a new mptable, as if it came from the real 801 * system. 802 */ 803u64 __init e820__memblock_alloc_reserved(u64 size, u64 align) 804{ 805 u64 addr; 806 807 addr = memblock_phys_alloc(size, align); 808 if (addr) { 809 e820__range_update_kexec(addr, size, E820_TYPE_RAM, E820_TYPE_RESERVED); 810 pr_info("update e820_table_kexec for e820__memblock_alloc_reserved()\n"); 811 e820__update_table_kexec(); 812 } 813 814 return addr; 815} 816 817#ifdef CONFIG_X86_32 818# ifdef CONFIG_X86_PAE 819# define MAX_ARCH_PFN (1ULL<<(36-PAGE_SHIFT)) 820# else 821# define MAX_ARCH_PFN (1ULL<<(32-PAGE_SHIFT)) 822# endif 823#else /* CONFIG_X86_32 */ 824# define MAX_ARCH_PFN MAXMEM>>PAGE_SHIFT 825#endif 826 827/* 828 * Find the highest page frame number we have available 829 */ 830static unsigned long __init e820_end_pfn(unsigned long limit_pfn, enum e820_type type) 831{ 832 int i; 833 unsigned long last_pfn = 0; 834 unsigned long max_arch_pfn = MAX_ARCH_PFN; 835 836 for (i = 0; i < e820_table->nr_entries; i++) { 837 struct e820_entry *entry = &e820_table->entries[i]; 838 unsigned long start_pfn; 839 unsigned long end_pfn; 840 841 if (entry->type != type) 842 continue; 843 844 start_pfn = entry->addr >> PAGE_SHIFT; 845 end_pfn = (entry->addr + entry->size) >> PAGE_SHIFT; 846 847 if (start_pfn >= limit_pfn) 848 continue; 849 if (end_pfn > limit_pfn) { 850 last_pfn = limit_pfn; 851 break; 852 } 853 if (end_pfn > last_pfn) 854 last_pfn = end_pfn; 855 } 856 857 if (last_pfn > max_arch_pfn) 858 last_pfn = max_arch_pfn; 859 860 pr_info("last_pfn = %#lx max_arch_pfn = %#lx\n", 861 last_pfn, max_arch_pfn); 862 return last_pfn; 863} 864 865unsigned long __init e820__end_of_ram_pfn(void) 866{ 867 return e820_end_pfn(MAX_ARCH_PFN, E820_TYPE_RAM); 868} 869 870unsigned long __init e820__end_of_low_ram_pfn(void) 871{ 872 return e820_end_pfn(1UL << (32 - PAGE_SHIFT), E820_TYPE_RAM); 873} 874 875static void __init early_panic(char *msg) 876{ 877 early_printk(msg); 878 panic(msg); 879} 880 881static int userdef __initdata; 882 883/* The "mem=nopentium" boot option disables 4MB page tables on 32-bit kernels: */ 884static int __init parse_memopt(char *p) 885{ 886 u64 mem_size; 887 888 if (!p) 889 return -EINVAL; 890 891 if (!strcmp(p, "nopentium")) { 892#ifdef CONFIG_X86_32 893 setup_clear_cpu_cap(X86_FEATURE_PSE); 894 return 0; 895#else 896 pr_warn("mem=nopentium ignored! (only supported on x86_32)\n"); 897 return -EINVAL; 898#endif 899 } 900 901 userdef = 1; 902 mem_size = memparse(p, &p); 903 904 /* Don't remove all memory when getting "mem={invalid}" parameter: */ 905 if (mem_size == 0) 906 return -EINVAL; 907 908 e820__range_remove(mem_size, ULLONG_MAX - mem_size, E820_TYPE_RAM, 1); 909 910#ifdef CONFIG_MEMORY_HOTPLUG 911 max_mem_size = mem_size; 912#endif 913 914 return 0; 915} 916early_param("mem", parse_memopt); 917 918static int __init parse_memmap_one(char *p) 919{ 920 char *oldp; 921 u64 start_at, mem_size; 922 923 if (!p) 924 return -EINVAL; 925 926 if (!strncmp(p, "exactmap", 8)) { 927 e820_table->nr_entries = 0; 928 userdef = 1; 929 return 0; 930 } 931 932 oldp = p; 933 mem_size = memparse(p, &p); 934 if (p == oldp) 935 return -EINVAL; 936 937 userdef = 1; 938 if (*p == '@') { 939 start_at = memparse(p+1, &p); 940 e820__range_add(start_at, mem_size, E820_TYPE_RAM); 941 } else if (*p == '#') { 942 start_at = memparse(p+1, &p); 943 e820__range_add(start_at, mem_size, E820_TYPE_ACPI); 944 } else if (*p == '$') { 945 start_at = memparse(p+1, &p); 946 e820__range_add(start_at, mem_size, E820_TYPE_RESERVED); 947 } else if (*p == '!') { 948 start_at = memparse(p+1, &p); 949 e820__range_add(start_at, mem_size, E820_TYPE_PRAM); 950 } else if (*p == '%') { 951 enum e820_type from = 0, to = 0; 952 953 start_at = memparse(p + 1, &p); 954 if (*p == '-') 955 from = simple_strtoull(p + 1, &p, 0); 956 if (*p == '+') 957 to = simple_strtoull(p + 1, &p, 0); 958 if (*p != '\0') 959 return -EINVAL; 960 if (from && to) 961 e820__range_update(start_at, mem_size, from, to); 962 else if (to) 963 e820__range_add(start_at, mem_size, to); 964 else if (from) 965 e820__range_remove(start_at, mem_size, from, 1); 966 else 967 e820__range_remove(start_at, mem_size, 0, 0); 968 } else { 969 e820__range_remove(mem_size, ULLONG_MAX - mem_size, E820_TYPE_RAM, 1); 970 } 971 972 return *p == '\0' ? 0 : -EINVAL; 973} 974 975static int __init parse_memmap_opt(char *str) 976{ 977 while (str) { 978 char *k = strchr(str, ','); 979 980 if (k) 981 *k++ = 0; 982 983 parse_memmap_one(str); 984 str = k; 985 } 986 987 return 0; 988} 989early_param("memmap", parse_memmap_opt); 990 991/* 992 * Reserve all entries from the bootloader's extensible data nodes list, 993 * because if present we are going to use it later on to fetch e820 994 * entries from it: 995 */ 996void __init e820__reserve_setup_data(void) 997{ 998 struct setup_indirect *indirect; 999 struct setup_data *data; 1000 u64 pa_data, pa_next; 1001 u32 len; 1002 1003 pa_data = boot_params.hdr.setup_data; 1004 if (!pa_data) 1005 return; 1006 1007 while (pa_data) { 1008 data = early_memremap(pa_data, sizeof(*data)); 1009 if (!data) { 1010 pr_warn("e820: failed to memremap setup_data entry\n"); 1011 return; 1012 } 1013 1014 len = sizeof(*data); 1015 pa_next = data->next; 1016 1017 e820__range_update(pa_data, sizeof(*data)+data->len, E820_TYPE_RAM, E820_TYPE_RESERVED_KERN); 1018 1019 /* 1020 * SETUP_EFI is supplied by kexec and does not need to be 1021 * reserved. 1022 */ 1023 if (data->type != SETUP_EFI) 1024 e820__range_update_kexec(pa_data, 1025 sizeof(*data) + data->len, 1026 E820_TYPE_RAM, E820_TYPE_RESERVED_KERN); 1027 1028 if (data->type == SETUP_INDIRECT) { 1029 len += data->len; 1030 early_memunmap(data, sizeof(*data)); 1031 data = early_memremap(pa_data, len); 1032 if (!data) { 1033 pr_warn("e820: failed to memremap indirect setup_data\n"); 1034 return; 1035 } 1036 1037 indirect = (struct setup_indirect *)data->data; 1038 1039 if (indirect->type != SETUP_INDIRECT) { 1040 e820__range_update(indirect->addr, indirect->len, 1041 E820_TYPE_RAM, E820_TYPE_RESERVED_KERN); 1042 e820__range_update_kexec(indirect->addr, indirect->len, 1043 E820_TYPE_RAM, E820_TYPE_RESERVED_KERN); 1044 } 1045 } 1046 1047 pa_data = pa_next; 1048 early_memunmap(data, len); 1049 } 1050 1051 e820__update_table(e820_table); 1052 e820__update_table(e820_table_kexec); 1053 1054 pr_info("extended physical RAM map:\n"); 1055 e820__print_table("reserve setup_data"); 1056} 1057 1058/* 1059 * Called after parse_early_param(), after early parameters (such as mem=) 1060 * have been processed, in which case we already have an E820 table filled in 1061 * via the parameter callback function(s), but it's not sorted and printed yet: 1062 */ 1063void __init e820__finish_early_params(void) 1064{ 1065 if (userdef) { 1066 if (e820__update_table(e820_table) < 0) 1067 early_panic("Invalid user supplied memory map"); 1068 1069 pr_info("user-defined physical RAM map:\n"); 1070 e820__print_table("user"); 1071 } 1072} 1073 1074static const char *__init e820_type_to_string(struct e820_entry *entry) 1075{ 1076 switch (entry->type) { 1077 case E820_TYPE_RESERVED_KERN: /* Fall-through: */ 1078 case E820_TYPE_RAM: return "System RAM"; 1079 case E820_TYPE_ACPI: return "ACPI Tables"; 1080 case E820_TYPE_NVS: return "ACPI Non-volatile Storage"; 1081 case E820_TYPE_UNUSABLE: return "Unusable memory"; 1082 case E820_TYPE_PRAM: return "Persistent Memory (legacy)"; 1083 case E820_TYPE_PMEM: return "Persistent Memory"; 1084 case E820_TYPE_RESERVED: return "Reserved"; 1085 case E820_TYPE_SOFT_RESERVED: return "Soft Reserved"; 1086 default: return "Unknown E820 type"; 1087 } 1088} 1089 1090static unsigned long __init e820_type_to_iomem_type(struct e820_entry *entry) 1091{ 1092 switch (entry->type) { 1093 case E820_TYPE_RESERVED_KERN: /* Fall-through: */ 1094 case E820_TYPE_RAM: return IORESOURCE_SYSTEM_RAM; 1095 case E820_TYPE_ACPI: /* Fall-through: */ 1096 case E820_TYPE_NVS: /* Fall-through: */ 1097 case E820_TYPE_UNUSABLE: /* Fall-through: */ 1098 case E820_TYPE_PRAM: /* Fall-through: */ 1099 case E820_TYPE_PMEM: /* Fall-through: */ 1100 case E820_TYPE_RESERVED: /* Fall-through: */ 1101 case E820_TYPE_SOFT_RESERVED: /* Fall-through: */ 1102 default: return IORESOURCE_MEM; 1103 } 1104} 1105 1106static unsigned long __init e820_type_to_iores_desc(struct e820_entry *entry) 1107{ 1108 switch (entry->type) { 1109 case E820_TYPE_ACPI: return IORES_DESC_ACPI_TABLES; 1110 case E820_TYPE_NVS: return IORES_DESC_ACPI_NV_STORAGE; 1111 case E820_TYPE_PMEM: return IORES_DESC_PERSISTENT_MEMORY; 1112 case E820_TYPE_PRAM: return IORES_DESC_PERSISTENT_MEMORY_LEGACY; 1113 case E820_TYPE_RESERVED: return IORES_DESC_RESERVED; 1114 case E820_TYPE_SOFT_RESERVED: return IORES_DESC_SOFT_RESERVED; 1115 case E820_TYPE_RESERVED_KERN: /* Fall-through: */ 1116 case E820_TYPE_RAM: /* Fall-through: */ 1117 case E820_TYPE_UNUSABLE: /* Fall-through: */ 1118 default: return IORES_DESC_NONE; 1119 } 1120} 1121 1122static bool __init do_mark_busy(enum e820_type type, struct resource *res) 1123{ 1124 /* this is the legacy bios/dos rom-shadow + mmio region */ 1125 if (res->start < (1ULL<<20)) 1126 return true; 1127 1128 /* 1129 * Treat persistent memory and other special memory ranges like 1130 * device memory, i.e. reserve it for exclusive use of a driver 1131 */ 1132 switch (type) { 1133 case E820_TYPE_RESERVED: 1134 case E820_TYPE_SOFT_RESERVED: 1135 case E820_TYPE_PRAM: 1136 case E820_TYPE_PMEM: 1137 return false; 1138 case E820_TYPE_RESERVED_KERN: 1139 case E820_TYPE_RAM: 1140 case E820_TYPE_ACPI: 1141 case E820_TYPE_NVS: 1142 case E820_TYPE_UNUSABLE: 1143 default: 1144 return true; 1145 } 1146} 1147 1148/* 1149 * Mark E820 reserved areas as busy for the resource manager: 1150 */ 1151 1152static struct resource __initdata *e820_res; 1153 1154void __init e820__reserve_resources(void) 1155{ 1156 int i; 1157 struct resource *res; 1158 u64 end; 1159 1160 res = memblock_alloc(sizeof(*res) * e820_table->nr_entries, 1161 SMP_CACHE_BYTES); 1162 if (!res) 1163 panic("%s: Failed to allocate %zu bytes\n", __func__, 1164 sizeof(*res) * e820_table->nr_entries); 1165 e820_res = res; 1166 1167 for (i = 0; i < e820_table->nr_entries; i++) { 1168 struct e820_entry *entry = e820_table->entries + i; 1169 1170 end = entry->addr + entry->size - 1; 1171 if (end != (resource_size_t)end) { 1172 res++; 1173 continue; 1174 } 1175 res->start = entry->addr; 1176 res->end = end; 1177 res->name = e820_type_to_string(entry); 1178 res->flags = e820_type_to_iomem_type(entry); 1179 res->desc = e820_type_to_iores_desc(entry); 1180 1181 /* 1182 * Don't register the region that could be conflicted with 1183 * PCI device BAR resources and insert them later in 1184 * pcibios_resource_survey(): 1185 */ 1186 if (do_mark_busy(entry->type, res)) { 1187 res->flags |= IORESOURCE_BUSY; 1188 insert_resource(&iomem_resource, res); 1189 } 1190 res++; 1191 } 1192 1193 /* Expose the bootloader-provided memory layout to the sysfs. */ 1194 for (i = 0; i < e820_table_firmware->nr_entries; i++) { 1195 struct e820_entry *entry = e820_table_firmware->entries + i; 1196 1197 firmware_map_add_early(entry->addr, entry->addr + entry->size, e820_type_to_string(entry)); 1198 } 1199} 1200 1201/* 1202 * How much should we pad the end of RAM, depending on where it is? 1203 */ 1204static unsigned long __init ram_alignment(resource_size_t pos) 1205{ 1206 unsigned long mb = pos >> 20; 1207 1208 /* To 64kB in the first megabyte */ 1209 if (!mb) 1210 return 64*1024; 1211 1212 /* To 1MB in the first 16MB */ 1213 if (mb < 16) 1214 return 1024*1024; 1215 1216 /* To 64MB for anything above that */ 1217 return 64*1024*1024; 1218} 1219 1220#define MAX_RESOURCE_SIZE ((resource_size_t)-1) 1221 1222void __init e820__reserve_resources_late(void) 1223{ 1224 int i; 1225 struct resource *res; 1226 1227 res = e820_res; 1228 for (i = 0; i < e820_table->nr_entries; i++) { 1229 if (!res->parent && res->end) 1230 insert_resource_expand_to_fit(&iomem_resource, res); 1231 res++; 1232 } 1233 1234 /* 1235 * Try to bump up RAM regions to reasonable boundaries, to 1236 * avoid stolen RAM: 1237 */ 1238 for (i = 0; i < e820_table->nr_entries; i++) { 1239 struct e820_entry *entry = &e820_table->entries[i]; 1240 u64 start, end; 1241 1242 if (entry->type != E820_TYPE_RAM) 1243 continue; 1244 1245 start = entry->addr + entry->size; 1246 end = round_up(start, ram_alignment(start)) - 1; 1247 if (end > MAX_RESOURCE_SIZE) 1248 end = MAX_RESOURCE_SIZE; 1249 if (start >= end) 1250 continue; 1251 1252 printk(KERN_DEBUG "e820: reserve RAM buffer [mem %#010llx-%#010llx]\n", start, end); 1253 reserve_region_with_split(&iomem_resource, start, end, "RAM buffer"); 1254 } 1255} 1256 1257/* 1258 * Pass the firmware (bootloader) E820 map to the kernel and process it: 1259 */ 1260char *__init e820__memory_setup_default(void) 1261{ 1262 char *who = "BIOS-e820"; 1263 1264 /* 1265 * Try to copy the BIOS-supplied E820-map. 1266 * 1267 * Otherwise fake a memory map; one section from 0k->640k, 1268 * the next section from 1mb->appropriate_mem_k 1269 */ 1270 if (append_e820_table(boot_params.e820_table, boot_params.e820_entries) < 0) { 1271 u64 mem_size; 1272 1273 /* Compare results from other methods and take the one that gives more RAM: */ 1274 if (boot_params.alt_mem_k < boot_params.screen_info.ext_mem_k) { 1275 mem_size = boot_params.screen_info.ext_mem_k; 1276 who = "BIOS-88"; 1277 } else { 1278 mem_size = boot_params.alt_mem_k; 1279 who = "BIOS-e801"; 1280 } 1281 1282 e820_table->nr_entries = 0; 1283 e820__range_add(0, LOWMEMSIZE(), E820_TYPE_RAM); 1284 e820__range_add(HIGH_MEMORY, mem_size << 10, E820_TYPE_RAM); 1285 } 1286 1287 /* We just appended a lot of ranges, sanitize the table: */ 1288 e820__update_table(e820_table); 1289 1290 return who; 1291} 1292 1293/* 1294 * Calls e820__memory_setup_default() in essence to pick up the firmware/bootloader 1295 * E820 map - with an optional platform quirk available for virtual platforms 1296 * to override this method of boot environment processing: 1297 */ 1298void __init e820__memory_setup(void) 1299{ 1300 char *who; 1301 1302 /* This is a firmware interface ABI - make sure we don't break it: */ 1303 BUILD_BUG_ON(sizeof(struct boot_e820_entry) != 20); 1304 1305 who = x86_init.resources.memory_setup(); 1306 1307 memcpy(e820_table_kexec, e820_table, sizeof(*e820_table_kexec)); 1308 memcpy(e820_table_firmware, e820_table, sizeof(*e820_table_firmware)); 1309 1310 pr_info("BIOS-provided physical RAM map:\n"); 1311 e820__print_table(who); 1312} 1313 1314void __init e820__memblock_setup(void) 1315{ 1316 int i; 1317 u64 end; 1318 1319 /* 1320 * The bootstrap memblock region count maximum is 128 entries 1321 * (INIT_MEMBLOCK_REGIONS), but EFI might pass us more E820 entries 1322 * than that - so allow memblock resizing. 1323 * 1324 * This is safe, because this call happens pretty late during x86 setup, 1325 * so we know about reserved memory regions already. (This is important 1326 * so that memblock resizing does no stomp over reserved areas.) 1327 */ 1328 memblock_allow_resize(); 1329 1330 for (i = 0; i < e820_table->nr_entries; i++) { 1331 struct e820_entry *entry = &e820_table->entries[i]; 1332 1333 end = entry->addr + entry->size; 1334 if (end != (resource_size_t)end) 1335 continue; 1336 1337 if (entry->type == E820_TYPE_SOFT_RESERVED) 1338 memblock_reserve(entry->addr, entry->size); 1339 1340 if (entry->type != E820_TYPE_RAM && entry->type != E820_TYPE_RESERVED_KERN) 1341 continue; 1342 1343 memblock_add(entry->addr, entry->size); 1344 } 1345 1346 /* Throw away partial pages: */ 1347 memblock_trim_memory(PAGE_SIZE); 1348 1349 memblock_dump_all(); 1350}