cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

kgdb.c (19915B)


      1// SPDX-License-Identifier: GPL-2.0-or-later
      2/*
      3 */
      4
      5/*
      6 * Copyright (C) 2004 Amit S. Kale <amitkale@linsyssoft.com>
      7 * Copyright (C) 2000-2001 VERITAS Software Corporation.
      8 * Copyright (C) 2002 Andi Kleen, SuSE Labs
      9 * Copyright (C) 2004 LinSysSoft Technologies Pvt. Ltd.
     10 * Copyright (C) 2007 MontaVista Software, Inc.
     11 * Copyright (C) 2007-2008 Jason Wessel, Wind River Systems, Inc.
     12 */
     13/****************************************************************************
     14 *  Contributor:     Lake Stevens Instrument Division$
     15 *  Written by:      Glenn Engel $
     16 *  Updated by:	     Amit Kale<akale@veritas.com>
     17 *  Updated by:	     Tom Rini <trini@kernel.crashing.org>
     18 *  Updated by:	     Jason Wessel <jason.wessel@windriver.com>
     19 *  Modified for 386 by Jim Kingdon, Cygnus Support.
     20 *  Original kgdb, compatibility with 2.1.xx kernel by
     21 *  David Grothe <dave@gcom.com>
     22 *  Integrated into 2.2.5 kernel by Tigran Aivazian <tigran@sco.com>
     23 *  X86_64 changes from Andi Kleen's patch merged by Jim Houston
     24 */
     25#include <linux/spinlock.h>
     26#include <linux/kdebug.h>
     27#include <linux/string.h>
     28#include <linux/kernel.h>
     29#include <linux/ptrace.h>
     30#include <linux/sched.h>
     31#include <linux/delay.h>
     32#include <linux/kgdb.h>
     33#include <linux/smp.h>
     34#include <linux/nmi.h>
     35#include <linux/hw_breakpoint.h>
     36#include <linux/uaccess.h>
     37#include <linux/memory.h>
     38
     39#include <asm/text-patching.h>
     40#include <asm/debugreg.h>
     41#include <asm/apicdef.h>
     42#include <asm/apic.h>
     43#include <asm/nmi.h>
     44#include <asm/switch_to.h>
     45
     46struct dbg_reg_def_t dbg_reg_def[DBG_MAX_REG_NUM] =
     47{
     48#ifdef CONFIG_X86_32
     49	{ "ax", 4, offsetof(struct pt_regs, ax) },
     50	{ "cx", 4, offsetof(struct pt_regs, cx) },
     51	{ "dx", 4, offsetof(struct pt_regs, dx) },
     52	{ "bx", 4, offsetof(struct pt_regs, bx) },
     53	{ "sp", 4, offsetof(struct pt_regs, sp) },
     54	{ "bp", 4, offsetof(struct pt_regs, bp) },
     55	{ "si", 4, offsetof(struct pt_regs, si) },
     56	{ "di", 4, offsetof(struct pt_regs, di) },
     57	{ "ip", 4, offsetof(struct pt_regs, ip) },
     58	{ "flags", 4, offsetof(struct pt_regs, flags) },
     59	{ "cs", 4, offsetof(struct pt_regs, cs) },
     60	{ "ss", 4, offsetof(struct pt_regs, ss) },
     61	{ "ds", 4, offsetof(struct pt_regs, ds) },
     62	{ "es", 4, offsetof(struct pt_regs, es) },
     63#else
     64	{ "ax", 8, offsetof(struct pt_regs, ax) },
     65	{ "bx", 8, offsetof(struct pt_regs, bx) },
     66	{ "cx", 8, offsetof(struct pt_regs, cx) },
     67	{ "dx", 8, offsetof(struct pt_regs, dx) },
     68	{ "si", 8, offsetof(struct pt_regs, si) },
     69	{ "di", 8, offsetof(struct pt_regs, di) },
     70	{ "bp", 8, offsetof(struct pt_regs, bp) },
     71	{ "sp", 8, offsetof(struct pt_regs, sp) },
     72	{ "r8", 8, offsetof(struct pt_regs, r8) },
     73	{ "r9", 8, offsetof(struct pt_regs, r9) },
     74	{ "r10", 8, offsetof(struct pt_regs, r10) },
     75	{ "r11", 8, offsetof(struct pt_regs, r11) },
     76	{ "r12", 8, offsetof(struct pt_regs, r12) },
     77	{ "r13", 8, offsetof(struct pt_regs, r13) },
     78	{ "r14", 8, offsetof(struct pt_regs, r14) },
     79	{ "r15", 8, offsetof(struct pt_regs, r15) },
     80	{ "ip", 8, offsetof(struct pt_regs, ip) },
     81	{ "flags", 4, offsetof(struct pt_regs, flags) },
     82	{ "cs", 4, offsetof(struct pt_regs, cs) },
     83	{ "ss", 4, offsetof(struct pt_regs, ss) },
     84	{ "ds", 4, -1 },
     85	{ "es", 4, -1 },
     86#endif
     87	{ "fs", 4, -1 },
     88	{ "gs", 4, -1 },
     89};
     90
     91int dbg_set_reg(int regno, void *mem, struct pt_regs *regs)
     92{
     93	if (
     94#ifdef CONFIG_X86_32
     95	    regno == GDB_SS || regno == GDB_FS || regno == GDB_GS ||
     96#endif
     97	    regno == GDB_SP || regno == GDB_ORIG_AX)
     98		return 0;
     99
    100	if (dbg_reg_def[regno].offset != -1)
    101		memcpy((void *)regs + dbg_reg_def[regno].offset, mem,
    102		       dbg_reg_def[regno].size);
    103	return 0;
    104}
    105
    106char *dbg_get_reg(int regno, void *mem, struct pt_regs *regs)
    107{
    108	if (regno == GDB_ORIG_AX) {
    109		memcpy(mem, &regs->orig_ax, sizeof(regs->orig_ax));
    110		return "orig_ax";
    111	}
    112	if (regno >= DBG_MAX_REG_NUM || regno < 0)
    113		return NULL;
    114
    115	if (dbg_reg_def[regno].offset != -1)
    116		memcpy(mem, (void *)regs + dbg_reg_def[regno].offset,
    117		       dbg_reg_def[regno].size);
    118
    119#ifdef CONFIG_X86_32
    120	switch (regno) {
    121	case GDB_GS:
    122	case GDB_FS:
    123		*(unsigned long *)mem = 0xFFFF;
    124		break;
    125	}
    126#endif
    127	return dbg_reg_def[regno].name;
    128}
    129
    130/**
    131 *	sleeping_thread_to_gdb_regs - Convert ptrace regs to GDB regs
    132 *	@gdb_regs: A pointer to hold the registers in the order GDB wants.
    133 *	@p: The &struct task_struct of the desired process.
    134 *
    135 *	Convert the register values of the sleeping process in @p to
    136 *	the format that GDB expects.
    137 *	This function is called when kgdb does not have access to the
    138 *	&struct pt_regs and therefore it should fill the gdb registers
    139 *	@gdb_regs with what has	been saved in &struct thread_struct
    140 *	thread field during switch_to.
    141 */
    142void sleeping_thread_to_gdb_regs(unsigned long *gdb_regs, struct task_struct *p)
    143{
    144#ifndef CONFIG_X86_32
    145	u32 *gdb_regs32 = (u32 *)gdb_regs;
    146#endif
    147	gdb_regs[GDB_AX]	= 0;
    148	gdb_regs[GDB_BX]	= 0;
    149	gdb_regs[GDB_CX]	= 0;
    150	gdb_regs[GDB_DX]	= 0;
    151	gdb_regs[GDB_SI]	= 0;
    152	gdb_regs[GDB_DI]	= 0;
    153	gdb_regs[GDB_BP]	= ((struct inactive_task_frame *)p->thread.sp)->bp;
    154#ifdef CONFIG_X86_32
    155	gdb_regs[GDB_DS]	= __KERNEL_DS;
    156	gdb_regs[GDB_ES]	= __KERNEL_DS;
    157	gdb_regs[GDB_PS]	= 0;
    158	gdb_regs[GDB_CS]	= __KERNEL_CS;
    159	gdb_regs[GDB_SS]	= __KERNEL_DS;
    160	gdb_regs[GDB_FS]	= 0xFFFF;
    161	gdb_regs[GDB_GS]	= 0xFFFF;
    162#else
    163	gdb_regs32[GDB_PS]	= 0;
    164	gdb_regs32[GDB_CS]	= __KERNEL_CS;
    165	gdb_regs32[GDB_SS]	= __KERNEL_DS;
    166	gdb_regs[GDB_R8]	= 0;
    167	gdb_regs[GDB_R9]	= 0;
    168	gdb_regs[GDB_R10]	= 0;
    169	gdb_regs[GDB_R11]	= 0;
    170	gdb_regs[GDB_R12]	= 0;
    171	gdb_regs[GDB_R13]	= 0;
    172	gdb_regs[GDB_R14]	= 0;
    173	gdb_regs[GDB_R15]	= 0;
    174#endif
    175	gdb_regs[GDB_PC]	= 0;
    176	gdb_regs[GDB_SP]	= p->thread.sp;
    177}
    178
    179static struct hw_breakpoint {
    180	unsigned		enabled;
    181	unsigned long		addr;
    182	int			len;
    183	int			type;
    184	struct perf_event	* __percpu *pev;
    185} breakinfo[HBP_NUM];
    186
    187static unsigned long early_dr7;
    188
    189static void kgdb_correct_hw_break(void)
    190{
    191	int breakno;
    192
    193	for (breakno = 0; breakno < HBP_NUM; breakno++) {
    194		struct perf_event *bp;
    195		struct arch_hw_breakpoint *info;
    196		int val;
    197		int cpu = raw_smp_processor_id();
    198		if (!breakinfo[breakno].enabled)
    199			continue;
    200		if (dbg_is_early) {
    201			set_debugreg(breakinfo[breakno].addr, breakno);
    202			early_dr7 |= encode_dr7(breakno,
    203						breakinfo[breakno].len,
    204						breakinfo[breakno].type);
    205			set_debugreg(early_dr7, 7);
    206			continue;
    207		}
    208		bp = *per_cpu_ptr(breakinfo[breakno].pev, cpu);
    209		info = counter_arch_bp(bp);
    210		if (bp->attr.disabled != 1)
    211			continue;
    212		bp->attr.bp_addr = breakinfo[breakno].addr;
    213		bp->attr.bp_len = breakinfo[breakno].len;
    214		bp->attr.bp_type = breakinfo[breakno].type;
    215		info->address = breakinfo[breakno].addr;
    216		info->len = breakinfo[breakno].len;
    217		info->type = breakinfo[breakno].type;
    218		val = arch_install_hw_breakpoint(bp);
    219		if (!val)
    220			bp->attr.disabled = 0;
    221	}
    222	if (!dbg_is_early)
    223		hw_breakpoint_restore();
    224}
    225
    226static int hw_break_reserve_slot(int breakno)
    227{
    228	int cpu;
    229	int cnt = 0;
    230	struct perf_event **pevent;
    231
    232	if (dbg_is_early)
    233		return 0;
    234
    235	for_each_online_cpu(cpu) {
    236		cnt++;
    237		pevent = per_cpu_ptr(breakinfo[breakno].pev, cpu);
    238		if (dbg_reserve_bp_slot(*pevent))
    239			goto fail;
    240	}
    241
    242	return 0;
    243
    244fail:
    245	for_each_online_cpu(cpu) {
    246		cnt--;
    247		if (!cnt)
    248			break;
    249		pevent = per_cpu_ptr(breakinfo[breakno].pev, cpu);
    250		dbg_release_bp_slot(*pevent);
    251	}
    252	return -1;
    253}
    254
    255static int hw_break_release_slot(int breakno)
    256{
    257	struct perf_event **pevent;
    258	int cpu;
    259
    260	if (dbg_is_early)
    261		return 0;
    262
    263	for_each_online_cpu(cpu) {
    264		pevent = per_cpu_ptr(breakinfo[breakno].pev, cpu);
    265		if (dbg_release_bp_slot(*pevent))
    266			/*
    267			 * The debugger is responsible for handing the retry on
    268			 * remove failure.
    269			 */
    270			return -1;
    271	}
    272	return 0;
    273}
    274
    275static int
    276kgdb_remove_hw_break(unsigned long addr, int len, enum kgdb_bptype bptype)
    277{
    278	int i;
    279
    280	for (i = 0; i < HBP_NUM; i++)
    281		if (breakinfo[i].addr == addr && breakinfo[i].enabled)
    282			break;
    283	if (i == HBP_NUM)
    284		return -1;
    285
    286	if (hw_break_release_slot(i)) {
    287		printk(KERN_ERR "Cannot remove hw breakpoint at %lx\n", addr);
    288		return -1;
    289	}
    290	breakinfo[i].enabled = 0;
    291
    292	return 0;
    293}
    294
    295static void kgdb_remove_all_hw_break(void)
    296{
    297	int i;
    298	int cpu = raw_smp_processor_id();
    299	struct perf_event *bp;
    300
    301	for (i = 0; i < HBP_NUM; i++) {
    302		if (!breakinfo[i].enabled)
    303			continue;
    304		bp = *per_cpu_ptr(breakinfo[i].pev, cpu);
    305		if (!bp->attr.disabled) {
    306			arch_uninstall_hw_breakpoint(bp);
    307			bp->attr.disabled = 1;
    308			continue;
    309		}
    310		if (dbg_is_early)
    311			early_dr7 &= ~encode_dr7(i, breakinfo[i].len,
    312						 breakinfo[i].type);
    313		else if (hw_break_release_slot(i))
    314			printk(KERN_ERR "KGDB: hw bpt remove failed %lx\n",
    315			       breakinfo[i].addr);
    316		breakinfo[i].enabled = 0;
    317	}
    318}
    319
    320static int
    321kgdb_set_hw_break(unsigned long addr, int len, enum kgdb_bptype bptype)
    322{
    323	int i;
    324
    325	for (i = 0; i < HBP_NUM; i++)
    326		if (!breakinfo[i].enabled)
    327			break;
    328	if (i == HBP_NUM)
    329		return -1;
    330
    331	switch (bptype) {
    332	case BP_HARDWARE_BREAKPOINT:
    333		len = 1;
    334		breakinfo[i].type = X86_BREAKPOINT_EXECUTE;
    335		break;
    336	case BP_WRITE_WATCHPOINT:
    337		breakinfo[i].type = X86_BREAKPOINT_WRITE;
    338		break;
    339	case BP_ACCESS_WATCHPOINT:
    340		breakinfo[i].type = X86_BREAKPOINT_RW;
    341		break;
    342	default:
    343		return -1;
    344	}
    345	switch (len) {
    346	case 1:
    347		breakinfo[i].len = X86_BREAKPOINT_LEN_1;
    348		break;
    349	case 2:
    350		breakinfo[i].len = X86_BREAKPOINT_LEN_2;
    351		break;
    352	case 4:
    353		breakinfo[i].len = X86_BREAKPOINT_LEN_4;
    354		break;
    355#ifdef CONFIG_X86_64
    356	case 8:
    357		breakinfo[i].len = X86_BREAKPOINT_LEN_8;
    358		break;
    359#endif
    360	default:
    361		return -1;
    362	}
    363	breakinfo[i].addr = addr;
    364	if (hw_break_reserve_slot(i)) {
    365		breakinfo[i].addr = 0;
    366		return -1;
    367	}
    368	breakinfo[i].enabled = 1;
    369
    370	return 0;
    371}
    372
    373/**
    374 *	kgdb_disable_hw_debug - Disable hardware debugging while we in kgdb.
    375 *	@regs: Current &struct pt_regs.
    376 *
    377 *	This function will be called if the particular architecture must
    378 *	disable hardware debugging while it is processing gdb packets or
    379 *	handling exception.
    380 */
    381static void kgdb_disable_hw_debug(struct pt_regs *regs)
    382{
    383	int i;
    384	int cpu = raw_smp_processor_id();
    385	struct perf_event *bp;
    386
    387	/* Disable hardware debugging while we are in kgdb: */
    388	set_debugreg(0UL, 7);
    389	for (i = 0; i < HBP_NUM; i++) {
    390		if (!breakinfo[i].enabled)
    391			continue;
    392		if (dbg_is_early) {
    393			early_dr7 &= ~encode_dr7(i, breakinfo[i].len,
    394						 breakinfo[i].type);
    395			continue;
    396		}
    397		bp = *per_cpu_ptr(breakinfo[i].pev, cpu);
    398		if (bp->attr.disabled == 1)
    399			continue;
    400		arch_uninstall_hw_breakpoint(bp);
    401		bp->attr.disabled = 1;
    402	}
    403}
    404
    405#ifdef CONFIG_SMP
    406/**
    407 *	kgdb_roundup_cpus - Get other CPUs into a holding pattern
    408 *
    409 *	On SMP systems, we need to get the attention of the other CPUs
    410 *	and get them be in a known state.  This should do what is needed
    411 *	to get the other CPUs to call kgdb_wait(). Note that on some arches,
    412 *	the NMI approach is not used for rounding up all the CPUs. For example,
    413 *	in case of MIPS, smp_call_function() is used to roundup CPUs.
    414 *
    415 *	On non-SMP systems, this is not called.
    416 */
    417void kgdb_roundup_cpus(void)
    418{
    419	apic_send_IPI_allbutself(NMI_VECTOR);
    420}
    421#endif
    422
    423/**
    424 *	kgdb_arch_handle_exception - Handle architecture specific GDB packets.
    425 *	@e_vector: The error vector of the exception that happened.
    426 *	@signo: The signal number of the exception that happened.
    427 *	@err_code: The error code of the exception that happened.
    428 *	@remcomInBuffer: The buffer of the packet we have read.
    429 *	@remcomOutBuffer: The buffer of %BUFMAX bytes to write a packet into.
    430 *	@linux_regs: The &struct pt_regs of the current process.
    431 *
    432 *	This function MUST handle the 'c' and 's' command packets,
    433 *	as well packets to set / remove a hardware breakpoint, if used.
    434 *	If there are additional packets which the hardware needs to handle,
    435 *	they are handled here.  The code should return -1 if it wants to
    436 *	process more packets, and a %0 or %1 if it wants to exit from the
    437 *	kgdb callback.
    438 */
    439int kgdb_arch_handle_exception(int e_vector, int signo, int err_code,
    440			       char *remcomInBuffer, char *remcomOutBuffer,
    441			       struct pt_regs *linux_regs)
    442{
    443	unsigned long addr;
    444	char *ptr;
    445
    446	switch (remcomInBuffer[0]) {
    447	case 'c':
    448	case 's':
    449		/* try to read optional parameter, pc unchanged if no parm */
    450		ptr = &remcomInBuffer[1];
    451		if (kgdb_hex2long(&ptr, &addr))
    452			linux_regs->ip = addr;
    453		fallthrough;
    454	case 'D':
    455	case 'k':
    456		/* clear the trace bit */
    457		linux_regs->flags &= ~X86_EFLAGS_TF;
    458		atomic_set(&kgdb_cpu_doing_single_step, -1);
    459
    460		/* set the trace bit if we're stepping */
    461		if (remcomInBuffer[0] == 's') {
    462			linux_regs->flags |= X86_EFLAGS_TF;
    463			atomic_set(&kgdb_cpu_doing_single_step,
    464				   raw_smp_processor_id());
    465		}
    466
    467		return 0;
    468	}
    469
    470	/* this means that we do not want to exit from the handler: */
    471	return -1;
    472}
    473
    474static inline int
    475single_step_cont(struct pt_regs *regs, struct die_args *args)
    476{
    477	/*
    478	 * Single step exception from kernel space to user space so
    479	 * eat the exception and continue the process:
    480	 */
    481	printk(KERN_ERR "KGDB: trap/step from kernel to user space, "
    482			"resuming...\n");
    483	kgdb_arch_handle_exception(args->trapnr, args->signr,
    484				   args->err, "c", "", regs);
    485	/*
    486	 * Reset the BS bit in dr6 (pointed by args->err) to
    487	 * denote completion of processing
    488	 */
    489	(*(unsigned long *)ERR_PTR(args->err)) &= ~DR_STEP;
    490
    491	return NOTIFY_STOP;
    492}
    493
    494static DECLARE_BITMAP(was_in_debug_nmi, NR_CPUS);
    495
    496static int kgdb_nmi_handler(unsigned int cmd, struct pt_regs *regs)
    497{
    498	int cpu;
    499
    500	switch (cmd) {
    501	case NMI_LOCAL:
    502		if (atomic_read(&kgdb_active) != -1) {
    503			/* KGDB CPU roundup */
    504			cpu = raw_smp_processor_id();
    505			kgdb_nmicallback(cpu, regs);
    506			set_bit(cpu, was_in_debug_nmi);
    507			touch_nmi_watchdog();
    508
    509			return NMI_HANDLED;
    510		}
    511		break;
    512
    513	case NMI_UNKNOWN:
    514		cpu = raw_smp_processor_id();
    515
    516		if (__test_and_clear_bit(cpu, was_in_debug_nmi))
    517			return NMI_HANDLED;
    518
    519		break;
    520	default:
    521		/* do nothing */
    522		break;
    523	}
    524	return NMI_DONE;
    525}
    526
    527static int __kgdb_notify(struct die_args *args, unsigned long cmd)
    528{
    529	struct pt_regs *regs = args->regs;
    530
    531	switch (cmd) {
    532	case DIE_DEBUG:
    533		if (atomic_read(&kgdb_cpu_doing_single_step) != -1) {
    534			if (user_mode(regs))
    535				return single_step_cont(regs, args);
    536			break;
    537		} else if (test_thread_flag(TIF_SINGLESTEP))
    538			/* This means a user thread is single stepping
    539			 * a system call which should be ignored
    540			 */
    541			return NOTIFY_DONE;
    542		fallthrough;
    543	default:
    544		if (user_mode(regs))
    545			return NOTIFY_DONE;
    546	}
    547
    548	if (kgdb_handle_exception(args->trapnr, args->signr, cmd, regs))
    549		return NOTIFY_DONE;
    550
    551	/* Must touch watchdog before return to normal operation */
    552	touch_nmi_watchdog();
    553	return NOTIFY_STOP;
    554}
    555
    556int kgdb_ll_trap(int cmd, const char *str,
    557		 struct pt_regs *regs, long err, int trap, int sig)
    558{
    559	struct die_args args = {
    560		.regs	= regs,
    561		.str	= str,
    562		.err	= err,
    563		.trapnr	= trap,
    564		.signr	= sig,
    565
    566	};
    567
    568	if (!kgdb_io_module_registered)
    569		return NOTIFY_DONE;
    570
    571	return __kgdb_notify(&args, cmd);
    572}
    573
    574static int
    575kgdb_notify(struct notifier_block *self, unsigned long cmd, void *ptr)
    576{
    577	unsigned long flags;
    578	int ret;
    579
    580	local_irq_save(flags);
    581	ret = __kgdb_notify(ptr, cmd);
    582	local_irq_restore(flags);
    583
    584	return ret;
    585}
    586
    587static struct notifier_block kgdb_notifier = {
    588	.notifier_call	= kgdb_notify,
    589};
    590
    591/**
    592 *	kgdb_arch_init - Perform any architecture specific initialization.
    593 *
    594 *	This function will handle the initialization of any architecture
    595 *	specific callbacks.
    596 */
    597int kgdb_arch_init(void)
    598{
    599	int retval;
    600
    601	retval = register_die_notifier(&kgdb_notifier);
    602	if (retval)
    603		goto out;
    604
    605	retval = register_nmi_handler(NMI_LOCAL, kgdb_nmi_handler,
    606					0, "kgdb");
    607	if (retval)
    608		goto out1;
    609
    610	retval = register_nmi_handler(NMI_UNKNOWN, kgdb_nmi_handler,
    611					0, "kgdb");
    612
    613	if (retval)
    614		goto out2;
    615
    616	return retval;
    617
    618out2:
    619	unregister_nmi_handler(NMI_LOCAL, "kgdb");
    620out1:
    621	unregister_die_notifier(&kgdb_notifier);
    622out:
    623	return retval;
    624}
    625
    626static void kgdb_hw_overflow_handler(struct perf_event *event,
    627		struct perf_sample_data *data, struct pt_regs *regs)
    628{
    629	struct task_struct *tsk = current;
    630	int i;
    631
    632	for (i = 0; i < 4; i++) {
    633		if (breakinfo[i].enabled)
    634			tsk->thread.virtual_dr6 |= (DR_TRAP0 << i);
    635	}
    636}
    637
    638void kgdb_arch_late(void)
    639{
    640	int i, cpu;
    641	struct perf_event_attr attr;
    642	struct perf_event **pevent;
    643
    644	/*
    645	 * Pre-allocate the hw breakpoint instructions in the non-atomic
    646	 * portion of kgdb because this operation requires mutexs to
    647	 * complete.
    648	 */
    649	hw_breakpoint_init(&attr);
    650	attr.bp_addr = (unsigned long)kgdb_arch_init;
    651	attr.bp_len = HW_BREAKPOINT_LEN_1;
    652	attr.bp_type = HW_BREAKPOINT_W;
    653	attr.disabled = 1;
    654	for (i = 0; i < HBP_NUM; i++) {
    655		if (breakinfo[i].pev)
    656			continue;
    657		breakinfo[i].pev = register_wide_hw_breakpoint(&attr, NULL, NULL);
    658		if (IS_ERR((void * __force)breakinfo[i].pev)) {
    659			printk(KERN_ERR "kgdb: Could not allocate hw"
    660			       "breakpoints\nDisabling the kernel debugger\n");
    661			breakinfo[i].pev = NULL;
    662			kgdb_arch_exit();
    663			return;
    664		}
    665		for_each_online_cpu(cpu) {
    666			pevent = per_cpu_ptr(breakinfo[i].pev, cpu);
    667			pevent[0]->hw.sample_period = 1;
    668			pevent[0]->overflow_handler = kgdb_hw_overflow_handler;
    669			if (pevent[0]->destroy != NULL) {
    670				pevent[0]->destroy = NULL;
    671				release_bp_slot(*pevent);
    672			}
    673		}
    674	}
    675}
    676
    677/**
    678 *	kgdb_arch_exit - Perform any architecture specific uninitalization.
    679 *
    680 *	This function will handle the uninitalization of any architecture
    681 *	specific callbacks, for dynamic registration and unregistration.
    682 */
    683void kgdb_arch_exit(void)
    684{
    685	int i;
    686	for (i = 0; i < 4; i++) {
    687		if (breakinfo[i].pev) {
    688			unregister_wide_hw_breakpoint(breakinfo[i].pev);
    689			breakinfo[i].pev = NULL;
    690		}
    691	}
    692	unregister_nmi_handler(NMI_UNKNOWN, "kgdb");
    693	unregister_nmi_handler(NMI_LOCAL, "kgdb");
    694	unregister_die_notifier(&kgdb_notifier);
    695}
    696
    697/**
    698 *
    699 *	kgdb_skipexception - Bail out of KGDB when we've been triggered.
    700 *	@exception: Exception vector number
    701 *	@regs: Current &struct pt_regs.
    702 *
    703 *	On some architectures we need to skip a breakpoint exception when
    704 *	it occurs after a breakpoint has been removed.
    705 *
    706 * Skip an int3 exception when it occurs after a breakpoint has been
    707 * removed. Backtrack eip by 1 since the int3 would have caused it to
    708 * increment by 1.
    709 */
    710int kgdb_skipexception(int exception, struct pt_regs *regs)
    711{
    712	if (exception == 3 && kgdb_isremovedbreak(regs->ip - 1)) {
    713		regs->ip -= 1;
    714		return 1;
    715	}
    716	return 0;
    717}
    718
    719unsigned long kgdb_arch_pc(int exception, struct pt_regs *regs)
    720{
    721	if (exception == 3)
    722		return instruction_pointer(regs) - 1;
    723	return instruction_pointer(regs);
    724}
    725
    726void kgdb_arch_set_pc(struct pt_regs *regs, unsigned long ip)
    727{
    728	regs->ip = ip;
    729}
    730
    731int kgdb_arch_set_breakpoint(struct kgdb_bkpt *bpt)
    732{
    733	int err;
    734
    735	bpt->type = BP_BREAKPOINT;
    736	err = copy_from_kernel_nofault(bpt->saved_instr, (char *)bpt->bpt_addr,
    737				BREAK_INSTR_SIZE);
    738	if (err)
    739		return err;
    740	err = copy_to_kernel_nofault((char *)bpt->bpt_addr,
    741				 arch_kgdb_ops.gdb_bpt_instr, BREAK_INSTR_SIZE);
    742	if (!err)
    743		return err;
    744	/*
    745	 * It is safe to call text_poke_kgdb() because normal kernel execution
    746	 * is stopped on all cores, so long as the text_mutex is not locked.
    747	 */
    748	if (mutex_is_locked(&text_mutex))
    749		return -EBUSY;
    750	text_poke_kgdb((void *)bpt->bpt_addr, arch_kgdb_ops.gdb_bpt_instr,
    751		       BREAK_INSTR_SIZE);
    752	bpt->type = BP_POKE_BREAKPOINT;
    753
    754	return 0;
    755}
    756
    757int kgdb_arch_remove_breakpoint(struct kgdb_bkpt *bpt)
    758{
    759	if (bpt->type != BP_POKE_BREAKPOINT)
    760		goto knl_write;
    761	/*
    762	 * It is safe to call text_poke_kgdb() because normal kernel execution
    763	 * is stopped on all cores, so long as the text_mutex is not locked.
    764	 */
    765	if (mutex_is_locked(&text_mutex))
    766		goto knl_write;
    767	text_poke_kgdb((void *)bpt->bpt_addr, bpt->saved_instr,
    768		       BREAK_INSTR_SIZE);
    769	return 0;
    770
    771knl_write:
    772	return copy_to_kernel_nofault((char *)bpt->bpt_addr,
    773				  (char *)bpt->saved_instr, BREAK_INSTR_SIZE);
    774}
    775
    776const struct kgdb_arch arch_kgdb_ops = {
    777	/* Breakpoint instruction: */
    778	.gdb_bpt_instr		= { 0xcc },
    779	.flags			= KGDB_HW_BREAKPOINT,
    780	.set_hw_breakpoint	= kgdb_set_hw_break,
    781	.remove_hw_breakpoint	= kgdb_remove_hw_break,
    782	.disable_hw_break	= kgdb_disable_hw_debug,
    783	.remove_all_hw_break	= kgdb_remove_all_hw_break,
    784	.correct_hw_break	= kgdb_correct_hw_break,
    785};