cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

machine_kexec_64.c (15361B)


      1// SPDX-License-Identifier: GPL-2.0-only
      2/*
      3 * handle transition of Linux booting another kernel
      4 * Copyright (C) 2002-2005 Eric Biederman  <ebiederm@xmission.com>
      5 */
      6
      7#define pr_fmt(fmt)	"kexec: " fmt
      8
      9#include <linux/mm.h>
     10#include <linux/kexec.h>
     11#include <linux/string.h>
     12#include <linux/gfp.h>
     13#include <linux/reboot.h>
     14#include <linux/numa.h>
     15#include <linux/ftrace.h>
     16#include <linux/io.h>
     17#include <linux/suspend.h>
     18#include <linux/vmalloc.h>
     19#include <linux/efi.h>
     20#include <linux/cc_platform.h>
     21
     22#include <asm/init.h>
     23#include <asm/tlbflush.h>
     24#include <asm/mmu_context.h>
     25#include <asm/io_apic.h>
     26#include <asm/debugreg.h>
     27#include <asm/kexec-bzimage64.h>
     28#include <asm/setup.h>
     29#include <asm/set_memory.h>
     30#include <asm/cpu.h>
     31
     32#ifdef CONFIG_ACPI
     33/*
     34 * Used while adding mapping for ACPI tables.
     35 * Can be reused when other iomem regions need be mapped
     36 */
     37struct init_pgtable_data {
     38	struct x86_mapping_info *info;
     39	pgd_t *level4p;
     40};
     41
     42static int mem_region_callback(struct resource *res, void *arg)
     43{
     44	struct init_pgtable_data *data = arg;
     45	unsigned long mstart, mend;
     46
     47	mstart = res->start;
     48	mend = mstart + resource_size(res) - 1;
     49
     50	return kernel_ident_mapping_init(data->info, data->level4p, mstart, mend);
     51}
     52
     53static int
     54map_acpi_tables(struct x86_mapping_info *info, pgd_t *level4p)
     55{
     56	struct init_pgtable_data data;
     57	unsigned long flags;
     58	int ret;
     59
     60	data.info = info;
     61	data.level4p = level4p;
     62	flags = IORESOURCE_MEM | IORESOURCE_BUSY;
     63
     64	ret = walk_iomem_res_desc(IORES_DESC_ACPI_TABLES, flags, 0, -1,
     65				  &data, mem_region_callback);
     66	if (ret && ret != -EINVAL)
     67		return ret;
     68
     69	/* ACPI tables could be located in ACPI Non-volatile Storage region */
     70	ret = walk_iomem_res_desc(IORES_DESC_ACPI_NV_STORAGE, flags, 0, -1,
     71				  &data, mem_region_callback);
     72	if (ret && ret != -EINVAL)
     73		return ret;
     74
     75	return 0;
     76}
     77#else
     78static int map_acpi_tables(struct x86_mapping_info *info, pgd_t *level4p) { return 0; }
     79#endif
     80
     81#ifdef CONFIG_KEXEC_FILE
     82const struct kexec_file_ops * const kexec_file_loaders[] = {
     83		&kexec_bzImage64_ops,
     84		NULL
     85};
     86#endif
     87
     88static int
     89map_efi_systab(struct x86_mapping_info *info, pgd_t *level4p)
     90{
     91#ifdef CONFIG_EFI
     92	unsigned long mstart, mend;
     93
     94	if (!efi_enabled(EFI_BOOT))
     95		return 0;
     96
     97	mstart = (boot_params.efi_info.efi_systab |
     98			((u64)boot_params.efi_info.efi_systab_hi<<32));
     99
    100	if (efi_enabled(EFI_64BIT))
    101		mend = mstart + sizeof(efi_system_table_64_t);
    102	else
    103		mend = mstart + sizeof(efi_system_table_32_t);
    104
    105	if (!mstart)
    106		return 0;
    107
    108	return kernel_ident_mapping_init(info, level4p, mstart, mend);
    109#endif
    110	return 0;
    111}
    112
    113static void free_transition_pgtable(struct kimage *image)
    114{
    115	free_page((unsigned long)image->arch.p4d);
    116	image->arch.p4d = NULL;
    117	free_page((unsigned long)image->arch.pud);
    118	image->arch.pud = NULL;
    119	free_page((unsigned long)image->arch.pmd);
    120	image->arch.pmd = NULL;
    121	free_page((unsigned long)image->arch.pte);
    122	image->arch.pte = NULL;
    123}
    124
    125static int init_transition_pgtable(struct kimage *image, pgd_t *pgd)
    126{
    127	pgprot_t prot = PAGE_KERNEL_EXEC_NOENC;
    128	unsigned long vaddr, paddr;
    129	int result = -ENOMEM;
    130	p4d_t *p4d;
    131	pud_t *pud;
    132	pmd_t *pmd;
    133	pte_t *pte;
    134
    135	vaddr = (unsigned long)relocate_kernel;
    136	paddr = __pa(page_address(image->control_code_page)+PAGE_SIZE);
    137	pgd += pgd_index(vaddr);
    138	if (!pgd_present(*pgd)) {
    139		p4d = (p4d_t *)get_zeroed_page(GFP_KERNEL);
    140		if (!p4d)
    141			goto err;
    142		image->arch.p4d = p4d;
    143		set_pgd(pgd, __pgd(__pa(p4d) | _KERNPG_TABLE));
    144	}
    145	p4d = p4d_offset(pgd, vaddr);
    146	if (!p4d_present(*p4d)) {
    147		pud = (pud_t *)get_zeroed_page(GFP_KERNEL);
    148		if (!pud)
    149			goto err;
    150		image->arch.pud = pud;
    151		set_p4d(p4d, __p4d(__pa(pud) | _KERNPG_TABLE));
    152	}
    153	pud = pud_offset(p4d, vaddr);
    154	if (!pud_present(*pud)) {
    155		pmd = (pmd_t *)get_zeroed_page(GFP_KERNEL);
    156		if (!pmd)
    157			goto err;
    158		image->arch.pmd = pmd;
    159		set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE));
    160	}
    161	pmd = pmd_offset(pud, vaddr);
    162	if (!pmd_present(*pmd)) {
    163		pte = (pte_t *)get_zeroed_page(GFP_KERNEL);
    164		if (!pte)
    165			goto err;
    166		image->arch.pte = pte;
    167		set_pmd(pmd, __pmd(__pa(pte) | _KERNPG_TABLE));
    168	}
    169	pte = pte_offset_kernel(pmd, vaddr);
    170
    171	if (cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT))
    172		prot = PAGE_KERNEL_EXEC;
    173
    174	set_pte(pte, pfn_pte(paddr >> PAGE_SHIFT, prot));
    175	return 0;
    176err:
    177	return result;
    178}
    179
    180static void *alloc_pgt_page(void *data)
    181{
    182	struct kimage *image = (struct kimage *)data;
    183	struct page *page;
    184	void *p = NULL;
    185
    186	page = kimage_alloc_control_pages(image, 0);
    187	if (page) {
    188		p = page_address(page);
    189		clear_page(p);
    190	}
    191
    192	return p;
    193}
    194
    195static int init_pgtable(struct kimage *image, unsigned long start_pgtable)
    196{
    197	struct x86_mapping_info info = {
    198		.alloc_pgt_page	= alloc_pgt_page,
    199		.context	= image,
    200		.page_flag	= __PAGE_KERNEL_LARGE_EXEC,
    201		.kernpg_flag	= _KERNPG_TABLE_NOENC,
    202	};
    203	unsigned long mstart, mend;
    204	pgd_t *level4p;
    205	int result;
    206	int i;
    207
    208	level4p = (pgd_t *)__va(start_pgtable);
    209	clear_page(level4p);
    210
    211	if (cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT)) {
    212		info.page_flag   |= _PAGE_ENC;
    213		info.kernpg_flag |= _PAGE_ENC;
    214	}
    215
    216	if (direct_gbpages)
    217		info.direct_gbpages = true;
    218
    219	for (i = 0; i < nr_pfn_mapped; i++) {
    220		mstart = pfn_mapped[i].start << PAGE_SHIFT;
    221		mend   = pfn_mapped[i].end << PAGE_SHIFT;
    222
    223		result = kernel_ident_mapping_init(&info,
    224						 level4p, mstart, mend);
    225		if (result)
    226			return result;
    227	}
    228
    229	/*
    230	 * segments's mem ranges could be outside 0 ~ max_pfn,
    231	 * for example when jump back to original kernel from kexeced kernel.
    232	 * or first kernel is booted with user mem map, and second kernel
    233	 * could be loaded out of that range.
    234	 */
    235	for (i = 0; i < image->nr_segments; i++) {
    236		mstart = image->segment[i].mem;
    237		mend   = mstart + image->segment[i].memsz;
    238
    239		result = kernel_ident_mapping_init(&info,
    240						 level4p, mstart, mend);
    241
    242		if (result)
    243			return result;
    244	}
    245
    246	/*
    247	 * Prepare EFI systab and ACPI tables for kexec kernel since they are
    248	 * not covered by pfn_mapped.
    249	 */
    250	result = map_efi_systab(&info, level4p);
    251	if (result)
    252		return result;
    253
    254	result = map_acpi_tables(&info, level4p);
    255	if (result)
    256		return result;
    257
    258	return init_transition_pgtable(image, level4p);
    259}
    260
    261static void load_segments(void)
    262{
    263	__asm__ __volatile__ (
    264		"\tmovl %0,%%ds\n"
    265		"\tmovl %0,%%es\n"
    266		"\tmovl %0,%%ss\n"
    267		"\tmovl %0,%%fs\n"
    268		"\tmovl %0,%%gs\n"
    269		: : "a" (__KERNEL_DS) : "memory"
    270		);
    271}
    272
    273int machine_kexec_prepare(struct kimage *image)
    274{
    275	unsigned long start_pgtable;
    276	int result;
    277
    278	/* Calculate the offsets */
    279	start_pgtable = page_to_pfn(image->control_code_page) << PAGE_SHIFT;
    280
    281	/* Setup the identity mapped 64bit page table */
    282	result = init_pgtable(image, start_pgtable);
    283	if (result)
    284		return result;
    285
    286	return 0;
    287}
    288
    289void machine_kexec_cleanup(struct kimage *image)
    290{
    291	free_transition_pgtable(image);
    292}
    293
    294/*
    295 * Do not allocate memory (or fail in any way) in machine_kexec().
    296 * We are past the point of no return, committed to rebooting now.
    297 */
    298void machine_kexec(struct kimage *image)
    299{
    300	unsigned long page_list[PAGES_NR];
    301	void *control_page;
    302	int save_ftrace_enabled;
    303
    304#ifdef CONFIG_KEXEC_JUMP
    305	if (image->preserve_context)
    306		save_processor_state();
    307#endif
    308
    309	save_ftrace_enabled = __ftrace_enabled_save();
    310
    311	/* Interrupts aren't acceptable while we reboot */
    312	local_irq_disable();
    313	hw_breakpoint_disable();
    314	cet_disable();
    315
    316	if (image->preserve_context) {
    317#ifdef CONFIG_X86_IO_APIC
    318		/*
    319		 * We need to put APICs in legacy mode so that we can
    320		 * get timer interrupts in second kernel. kexec/kdump
    321		 * paths already have calls to restore_boot_irq_mode()
    322		 * in one form or other. kexec jump path also need one.
    323		 */
    324		clear_IO_APIC();
    325		restore_boot_irq_mode();
    326#endif
    327	}
    328
    329	control_page = page_address(image->control_code_page) + PAGE_SIZE;
    330	__memcpy(control_page, relocate_kernel, KEXEC_CONTROL_CODE_MAX_SIZE);
    331
    332	page_list[PA_CONTROL_PAGE] = virt_to_phys(control_page);
    333	page_list[VA_CONTROL_PAGE] = (unsigned long)control_page;
    334	page_list[PA_TABLE_PAGE] =
    335	  (unsigned long)__pa(page_address(image->control_code_page));
    336
    337	if (image->type == KEXEC_TYPE_DEFAULT)
    338		page_list[PA_SWAP_PAGE] = (page_to_pfn(image->swap_page)
    339						<< PAGE_SHIFT);
    340
    341	/*
    342	 * The segment registers are funny things, they have both a
    343	 * visible and an invisible part.  Whenever the visible part is
    344	 * set to a specific selector, the invisible part is loaded
    345	 * with from a table in memory.  At no other time is the
    346	 * descriptor table in memory accessed.
    347	 *
    348	 * I take advantage of this here by force loading the
    349	 * segments, before I zap the gdt with an invalid value.
    350	 */
    351	load_segments();
    352	/*
    353	 * The gdt & idt are now invalid.
    354	 * If you want to load them you must set up your own idt & gdt.
    355	 */
    356	native_idt_invalidate();
    357	native_gdt_invalidate();
    358
    359	/* now call it */
    360	image->start = relocate_kernel((unsigned long)image->head,
    361				       (unsigned long)page_list,
    362				       image->start,
    363				       image->preserve_context,
    364				       cc_platform_has(CC_ATTR_HOST_MEM_ENCRYPT));
    365
    366#ifdef CONFIG_KEXEC_JUMP
    367	if (image->preserve_context)
    368		restore_processor_state();
    369#endif
    370
    371	__ftrace_enabled_restore(save_ftrace_enabled);
    372}
    373
    374/* arch-dependent functionality related to kexec file-based syscall */
    375
    376#ifdef CONFIG_KEXEC_FILE
    377void *arch_kexec_kernel_image_load(struct kimage *image)
    378{
    379	if (!image->fops || !image->fops->load)
    380		return ERR_PTR(-ENOEXEC);
    381
    382	return image->fops->load(image, image->kernel_buf,
    383				 image->kernel_buf_len, image->initrd_buf,
    384				 image->initrd_buf_len, image->cmdline_buf,
    385				 image->cmdline_buf_len);
    386}
    387
    388/*
    389 * Apply purgatory relocations.
    390 *
    391 * @pi:		Purgatory to be relocated.
    392 * @section:	Section relocations applying to.
    393 * @relsec:	Section containing RELAs.
    394 * @symtabsec:	Corresponding symtab.
    395 *
    396 * TODO: Some of the code belongs to generic code. Move that in kexec.c.
    397 */
    398int arch_kexec_apply_relocations_add(struct purgatory_info *pi,
    399				     Elf_Shdr *section, const Elf_Shdr *relsec,
    400				     const Elf_Shdr *symtabsec)
    401{
    402	unsigned int i;
    403	Elf64_Rela *rel;
    404	Elf64_Sym *sym;
    405	void *location;
    406	unsigned long address, sec_base, value;
    407	const char *strtab, *name, *shstrtab;
    408	const Elf_Shdr *sechdrs;
    409
    410	/* String & section header string table */
    411	sechdrs = (void *)pi->ehdr + pi->ehdr->e_shoff;
    412	strtab = (char *)pi->ehdr + sechdrs[symtabsec->sh_link].sh_offset;
    413	shstrtab = (char *)pi->ehdr + sechdrs[pi->ehdr->e_shstrndx].sh_offset;
    414
    415	rel = (void *)pi->ehdr + relsec->sh_offset;
    416
    417	pr_debug("Applying relocate section %s to %u\n",
    418		 shstrtab + relsec->sh_name, relsec->sh_info);
    419
    420	for (i = 0; i < relsec->sh_size / sizeof(*rel); i++) {
    421
    422		/*
    423		 * rel[i].r_offset contains byte offset from beginning
    424		 * of section to the storage unit affected.
    425		 *
    426		 * This is location to update. This is temporary buffer
    427		 * where section is currently loaded. This will finally be
    428		 * loaded to a different address later, pointed to by
    429		 * ->sh_addr. kexec takes care of moving it
    430		 *  (kexec_load_segment()).
    431		 */
    432		location = pi->purgatory_buf;
    433		location += section->sh_offset;
    434		location += rel[i].r_offset;
    435
    436		/* Final address of the location */
    437		address = section->sh_addr + rel[i].r_offset;
    438
    439		/*
    440		 * rel[i].r_info contains information about symbol table index
    441		 * w.r.t which relocation must be made and type of relocation
    442		 * to apply. ELF64_R_SYM() and ELF64_R_TYPE() macros get
    443		 * these respectively.
    444		 */
    445		sym = (void *)pi->ehdr + symtabsec->sh_offset;
    446		sym += ELF64_R_SYM(rel[i].r_info);
    447
    448		if (sym->st_name)
    449			name = strtab + sym->st_name;
    450		else
    451			name = shstrtab + sechdrs[sym->st_shndx].sh_name;
    452
    453		pr_debug("Symbol: %s info: %02x shndx: %02x value=%llx size: %llx\n",
    454			 name, sym->st_info, sym->st_shndx, sym->st_value,
    455			 sym->st_size);
    456
    457		if (sym->st_shndx == SHN_UNDEF) {
    458			pr_err("Undefined symbol: %s\n", name);
    459			return -ENOEXEC;
    460		}
    461
    462		if (sym->st_shndx == SHN_COMMON) {
    463			pr_err("symbol '%s' in common section\n", name);
    464			return -ENOEXEC;
    465		}
    466
    467		if (sym->st_shndx == SHN_ABS)
    468			sec_base = 0;
    469		else if (sym->st_shndx >= pi->ehdr->e_shnum) {
    470			pr_err("Invalid section %d for symbol %s\n",
    471			       sym->st_shndx, name);
    472			return -ENOEXEC;
    473		} else
    474			sec_base = pi->sechdrs[sym->st_shndx].sh_addr;
    475
    476		value = sym->st_value;
    477		value += sec_base;
    478		value += rel[i].r_addend;
    479
    480		switch (ELF64_R_TYPE(rel[i].r_info)) {
    481		case R_X86_64_NONE:
    482			break;
    483		case R_X86_64_64:
    484			*(u64 *)location = value;
    485			break;
    486		case R_X86_64_32:
    487			*(u32 *)location = value;
    488			if (value != *(u32 *)location)
    489				goto overflow;
    490			break;
    491		case R_X86_64_32S:
    492			*(s32 *)location = value;
    493			if ((s64)value != *(s32 *)location)
    494				goto overflow;
    495			break;
    496		case R_X86_64_PC32:
    497		case R_X86_64_PLT32:
    498			value -= (u64)address;
    499			*(u32 *)location = value;
    500			break;
    501		default:
    502			pr_err("Unknown rela relocation: %llu\n",
    503			       ELF64_R_TYPE(rel[i].r_info));
    504			return -ENOEXEC;
    505		}
    506	}
    507	return 0;
    508
    509overflow:
    510	pr_err("Overflow in relocation type %d value 0x%lx\n",
    511	       (int)ELF64_R_TYPE(rel[i].r_info), value);
    512	return -ENOEXEC;
    513}
    514
    515int arch_kimage_file_post_load_cleanup(struct kimage *image)
    516{
    517	vfree(image->elf_headers);
    518	image->elf_headers = NULL;
    519	image->elf_headers_sz = 0;
    520
    521	return kexec_image_post_load_cleanup_default(image);
    522}
    523#endif /* CONFIG_KEXEC_FILE */
    524
    525static int
    526kexec_mark_range(unsigned long start, unsigned long end, bool protect)
    527{
    528	struct page *page;
    529	unsigned int nr_pages;
    530
    531	/*
    532	 * For physical range: [start, end]. We must skip the unassigned
    533	 * crashk resource with zero-valued "end" member.
    534	 */
    535	if (!end || start > end)
    536		return 0;
    537
    538	page = pfn_to_page(start >> PAGE_SHIFT);
    539	nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1;
    540	if (protect)
    541		return set_pages_ro(page, nr_pages);
    542	else
    543		return set_pages_rw(page, nr_pages);
    544}
    545
    546static void kexec_mark_crashkres(bool protect)
    547{
    548	unsigned long control;
    549
    550	kexec_mark_range(crashk_low_res.start, crashk_low_res.end, protect);
    551
    552	/* Don't touch the control code page used in crash_kexec().*/
    553	control = PFN_PHYS(page_to_pfn(kexec_crash_image->control_code_page));
    554	/* Control code page is located in the 2nd page. */
    555	kexec_mark_range(crashk_res.start, control + PAGE_SIZE - 1, protect);
    556	control += KEXEC_CONTROL_PAGE_SIZE;
    557	kexec_mark_range(control, crashk_res.end, protect);
    558}
    559
    560void arch_kexec_protect_crashkres(void)
    561{
    562	kexec_mark_crashkres(true);
    563}
    564
    565void arch_kexec_unprotect_crashkres(void)
    566{
    567	kexec_mark_crashkres(false);
    568}
    569
    570/*
    571 * During a traditional boot under SME, SME will encrypt the kernel,
    572 * so the SME kexec kernel also needs to be un-encrypted in order to
    573 * replicate a normal SME boot.
    574 *
    575 * During a traditional boot under SEV, the kernel has already been
    576 * loaded encrypted, so the SEV kexec kernel needs to be encrypted in
    577 * order to replicate a normal SEV boot.
    578 */
    579int arch_kexec_post_alloc_pages(void *vaddr, unsigned int pages, gfp_t gfp)
    580{
    581	if (!cc_platform_has(CC_ATTR_HOST_MEM_ENCRYPT))
    582		return 0;
    583
    584	/*
    585	 * If host memory encryption is active we need to be sure that kexec
    586	 * pages are not encrypted because when we boot to the new kernel the
    587	 * pages won't be accessed encrypted (initially).
    588	 */
    589	return set_memory_decrypted((unsigned long)vaddr, pages);
    590}
    591
    592void arch_kexec_pre_free_pages(void *vaddr, unsigned int pages)
    593{
    594	if (!cc_platform_has(CC_ATTR_HOST_MEM_ENCRYPT))
    595		return;
    596
    597	/*
    598	 * If host memory encryption is active we need to reset the pages back
    599	 * to being an encrypted mapping before freeing them.
    600	 */
    601	set_memory_encrypted((unsigned long)vaddr, pages);
    602}