cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

process.c (24864B)


      1// SPDX-License-Identifier: GPL-2.0
      2#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
      3
      4#include <linux/errno.h>
      5#include <linux/kernel.h>
      6#include <linux/mm.h>
      7#include <linux/smp.h>
      8#include <linux/prctl.h>
      9#include <linux/slab.h>
     10#include <linux/sched.h>
     11#include <linux/sched/idle.h>
     12#include <linux/sched/debug.h>
     13#include <linux/sched/task.h>
     14#include <linux/sched/task_stack.h>
     15#include <linux/init.h>
     16#include <linux/export.h>
     17#include <linux/pm.h>
     18#include <linux/tick.h>
     19#include <linux/random.h>
     20#include <linux/user-return-notifier.h>
     21#include <linux/dmi.h>
     22#include <linux/utsname.h>
     23#include <linux/stackprotector.h>
     24#include <linux/cpuidle.h>
     25#include <linux/acpi.h>
     26#include <linux/elf-randomize.h>
     27#include <trace/events/power.h>
     28#include <linux/hw_breakpoint.h>
     29#include <asm/cpu.h>
     30#include <asm/apic.h>
     31#include <linux/uaccess.h>
     32#include <asm/mwait.h>
     33#include <asm/fpu/api.h>
     34#include <asm/fpu/sched.h>
     35#include <asm/fpu/xstate.h>
     36#include <asm/debugreg.h>
     37#include <asm/nmi.h>
     38#include <asm/tlbflush.h>
     39#include <asm/mce.h>
     40#include <asm/vm86.h>
     41#include <asm/switch_to.h>
     42#include <asm/desc.h>
     43#include <asm/prctl.h>
     44#include <asm/spec-ctrl.h>
     45#include <asm/io_bitmap.h>
     46#include <asm/proto.h>
     47#include <asm/frame.h>
     48#include <asm/unwind.h>
     49#include <asm/tdx.h>
     50
     51#include "process.h"
     52
     53/*
     54 * per-CPU TSS segments. Threads are completely 'soft' on Linux,
     55 * no more per-task TSS's. The TSS size is kept cacheline-aligned
     56 * so they are allowed to end up in the .data..cacheline_aligned
     57 * section. Since TSS's are completely CPU-local, we want them
     58 * on exact cacheline boundaries, to eliminate cacheline ping-pong.
     59 */
     60__visible DEFINE_PER_CPU_PAGE_ALIGNED(struct tss_struct, cpu_tss_rw) = {
     61	.x86_tss = {
     62		/*
     63		 * .sp0 is only used when entering ring 0 from a lower
     64		 * privilege level.  Since the init task never runs anything
     65		 * but ring 0 code, there is no need for a valid value here.
     66		 * Poison it.
     67		 */
     68		.sp0 = (1UL << (BITS_PER_LONG-1)) + 1,
     69
     70#ifdef CONFIG_X86_32
     71		.sp1 = TOP_OF_INIT_STACK,
     72
     73		.ss0 = __KERNEL_DS,
     74		.ss1 = __KERNEL_CS,
     75#endif
     76		.io_bitmap_base	= IO_BITMAP_OFFSET_INVALID,
     77	 },
     78};
     79EXPORT_PER_CPU_SYMBOL(cpu_tss_rw);
     80
     81DEFINE_PER_CPU(bool, __tss_limit_invalid);
     82EXPORT_PER_CPU_SYMBOL_GPL(__tss_limit_invalid);
     83
     84/*
     85 * this gets called so that we can store lazy state into memory and copy the
     86 * current task into the new thread.
     87 */
     88int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
     89{
     90	memcpy(dst, src, arch_task_struct_size);
     91#ifdef CONFIG_VM86
     92	dst->thread.vm86 = NULL;
     93#endif
     94	/* Drop the copied pointer to current's fpstate */
     95	dst->thread.fpu.fpstate = NULL;
     96
     97	return 0;
     98}
     99
    100#ifdef CONFIG_X86_64
    101void arch_release_task_struct(struct task_struct *tsk)
    102{
    103	if (fpu_state_size_dynamic())
    104		fpstate_free(&tsk->thread.fpu);
    105}
    106#endif
    107
    108/*
    109 * Free thread data structures etc..
    110 */
    111void exit_thread(struct task_struct *tsk)
    112{
    113	struct thread_struct *t = &tsk->thread;
    114	struct fpu *fpu = &t->fpu;
    115
    116	if (test_thread_flag(TIF_IO_BITMAP))
    117		io_bitmap_exit(tsk);
    118
    119	free_vm86(t);
    120
    121	fpu__drop(fpu);
    122}
    123
    124static int set_new_tls(struct task_struct *p, unsigned long tls)
    125{
    126	struct user_desc __user *utls = (struct user_desc __user *)tls;
    127
    128	if (in_ia32_syscall())
    129		return do_set_thread_area(p, -1, utls, 0);
    130	else
    131		return do_set_thread_area_64(p, ARCH_SET_FS, tls);
    132}
    133
    134int copy_thread(struct task_struct *p, const struct kernel_clone_args *args)
    135{
    136	unsigned long clone_flags = args->flags;
    137	unsigned long sp = args->stack;
    138	unsigned long tls = args->tls;
    139	struct inactive_task_frame *frame;
    140	struct fork_frame *fork_frame;
    141	struct pt_regs *childregs;
    142	int ret = 0;
    143
    144	childregs = task_pt_regs(p);
    145	fork_frame = container_of(childregs, struct fork_frame, regs);
    146	frame = &fork_frame->frame;
    147
    148	frame->bp = encode_frame_pointer(childregs);
    149	frame->ret_addr = (unsigned long) ret_from_fork;
    150	p->thread.sp = (unsigned long) fork_frame;
    151	p->thread.io_bitmap = NULL;
    152	p->thread.iopl_warn = 0;
    153	memset(p->thread.ptrace_bps, 0, sizeof(p->thread.ptrace_bps));
    154
    155#ifdef CONFIG_X86_64
    156	current_save_fsgs();
    157	p->thread.fsindex = current->thread.fsindex;
    158	p->thread.fsbase = current->thread.fsbase;
    159	p->thread.gsindex = current->thread.gsindex;
    160	p->thread.gsbase = current->thread.gsbase;
    161
    162	savesegment(es, p->thread.es);
    163	savesegment(ds, p->thread.ds);
    164#else
    165	p->thread.sp0 = (unsigned long) (childregs + 1);
    166	savesegment(gs, p->thread.gs);
    167	/*
    168	 * Clear all status flags including IF and set fixed bit. 64bit
    169	 * does not have this initialization as the frame does not contain
    170	 * flags. The flags consistency (especially vs. AC) is there
    171	 * ensured via objtool, which lacks 32bit support.
    172	 */
    173	frame->flags = X86_EFLAGS_FIXED;
    174#endif
    175
    176	fpu_clone(p, clone_flags, args->fn);
    177
    178	/* Kernel thread ? */
    179	if (unlikely(p->flags & PF_KTHREAD)) {
    180		p->thread.pkru = pkru_get_init_value();
    181		memset(childregs, 0, sizeof(struct pt_regs));
    182		kthread_frame_init(frame, args->fn, args->fn_arg);
    183		return 0;
    184	}
    185
    186	/*
    187	 * Clone current's PKRU value from hardware. tsk->thread.pkru
    188	 * is only valid when scheduled out.
    189	 */
    190	p->thread.pkru = read_pkru();
    191
    192	frame->bx = 0;
    193	*childregs = *current_pt_regs();
    194	childregs->ax = 0;
    195	if (sp)
    196		childregs->sp = sp;
    197
    198	if (unlikely(args->fn)) {
    199		/*
    200		 * A user space thread, but it doesn't return to
    201		 * ret_after_fork().
    202		 *
    203		 * In order to indicate that to tools like gdb,
    204		 * we reset the stack and instruction pointers.
    205		 *
    206		 * It does the same kernel frame setup to return to a kernel
    207		 * function that a kernel thread does.
    208		 */
    209		childregs->sp = 0;
    210		childregs->ip = 0;
    211		kthread_frame_init(frame, args->fn, args->fn_arg);
    212		return 0;
    213	}
    214
    215	/* Set a new TLS for the child thread? */
    216	if (clone_flags & CLONE_SETTLS)
    217		ret = set_new_tls(p, tls);
    218
    219	if (!ret && unlikely(test_tsk_thread_flag(current, TIF_IO_BITMAP)))
    220		io_bitmap_share(p);
    221
    222	return ret;
    223}
    224
    225static void pkru_flush_thread(void)
    226{
    227	/*
    228	 * If PKRU is enabled the default PKRU value has to be loaded into
    229	 * the hardware right here (similar to context switch).
    230	 */
    231	pkru_write_default();
    232}
    233
    234void flush_thread(void)
    235{
    236	struct task_struct *tsk = current;
    237
    238	flush_ptrace_hw_breakpoint(tsk);
    239	memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
    240
    241	fpu_flush_thread();
    242	pkru_flush_thread();
    243}
    244
    245void disable_TSC(void)
    246{
    247	preempt_disable();
    248	if (!test_and_set_thread_flag(TIF_NOTSC))
    249		/*
    250		 * Must flip the CPU state synchronously with
    251		 * TIF_NOTSC in the current running context.
    252		 */
    253		cr4_set_bits(X86_CR4_TSD);
    254	preempt_enable();
    255}
    256
    257static void enable_TSC(void)
    258{
    259	preempt_disable();
    260	if (test_and_clear_thread_flag(TIF_NOTSC))
    261		/*
    262		 * Must flip the CPU state synchronously with
    263		 * TIF_NOTSC in the current running context.
    264		 */
    265		cr4_clear_bits(X86_CR4_TSD);
    266	preempt_enable();
    267}
    268
    269int get_tsc_mode(unsigned long adr)
    270{
    271	unsigned int val;
    272
    273	if (test_thread_flag(TIF_NOTSC))
    274		val = PR_TSC_SIGSEGV;
    275	else
    276		val = PR_TSC_ENABLE;
    277
    278	return put_user(val, (unsigned int __user *)adr);
    279}
    280
    281int set_tsc_mode(unsigned int val)
    282{
    283	if (val == PR_TSC_SIGSEGV)
    284		disable_TSC();
    285	else if (val == PR_TSC_ENABLE)
    286		enable_TSC();
    287	else
    288		return -EINVAL;
    289
    290	return 0;
    291}
    292
    293DEFINE_PER_CPU(u64, msr_misc_features_shadow);
    294
    295static void set_cpuid_faulting(bool on)
    296{
    297	u64 msrval;
    298
    299	msrval = this_cpu_read(msr_misc_features_shadow);
    300	msrval &= ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT;
    301	msrval |= (on << MSR_MISC_FEATURES_ENABLES_CPUID_FAULT_BIT);
    302	this_cpu_write(msr_misc_features_shadow, msrval);
    303	wrmsrl(MSR_MISC_FEATURES_ENABLES, msrval);
    304}
    305
    306static void disable_cpuid(void)
    307{
    308	preempt_disable();
    309	if (!test_and_set_thread_flag(TIF_NOCPUID)) {
    310		/*
    311		 * Must flip the CPU state synchronously with
    312		 * TIF_NOCPUID in the current running context.
    313		 */
    314		set_cpuid_faulting(true);
    315	}
    316	preempt_enable();
    317}
    318
    319static void enable_cpuid(void)
    320{
    321	preempt_disable();
    322	if (test_and_clear_thread_flag(TIF_NOCPUID)) {
    323		/*
    324		 * Must flip the CPU state synchronously with
    325		 * TIF_NOCPUID in the current running context.
    326		 */
    327		set_cpuid_faulting(false);
    328	}
    329	preempt_enable();
    330}
    331
    332static int get_cpuid_mode(void)
    333{
    334	return !test_thread_flag(TIF_NOCPUID);
    335}
    336
    337static int set_cpuid_mode(unsigned long cpuid_enabled)
    338{
    339	if (!boot_cpu_has(X86_FEATURE_CPUID_FAULT))
    340		return -ENODEV;
    341
    342	if (cpuid_enabled)
    343		enable_cpuid();
    344	else
    345		disable_cpuid();
    346
    347	return 0;
    348}
    349
    350/*
    351 * Called immediately after a successful exec.
    352 */
    353void arch_setup_new_exec(void)
    354{
    355	/* If cpuid was previously disabled for this task, re-enable it. */
    356	if (test_thread_flag(TIF_NOCPUID))
    357		enable_cpuid();
    358
    359	/*
    360	 * Don't inherit TIF_SSBD across exec boundary when
    361	 * PR_SPEC_DISABLE_NOEXEC is used.
    362	 */
    363	if (test_thread_flag(TIF_SSBD) &&
    364	    task_spec_ssb_noexec(current)) {
    365		clear_thread_flag(TIF_SSBD);
    366		task_clear_spec_ssb_disable(current);
    367		task_clear_spec_ssb_noexec(current);
    368		speculation_ctrl_update(read_thread_flags());
    369	}
    370}
    371
    372#ifdef CONFIG_X86_IOPL_IOPERM
    373static inline void switch_to_bitmap(unsigned long tifp)
    374{
    375	/*
    376	 * Invalidate I/O bitmap if the previous task used it. This prevents
    377	 * any possible leakage of an active I/O bitmap.
    378	 *
    379	 * If the next task has an I/O bitmap it will handle it on exit to
    380	 * user mode.
    381	 */
    382	if (tifp & _TIF_IO_BITMAP)
    383		tss_invalidate_io_bitmap();
    384}
    385
    386static void tss_copy_io_bitmap(struct tss_struct *tss, struct io_bitmap *iobm)
    387{
    388	/*
    389	 * Copy at least the byte range of the incoming tasks bitmap which
    390	 * covers the permitted I/O ports.
    391	 *
    392	 * If the previous task which used an I/O bitmap had more bits
    393	 * permitted, then the copy needs to cover those as well so they
    394	 * get turned off.
    395	 */
    396	memcpy(tss->io_bitmap.bitmap, iobm->bitmap,
    397	       max(tss->io_bitmap.prev_max, iobm->max));
    398
    399	/*
    400	 * Store the new max and the sequence number of this bitmap
    401	 * and a pointer to the bitmap itself.
    402	 */
    403	tss->io_bitmap.prev_max = iobm->max;
    404	tss->io_bitmap.prev_sequence = iobm->sequence;
    405}
    406
    407/**
    408 * native_tss_update_io_bitmap - Update I/O bitmap before exiting to user mode
    409 */
    410void native_tss_update_io_bitmap(void)
    411{
    412	struct tss_struct *tss = this_cpu_ptr(&cpu_tss_rw);
    413	struct thread_struct *t = &current->thread;
    414	u16 *base = &tss->x86_tss.io_bitmap_base;
    415
    416	if (!test_thread_flag(TIF_IO_BITMAP)) {
    417		native_tss_invalidate_io_bitmap();
    418		return;
    419	}
    420
    421	if (IS_ENABLED(CONFIG_X86_IOPL_IOPERM) && t->iopl_emul == 3) {
    422		*base = IO_BITMAP_OFFSET_VALID_ALL;
    423	} else {
    424		struct io_bitmap *iobm = t->io_bitmap;
    425
    426		/*
    427		 * Only copy bitmap data when the sequence number differs. The
    428		 * update time is accounted to the incoming task.
    429		 */
    430		if (tss->io_bitmap.prev_sequence != iobm->sequence)
    431			tss_copy_io_bitmap(tss, iobm);
    432
    433		/* Enable the bitmap */
    434		*base = IO_BITMAP_OFFSET_VALID_MAP;
    435	}
    436
    437	/*
    438	 * Make sure that the TSS limit is covering the IO bitmap. It might have
    439	 * been cut down by a VMEXIT to 0x67 which would cause a subsequent I/O
    440	 * access from user space to trigger a #GP because tbe bitmap is outside
    441	 * the TSS limit.
    442	 */
    443	refresh_tss_limit();
    444}
    445#else /* CONFIG_X86_IOPL_IOPERM */
    446static inline void switch_to_bitmap(unsigned long tifp) { }
    447#endif
    448
    449#ifdef CONFIG_SMP
    450
    451struct ssb_state {
    452	struct ssb_state	*shared_state;
    453	raw_spinlock_t		lock;
    454	unsigned int		disable_state;
    455	unsigned long		local_state;
    456};
    457
    458#define LSTATE_SSB	0
    459
    460static DEFINE_PER_CPU(struct ssb_state, ssb_state);
    461
    462void speculative_store_bypass_ht_init(void)
    463{
    464	struct ssb_state *st = this_cpu_ptr(&ssb_state);
    465	unsigned int this_cpu = smp_processor_id();
    466	unsigned int cpu;
    467
    468	st->local_state = 0;
    469
    470	/*
    471	 * Shared state setup happens once on the first bringup
    472	 * of the CPU. It's not destroyed on CPU hotunplug.
    473	 */
    474	if (st->shared_state)
    475		return;
    476
    477	raw_spin_lock_init(&st->lock);
    478
    479	/*
    480	 * Go over HT siblings and check whether one of them has set up the
    481	 * shared state pointer already.
    482	 */
    483	for_each_cpu(cpu, topology_sibling_cpumask(this_cpu)) {
    484		if (cpu == this_cpu)
    485			continue;
    486
    487		if (!per_cpu(ssb_state, cpu).shared_state)
    488			continue;
    489
    490		/* Link it to the state of the sibling: */
    491		st->shared_state = per_cpu(ssb_state, cpu).shared_state;
    492		return;
    493	}
    494
    495	/*
    496	 * First HT sibling to come up on the core.  Link shared state of
    497	 * the first HT sibling to itself. The siblings on the same core
    498	 * which come up later will see the shared state pointer and link
    499	 * themselves to the state of this CPU.
    500	 */
    501	st->shared_state = st;
    502}
    503
    504/*
    505 * Logic is: First HT sibling enables SSBD for both siblings in the core
    506 * and last sibling to disable it, disables it for the whole core. This how
    507 * MSR_SPEC_CTRL works in "hardware":
    508 *
    509 *  CORE_SPEC_CTRL = THREAD0_SPEC_CTRL | THREAD1_SPEC_CTRL
    510 */
    511static __always_inline void amd_set_core_ssb_state(unsigned long tifn)
    512{
    513	struct ssb_state *st = this_cpu_ptr(&ssb_state);
    514	u64 msr = x86_amd_ls_cfg_base;
    515
    516	if (!static_cpu_has(X86_FEATURE_ZEN)) {
    517		msr |= ssbd_tif_to_amd_ls_cfg(tifn);
    518		wrmsrl(MSR_AMD64_LS_CFG, msr);
    519		return;
    520	}
    521
    522	if (tifn & _TIF_SSBD) {
    523		/*
    524		 * Since this can race with prctl(), block reentry on the
    525		 * same CPU.
    526		 */
    527		if (__test_and_set_bit(LSTATE_SSB, &st->local_state))
    528			return;
    529
    530		msr |= x86_amd_ls_cfg_ssbd_mask;
    531
    532		raw_spin_lock(&st->shared_state->lock);
    533		/* First sibling enables SSBD: */
    534		if (!st->shared_state->disable_state)
    535			wrmsrl(MSR_AMD64_LS_CFG, msr);
    536		st->shared_state->disable_state++;
    537		raw_spin_unlock(&st->shared_state->lock);
    538	} else {
    539		if (!__test_and_clear_bit(LSTATE_SSB, &st->local_state))
    540			return;
    541
    542		raw_spin_lock(&st->shared_state->lock);
    543		st->shared_state->disable_state--;
    544		if (!st->shared_state->disable_state)
    545			wrmsrl(MSR_AMD64_LS_CFG, msr);
    546		raw_spin_unlock(&st->shared_state->lock);
    547	}
    548}
    549#else
    550static __always_inline void amd_set_core_ssb_state(unsigned long tifn)
    551{
    552	u64 msr = x86_amd_ls_cfg_base | ssbd_tif_to_amd_ls_cfg(tifn);
    553
    554	wrmsrl(MSR_AMD64_LS_CFG, msr);
    555}
    556#endif
    557
    558static __always_inline void amd_set_ssb_virt_state(unsigned long tifn)
    559{
    560	/*
    561	 * SSBD has the same definition in SPEC_CTRL and VIRT_SPEC_CTRL,
    562	 * so ssbd_tif_to_spec_ctrl() just works.
    563	 */
    564	wrmsrl(MSR_AMD64_VIRT_SPEC_CTRL, ssbd_tif_to_spec_ctrl(tifn));
    565}
    566
    567/*
    568 * Update the MSRs managing speculation control, during context switch.
    569 *
    570 * tifp: Previous task's thread flags
    571 * tifn: Next task's thread flags
    572 */
    573static __always_inline void __speculation_ctrl_update(unsigned long tifp,
    574						      unsigned long tifn)
    575{
    576	unsigned long tif_diff = tifp ^ tifn;
    577	u64 msr = x86_spec_ctrl_base;
    578	bool updmsr = false;
    579
    580	lockdep_assert_irqs_disabled();
    581
    582	/* Handle change of TIF_SSBD depending on the mitigation method. */
    583	if (static_cpu_has(X86_FEATURE_VIRT_SSBD)) {
    584		if (tif_diff & _TIF_SSBD)
    585			amd_set_ssb_virt_state(tifn);
    586	} else if (static_cpu_has(X86_FEATURE_LS_CFG_SSBD)) {
    587		if (tif_diff & _TIF_SSBD)
    588			amd_set_core_ssb_state(tifn);
    589	} else if (static_cpu_has(X86_FEATURE_SPEC_CTRL_SSBD) ||
    590		   static_cpu_has(X86_FEATURE_AMD_SSBD)) {
    591		updmsr |= !!(tif_diff & _TIF_SSBD);
    592		msr |= ssbd_tif_to_spec_ctrl(tifn);
    593	}
    594
    595	/* Only evaluate TIF_SPEC_IB if conditional STIBP is enabled. */
    596	if (IS_ENABLED(CONFIG_SMP) &&
    597	    static_branch_unlikely(&switch_to_cond_stibp)) {
    598		updmsr |= !!(tif_diff & _TIF_SPEC_IB);
    599		msr |= stibp_tif_to_spec_ctrl(tifn);
    600	}
    601
    602	if (updmsr)
    603		wrmsrl(MSR_IA32_SPEC_CTRL, msr);
    604}
    605
    606static unsigned long speculation_ctrl_update_tif(struct task_struct *tsk)
    607{
    608	if (test_and_clear_tsk_thread_flag(tsk, TIF_SPEC_FORCE_UPDATE)) {
    609		if (task_spec_ssb_disable(tsk))
    610			set_tsk_thread_flag(tsk, TIF_SSBD);
    611		else
    612			clear_tsk_thread_flag(tsk, TIF_SSBD);
    613
    614		if (task_spec_ib_disable(tsk))
    615			set_tsk_thread_flag(tsk, TIF_SPEC_IB);
    616		else
    617			clear_tsk_thread_flag(tsk, TIF_SPEC_IB);
    618	}
    619	/* Return the updated threadinfo flags*/
    620	return read_task_thread_flags(tsk);
    621}
    622
    623void speculation_ctrl_update(unsigned long tif)
    624{
    625	unsigned long flags;
    626
    627	/* Forced update. Make sure all relevant TIF flags are different */
    628	local_irq_save(flags);
    629	__speculation_ctrl_update(~tif, tif);
    630	local_irq_restore(flags);
    631}
    632
    633/* Called from seccomp/prctl update */
    634void speculation_ctrl_update_current(void)
    635{
    636	preempt_disable();
    637	speculation_ctrl_update(speculation_ctrl_update_tif(current));
    638	preempt_enable();
    639}
    640
    641static inline void cr4_toggle_bits_irqsoff(unsigned long mask)
    642{
    643	unsigned long newval, cr4 = this_cpu_read(cpu_tlbstate.cr4);
    644
    645	newval = cr4 ^ mask;
    646	if (newval != cr4) {
    647		this_cpu_write(cpu_tlbstate.cr4, newval);
    648		__write_cr4(newval);
    649	}
    650}
    651
    652void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p)
    653{
    654	unsigned long tifp, tifn;
    655
    656	tifn = read_task_thread_flags(next_p);
    657	tifp = read_task_thread_flags(prev_p);
    658
    659	switch_to_bitmap(tifp);
    660
    661	propagate_user_return_notify(prev_p, next_p);
    662
    663	if ((tifp & _TIF_BLOCKSTEP || tifn & _TIF_BLOCKSTEP) &&
    664	    arch_has_block_step()) {
    665		unsigned long debugctl, msk;
    666
    667		rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
    668		debugctl &= ~DEBUGCTLMSR_BTF;
    669		msk = tifn & _TIF_BLOCKSTEP;
    670		debugctl |= (msk >> TIF_BLOCKSTEP) << DEBUGCTLMSR_BTF_SHIFT;
    671		wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
    672	}
    673
    674	if ((tifp ^ tifn) & _TIF_NOTSC)
    675		cr4_toggle_bits_irqsoff(X86_CR4_TSD);
    676
    677	if ((tifp ^ tifn) & _TIF_NOCPUID)
    678		set_cpuid_faulting(!!(tifn & _TIF_NOCPUID));
    679
    680	if (likely(!((tifp | tifn) & _TIF_SPEC_FORCE_UPDATE))) {
    681		__speculation_ctrl_update(tifp, tifn);
    682	} else {
    683		speculation_ctrl_update_tif(prev_p);
    684		tifn = speculation_ctrl_update_tif(next_p);
    685
    686		/* Enforce MSR update to ensure consistent state */
    687		__speculation_ctrl_update(~tifn, tifn);
    688	}
    689}
    690
    691/*
    692 * Idle related variables and functions
    693 */
    694unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE;
    695EXPORT_SYMBOL(boot_option_idle_override);
    696
    697static void (*x86_idle)(void);
    698
    699#ifndef CONFIG_SMP
    700static inline void play_dead(void)
    701{
    702	BUG();
    703}
    704#endif
    705
    706void arch_cpu_idle_enter(void)
    707{
    708	tsc_verify_tsc_adjust(false);
    709	local_touch_nmi();
    710}
    711
    712void arch_cpu_idle_dead(void)
    713{
    714	play_dead();
    715}
    716
    717/*
    718 * Called from the generic idle code.
    719 */
    720void arch_cpu_idle(void)
    721{
    722	x86_idle();
    723}
    724
    725/*
    726 * We use this if we don't have any better idle routine..
    727 */
    728void __cpuidle default_idle(void)
    729{
    730	raw_safe_halt();
    731}
    732#if defined(CONFIG_APM_MODULE) || defined(CONFIG_HALTPOLL_CPUIDLE_MODULE)
    733EXPORT_SYMBOL(default_idle);
    734#endif
    735
    736#ifdef CONFIG_XEN
    737bool xen_set_default_idle(void)
    738{
    739	bool ret = !!x86_idle;
    740
    741	x86_idle = default_idle;
    742
    743	return ret;
    744}
    745#endif
    746
    747void __noreturn stop_this_cpu(void *dummy)
    748{
    749	local_irq_disable();
    750	/*
    751	 * Remove this CPU:
    752	 */
    753	set_cpu_online(smp_processor_id(), false);
    754	disable_local_APIC();
    755	mcheck_cpu_clear(this_cpu_ptr(&cpu_info));
    756
    757	/*
    758	 * Use wbinvd on processors that support SME. This provides support
    759	 * for performing a successful kexec when going from SME inactive
    760	 * to SME active (or vice-versa). The cache must be cleared so that
    761	 * if there are entries with the same physical address, both with and
    762	 * without the encryption bit, they don't race each other when flushed
    763	 * and potentially end up with the wrong entry being committed to
    764	 * memory.
    765	 *
    766	 * Test the CPUID bit directly because the machine might've cleared
    767	 * X86_FEATURE_SME due to cmdline options.
    768	 */
    769	if (cpuid_eax(0x8000001f) & BIT(0))
    770		native_wbinvd();
    771	for (;;) {
    772		/*
    773		 * Use native_halt() so that memory contents don't change
    774		 * (stack usage and variables) after possibly issuing the
    775		 * native_wbinvd() above.
    776		 */
    777		native_halt();
    778	}
    779}
    780
    781/*
    782 * AMD Erratum 400 aware idle routine. We handle it the same way as C3 power
    783 * states (local apic timer and TSC stop).
    784 *
    785 * XXX this function is completely buggered vs RCU and tracing.
    786 */
    787static void amd_e400_idle(void)
    788{
    789	/*
    790	 * We cannot use static_cpu_has_bug() here because X86_BUG_AMD_APIC_C1E
    791	 * gets set after static_cpu_has() places have been converted via
    792	 * alternatives.
    793	 */
    794	if (!boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E)) {
    795		default_idle();
    796		return;
    797	}
    798
    799	tick_broadcast_enter();
    800
    801	default_idle();
    802
    803	/*
    804	 * The switch back from broadcast mode needs to be called with
    805	 * interrupts disabled.
    806	 */
    807	raw_local_irq_disable();
    808	tick_broadcast_exit();
    809	raw_local_irq_enable();
    810}
    811
    812/*
    813 * Intel Core2 and older machines prefer MWAIT over HALT for C1.
    814 * We can't rely on cpuidle installing MWAIT, because it will not load
    815 * on systems that support only C1 -- so the boot default must be MWAIT.
    816 *
    817 * Some AMD machines are the opposite, they depend on using HALT.
    818 *
    819 * So for default C1, which is used during boot until cpuidle loads,
    820 * use MWAIT-C1 on Intel HW that has it, else use HALT.
    821 */
    822static int prefer_mwait_c1_over_halt(const struct cpuinfo_x86 *c)
    823{
    824	if (c->x86_vendor != X86_VENDOR_INTEL)
    825		return 0;
    826
    827	if (!cpu_has(c, X86_FEATURE_MWAIT) || boot_cpu_has_bug(X86_BUG_MONITOR))
    828		return 0;
    829
    830	return 1;
    831}
    832
    833/*
    834 * MONITOR/MWAIT with no hints, used for default C1 state. This invokes MWAIT
    835 * with interrupts enabled and no flags, which is backwards compatible with the
    836 * original MWAIT implementation.
    837 */
    838static __cpuidle void mwait_idle(void)
    839{
    840	if (!current_set_polling_and_test()) {
    841		if (this_cpu_has(X86_BUG_CLFLUSH_MONITOR)) {
    842			mb(); /* quirk */
    843			clflush((void *)&current_thread_info()->flags);
    844			mb(); /* quirk */
    845		}
    846
    847		__monitor((void *)&current_thread_info()->flags, 0, 0);
    848		if (!need_resched())
    849			__sti_mwait(0, 0);
    850		else
    851			raw_local_irq_enable();
    852	} else {
    853		raw_local_irq_enable();
    854	}
    855	__current_clr_polling();
    856}
    857
    858void select_idle_routine(const struct cpuinfo_x86 *c)
    859{
    860#ifdef CONFIG_SMP
    861	if (boot_option_idle_override == IDLE_POLL && smp_num_siblings > 1)
    862		pr_warn_once("WARNING: polling idle and HT enabled, performance may degrade\n");
    863#endif
    864	if (x86_idle || boot_option_idle_override == IDLE_POLL)
    865		return;
    866
    867	if (boot_cpu_has_bug(X86_BUG_AMD_E400)) {
    868		pr_info("using AMD E400 aware idle routine\n");
    869		x86_idle = amd_e400_idle;
    870	} else if (prefer_mwait_c1_over_halt(c)) {
    871		pr_info("using mwait in idle threads\n");
    872		x86_idle = mwait_idle;
    873	} else if (cpu_feature_enabled(X86_FEATURE_TDX_GUEST)) {
    874		pr_info("using TDX aware idle routine\n");
    875		x86_idle = tdx_safe_halt;
    876	} else
    877		x86_idle = default_idle;
    878}
    879
    880void amd_e400_c1e_apic_setup(void)
    881{
    882	if (boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E)) {
    883		pr_info("Switch to broadcast mode on CPU%d\n", smp_processor_id());
    884		local_irq_disable();
    885		tick_broadcast_force();
    886		local_irq_enable();
    887	}
    888}
    889
    890void __init arch_post_acpi_subsys_init(void)
    891{
    892	u32 lo, hi;
    893
    894	if (!boot_cpu_has_bug(X86_BUG_AMD_E400))
    895		return;
    896
    897	/*
    898	 * AMD E400 detection needs to happen after ACPI has been enabled. If
    899	 * the machine is affected K8_INTP_C1E_ACTIVE_MASK bits are set in
    900	 * MSR_K8_INT_PENDING_MSG.
    901	 */
    902	rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi);
    903	if (!(lo & K8_INTP_C1E_ACTIVE_MASK))
    904		return;
    905
    906	boot_cpu_set_bug(X86_BUG_AMD_APIC_C1E);
    907
    908	if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
    909		mark_tsc_unstable("TSC halt in AMD C1E");
    910	pr_info("System has AMD C1E enabled\n");
    911}
    912
    913static int __init idle_setup(char *str)
    914{
    915	if (!str)
    916		return -EINVAL;
    917
    918	if (!strcmp(str, "poll")) {
    919		pr_info("using polling idle threads\n");
    920		boot_option_idle_override = IDLE_POLL;
    921		cpu_idle_poll_ctrl(true);
    922	} else if (!strcmp(str, "halt")) {
    923		/*
    924		 * When the boot option of idle=halt is added, halt is
    925		 * forced to be used for CPU idle. In such case CPU C2/C3
    926		 * won't be used again.
    927		 * To continue to load the CPU idle driver, don't touch
    928		 * the boot_option_idle_override.
    929		 */
    930		x86_idle = default_idle;
    931		boot_option_idle_override = IDLE_HALT;
    932	} else if (!strcmp(str, "nomwait")) {
    933		/*
    934		 * If the boot option of "idle=nomwait" is added,
    935		 * it means that mwait will be disabled for CPU C2/C3
    936		 * states. In such case it won't touch the variable
    937		 * of boot_option_idle_override.
    938		 */
    939		boot_option_idle_override = IDLE_NOMWAIT;
    940	} else
    941		return -1;
    942
    943	return 0;
    944}
    945early_param("idle", idle_setup);
    946
    947unsigned long arch_align_stack(unsigned long sp)
    948{
    949	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
    950		sp -= get_random_int() % 8192;
    951	return sp & ~0xf;
    952}
    953
    954unsigned long arch_randomize_brk(struct mm_struct *mm)
    955{
    956	return randomize_page(mm->brk, 0x02000000);
    957}
    958
    959/*
    960 * Called from fs/proc with a reference on @p to find the function
    961 * which called into schedule(). This needs to be done carefully
    962 * because the task might wake up and we might look at a stack
    963 * changing under us.
    964 */
    965unsigned long __get_wchan(struct task_struct *p)
    966{
    967	struct unwind_state state;
    968	unsigned long addr = 0;
    969
    970	if (!try_get_task_stack(p))
    971		return 0;
    972
    973	for (unwind_start(&state, p, NULL, NULL); !unwind_done(&state);
    974	     unwind_next_frame(&state)) {
    975		addr = unwind_get_return_address(&state);
    976		if (!addr)
    977			break;
    978		if (in_sched_functions(addr))
    979			continue;
    980		break;
    981	}
    982
    983	put_task_stack(p);
    984
    985	return addr;
    986}
    987
    988long do_arch_prctl_common(int option, unsigned long arg2)
    989{
    990	switch (option) {
    991	case ARCH_GET_CPUID:
    992		return get_cpuid_mode();
    993	case ARCH_SET_CPUID:
    994		return set_cpuid_mode(arg2);
    995	case ARCH_GET_XCOMP_SUPP:
    996	case ARCH_GET_XCOMP_PERM:
    997	case ARCH_REQ_XCOMP_PERM:
    998	case ARCH_GET_XCOMP_GUEST_PERM:
    999	case ARCH_REQ_XCOMP_GUEST_PERM:
   1000		return fpu_xstate_prctl(option, arg2);
   1001	}
   1002
   1003	return -EINVAL;
   1004}