cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

process_32.c (6210B)


      1/*
      2 *  Copyright (C) 1995  Linus Torvalds
      3 *
      4 *  Pentium III FXSR, SSE support
      5 *	Gareth Hughes <gareth@valinux.com>, May 2000
      6 */
      7
      8/*
      9 * This file handles the architecture-dependent parts of process handling..
     10 */
     11
     12#include <linux/cpu.h>
     13#include <linux/errno.h>
     14#include <linux/sched.h>
     15#include <linux/sched/task.h>
     16#include <linux/sched/task_stack.h>
     17#include <linux/fs.h>
     18#include <linux/kernel.h>
     19#include <linux/mm.h>
     20#include <linux/elfcore.h>
     21#include <linux/smp.h>
     22#include <linux/stddef.h>
     23#include <linux/slab.h>
     24#include <linux/vmalloc.h>
     25#include <linux/user.h>
     26#include <linux/interrupt.h>
     27#include <linux/delay.h>
     28#include <linux/reboot.h>
     29#include <linux/mc146818rtc.h>
     30#include <linux/export.h>
     31#include <linux/kallsyms.h>
     32#include <linux/ptrace.h>
     33#include <linux/personality.h>
     34#include <linux/percpu.h>
     35#include <linux/prctl.h>
     36#include <linux/ftrace.h>
     37#include <linux/uaccess.h>
     38#include <linux/io.h>
     39#include <linux/kdebug.h>
     40#include <linux/syscalls.h>
     41
     42#include <asm/ldt.h>
     43#include <asm/processor.h>
     44#include <asm/fpu/sched.h>
     45#include <asm/desc.h>
     46
     47#include <linux/err.h>
     48
     49#include <asm/tlbflush.h>
     50#include <asm/cpu.h>
     51#include <asm/debugreg.h>
     52#include <asm/switch_to.h>
     53#include <asm/vm86.h>
     54#include <asm/resctrl.h>
     55#include <asm/proto.h>
     56
     57#include "process.h"
     58
     59void __show_regs(struct pt_regs *regs, enum show_regs_mode mode,
     60		 const char *log_lvl)
     61{
     62	unsigned long cr0 = 0L, cr2 = 0L, cr3 = 0L, cr4 = 0L;
     63	unsigned long d0, d1, d2, d3, d6, d7;
     64	unsigned short gs;
     65
     66	savesegment(gs, gs);
     67
     68	show_ip(regs, log_lvl);
     69
     70	printk("%sEAX: %08lx EBX: %08lx ECX: %08lx EDX: %08lx\n",
     71		log_lvl, regs->ax, regs->bx, regs->cx, regs->dx);
     72	printk("%sESI: %08lx EDI: %08lx EBP: %08lx ESP: %08lx\n",
     73		log_lvl, regs->si, regs->di, regs->bp, regs->sp);
     74	printk("%sDS: %04x ES: %04x FS: %04x GS: %04x SS: %04x EFLAGS: %08lx\n",
     75	       log_lvl, (u16)regs->ds, (u16)regs->es, (u16)regs->fs, gs, regs->ss, regs->flags);
     76
     77	if (mode != SHOW_REGS_ALL)
     78		return;
     79
     80	cr0 = read_cr0();
     81	cr2 = read_cr2();
     82	cr3 = __read_cr3();
     83	cr4 = __read_cr4();
     84	printk("%sCR0: %08lx CR2: %08lx CR3: %08lx CR4: %08lx\n",
     85		log_lvl, cr0, cr2, cr3, cr4);
     86
     87	get_debugreg(d0, 0);
     88	get_debugreg(d1, 1);
     89	get_debugreg(d2, 2);
     90	get_debugreg(d3, 3);
     91	get_debugreg(d6, 6);
     92	get_debugreg(d7, 7);
     93
     94	/* Only print out debug registers if they are in their non-default state. */
     95	if ((d0 == 0) && (d1 == 0) && (d2 == 0) && (d3 == 0) &&
     96	    (d6 == DR6_RESERVED) && (d7 == 0x400))
     97		return;
     98
     99	printk("%sDR0: %08lx DR1: %08lx DR2: %08lx DR3: %08lx\n",
    100		log_lvl, d0, d1, d2, d3);
    101	printk("%sDR6: %08lx DR7: %08lx\n",
    102		log_lvl, d6, d7);
    103}
    104
    105void release_thread(struct task_struct *dead_task)
    106{
    107	BUG_ON(dead_task->mm);
    108	release_vm86_irqs(dead_task);
    109}
    110
    111void
    112start_thread(struct pt_regs *regs, unsigned long new_ip, unsigned long new_sp)
    113{
    114	loadsegment(gs, 0);
    115	regs->fs		= 0;
    116	regs->ds		= __USER_DS;
    117	regs->es		= __USER_DS;
    118	regs->ss		= __USER_DS;
    119	regs->cs		= __USER_CS;
    120	regs->ip		= new_ip;
    121	regs->sp		= new_sp;
    122	regs->flags		= X86_EFLAGS_IF;
    123}
    124EXPORT_SYMBOL_GPL(start_thread);
    125
    126
    127/*
    128 *	switch_to(x,y) should switch tasks from x to y.
    129 *
    130 * We fsave/fwait so that an exception goes off at the right time
    131 * (as a call from the fsave or fwait in effect) rather than to
    132 * the wrong process. Lazy FP saving no longer makes any sense
    133 * with modern CPU's, and this simplifies a lot of things (SMP
    134 * and UP become the same).
    135 *
    136 * NOTE! We used to use the x86 hardware context switching. The
    137 * reason for not using it any more becomes apparent when you
    138 * try to recover gracefully from saved state that is no longer
    139 * valid (stale segment register values in particular). With the
    140 * hardware task-switch, there is no way to fix up bad state in
    141 * a reasonable manner.
    142 *
    143 * The fact that Intel documents the hardware task-switching to
    144 * be slow is a fairly red herring - this code is not noticeably
    145 * faster. However, there _is_ some room for improvement here,
    146 * so the performance issues may eventually be a valid point.
    147 * More important, however, is the fact that this allows us much
    148 * more flexibility.
    149 *
    150 * The return value (in %ax) will be the "prev" task after
    151 * the task-switch, and shows up in ret_from_fork in entry.S,
    152 * for example.
    153 */
    154__visible __notrace_funcgraph struct task_struct *
    155__switch_to(struct task_struct *prev_p, struct task_struct *next_p)
    156{
    157	struct thread_struct *prev = &prev_p->thread,
    158			     *next = &next_p->thread;
    159	struct fpu *prev_fpu = &prev->fpu;
    160	int cpu = smp_processor_id();
    161
    162	/* never put a printk in __switch_to... printk() calls wake_up*() indirectly */
    163
    164	if (!test_thread_flag(TIF_NEED_FPU_LOAD))
    165		switch_fpu_prepare(prev_fpu, cpu);
    166
    167	/*
    168	 * Save away %gs. No need to save %fs, as it was saved on the
    169	 * stack on entry.  No need to save %es and %ds, as those are
    170	 * always kernel segments while inside the kernel.  Doing this
    171	 * before setting the new TLS descriptors avoids the situation
    172	 * where we temporarily have non-reloadable segments in %fs
    173	 * and %gs.  This could be an issue if the NMI handler ever
    174	 * used %fs or %gs (it does not today), or if the kernel is
    175	 * running inside of a hypervisor layer.
    176	 */
    177	savesegment(gs, prev->gs);
    178
    179	/*
    180	 * Load the per-thread Thread-Local Storage descriptor.
    181	 */
    182	load_TLS(next, cpu);
    183
    184	switch_to_extra(prev_p, next_p);
    185
    186	/*
    187	 * Leave lazy mode, flushing any hypercalls made here.
    188	 * This must be done before restoring TLS segments so
    189	 * the GDT and LDT are properly updated.
    190	 */
    191	arch_end_context_switch(next_p);
    192
    193	/*
    194	 * Reload esp0 and cpu_current_top_of_stack.  This changes
    195	 * current_thread_info().  Refresh the SYSENTER configuration in
    196	 * case prev or next is vm86.
    197	 */
    198	update_task_stack(next_p);
    199	refresh_sysenter_cs(next);
    200	this_cpu_write(cpu_current_top_of_stack,
    201		       (unsigned long)task_stack_page(next_p) +
    202		       THREAD_SIZE);
    203
    204	/*
    205	 * Restore %gs if needed (which is common)
    206	 */
    207	if (prev->gs | next->gs)
    208		loadsegment(gs, next->gs);
    209
    210	this_cpu_write(current_task, next_p);
    211
    212	switch_fpu_finish();
    213
    214	/* Load the Intel cache allocation PQR MSR. */
    215	resctrl_sched_in();
    216
    217	return prev_p;
    218}
    219
    220SYSCALL_DEFINE2(arch_prctl, int, option, unsigned long, arg2)
    221{
    222	return do_arch_prctl_common(option, arg2);
    223}