traps.c (40027B)
1/* 2 * Copyright (C) 1991, 1992 Linus Torvalds 3 * Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs 4 * 5 * Pentium III FXSR, SSE support 6 * Gareth Hughes <gareth@valinux.com>, May 2000 7 */ 8 9/* 10 * Handle hardware traps and faults. 11 */ 12 13#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 14 15#include <linux/context_tracking.h> 16#include <linux/interrupt.h> 17#include <linux/kallsyms.h> 18#include <linux/spinlock.h> 19#include <linux/kprobes.h> 20#include <linux/uaccess.h> 21#include <linux/kdebug.h> 22#include <linux/kgdb.h> 23#include <linux/kernel.h> 24#include <linux/export.h> 25#include <linux/ptrace.h> 26#include <linux/uprobes.h> 27#include <linux/string.h> 28#include <linux/delay.h> 29#include <linux/errno.h> 30#include <linux/kexec.h> 31#include <linux/sched.h> 32#include <linux/sched/task_stack.h> 33#include <linux/timer.h> 34#include <linux/init.h> 35#include <linux/bug.h> 36#include <linux/nmi.h> 37#include <linux/mm.h> 38#include <linux/smp.h> 39#include <linux/io.h> 40#include <linux/hardirq.h> 41#include <linux/atomic.h> 42#include <linux/ioasid.h> 43 44#include <asm/stacktrace.h> 45#include <asm/processor.h> 46#include <asm/debugreg.h> 47#include <asm/realmode.h> 48#include <asm/text-patching.h> 49#include <asm/ftrace.h> 50#include <asm/traps.h> 51#include <asm/desc.h> 52#include <asm/fpu/api.h> 53#include <asm/cpu.h> 54#include <asm/cpu_entry_area.h> 55#include <asm/mce.h> 56#include <asm/fixmap.h> 57#include <asm/mach_traps.h> 58#include <asm/alternative.h> 59#include <asm/fpu/xstate.h> 60#include <asm/vm86.h> 61#include <asm/umip.h> 62#include <asm/insn.h> 63#include <asm/insn-eval.h> 64#include <asm/vdso.h> 65#include <asm/tdx.h> 66 67#ifdef CONFIG_X86_64 68#include <asm/x86_init.h> 69#include <asm/proto.h> 70#else 71#include <asm/processor-flags.h> 72#include <asm/setup.h> 73#include <asm/proto.h> 74#endif 75 76DECLARE_BITMAP(system_vectors, NR_VECTORS); 77 78static inline void cond_local_irq_enable(struct pt_regs *regs) 79{ 80 if (regs->flags & X86_EFLAGS_IF) 81 local_irq_enable(); 82} 83 84static inline void cond_local_irq_disable(struct pt_regs *regs) 85{ 86 if (regs->flags & X86_EFLAGS_IF) 87 local_irq_disable(); 88} 89 90__always_inline int is_valid_bugaddr(unsigned long addr) 91{ 92 if (addr < TASK_SIZE_MAX) 93 return 0; 94 95 /* 96 * We got #UD, if the text isn't readable we'd have gotten 97 * a different exception. 98 */ 99 return *(unsigned short *)addr == INSN_UD2; 100} 101 102static nokprobe_inline int 103do_trap_no_signal(struct task_struct *tsk, int trapnr, const char *str, 104 struct pt_regs *regs, long error_code) 105{ 106 if (v8086_mode(regs)) { 107 /* 108 * Traps 0, 1, 3, 4, and 5 should be forwarded to vm86. 109 * On nmi (interrupt 2), do_trap should not be called. 110 */ 111 if (trapnr < X86_TRAP_UD) { 112 if (!handle_vm86_trap((struct kernel_vm86_regs *) regs, 113 error_code, trapnr)) 114 return 0; 115 } 116 } else if (!user_mode(regs)) { 117 if (fixup_exception(regs, trapnr, error_code, 0)) 118 return 0; 119 120 tsk->thread.error_code = error_code; 121 tsk->thread.trap_nr = trapnr; 122 die(str, regs, error_code); 123 } else { 124 if (fixup_vdso_exception(regs, trapnr, error_code, 0)) 125 return 0; 126 } 127 128 /* 129 * We want error_code and trap_nr set for userspace faults and 130 * kernelspace faults which result in die(), but not 131 * kernelspace faults which are fixed up. die() gives the 132 * process no chance to handle the signal and notice the 133 * kernel fault information, so that won't result in polluting 134 * the information about previously queued, but not yet 135 * delivered, faults. See also exc_general_protection below. 136 */ 137 tsk->thread.error_code = error_code; 138 tsk->thread.trap_nr = trapnr; 139 140 return -1; 141} 142 143static void show_signal(struct task_struct *tsk, int signr, 144 const char *type, const char *desc, 145 struct pt_regs *regs, long error_code) 146{ 147 if (show_unhandled_signals && unhandled_signal(tsk, signr) && 148 printk_ratelimit()) { 149 pr_info("%s[%d] %s%s ip:%lx sp:%lx error:%lx", 150 tsk->comm, task_pid_nr(tsk), type, desc, 151 regs->ip, regs->sp, error_code); 152 print_vma_addr(KERN_CONT " in ", regs->ip); 153 pr_cont("\n"); 154 } 155} 156 157static void 158do_trap(int trapnr, int signr, char *str, struct pt_regs *regs, 159 long error_code, int sicode, void __user *addr) 160{ 161 struct task_struct *tsk = current; 162 163 if (!do_trap_no_signal(tsk, trapnr, str, regs, error_code)) 164 return; 165 166 show_signal(tsk, signr, "trap ", str, regs, error_code); 167 168 if (!sicode) 169 force_sig(signr); 170 else 171 force_sig_fault(signr, sicode, addr); 172} 173NOKPROBE_SYMBOL(do_trap); 174 175static void do_error_trap(struct pt_regs *regs, long error_code, char *str, 176 unsigned long trapnr, int signr, int sicode, void __user *addr) 177{ 178 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU"); 179 180 if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) != 181 NOTIFY_STOP) { 182 cond_local_irq_enable(regs); 183 do_trap(trapnr, signr, str, regs, error_code, sicode, addr); 184 cond_local_irq_disable(regs); 185 } 186} 187 188/* 189 * Posix requires to provide the address of the faulting instruction for 190 * SIGILL (#UD) and SIGFPE (#DE) in the si_addr member of siginfo_t. 191 * 192 * This address is usually regs->ip, but when an uprobe moved the code out 193 * of line then regs->ip points to the XOL code which would confuse 194 * anything which analyzes the fault address vs. the unmodified binary. If 195 * a trap happened in XOL code then uprobe maps regs->ip back to the 196 * original instruction address. 197 */ 198static __always_inline void __user *error_get_trap_addr(struct pt_regs *regs) 199{ 200 return (void __user *)uprobe_get_trap_addr(regs); 201} 202 203DEFINE_IDTENTRY(exc_divide_error) 204{ 205 do_error_trap(regs, 0, "divide error", X86_TRAP_DE, SIGFPE, 206 FPE_INTDIV, error_get_trap_addr(regs)); 207} 208 209DEFINE_IDTENTRY(exc_overflow) 210{ 211 do_error_trap(regs, 0, "overflow", X86_TRAP_OF, SIGSEGV, 0, NULL); 212} 213 214#ifdef CONFIG_X86_KERNEL_IBT 215 216static __ro_after_init bool ibt_fatal = true; 217 218extern void ibt_selftest_ip(void); /* code label defined in asm below */ 219 220enum cp_error_code { 221 CP_EC = (1 << 15) - 1, 222 223 CP_RET = 1, 224 CP_IRET = 2, 225 CP_ENDBR = 3, 226 CP_RSTRORSSP = 4, 227 CP_SETSSBSY = 5, 228 229 CP_ENCL = 1 << 15, 230}; 231 232DEFINE_IDTENTRY_ERRORCODE(exc_control_protection) 233{ 234 if (!cpu_feature_enabled(X86_FEATURE_IBT)) { 235 pr_err("Unexpected #CP\n"); 236 BUG(); 237 } 238 239 if (WARN_ON_ONCE(user_mode(regs) || (error_code & CP_EC) != CP_ENDBR)) 240 return; 241 242 if (unlikely(regs->ip == (unsigned long)&ibt_selftest_ip)) { 243 regs->ax = 0; 244 return; 245 } 246 247 pr_err("Missing ENDBR: %pS\n", (void *)instruction_pointer(regs)); 248 if (!ibt_fatal) { 249 printk(KERN_DEFAULT CUT_HERE); 250 __warn(__FILE__, __LINE__, (void *)regs->ip, TAINT_WARN, regs, NULL); 251 return; 252 } 253 BUG(); 254} 255 256/* Must be noinline to ensure uniqueness of ibt_selftest_ip. */ 257noinline bool ibt_selftest(void) 258{ 259 unsigned long ret; 260 261 asm (" lea ibt_selftest_ip(%%rip), %%rax\n\t" 262 ANNOTATE_RETPOLINE_SAFE 263 " jmp *%%rax\n\t" 264 "ibt_selftest_ip:\n\t" 265 UNWIND_HINT_FUNC 266 ANNOTATE_NOENDBR 267 " nop\n\t" 268 269 : "=a" (ret) : : "memory"); 270 271 return !ret; 272} 273 274static int __init ibt_setup(char *str) 275{ 276 if (!strcmp(str, "off")) 277 setup_clear_cpu_cap(X86_FEATURE_IBT); 278 279 if (!strcmp(str, "warn")) 280 ibt_fatal = false; 281 282 return 1; 283} 284 285__setup("ibt=", ibt_setup); 286 287#endif /* CONFIG_X86_KERNEL_IBT */ 288 289#ifdef CONFIG_X86_F00F_BUG 290void handle_invalid_op(struct pt_regs *regs) 291#else 292static inline void handle_invalid_op(struct pt_regs *regs) 293#endif 294{ 295 do_error_trap(regs, 0, "invalid opcode", X86_TRAP_UD, SIGILL, 296 ILL_ILLOPN, error_get_trap_addr(regs)); 297} 298 299static noinstr bool handle_bug(struct pt_regs *regs) 300{ 301 bool handled = false; 302 303 if (!is_valid_bugaddr(regs->ip)) 304 return handled; 305 306 /* 307 * All lies, just get the WARN/BUG out. 308 */ 309 instrumentation_begin(); 310 /* 311 * Since we're emulating a CALL with exceptions, restore the interrupt 312 * state to what it was at the exception site. 313 */ 314 if (regs->flags & X86_EFLAGS_IF) 315 raw_local_irq_enable(); 316 if (report_bug(regs->ip, regs) == BUG_TRAP_TYPE_WARN) { 317 regs->ip += LEN_UD2; 318 handled = true; 319 } 320 if (regs->flags & X86_EFLAGS_IF) 321 raw_local_irq_disable(); 322 instrumentation_end(); 323 324 return handled; 325} 326 327DEFINE_IDTENTRY_RAW(exc_invalid_op) 328{ 329 irqentry_state_t state; 330 331 /* 332 * We use UD2 as a short encoding for 'CALL __WARN', as such 333 * handle it before exception entry to avoid recursive WARN 334 * in case exception entry is the one triggering WARNs. 335 */ 336 if (!user_mode(regs) && handle_bug(regs)) 337 return; 338 339 state = irqentry_enter(regs); 340 instrumentation_begin(); 341 handle_invalid_op(regs); 342 instrumentation_end(); 343 irqentry_exit(regs, state); 344} 345 346DEFINE_IDTENTRY(exc_coproc_segment_overrun) 347{ 348 do_error_trap(regs, 0, "coprocessor segment overrun", 349 X86_TRAP_OLD_MF, SIGFPE, 0, NULL); 350} 351 352DEFINE_IDTENTRY_ERRORCODE(exc_invalid_tss) 353{ 354 do_error_trap(regs, error_code, "invalid TSS", X86_TRAP_TS, SIGSEGV, 355 0, NULL); 356} 357 358DEFINE_IDTENTRY_ERRORCODE(exc_segment_not_present) 359{ 360 do_error_trap(regs, error_code, "segment not present", X86_TRAP_NP, 361 SIGBUS, 0, NULL); 362} 363 364DEFINE_IDTENTRY_ERRORCODE(exc_stack_segment) 365{ 366 do_error_trap(regs, error_code, "stack segment", X86_TRAP_SS, SIGBUS, 367 0, NULL); 368} 369 370DEFINE_IDTENTRY_ERRORCODE(exc_alignment_check) 371{ 372 char *str = "alignment check"; 373 374 if (notify_die(DIE_TRAP, str, regs, error_code, X86_TRAP_AC, SIGBUS) == NOTIFY_STOP) 375 return; 376 377 if (!user_mode(regs)) 378 die("Split lock detected\n", regs, error_code); 379 380 local_irq_enable(); 381 382 if (handle_user_split_lock(regs, error_code)) 383 goto out; 384 385 do_trap(X86_TRAP_AC, SIGBUS, "alignment check", regs, 386 error_code, BUS_ADRALN, NULL); 387 388out: 389 local_irq_disable(); 390} 391 392#ifdef CONFIG_VMAP_STACK 393__visible void __noreturn handle_stack_overflow(struct pt_regs *regs, 394 unsigned long fault_address, 395 struct stack_info *info) 396{ 397 const char *name = stack_type_name(info->type); 398 399 printk(KERN_EMERG "BUG: %s stack guard page was hit at %p (stack is %p..%p)\n", 400 name, (void *)fault_address, info->begin, info->end); 401 402 die("stack guard page", regs, 0); 403 404 /* Be absolutely certain we don't return. */ 405 panic("%s stack guard hit", name); 406} 407#endif 408 409/* 410 * Runs on an IST stack for x86_64 and on a special task stack for x86_32. 411 * 412 * On x86_64, this is more or less a normal kernel entry. Notwithstanding the 413 * SDM's warnings about double faults being unrecoverable, returning works as 414 * expected. Presumably what the SDM actually means is that the CPU may get 415 * the register state wrong on entry, so returning could be a bad idea. 416 * 417 * Various CPU engineers have promised that double faults due to an IRET fault 418 * while the stack is read-only are, in fact, recoverable. 419 * 420 * On x86_32, this is entered through a task gate, and regs are synthesized 421 * from the TSS. Returning is, in principle, okay, but changes to regs will 422 * be lost. If, for some reason, we need to return to a context with modified 423 * regs, the shim code could be adjusted to synchronize the registers. 424 * 425 * The 32bit #DF shim provides CR2 already as an argument. On 64bit it needs 426 * to be read before doing anything else. 427 */ 428DEFINE_IDTENTRY_DF(exc_double_fault) 429{ 430 static const char str[] = "double fault"; 431 struct task_struct *tsk = current; 432 433#ifdef CONFIG_VMAP_STACK 434 unsigned long address = read_cr2(); 435 struct stack_info info; 436#endif 437 438#ifdef CONFIG_X86_ESPFIX64 439 extern unsigned char native_irq_return_iret[]; 440 441 /* 442 * If IRET takes a non-IST fault on the espfix64 stack, then we 443 * end up promoting it to a doublefault. In that case, take 444 * advantage of the fact that we're not using the normal (TSS.sp0) 445 * stack right now. We can write a fake #GP(0) frame at TSS.sp0 446 * and then modify our own IRET frame so that, when we return, 447 * we land directly at the #GP(0) vector with the stack already 448 * set up according to its expectations. 449 * 450 * The net result is that our #GP handler will think that we 451 * entered from usermode with the bad user context. 452 * 453 * No need for nmi_enter() here because we don't use RCU. 454 */ 455 if (((long)regs->sp >> P4D_SHIFT) == ESPFIX_PGD_ENTRY && 456 regs->cs == __KERNEL_CS && 457 regs->ip == (unsigned long)native_irq_return_iret) 458 { 459 struct pt_regs *gpregs = (struct pt_regs *)this_cpu_read(cpu_tss_rw.x86_tss.sp0) - 1; 460 unsigned long *p = (unsigned long *)regs->sp; 461 462 /* 463 * regs->sp points to the failing IRET frame on the 464 * ESPFIX64 stack. Copy it to the entry stack. This fills 465 * in gpregs->ss through gpregs->ip. 466 * 467 */ 468 gpregs->ip = p[0]; 469 gpregs->cs = p[1]; 470 gpregs->flags = p[2]; 471 gpregs->sp = p[3]; 472 gpregs->ss = p[4]; 473 gpregs->orig_ax = 0; /* Missing (lost) #GP error code */ 474 475 /* 476 * Adjust our frame so that we return straight to the #GP 477 * vector with the expected RSP value. This is safe because 478 * we won't enable interrupts or schedule before we invoke 479 * general_protection, so nothing will clobber the stack 480 * frame we just set up. 481 * 482 * We will enter general_protection with kernel GSBASE, 483 * which is what the stub expects, given that the faulting 484 * RIP will be the IRET instruction. 485 */ 486 regs->ip = (unsigned long)asm_exc_general_protection; 487 regs->sp = (unsigned long)&gpregs->orig_ax; 488 489 return; 490 } 491#endif 492 493 irqentry_nmi_enter(regs); 494 instrumentation_begin(); 495 notify_die(DIE_TRAP, str, regs, error_code, X86_TRAP_DF, SIGSEGV); 496 497 tsk->thread.error_code = error_code; 498 tsk->thread.trap_nr = X86_TRAP_DF; 499 500#ifdef CONFIG_VMAP_STACK 501 /* 502 * If we overflow the stack into a guard page, the CPU will fail 503 * to deliver #PF and will send #DF instead. Similarly, if we 504 * take any non-IST exception while too close to the bottom of 505 * the stack, the processor will get a page fault while 506 * delivering the exception and will generate a double fault. 507 * 508 * According to the SDM (footnote in 6.15 under "Interrupt 14 - 509 * Page-Fault Exception (#PF): 510 * 511 * Processors update CR2 whenever a page fault is detected. If a 512 * second page fault occurs while an earlier page fault is being 513 * delivered, the faulting linear address of the second fault will 514 * overwrite the contents of CR2 (replacing the previous 515 * address). These updates to CR2 occur even if the page fault 516 * results in a double fault or occurs during the delivery of a 517 * double fault. 518 * 519 * The logic below has a small possibility of incorrectly diagnosing 520 * some errors as stack overflows. For example, if the IDT or GDT 521 * gets corrupted such that #GP delivery fails due to a bad descriptor 522 * causing #GP and we hit this condition while CR2 coincidentally 523 * points to the stack guard page, we'll think we overflowed the 524 * stack. Given that we're going to panic one way or another 525 * if this happens, this isn't necessarily worth fixing. 526 * 527 * If necessary, we could improve the test by only diagnosing 528 * a stack overflow if the saved RSP points within 47 bytes of 529 * the bottom of the stack: if RSP == tsk_stack + 48 and we 530 * take an exception, the stack is already aligned and there 531 * will be enough room SS, RSP, RFLAGS, CS, RIP, and a 532 * possible error code, so a stack overflow would *not* double 533 * fault. With any less space left, exception delivery could 534 * fail, and, as a practical matter, we've overflowed the 535 * stack even if the actual trigger for the double fault was 536 * something else. 537 */ 538 if (get_stack_guard_info((void *)address, &info)) 539 handle_stack_overflow(regs, address, &info); 540#endif 541 542 pr_emerg("PANIC: double fault, error_code: 0x%lx\n", error_code); 543 die("double fault", regs, error_code); 544 panic("Machine halted."); 545 instrumentation_end(); 546} 547 548DEFINE_IDTENTRY(exc_bounds) 549{ 550 if (notify_die(DIE_TRAP, "bounds", regs, 0, 551 X86_TRAP_BR, SIGSEGV) == NOTIFY_STOP) 552 return; 553 cond_local_irq_enable(regs); 554 555 if (!user_mode(regs)) 556 die("bounds", regs, 0); 557 558 do_trap(X86_TRAP_BR, SIGSEGV, "bounds", regs, 0, 0, NULL); 559 560 cond_local_irq_disable(regs); 561} 562 563enum kernel_gp_hint { 564 GP_NO_HINT, 565 GP_NON_CANONICAL, 566 GP_CANONICAL 567}; 568 569/* 570 * When an uncaught #GP occurs, try to determine the memory address accessed by 571 * the instruction and return that address to the caller. Also, try to figure 572 * out whether any part of the access to that address was non-canonical. 573 */ 574static enum kernel_gp_hint get_kernel_gp_address(struct pt_regs *regs, 575 unsigned long *addr) 576{ 577 u8 insn_buf[MAX_INSN_SIZE]; 578 struct insn insn; 579 int ret; 580 581 if (copy_from_kernel_nofault(insn_buf, (void *)regs->ip, 582 MAX_INSN_SIZE)) 583 return GP_NO_HINT; 584 585 ret = insn_decode_kernel(&insn, insn_buf); 586 if (ret < 0) 587 return GP_NO_HINT; 588 589 *addr = (unsigned long)insn_get_addr_ref(&insn, regs); 590 if (*addr == -1UL) 591 return GP_NO_HINT; 592 593#ifdef CONFIG_X86_64 594 /* 595 * Check that: 596 * - the operand is not in the kernel half 597 * - the last byte of the operand is not in the user canonical half 598 */ 599 if (*addr < ~__VIRTUAL_MASK && 600 *addr + insn.opnd_bytes - 1 > __VIRTUAL_MASK) 601 return GP_NON_CANONICAL; 602#endif 603 604 return GP_CANONICAL; 605} 606 607#define GPFSTR "general protection fault" 608 609static bool fixup_iopl_exception(struct pt_regs *regs) 610{ 611 struct thread_struct *t = ¤t->thread; 612 unsigned char byte; 613 unsigned long ip; 614 615 if (!IS_ENABLED(CONFIG_X86_IOPL_IOPERM) || t->iopl_emul != 3) 616 return false; 617 618 if (insn_get_effective_ip(regs, &ip)) 619 return false; 620 621 if (get_user(byte, (const char __user *)ip)) 622 return false; 623 624 if (byte != 0xfa && byte != 0xfb) 625 return false; 626 627 if (!t->iopl_warn && printk_ratelimit()) { 628 pr_err("%s[%d] attempts to use CLI/STI, pretending it's a NOP, ip:%lx", 629 current->comm, task_pid_nr(current), ip); 630 print_vma_addr(KERN_CONT " in ", ip); 631 pr_cont("\n"); 632 t->iopl_warn = 1; 633 } 634 635 regs->ip += 1; 636 return true; 637} 638 639/* 640 * The unprivileged ENQCMD instruction generates #GPs if the 641 * IA32_PASID MSR has not been populated. If possible, populate 642 * the MSR from a PASID previously allocated to the mm. 643 */ 644static bool try_fixup_enqcmd_gp(void) 645{ 646#ifdef CONFIG_IOMMU_SVA 647 u32 pasid; 648 649 /* 650 * MSR_IA32_PASID is managed using XSAVE. Directly 651 * writing to the MSR is only possible when fpregs 652 * are valid and the fpstate is not. This is 653 * guaranteed when handling a userspace exception 654 * in *before* interrupts are re-enabled. 655 */ 656 lockdep_assert_irqs_disabled(); 657 658 /* 659 * Hardware without ENQCMD will not generate 660 * #GPs that can be fixed up here. 661 */ 662 if (!cpu_feature_enabled(X86_FEATURE_ENQCMD)) 663 return false; 664 665 pasid = current->mm->pasid; 666 667 /* 668 * If the mm has not been allocated a 669 * PASID, the #GP can not be fixed up. 670 */ 671 if (!pasid_valid(pasid)) 672 return false; 673 674 /* 675 * Did this thread already have its PASID activated? 676 * If so, the #GP must be from something else. 677 */ 678 if (current->pasid_activated) 679 return false; 680 681 wrmsrl(MSR_IA32_PASID, pasid | MSR_IA32_PASID_VALID); 682 current->pasid_activated = 1; 683 684 return true; 685#else 686 return false; 687#endif 688} 689 690static bool gp_try_fixup_and_notify(struct pt_regs *regs, int trapnr, 691 unsigned long error_code, const char *str) 692{ 693 if (fixup_exception(regs, trapnr, error_code, 0)) 694 return true; 695 696 current->thread.error_code = error_code; 697 current->thread.trap_nr = trapnr; 698 699 /* 700 * To be potentially processing a kprobe fault and to trust the result 701 * from kprobe_running(), we have to be non-preemptible. 702 */ 703 if (!preemptible() && kprobe_running() && 704 kprobe_fault_handler(regs, trapnr)) 705 return true; 706 707 return notify_die(DIE_GPF, str, regs, error_code, trapnr, SIGSEGV) == NOTIFY_STOP; 708} 709 710static void gp_user_force_sig_segv(struct pt_regs *regs, int trapnr, 711 unsigned long error_code, const char *str) 712{ 713 current->thread.error_code = error_code; 714 current->thread.trap_nr = trapnr; 715 show_signal(current, SIGSEGV, "", str, regs, error_code); 716 force_sig(SIGSEGV); 717} 718 719DEFINE_IDTENTRY_ERRORCODE(exc_general_protection) 720{ 721 char desc[sizeof(GPFSTR) + 50 + 2*sizeof(unsigned long) + 1] = GPFSTR; 722 enum kernel_gp_hint hint = GP_NO_HINT; 723 unsigned long gp_addr; 724 725 if (user_mode(regs) && try_fixup_enqcmd_gp()) 726 return; 727 728 cond_local_irq_enable(regs); 729 730 if (static_cpu_has(X86_FEATURE_UMIP)) { 731 if (user_mode(regs) && fixup_umip_exception(regs)) 732 goto exit; 733 } 734 735 if (v8086_mode(regs)) { 736 local_irq_enable(); 737 handle_vm86_fault((struct kernel_vm86_regs *) regs, error_code); 738 local_irq_disable(); 739 return; 740 } 741 742 if (user_mode(regs)) { 743 if (fixup_iopl_exception(regs)) 744 goto exit; 745 746 if (fixup_vdso_exception(regs, X86_TRAP_GP, error_code, 0)) 747 goto exit; 748 749 gp_user_force_sig_segv(regs, X86_TRAP_GP, error_code, desc); 750 goto exit; 751 } 752 753 if (gp_try_fixup_and_notify(regs, X86_TRAP_GP, error_code, desc)) 754 goto exit; 755 756 if (error_code) 757 snprintf(desc, sizeof(desc), "segment-related " GPFSTR); 758 else 759 hint = get_kernel_gp_address(regs, &gp_addr); 760 761 if (hint != GP_NO_HINT) 762 snprintf(desc, sizeof(desc), GPFSTR ", %s 0x%lx", 763 (hint == GP_NON_CANONICAL) ? "probably for non-canonical address" 764 : "maybe for address", 765 gp_addr); 766 767 /* 768 * KASAN is interested only in the non-canonical case, clear it 769 * otherwise. 770 */ 771 if (hint != GP_NON_CANONICAL) 772 gp_addr = 0; 773 774 die_addr(desc, regs, error_code, gp_addr); 775 776exit: 777 cond_local_irq_disable(regs); 778} 779 780static bool do_int3(struct pt_regs *regs) 781{ 782 int res; 783 784#ifdef CONFIG_KGDB_LOW_LEVEL_TRAP 785 if (kgdb_ll_trap(DIE_INT3, "int3", regs, 0, X86_TRAP_BP, 786 SIGTRAP) == NOTIFY_STOP) 787 return true; 788#endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */ 789 790#ifdef CONFIG_KPROBES 791 if (kprobe_int3_handler(regs)) 792 return true; 793#endif 794 res = notify_die(DIE_INT3, "int3", regs, 0, X86_TRAP_BP, SIGTRAP); 795 796 return res == NOTIFY_STOP; 797} 798NOKPROBE_SYMBOL(do_int3); 799 800static void do_int3_user(struct pt_regs *regs) 801{ 802 if (do_int3(regs)) 803 return; 804 805 cond_local_irq_enable(regs); 806 do_trap(X86_TRAP_BP, SIGTRAP, "int3", regs, 0, 0, NULL); 807 cond_local_irq_disable(regs); 808} 809 810DEFINE_IDTENTRY_RAW(exc_int3) 811{ 812 /* 813 * poke_int3_handler() is completely self contained code; it does (and 814 * must) *NOT* call out to anything, lest it hits upon yet another 815 * INT3. 816 */ 817 if (poke_int3_handler(regs)) 818 return; 819 820 /* 821 * irqentry_enter_from_user_mode() uses static_branch_{,un}likely() 822 * and therefore can trigger INT3, hence poke_int3_handler() must 823 * be done before. If the entry came from kernel mode, then use 824 * nmi_enter() because the INT3 could have been hit in any context 825 * including NMI. 826 */ 827 if (user_mode(regs)) { 828 irqentry_enter_from_user_mode(regs); 829 instrumentation_begin(); 830 do_int3_user(regs); 831 instrumentation_end(); 832 irqentry_exit_to_user_mode(regs); 833 } else { 834 irqentry_state_t irq_state = irqentry_nmi_enter(regs); 835 836 instrumentation_begin(); 837 if (!do_int3(regs)) 838 die("int3", regs, 0); 839 instrumentation_end(); 840 irqentry_nmi_exit(regs, irq_state); 841 } 842} 843 844#ifdef CONFIG_X86_64 845/* 846 * Help handler running on a per-cpu (IST or entry trampoline) stack 847 * to switch to the normal thread stack if the interrupted code was in 848 * user mode. The actual stack switch is done in entry_64.S 849 */ 850asmlinkage __visible noinstr struct pt_regs *sync_regs(struct pt_regs *eregs) 851{ 852 struct pt_regs *regs = (struct pt_regs *)this_cpu_read(cpu_current_top_of_stack) - 1; 853 if (regs != eregs) 854 *regs = *eregs; 855 return regs; 856} 857 858#ifdef CONFIG_AMD_MEM_ENCRYPT 859asmlinkage __visible noinstr struct pt_regs *vc_switch_off_ist(struct pt_regs *regs) 860{ 861 unsigned long sp, *stack; 862 struct stack_info info; 863 struct pt_regs *regs_ret; 864 865 /* 866 * In the SYSCALL entry path the RSP value comes from user-space - don't 867 * trust it and switch to the current kernel stack 868 */ 869 if (ip_within_syscall_gap(regs)) { 870 sp = this_cpu_read(cpu_current_top_of_stack); 871 goto sync; 872 } 873 874 /* 875 * From here on the RSP value is trusted. Now check whether entry 876 * happened from a safe stack. Not safe are the entry or unknown stacks, 877 * use the fall-back stack instead in this case. 878 */ 879 sp = regs->sp; 880 stack = (unsigned long *)sp; 881 882 if (!get_stack_info_noinstr(stack, current, &info) || info.type == STACK_TYPE_ENTRY || 883 info.type > STACK_TYPE_EXCEPTION_LAST) 884 sp = __this_cpu_ist_top_va(VC2); 885 886sync: 887 /* 888 * Found a safe stack - switch to it as if the entry didn't happen via 889 * IST stack. The code below only copies pt_regs, the real switch happens 890 * in assembly code. 891 */ 892 sp = ALIGN_DOWN(sp, 8) - sizeof(*regs_ret); 893 894 regs_ret = (struct pt_regs *)sp; 895 *regs_ret = *regs; 896 897 return regs_ret; 898} 899#endif 900 901asmlinkage __visible noinstr struct pt_regs *fixup_bad_iret(struct pt_regs *bad_regs) 902{ 903 struct pt_regs tmp, *new_stack; 904 905 /* 906 * This is called from entry_64.S early in handling a fault 907 * caused by a bad iret to user mode. To handle the fault 908 * correctly, we want to move our stack frame to where it would 909 * be had we entered directly on the entry stack (rather than 910 * just below the IRET frame) and we want to pretend that the 911 * exception came from the IRET target. 912 */ 913 new_stack = (struct pt_regs *)__this_cpu_read(cpu_tss_rw.x86_tss.sp0) - 1; 914 915 /* Copy the IRET target to the temporary storage. */ 916 __memcpy(&tmp.ip, (void *)bad_regs->sp, 5*8); 917 918 /* Copy the remainder of the stack from the current stack. */ 919 __memcpy(&tmp, bad_regs, offsetof(struct pt_regs, ip)); 920 921 /* Update the entry stack */ 922 __memcpy(new_stack, &tmp, sizeof(tmp)); 923 924 BUG_ON(!user_mode(new_stack)); 925 return new_stack; 926} 927#endif 928 929static bool is_sysenter_singlestep(struct pt_regs *regs) 930{ 931 /* 932 * We don't try for precision here. If we're anywhere in the region of 933 * code that can be single-stepped in the SYSENTER entry path, then 934 * assume that this is a useless single-step trap due to SYSENTER 935 * being invoked with TF set. (We don't know in advance exactly 936 * which instructions will be hit because BTF could plausibly 937 * be set.) 938 */ 939#ifdef CONFIG_X86_32 940 return (regs->ip - (unsigned long)__begin_SYSENTER_singlestep_region) < 941 (unsigned long)__end_SYSENTER_singlestep_region - 942 (unsigned long)__begin_SYSENTER_singlestep_region; 943#elif defined(CONFIG_IA32_EMULATION) 944 return (regs->ip - (unsigned long)entry_SYSENTER_compat) < 945 (unsigned long)__end_entry_SYSENTER_compat - 946 (unsigned long)entry_SYSENTER_compat; 947#else 948 return false; 949#endif 950} 951 952static __always_inline unsigned long debug_read_clear_dr6(void) 953{ 954 unsigned long dr6; 955 956 /* 957 * The Intel SDM says: 958 * 959 * Certain debug exceptions may clear bits 0-3. The remaining 960 * contents of the DR6 register are never cleared by the 961 * processor. To avoid confusion in identifying debug 962 * exceptions, debug handlers should clear the register before 963 * returning to the interrupted task. 964 * 965 * Keep it simple: clear DR6 immediately. 966 */ 967 get_debugreg(dr6, 6); 968 set_debugreg(DR6_RESERVED, 6); 969 dr6 ^= DR6_RESERVED; /* Flip to positive polarity */ 970 971 return dr6; 972} 973 974/* 975 * Our handling of the processor debug registers is non-trivial. 976 * We do not clear them on entry and exit from the kernel. Therefore 977 * it is possible to get a watchpoint trap here from inside the kernel. 978 * However, the code in ./ptrace.c has ensured that the user can 979 * only set watchpoints on userspace addresses. Therefore the in-kernel 980 * watchpoint trap can only occur in code which is reading/writing 981 * from user space. Such code must not hold kernel locks (since it 982 * can equally take a page fault), therefore it is safe to call 983 * force_sig_info even though that claims and releases locks. 984 * 985 * Code in ./signal.c ensures that the debug control register 986 * is restored before we deliver any signal, and therefore that 987 * user code runs with the correct debug control register even though 988 * we clear it here. 989 * 990 * Being careful here means that we don't have to be as careful in a 991 * lot of more complicated places (task switching can be a bit lazy 992 * about restoring all the debug state, and ptrace doesn't have to 993 * find every occurrence of the TF bit that could be saved away even 994 * by user code) 995 * 996 * May run on IST stack. 997 */ 998 999static bool notify_debug(struct pt_regs *regs, unsigned long *dr6) 1000{ 1001 /* 1002 * Notifiers will clear bits in @dr6 to indicate the event has been 1003 * consumed - hw_breakpoint_handler(), single_stop_cont(). 1004 * 1005 * Notifiers will set bits in @virtual_dr6 to indicate the desire 1006 * for signals - ptrace_triggered(), kgdb_hw_overflow_handler(). 1007 */ 1008 if (notify_die(DIE_DEBUG, "debug", regs, (long)dr6, 0, SIGTRAP) == NOTIFY_STOP) 1009 return true; 1010 1011 return false; 1012} 1013 1014static __always_inline void exc_debug_kernel(struct pt_regs *regs, 1015 unsigned long dr6) 1016{ 1017 /* 1018 * Disable breakpoints during exception handling; recursive exceptions 1019 * are exceedingly 'fun'. 1020 * 1021 * Since this function is NOKPROBE, and that also applies to 1022 * HW_BREAKPOINT_X, we can't hit a breakpoint before this (XXX except a 1023 * HW_BREAKPOINT_W on our stack) 1024 * 1025 * Entry text is excluded for HW_BP_X and cpu_entry_area, which 1026 * includes the entry stack is excluded for everything. 1027 */ 1028 unsigned long dr7 = local_db_save(); 1029 irqentry_state_t irq_state = irqentry_nmi_enter(regs); 1030 instrumentation_begin(); 1031 1032 /* 1033 * If something gets miswired and we end up here for a user mode 1034 * #DB, we will malfunction. 1035 */ 1036 WARN_ON_ONCE(user_mode(regs)); 1037 1038 if (test_thread_flag(TIF_BLOCKSTEP)) { 1039 /* 1040 * The SDM says "The processor clears the BTF flag when it 1041 * generates a debug exception." but PTRACE_BLOCKSTEP requested 1042 * it for userspace, but we just took a kernel #DB, so re-set 1043 * BTF. 1044 */ 1045 unsigned long debugctl; 1046 1047 rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl); 1048 debugctl |= DEBUGCTLMSR_BTF; 1049 wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctl); 1050 } 1051 1052 /* 1053 * Catch SYSENTER with TF set and clear DR_STEP. If this hit a 1054 * watchpoint at the same time then that will still be handled. 1055 */ 1056 if ((dr6 & DR_STEP) && is_sysenter_singlestep(regs)) 1057 dr6 &= ~DR_STEP; 1058 1059 /* 1060 * The kernel doesn't use INT1 1061 */ 1062 if (!dr6) 1063 goto out; 1064 1065 if (notify_debug(regs, &dr6)) 1066 goto out; 1067 1068 /* 1069 * The kernel doesn't use TF single-step outside of: 1070 * 1071 * - Kprobes, consumed through kprobe_debug_handler() 1072 * - KGDB, consumed through notify_debug() 1073 * 1074 * So if we get here with DR_STEP set, something is wonky. 1075 * 1076 * A known way to trigger this is through QEMU's GDB stub, 1077 * which leaks #DB into the guest and causes IST recursion. 1078 */ 1079 if (WARN_ON_ONCE(dr6 & DR_STEP)) 1080 regs->flags &= ~X86_EFLAGS_TF; 1081out: 1082 instrumentation_end(); 1083 irqentry_nmi_exit(regs, irq_state); 1084 1085 local_db_restore(dr7); 1086} 1087 1088static __always_inline void exc_debug_user(struct pt_regs *regs, 1089 unsigned long dr6) 1090{ 1091 bool icebp; 1092 1093 /* 1094 * If something gets miswired and we end up here for a kernel mode 1095 * #DB, we will malfunction. 1096 */ 1097 WARN_ON_ONCE(!user_mode(regs)); 1098 1099 /* 1100 * NB: We can't easily clear DR7 here because 1101 * irqentry_exit_to_usermode() can invoke ptrace, schedule, access 1102 * user memory, etc. This means that a recursive #DB is possible. If 1103 * this happens, that #DB will hit exc_debug_kernel() and clear DR7. 1104 * Since we're not on the IST stack right now, everything will be 1105 * fine. 1106 */ 1107 1108 irqentry_enter_from_user_mode(regs); 1109 instrumentation_begin(); 1110 1111 /* 1112 * Start the virtual/ptrace DR6 value with just the DR_STEP mask 1113 * of the real DR6. ptrace_triggered() will set the DR_TRAPn bits. 1114 * 1115 * Userspace expects DR_STEP to be visible in ptrace_get_debugreg(6) 1116 * even if it is not the result of PTRACE_SINGLESTEP. 1117 */ 1118 current->thread.virtual_dr6 = (dr6 & DR_STEP); 1119 1120 /* 1121 * The SDM says "The processor clears the BTF flag when it 1122 * generates a debug exception." Clear TIF_BLOCKSTEP to keep 1123 * TIF_BLOCKSTEP in sync with the hardware BTF flag. 1124 */ 1125 clear_thread_flag(TIF_BLOCKSTEP); 1126 1127 /* 1128 * If dr6 has no reason to give us about the origin of this trap, 1129 * then it's very likely the result of an icebp/int01 trap. 1130 * User wants a sigtrap for that. 1131 */ 1132 icebp = !dr6; 1133 1134 if (notify_debug(regs, &dr6)) 1135 goto out; 1136 1137 /* It's safe to allow irq's after DR6 has been saved */ 1138 local_irq_enable(); 1139 1140 if (v8086_mode(regs)) { 1141 handle_vm86_trap((struct kernel_vm86_regs *)regs, 0, X86_TRAP_DB); 1142 goto out_irq; 1143 } 1144 1145 /* #DB for bus lock can only be triggered from userspace. */ 1146 if (dr6 & DR_BUS_LOCK) 1147 handle_bus_lock(regs); 1148 1149 /* Add the virtual_dr6 bits for signals. */ 1150 dr6 |= current->thread.virtual_dr6; 1151 if (dr6 & (DR_STEP | DR_TRAP_BITS) || icebp) 1152 send_sigtrap(regs, 0, get_si_code(dr6)); 1153 1154out_irq: 1155 local_irq_disable(); 1156out: 1157 instrumentation_end(); 1158 irqentry_exit_to_user_mode(regs); 1159} 1160 1161#ifdef CONFIG_X86_64 1162/* IST stack entry */ 1163DEFINE_IDTENTRY_DEBUG(exc_debug) 1164{ 1165 exc_debug_kernel(regs, debug_read_clear_dr6()); 1166} 1167 1168/* User entry, runs on regular task stack */ 1169DEFINE_IDTENTRY_DEBUG_USER(exc_debug) 1170{ 1171 exc_debug_user(regs, debug_read_clear_dr6()); 1172} 1173#else 1174/* 32 bit does not have separate entry points. */ 1175DEFINE_IDTENTRY_RAW(exc_debug) 1176{ 1177 unsigned long dr6 = debug_read_clear_dr6(); 1178 1179 if (user_mode(regs)) 1180 exc_debug_user(regs, dr6); 1181 else 1182 exc_debug_kernel(regs, dr6); 1183} 1184#endif 1185 1186/* 1187 * Note that we play around with the 'TS' bit in an attempt to get 1188 * the correct behaviour even in the presence of the asynchronous 1189 * IRQ13 behaviour 1190 */ 1191static void math_error(struct pt_regs *regs, int trapnr) 1192{ 1193 struct task_struct *task = current; 1194 struct fpu *fpu = &task->thread.fpu; 1195 int si_code; 1196 char *str = (trapnr == X86_TRAP_MF) ? "fpu exception" : 1197 "simd exception"; 1198 1199 cond_local_irq_enable(regs); 1200 1201 if (!user_mode(regs)) { 1202 if (fixup_exception(regs, trapnr, 0, 0)) 1203 goto exit; 1204 1205 task->thread.error_code = 0; 1206 task->thread.trap_nr = trapnr; 1207 1208 if (notify_die(DIE_TRAP, str, regs, 0, trapnr, 1209 SIGFPE) != NOTIFY_STOP) 1210 die(str, regs, 0); 1211 goto exit; 1212 } 1213 1214 /* 1215 * Synchronize the FPU register state to the memory register state 1216 * if necessary. This allows the exception handler to inspect it. 1217 */ 1218 fpu_sync_fpstate(fpu); 1219 1220 task->thread.trap_nr = trapnr; 1221 task->thread.error_code = 0; 1222 1223 si_code = fpu__exception_code(fpu, trapnr); 1224 /* Retry when we get spurious exceptions: */ 1225 if (!si_code) 1226 goto exit; 1227 1228 if (fixup_vdso_exception(regs, trapnr, 0, 0)) 1229 goto exit; 1230 1231 force_sig_fault(SIGFPE, si_code, 1232 (void __user *)uprobe_get_trap_addr(regs)); 1233exit: 1234 cond_local_irq_disable(regs); 1235} 1236 1237DEFINE_IDTENTRY(exc_coprocessor_error) 1238{ 1239 math_error(regs, X86_TRAP_MF); 1240} 1241 1242DEFINE_IDTENTRY(exc_simd_coprocessor_error) 1243{ 1244 if (IS_ENABLED(CONFIG_X86_INVD_BUG)) { 1245 /* AMD 486 bug: INVD in CPL 0 raises #XF instead of #GP */ 1246 if (!static_cpu_has(X86_FEATURE_XMM)) { 1247 __exc_general_protection(regs, 0); 1248 return; 1249 } 1250 } 1251 math_error(regs, X86_TRAP_XF); 1252} 1253 1254DEFINE_IDTENTRY(exc_spurious_interrupt_bug) 1255{ 1256 /* 1257 * This addresses a Pentium Pro Erratum: 1258 * 1259 * PROBLEM: If the APIC subsystem is configured in mixed mode with 1260 * Virtual Wire mode implemented through the local APIC, an 1261 * interrupt vector of 0Fh (Intel reserved encoding) may be 1262 * generated by the local APIC (Int 15). This vector may be 1263 * generated upon receipt of a spurious interrupt (an interrupt 1264 * which is removed before the system receives the INTA sequence) 1265 * instead of the programmed 8259 spurious interrupt vector. 1266 * 1267 * IMPLICATION: The spurious interrupt vector programmed in the 1268 * 8259 is normally handled by an operating system's spurious 1269 * interrupt handler. However, a vector of 0Fh is unknown to some 1270 * operating systems, which would crash if this erratum occurred. 1271 * 1272 * In theory this could be limited to 32bit, but the handler is not 1273 * hurting and who knows which other CPUs suffer from this. 1274 */ 1275} 1276 1277static bool handle_xfd_event(struct pt_regs *regs) 1278{ 1279 u64 xfd_err; 1280 int err; 1281 1282 if (!IS_ENABLED(CONFIG_X86_64) || !cpu_feature_enabled(X86_FEATURE_XFD)) 1283 return false; 1284 1285 rdmsrl(MSR_IA32_XFD_ERR, xfd_err); 1286 if (!xfd_err) 1287 return false; 1288 1289 wrmsrl(MSR_IA32_XFD_ERR, 0); 1290 1291 /* Die if that happens in kernel space */ 1292 if (WARN_ON(!user_mode(regs))) 1293 return false; 1294 1295 local_irq_enable(); 1296 1297 err = xfd_enable_feature(xfd_err); 1298 1299 switch (err) { 1300 case -EPERM: 1301 force_sig_fault(SIGILL, ILL_ILLOPC, error_get_trap_addr(regs)); 1302 break; 1303 case -EFAULT: 1304 force_sig(SIGSEGV); 1305 break; 1306 } 1307 1308 local_irq_disable(); 1309 return true; 1310} 1311 1312DEFINE_IDTENTRY(exc_device_not_available) 1313{ 1314 unsigned long cr0 = read_cr0(); 1315 1316 if (handle_xfd_event(regs)) 1317 return; 1318 1319#ifdef CONFIG_MATH_EMULATION 1320 if (!boot_cpu_has(X86_FEATURE_FPU) && (cr0 & X86_CR0_EM)) { 1321 struct math_emu_info info = { }; 1322 1323 cond_local_irq_enable(regs); 1324 1325 info.regs = regs; 1326 math_emulate(&info); 1327 1328 cond_local_irq_disable(regs); 1329 return; 1330 } 1331#endif 1332 1333 /* This should not happen. */ 1334 if (WARN(cr0 & X86_CR0_TS, "CR0.TS was set")) { 1335 /* Try to fix it up and carry on. */ 1336 write_cr0(cr0 & ~X86_CR0_TS); 1337 } else { 1338 /* 1339 * Something terrible happened, and we're better off trying 1340 * to kill the task than getting stuck in a never-ending 1341 * loop of #NM faults. 1342 */ 1343 die("unexpected #NM exception", regs, 0); 1344 } 1345} 1346 1347#ifdef CONFIG_INTEL_TDX_GUEST 1348 1349#define VE_FAULT_STR "VE fault" 1350 1351static void ve_raise_fault(struct pt_regs *regs, long error_code) 1352{ 1353 if (user_mode(regs)) { 1354 gp_user_force_sig_segv(regs, X86_TRAP_VE, error_code, VE_FAULT_STR); 1355 return; 1356 } 1357 1358 if (gp_try_fixup_and_notify(regs, X86_TRAP_VE, error_code, VE_FAULT_STR)) 1359 return; 1360 1361 die_addr(VE_FAULT_STR, regs, error_code, 0); 1362} 1363 1364/* 1365 * Virtualization Exceptions (#VE) are delivered to TDX guests due to 1366 * specific guest actions which may happen in either user space or the 1367 * kernel: 1368 * 1369 * * Specific instructions (WBINVD, for example) 1370 * * Specific MSR accesses 1371 * * Specific CPUID leaf accesses 1372 * * Access to specific guest physical addresses 1373 * 1374 * In the settings that Linux will run in, virtualization exceptions are 1375 * never generated on accesses to normal, TD-private memory that has been 1376 * accepted (by BIOS or with tdx_enc_status_changed()). 1377 * 1378 * Syscall entry code has a critical window where the kernel stack is not 1379 * yet set up. Any exception in this window leads to hard to debug issues 1380 * and can be exploited for privilege escalation. Exceptions in the NMI 1381 * entry code also cause issues. Returning from the exception handler with 1382 * IRET will re-enable NMIs and nested NMI will corrupt the NMI stack. 1383 * 1384 * For these reasons, the kernel avoids #VEs during the syscall gap and 1385 * the NMI entry code. Entry code paths do not access TD-shared memory, 1386 * MMIO regions, use #VE triggering MSRs, instructions, or CPUID leaves 1387 * that might generate #VE. VMM can remove memory from TD at any point, 1388 * but access to unaccepted (or missing) private memory leads to VM 1389 * termination, not to #VE. 1390 * 1391 * Similarly to page faults and breakpoints, #VEs are allowed in NMI 1392 * handlers once the kernel is ready to deal with nested NMIs. 1393 * 1394 * During #VE delivery, all interrupts, including NMIs, are blocked until 1395 * TDGETVEINFO is called. It prevents #VE nesting until the kernel reads 1396 * the VE info. 1397 * 1398 * If a guest kernel action which would normally cause a #VE occurs in 1399 * the interrupt-disabled region before TDGETVEINFO, a #DF (fault 1400 * exception) is delivered to the guest which will result in an oops. 1401 * 1402 * The entry code has been audited carefully for following these expectations. 1403 * Changes in the entry code have to be audited for correctness vs. this 1404 * aspect. Similarly to #PF, #VE in these places will expose kernel to 1405 * privilege escalation or may lead to random crashes. 1406 */ 1407DEFINE_IDTENTRY(exc_virtualization_exception) 1408{ 1409 struct ve_info ve; 1410 1411 /* 1412 * NMIs/Machine-checks/Interrupts will be in a disabled state 1413 * till TDGETVEINFO TDCALL is executed. This ensures that VE 1414 * info cannot be overwritten by a nested #VE. 1415 */ 1416 tdx_get_ve_info(&ve); 1417 1418 cond_local_irq_enable(regs); 1419 1420 /* 1421 * If tdx_handle_virt_exception() could not process 1422 * it successfully, treat it as #GP(0) and handle it. 1423 */ 1424 if (!tdx_handle_virt_exception(regs, &ve)) 1425 ve_raise_fault(regs, 0); 1426 1427 cond_local_irq_disable(regs); 1428} 1429 1430#endif 1431 1432#ifdef CONFIG_X86_32 1433DEFINE_IDTENTRY_SW(iret_error) 1434{ 1435 local_irq_enable(); 1436 if (notify_die(DIE_TRAP, "iret exception", regs, 0, 1437 X86_TRAP_IRET, SIGILL) != NOTIFY_STOP) { 1438 do_trap(X86_TRAP_IRET, SIGILL, "iret exception", regs, 0, 1439 ILL_BADSTK, (void __user *)NULL); 1440 } 1441 local_irq_disable(); 1442} 1443#endif 1444 1445void __init trap_init(void) 1446{ 1447 /* Init cpu_entry_area before IST entries are set up */ 1448 setup_cpu_entry_areas(); 1449 1450 /* Init GHCB memory pages when running as an SEV-ES guest */ 1451 sev_es_init_vc_handling(); 1452 1453 /* Initialize TSS before setting up traps so ISTs work */ 1454 cpu_init_exception_handling(); 1455 /* Setup traps as cpu_init() might #GP */ 1456 idt_setup_traps(); 1457 cpu_init(); 1458}