cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

traps.c (40027B)


      1/*
      2 *  Copyright (C) 1991, 1992  Linus Torvalds
      3 *  Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs
      4 *
      5 *  Pentium III FXSR, SSE support
      6 *	Gareth Hughes <gareth@valinux.com>, May 2000
      7 */
      8
      9/*
     10 * Handle hardware traps and faults.
     11 */
     12
     13#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
     14
     15#include <linux/context_tracking.h>
     16#include <linux/interrupt.h>
     17#include <linux/kallsyms.h>
     18#include <linux/spinlock.h>
     19#include <linux/kprobes.h>
     20#include <linux/uaccess.h>
     21#include <linux/kdebug.h>
     22#include <linux/kgdb.h>
     23#include <linux/kernel.h>
     24#include <linux/export.h>
     25#include <linux/ptrace.h>
     26#include <linux/uprobes.h>
     27#include <linux/string.h>
     28#include <linux/delay.h>
     29#include <linux/errno.h>
     30#include <linux/kexec.h>
     31#include <linux/sched.h>
     32#include <linux/sched/task_stack.h>
     33#include <linux/timer.h>
     34#include <linux/init.h>
     35#include <linux/bug.h>
     36#include <linux/nmi.h>
     37#include <linux/mm.h>
     38#include <linux/smp.h>
     39#include <linux/io.h>
     40#include <linux/hardirq.h>
     41#include <linux/atomic.h>
     42#include <linux/ioasid.h>
     43
     44#include <asm/stacktrace.h>
     45#include <asm/processor.h>
     46#include <asm/debugreg.h>
     47#include <asm/realmode.h>
     48#include <asm/text-patching.h>
     49#include <asm/ftrace.h>
     50#include <asm/traps.h>
     51#include <asm/desc.h>
     52#include <asm/fpu/api.h>
     53#include <asm/cpu.h>
     54#include <asm/cpu_entry_area.h>
     55#include <asm/mce.h>
     56#include <asm/fixmap.h>
     57#include <asm/mach_traps.h>
     58#include <asm/alternative.h>
     59#include <asm/fpu/xstate.h>
     60#include <asm/vm86.h>
     61#include <asm/umip.h>
     62#include <asm/insn.h>
     63#include <asm/insn-eval.h>
     64#include <asm/vdso.h>
     65#include <asm/tdx.h>
     66
     67#ifdef CONFIG_X86_64
     68#include <asm/x86_init.h>
     69#include <asm/proto.h>
     70#else
     71#include <asm/processor-flags.h>
     72#include <asm/setup.h>
     73#include <asm/proto.h>
     74#endif
     75
     76DECLARE_BITMAP(system_vectors, NR_VECTORS);
     77
     78static inline void cond_local_irq_enable(struct pt_regs *regs)
     79{
     80	if (regs->flags & X86_EFLAGS_IF)
     81		local_irq_enable();
     82}
     83
     84static inline void cond_local_irq_disable(struct pt_regs *regs)
     85{
     86	if (regs->flags & X86_EFLAGS_IF)
     87		local_irq_disable();
     88}
     89
     90__always_inline int is_valid_bugaddr(unsigned long addr)
     91{
     92	if (addr < TASK_SIZE_MAX)
     93		return 0;
     94
     95	/*
     96	 * We got #UD, if the text isn't readable we'd have gotten
     97	 * a different exception.
     98	 */
     99	return *(unsigned short *)addr == INSN_UD2;
    100}
    101
    102static nokprobe_inline int
    103do_trap_no_signal(struct task_struct *tsk, int trapnr, const char *str,
    104		  struct pt_regs *regs,	long error_code)
    105{
    106	if (v8086_mode(regs)) {
    107		/*
    108		 * Traps 0, 1, 3, 4, and 5 should be forwarded to vm86.
    109		 * On nmi (interrupt 2), do_trap should not be called.
    110		 */
    111		if (trapnr < X86_TRAP_UD) {
    112			if (!handle_vm86_trap((struct kernel_vm86_regs *) regs,
    113						error_code, trapnr))
    114				return 0;
    115		}
    116	} else if (!user_mode(regs)) {
    117		if (fixup_exception(regs, trapnr, error_code, 0))
    118			return 0;
    119
    120		tsk->thread.error_code = error_code;
    121		tsk->thread.trap_nr = trapnr;
    122		die(str, regs, error_code);
    123	} else {
    124		if (fixup_vdso_exception(regs, trapnr, error_code, 0))
    125			return 0;
    126	}
    127
    128	/*
    129	 * We want error_code and trap_nr set for userspace faults and
    130	 * kernelspace faults which result in die(), but not
    131	 * kernelspace faults which are fixed up.  die() gives the
    132	 * process no chance to handle the signal and notice the
    133	 * kernel fault information, so that won't result in polluting
    134	 * the information about previously queued, but not yet
    135	 * delivered, faults.  See also exc_general_protection below.
    136	 */
    137	tsk->thread.error_code = error_code;
    138	tsk->thread.trap_nr = trapnr;
    139
    140	return -1;
    141}
    142
    143static void show_signal(struct task_struct *tsk, int signr,
    144			const char *type, const char *desc,
    145			struct pt_regs *regs, long error_code)
    146{
    147	if (show_unhandled_signals && unhandled_signal(tsk, signr) &&
    148	    printk_ratelimit()) {
    149		pr_info("%s[%d] %s%s ip:%lx sp:%lx error:%lx",
    150			tsk->comm, task_pid_nr(tsk), type, desc,
    151			regs->ip, regs->sp, error_code);
    152		print_vma_addr(KERN_CONT " in ", regs->ip);
    153		pr_cont("\n");
    154	}
    155}
    156
    157static void
    158do_trap(int trapnr, int signr, char *str, struct pt_regs *regs,
    159	long error_code, int sicode, void __user *addr)
    160{
    161	struct task_struct *tsk = current;
    162
    163	if (!do_trap_no_signal(tsk, trapnr, str, regs, error_code))
    164		return;
    165
    166	show_signal(tsk, signr, "trap ", str, regs, error_code);
    167
    168	if (!sicode)
    169		force_sig(signr);
    170	else
    171		force_sig_fault(signr, sicode, addr);
    172}
    173NOKPROBE_SYMBOL(do_trap);
    174
    175static void do_error_trap(struct pt_regs *regs, long error_code, char *str,
    176	unsigned long trapnr, int signr, int sicode, void __user *addr)
    177{
    178	RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
    179
    180	if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) !=
    181			NOTIFY_STOP) {
    182		cond_local_irq_enable(regs);
    183		do_trap(trapnr, signr, str, regs, error_code, sicode, addr);
    184		cond_local_irq_disable(regs);
    185	}
    186}
    187
    188/*
    189 * Posix requires to provide the address of the faulting instruction for
    190 * SIGILL (#UD) and SIGFPE (#DE) in the si_addr member of siginfo_t.
    191 *
    192 * This address is usually regs->ip, but when an uprobe moved the code out
    193 * of line then regs->ip points to the XOL code which would confuse
    194 * anything which analyzes the fault address vs. the unmodified binary. If
    195 * a trap happened in XOL code then uprobe maps regs->ip back to the
    196 * original instruction address.
    197 */
    198static __always_inline void __user *error_get_trap_addr(struct pt_regs *regs)
    199{
    200	return (void __user *)uprobe_get_trap_addr(regs);
    201}
    202
    203DEFINE_IDTENTRY(exc_divide_error)
    204{
    205	do_error_trap(regs, 0, "divide error", X86_TRAP_DE, SIGFPE,
    206		      FPE_INTDIV, error_get_trap_addr(regs));
    207}
    208
    209DEFINE_IDTENTRY(exc_overflow)
    210{
    211	do_error_trap(regs, 0, "overflow", X86_TRAP_OF, SIGSEGV, 0, NULL);
    212}
    213
    214#ifdef CONFIG_X86_KERNEL_IBT
    215
    216static __ro_after_init bool ibt_fatal = true;
    217
    218extern void ibt_selftest_ip(void); /* code label defined in asm below */
    219
    220enum cp_error_code {
    221	CP_EC        = (1 << 15) - 1,
    222
    223	CP_RET       = 1,
    224	CP_IRET      = 2,
    225	CP_ENDBR     = 3,
    226	CP_RSTRORSSP = 4,
    227	CP_SETSSBSY  = 5,
    228
    229	CP_ENCL	     = 1 << 15,
    230};
    231
    232DEFINE_IDTENTRY_ERRORCODE(exc_control_protection)
    233{
    234	if (!cpu_feature_enabled(X86_FEATURE_IBT)) {
    235		pr_err("Unexpected #CP\n");
    236		BUG();
    237	}
    238
    239	if (WARN_ON_ONCE(user_mode(regs) || (error_code & CP_EC) != CP_ENDBR))
    240		return;
    241
    242	if (unlikely(regs->ip == (unsigned long)&ibt_selftest_ip)) {
    243		regs->ax = 0;
    244		return;
    245	}
    246
    247	pr_err("Missing ENDBR: %pS\n", (void *)instruction_pointer(regs));
    248	if (!ibt_fatal) {
    249		printk(KERN_DEFAULT CUT_HERE);
    250		__warn(__FILE__, __LINE__, (void *)regs->ip, TAINT_WARN, regs, NULL);
    251		return;
    252	}
    253	BUG();
    254}
    255
    256/* Must be noinline to ensure uniqueness of ibt_selftest_ip. */
    257noinline bool ibt_selftest(void)
    258{
    259	unsigned long ret;
    260
    261	asm ("	lea ibt_selftest_ip(%%rip), %%rax\n\t"
    262	     ANNOTATE_RETPOLINE_SAFE
    263	     "	jmp *%%rax\n\t"
    264	     "ibt_selftest_ip:\n\t"
    265	     UNWIND_HINT_FUNC
    266	     ANNOTATE_NOENDBR
    267	     "	nop\n\t"
    268
    269	     : "=a" (ret) : : "memory");
    270
    271	return !ret;
    272}
    273
    274static int __init ibt_setup(char *str)
    275{
    276	if (!strcmp(str, "off"))
    277		setup_clear_cpu_cap(X86_FEATURE_IBT);
    278
    279	if (!strcmp(str, "warn"))
    280		ibt_fatal = false;
    281
    282	return 1;
    283}
    284
    285__setup("ibt=", ibt_setup);
    286
    287#endif /* CONFIG_X86_KERNEL_IBT */
    288
    289#ifdef CONFIG_X86_F00F_BUG
    290void handle_invalid_op(struct pt_regs *regs)
    291#else
    292static inline void handle_invalid_op(struct pt_regs *regs)
    293#endif
    294{
    295	do_error_trap(regs, 0, "invalid opcode", X86_TRAP_UD, SIGILL,
    296		      ILL_ILLOPN, error_get_trap_addr(regs));
    297}
    298
    299static noinstr bool handle_bug(struct pt_regs *regs)
    300{
    301	bool handled = false;
    302
    303	if (!is_valid_bugaddr(regs->ip))
    304		return handled;
    305
    306	/*
    307	 * All lies, just get the WARN/BUG out.
    308	 */
    309	instrumentation_begin();
    310	/*
    311	 * Since we're emulating a CALL with exceptions, restore the interrupt
    312	 * state to what it was at the exception site.
    313	 */
    314	if (regs->flags & X86_EFLAGS_IF)
    315		raw_local_irq_enable();
    316	if (report_bug(regs->ip, regs) == BUG_TRAP_TYPE_WARN) {
    317		regs->ip += LEN_UD2;
    318		handled = true;
    319	}
    320	if (regs->flags & X86_EFLAGS_IF)
    321		raw_local_irq_disable();
    322	instrumentation_end();
    323
    324	return handled;
    325}
    326
    327DEFINE_IDTENTRY_RAW(exc_invalid_op)
    328{
    329	irqentry_state_t state;
    330
    331	/*
    332	 * We use UD2 as a short encoding for 'CALL __WARN', as such
    333	 * handle it before exception entry to avoid recursive WARN
    334	 * in case exception entry is the one triggering WARNs.
    335	 */
    336	if (!user_mode(regs) && handle_bug(regs))
    337		return;
    338
    339	state = irqentry_enter(regs);
    340	instrumentation_begin();
    341	handle_invalid_op(regs);
    342	instrumentation_end();
    343	irqentry_exit(regs, state);
    344}
    345
    346DEFINE_IDTENTRY(exc_coproc_segment_overrun)
    347{
    348	do_error_trap(regs, 0, "coprocessor segment overrun",
    349		      X86_TRAP_OLD_MF, SIGFPE, 0, NULL);
    350}
    351
    352DEFINE_IDTENTRY_ERRORCODE(exc_invalid_tss)
    353{
    354	do_error_trap(regs, error_code, "invalid TSS", X86_TRAP_TS, SIGSEGV,
    355		      0, NULL);
    356}
    357
    358DEFINE_IDTENTRY_ERRORCODE(exc_segment_not_present)
    359{
    360	do_error_trap(regs, error_code, "segment not present", X86_TRAP_NP,
    361		      SIGBUS, 0, NULL);
    362}
    363
    364DEFINE_IDTENTRY_ERRORCODE(exc_stack_segment)
    365{
    366	do_error_trap(regs, error_code, "stack segment", X86_TRAP_SS, SIGBUS,
    367		      0, NULL);
    368}
    369
    370DEFINE_IDTENTRY_ERRORCODE(exc_alignment_check)
    371{
    372	char *str = "alignment check";
    373
    374	if (notify_die(DIE_TRAP, str, regs, error_code, X86_TRAP_AC, SIGBUS) == NOTIFY_STOP)
    375		return;
    376
    377	if (!user_mode(regs))
    378		die("Split lock detected\n", regs, error_code);
    379
    380	local_irq_enable();
    381
    382	if (handle_user_split_lock(regs, error_code))
    383		goto out;
    384
    385	do_trap(X86_TRAP_AC, SIGBUS, "alignment check", regs,
    386		error_code, BUS_ADRALN, NULL);
    387
    388out:
    389	local_irq_disable();
    390}
    391
    392#ifdef CONFIG_VMAP_STACK
    393__visible void __noreturn handle_stack_overflow(struct pt_regs *regs,
    394						unsigned long fault_address,
    395						struct stack_info *info)
    396{
    397	const char *name = stack_type_name(info->type);
    398
    399	printk(KERN_EMERG "BUG: %s stack guard page was hit at %p (stack is %p..%p)\n",
    400	       name, (void *)fault_address, info->begin, info->end);
    401
    402	die("stack guard page", regs, 0);
    403
    404	/* Be absolutely certain we don't return. */
    405	panic("%s stack guard hit", name);
    406}
    407#endif
    408
    409/*
    410 * Runs on an IST stack for x86_64 and on a special task stack for x86_32.
    411 *
    412 * On x86_64, this is more or less a normal kernel entry.  Notwithstanding the
    413 * SDM's warnings about double faults being unrecoverable, returning works as
    414 * expected.  Presumably what the SDM actually means is that the CPU may get
    415 * the register state wrong on entry, so returning could be a bad idea.
    416 *
    417 * Various CPU engineers have promised that double faults due to an IRET fault
    418 * while the stack is read-only are, in fact, recoverable.
    419 *
    420 * On x86_32, this is entered through a task gate, and regs are synthesized
    421 * from the TSS.  Returning is, in principle, okay, but changes to regs will
    422 * be lost.  If, for some reason, we need to return to a context with modified
    423 * regs, the shim code could be adjusted to synchronize the registers.
    424 *
    425 * The 32bit #DF shim provides CR2 already as an argument. On 64bit it needs
    426 * to be read before doing anything else.
    427 */
    428DEFINE_IDTENTRY_DF(exc_double_fault)
    429{
    430	static const char str[] = "double fault";
    431	struct task_struct *tsk = current;
    432
    433#ifdef CONFIG_VMAP_STACK
    434	unsigned long address = read_cr2();
    435	struct stack_info info;
    436#endif
    437
    438#ifdef CONFIG_X86_ESPFIX64
    439	extern unsigned char native_irq_return_iret[];
    440
    441	/*
    442	 * If IRET takes a non-IST fault on the espfix64 stack, then we
    443	 * end up promoting it to a doublefault.  In that case, take
    444	 * advantage of the fact that we're not using the normal (TSS.sp0)
    445	 * stack right now.  We can write a fake #GP(0) frame at TSS.sp0
    446	 * and then modify our own IRET frame so that, when we return,
    447	 * we land directly at the #GP(0) vector with the stack already
    448	 * set up according to its expectations.
    449	 *
    450	 * The net result is that our #GP handler will think that we
    451	 * entered from usermode with the bad user context.
    452	 *
    453	 * No need for nmi_enter() here because we don't use RCU.
    454	 */
    455	if (((long)regs->sp >> P4D_SHIFT) == ESPFIX_PGD_ENTRY &&
    456		regs->cs == __KERNEL_CS &&
    457		regs->ip == (unsigned long)native_irq_return_iret)
    458	{
    459		struct pt_regs *gpregs = (struct pt_regs *)this_cpu_read(cpu_tss_rw.x86_tss.sp0) - 1;
    460		unsigned long *p = (unsigned long *)regs->sp;
    461
    462		/*
    463		 * regs->sp points to the failing IRET frame on the
    464		 * ESPFIX64 stack.  Copy it to the entry stack.  This fills
    465		 * in gpregs->ss through gpregs->ip.
    466		 *
    467		 */
    468		gpregs->ip	= p[0];
    469		gpregs->cs	= p[1];
    470		gpregs->flags	= p[2];
    471		gpregs->sp	= p[3];
    472		gpregs->ss	= p[4];
    473		gpregs->orig_ax = 0;  /* Missing (lost) #GP error code */
    474
    475		/*
    476		 * Adjust our frame so that we return straight to the #GP
    477		 * vector with the expected RSP value.  This is safe because
    478		 * we won't enable interrupts or schedule before we invoke
    479		 * general_protection, so nothing will clobber the stack
    480		 * frame we just set up.
    481		 *
    482		 * We will enter general_protection with kernel GSBASE,
    483		 * which is what the stub expects, given that the faulting
    484		 * RIP will be the IRET instruction.
    485		 */
    486		regs->ip = (unsigned long)asm_exc_general_protection;
    487		regs->sp = (unsigned long)&gpregs->orig_ax;
    488
    489		return;
    490	}
    491#endif
    492
    493	irqentry_nmi_enter(regs);
    494	instrumentation_begin();
    495	notify_die(DIE_TRAP, str, regs, error_code, X86_TRAP_DF, SIGSEGV);
    496
    497	tsk->thread.error_code = error_code;
    498	tsk->thread.trap_nr = X86_TRAP_DF;
    499
    500#ifdef CONFIG_VMAP_STACK
    501	/*
    502	 * If we overflow the stack into a guard page, the CPU will fail
    503	 * to deliver #PF and will send #DF instead.  Similarly, if we
    504	 * take any non-IST exception while too close to the bottom of
    505	 * the stack, the processor will get a page fault while
    506	 * delivering the exception and will generate a double fault.
    507	 *
    508	 * According to the SDM (footnote in 6.15 under "Interrupt 14 -
    509	 * Page-Fault Exception (#PF):
    510	 *
    511	 *   Processors update CR2 whenever a page fault is detected. If a
    512	 *   second page fault occurs while an earlier page fault is being
    513	 *   delivered, the faulting linear address of the second fault will
    514	 *   overwrite the contents of CR2 (replacing the previous
    515	 *   address). These updates to CR2 occur even if the page fault
    516	 *   results in a double fault or occurs during the delivery of a
    517	 *   double fault.
    518	 *
    519	 * The logic below has a small possibility of incorrectly diagnosing
    520	 * some errors as stack overflows.  For example, if the IDT or GDT
    521	 * gets corrupted such that #GP delivery fails due to a bad descriptor
    522	 * causing #GP and we hit this condition while CR2 coincidentally
    523	 * points to the stack guard page, we'll think we overflowed the
    524	 * stack.  Given that we're going to panic one way or another
    525	 * if this happens, this isn't necessarily worth fixing.
    526	 *
    527	 * If necessary, we could improve the test by only diagnosing
    528	 * a stack overflow if the saved RSP points within 47 bytes of
    529	 * the bottom of the stack: if RSP == tsk_stack + 48 and we
    530	 * take an exception, the stack is already aligned and there
    531	 * will be enough room SS, RSP, RFLAGS, CS, RIP, and a
    532	 * possible error code, so a stack overflow would *not* double
    533	 * fault.  With any less space left, exception delivery could
    534	 * fail, and, as a practical matter, we've overflowed the
    535	 * stack even if the actual trigger for the double fault was
    536	 * something else.
    537	 */
    538	if (get_stack_guard_info((void *)address, &info))
    539		handle_stack_overflow(regs, address, &info);
    540#endif
    541
    542	pr_emerg("PANIC: double fault, error_code: 0x%lx\n", error_code);
    543	die("double fault", regs, error_code);
    544	panic("Machine halted.");
    545	instrumentation_end();
    546}
    547
    548DEFINE_IDTENTRY(exc_bounds)
    549{
    550	if (notify_die(DIE_TRAP, "bounds", regs, 0,
    551			X86_TRAP_BR, SIGSEGV) == NOTIFY_STOP)
    552		return;
    553	cond_local_irq_enable(regs);
    554
    555	if (!user_mode(regs))
    556		die("bounds", regs, 0);
    557
    558	do_trap(X86_TRAP_BR, SIGSEGV, "bounds", regs, 0, 0, NULL);
    559
    560	cond_local_irq_disable(regs);
    561}
    562
    563enum kernel_gp_hint {
    564	GP_NO_HINT,
    565	GP_NON_CANONICAL,
    566	GP_CANONICAL
    567};
    568
    569/*
    570 * When an uncaught #GP occurs, try to determine the memory address accessed by
    571 * the instruction and return that address to the caller. Also, try to figure
    572 * out whether any part of the access to that address was non-canonical.
    573 */
    574static enum kernel_gp_hint get_kernel_gp_address(struct pt_regs *regs,
    575						 unsigned long *addr)
    576{
    577	u8 insn_buf[MAX_INSN_SIZE];
    578	struct insn insn;
    579	int ret;
    580
    581	if (copy_from_kernel_nofault(insn_buf, (void *)regs->ip,
    582			MAX_INSN_SIZE))
    583		return GP_NO_HINT;
    584
    585	ret = insn_decode_kernel(&insn, insn_buf);
    586	if (ret < 0)
    587		return GP_NO_HINT;
    588
    589	*addr = (unsigned long)insn_get_addr_ref(&insn, regs);
    590	if (*addr == -1UL)
    591		return GP_NO_HINT;
    592
    593#ifdef CONFIG_X86_64
    594	/*
    595	 * Check that:
    596	 *  - the operand is not in the kernel half
    597	 *  - the last byte of the operand is not in the user canonical half
    598	 */
    599	if (*addr < ~__VIRTUAL_MASK &&
    600	    *addr + insn.opnd_bytes - 1 > __VIRTUAL_MASK)
    601		return GP_NON_CANONICAL;
    602#endif
    603
    604	return GP_CANONICAL;
    605}
    606
    607#define GPFSTR "general protection fault"
    608
    609static bool fixup_iopl_exception(struct pt_regs *regs)
    610{
    611	struct thread_struct *t = &current->thread;
    612	unsigned char byte;
    613	unsigned long ip;
    614
    615	if (!IS_ENABLED(CONFIG_X86_IOPL_IOPERM) || t->iopl_emul != 3)
    616		return false;
    617
    618	if (insn_get_effective_ip(regs, &ip))
    619		return false;
    620
    621	if (get_user(byte, (const char __user *)ip))
    622		return false;
    623
    624	if (byte != 0xfa && byte != 0xfb)
    625		return false;
    626
    627	if (!t->iopl_warn && printk_ratelimit()) {
    628		pr_err("%s[%d] attempts to use CLI/STI, pretending it's a NOP, ip:%lx",
    629		       current->comm, task_pid_nr(current), ip);
    630		print_vma_addr(KERN_CONT " in ", ip);
    631		pr_cont("\n");
    632		t->iopl_warn = 1;
    633	}
    634
    635	regs->ip += 1;
    636	return true;
    637}
    638
    639/*
    640 * The unprivileged ENQCMD instruction generates #GPs if the
    641 * IA32_PASID MSR has not been populated.  If possible, populate
    642 * the MSR from a PASID previously allocated to the mm.
    643 */
    644static bool try_fixup_enqcmd_gp(void)
    645{
    646#ifdef CONFIG_IOMMU_SVA
    647	u32 pasid;
    648
    649	/*
    650	 * MSR_IA32_PASID is managed using XSAVE.  Directly
    651	 * writing to the MSR is only possible when fpregs
    652	 * are valid and the fpstate is not.  This is
    653	 * guaranteed when handling a userspace exception
    654	 * in *before* interrupts are re-enabled.
    655	 */
    656	lockdep_assert_irqs_disabled();
    657
    658	/*
    659	 * Hardware without ENQCMD will not generate
    660	 * #GPs that can be fixed up here.
    661	 */
    662	if (!cpu_feature_enabled(X86_FEATURE_ENQCMD))
    663		return false;
    664
    665	pasid = current->mm->pasid;
    666
    667	/*
    668	 * If the mm has not been allocated a
    669	 * PASID, the #GP can not be fixed up.
    670	 */
    671	if (!pasid_valid(pasid))
    672		return false;
    673
    674	/*
    675	 * Did this thread already have its PASID activated?
    676	 * If so, the #GP must be from something else.
    677	 */
    678	if (current->pasid_activated)
    679		return false;
    680
    681	wrmsrl(MSR_IA32_PASID, pasid | MSR_IA32_PASID_VALID);
    682	current->pasid_activated = 1;
    683
    684	return true;
    685#else
    686	return false;
    687#endif
    688}
    689
    690static bool gp_try_fixup_and_notify(struct pt_regs *regs, int trapnr,
    691				    unsigned long error_code, const char *str)
    692{
    693	if (fixup_exception(regs, trapnr, error_code, 0))
    694		return true;
    695
    696	current->thread.error_code = error_code;
    697	current->thread.trap_nr = trapnr;
    698
    699	/*
    700	 * To be potentially processing a kprobe fault and to trust the result
    701	 * from kprobe_running(), we have to be non-preemptible.
    702	 */
    703	if (!preemptible() && kprobe_running() &&
    704	    kprobe_fault_handler(regs, trapnr))
    705		return true;
    706
    707	return notify_die(DIE_GPF, str, regs, error_code, trapnr, SIGSEGV) == NOTIFY_STOP;
    708}
    709
    710static void gp_user_force_sig_segv(struct pt_regs *regs, int trapnr,
    711				   unsigned long error_code, const char *str)
    712{
    713	current->thread.error_code = error_code;
    714	current->thread.trap_nr = trapnr;
    715	show_signal(current, SIGSEGV, "", str, regs, error_code);
    716	force_sig(SIGSEGV);
    717}
    718
    719DEFINE_IDTENTRY_ERRORCODE(exc_general_protection)
    720{
    721	char desc[sizeof(GPFSTR) + 50 + 2*sizeof(unsigned long) + 1] = GPFSTR;
    722	enum kernel_gp_hint hint = GP_NO_HINT;
    723	unsigned long gp_addr;
    724
    725	if (user_mode(regs) && try_fixup_enqcmd_gp())
    726		return;
    727
    728	cond_local_irq_enable(regs);
    729
    730	if (static_cpu_has(X86_FEATURE_UMIP)) {
    731		if (user_mode(regs) && fixup_umip_exception(regs))
    732			goto exit;
    733	}
    734
    735	if (v8086_mode(regs)) {
    736		local_irq_enable();
    737		handle_vm86_fault((struct kernel_vm86_regs *) regs, error_code);
    738		local_irq_disable();
    739		return;
    740	}
    741
    742	if (user_mode(regs)) {
    743		if (fixup_iopl_exception(regs))
    744			goto exit;
    745
    746		if (fixup_vdso_exception(regs, X86_TRAP_GP, error_code, 0))
    747			goto exit;
    748
    749		gp_user_force_sig_segv(regs, X86_TRAP_GP, error_code, desc);
    750		goto exit;
    751	}
    752
    753	if (gp_try_fixup_and_notify(regs, X86_TRAP_GP, error_code, desc))
    754		goto exit;
    755
    756	if (error_code)
    757		snprintf(desc, sizeof(desc), "segment-related " GPFSTR);
    758	else
    759		hint = get_kernel_gp_address(regs, &gp_addr);
    760
    761	if (hint != GP_NO_HINT)
    762		snprintf(desc, sizeof(desc), GPFSTR ", %s 0x%lx",
    763			 (hint == GP_NON_CANONICAL) ? "probably for non-canonical address"
    764						    : "maybe for address",
    765			 gp_addr);
    766
    767	/*
    768	 * KASAN is interested only in the non-canonical case, clear it
    769	 * otherwise.
    770	 */
    771	if (hint != GP_NON_CANONICAL)
    772		gp_addr = 0;
    773
    774	die_addr(desc, regs, error_code, gp_addr);
    775
    776exit:
    777	cond_local_irq_disable(regs);
    778}
    779
    780static bool do_int3(struct pt_regs *regs)
    781{
    782	int res;
    783
    784#ifdef CONFIG_KGDB_LOW_LEVEL_TRAP
    785	if (kgdb_ll_trap(DIE_INT3, "int3", regs, 0, X86_TRAP_BP,
    786			 SIGTRAP) == NOTIFY_STOP)
    787		return true;
    788#endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */
    789
    790#ifdef CONFIG_KPROBES
    791	if (kprobe_int3_handler(regs))
    792		return true;
    793#endif
    794	res = notify_die(DIE_INT3, "int3", regs, 0, X86_TRAP_BP, SIGTRAP);
    795
    796	return res == NOTIFY_STOP;
    797}
    798NOKPROBE_SYMBOL(do_int3);
    799
    800static void do_int3_user(struct pt_regs *regs)
    801{
    802	if (do_int3(regs))
    803		return;
    804
    805	cond_local_irq_enable(regs);
    806	do_trap(X86_TRAP_BP, SIGTRAP, "int3", regs, 0, 0, NULL);
    807	cond_local_irq_disable(regs);
    808}
    809
    810DEFINE_IDTENTRY_RAW(exc_int3)
    811{
    812	/*
    813	 * poke_int3_handler() is completely self contained code; it does (and
    814	 * must) *NOT* call out to anything, lest it hits upon yet another
    815	 * INT3.
    816	 */
    817	if (poke_int3_handler(regs))
    818		return;
    819
    820	/*
    821	 * irqentry_enter_from_user_mode() uses static_branch_{,un}likely()
    822	 * and therefore can trigger INT3, hence poke_int3_handler() must
    823	 * be done before. If the entry came from kernel mode, then use
    824	 * nmi_enter() because the INT3 could have been hit in any context
    825	 * including NMI.
    826	 */
    827	if (user_mode(regs)) {
    828		irqentry_enter_from_user_mode(regs);
    829		instrumentation_begin();
    830		do_int3_user(regs);
    831		instrumentation_end();
    832		irqentry_exit_to_user_mode(regs);
    833	} else {
    834		irqentry_state_t irq_state = irqentry_nmi_enter(regs);
    835
    836		instrumentation_begin();
    837		if (!do_int3(regs))
    838			die("int3", regs, 0);
    839		instrumentation_end();
    840		irqentry_nmi_exit(regs, irq_state);
    841	}
    842}
    843
    844#ifdef CONFIG_X86_64
    845/*
    846 * Help handler running on a per-cpu (IST or entry trampoline) stack
    847 * to switch to the normal thread stack if the interrupted code was in
    848 * user mode. The actual stack switch is done in entry_64.S
    849 */
    850asmlinkage __visible noinstr struct pt_regs *sync_regs(struct pt_regs *eregs)
    851{
    852	struct pt_regs *regs = (struct pt_regs *)this_cpu_read(cpu_current_top_of_stack) - 1;
    853	if (regs != eregs)
    854		*regs = *eregs;
    855	return regs;
    856}
    857
    858#ifdef CONFIG_AMD_MEM_ENCRYPT
    859asmlinkage __visible noinstr struct pt_regs *vc_switch_off_ist(struct pt_regs *regs)
    860{
    861	unsigned long sp, *stack;
    862	struct stack_info info;
    863	struct pt_regs *regs_ret;
    864
    865	/*
    866	 * In the SYSCALL entry path the RSP value comes from user-space - don't
    867	 * trust it and switch to the current kernel stack
    868	 */
    869	if (ip_within_syscall_gap(regs)) {
    870		sp = this_cpu_read(cpu_current_top_of_stack);
    871		goto sync;
    872	}
    873
    874	/*
    875	 * From here on the RSP value is trusted. Now check whether entry
    876	 * happened from a safe stack. Not safe are the entry or unknown stacks,
    877	 * use the fall-back stack instead in this case.
    878	 */
    879	sp    = regs->sp;
    880	stack = (unsigned long *)sp;
    881
    882	if (!get_stack_info_noinstr(stack, current, &info) || info.type == STACK_TYPE_ENTRY ||
    883	    info.type > STACK_TYPE_EXCEPTION_LAST)
    884		sp = __this_cpu_ist_top_va(VC2);
    885
    886sync:
    887	/*
    888	 * Found a safe stack - switch to it as if the entry didn't happen via
    889	 * IST stack. The code below only copies pt_regs, the real switch happens
    890	 * in assembly code.
    891	 */
    892	sp = ALIGN_DOWN(sp, 8) - sizeof(*regs_ret);
    893
    894	regs_ret = (struct pt_regs *)sp;
    895	*regs_ret = *regs;
    896
    897	return regs_ret;
    898}
    899#endif
    900
    901asmlinkage __visible noinstr struct pt_regs *fixup_bad_iret(struct pt_regs *bad_regs)
    902{
    903	struct pt_regs tmp, *new_stack;
    904
    905	/*
    906	 * This is called from entry_64.S early in handling a fault
    907	 * caused by a bad iret to user mode.  To handle the fault
    908	 * correctly, we want to move our stack frame to where it would
    909	 * be had we entered directly on the entry stack (rather than
    910	 * just below the IRET frame) and we want to pretend that the
    911	 * exception came from the IRET target.
    912	 */
    913	new_stack = (struct pt_regs *)__this_cpu_read(cpu_tss_rw.x86_tss.sp0) - 1;
    914
    915	/* Copy the IRET target to the temporary storage. */
    916	__memcpy(&tmp.ip, (void *)bad_regs->sp, 5*8);
    917
    918	/* Copy the remainder of the stack from the current stack. */
    919	__memcpy(&tmp, bad_regs, offsetof(struct pt_regs, ip));
    920
    921	/* Update the entry stack */
    922	__memcpy(new_stack, &tmp, sizeof(tmp));
    923
    924	BUG_ON(!user_mode(new_stack));
    925	return new_stack;
    926}
    927#endif
    928
    929static bool is_sysenter_singlestep(struct pt_regs *regs)
    930{
    931	/*
    932	 * We don't try for precision here.  If we're anywhere in the region of
    933	 * code that can be single-stepped in the SYSENTER entry path, then
    934	 * assume that this is a useless single-step trap due to SYSENTER
    935	 * being invoked with TF set.  (We don't know in advance exactly
    936	 * which instructions will be hit because BTF could plausibly
    937	 * be set.)
    938	 */
    939#ifdef CONFIG_X86_32
    940	return (regs->ip - (unsigned long)__begin_SYSENTER_singlestep_region) <
    941		(unsigned long)__end_SYSENTER_singlestep_region -
    942		(unsigned long)__begin_SYSENTER_singlestep_region;
    943#elif defined(CONFIG_IA32_EMULATION)
    944	return (regs->ip - (unsigned long)entry_SYSENTER_compat) <
    945		(unsigned long)__end_entry_SYSENTER_compat -
    946		(unsigned long)entry_SYSENTER_compat;
    947#else
    948	return false;
    949#endif
    950}
    951
    952static __always_inline unsigned long debug_read_clear_dr6(void)
    953{
    954	unsigned long dr6;
    955
    956	/*
    957	 * The Intel SDM says:
    958	 *
    959	 *   Certain debug exceptions may clear bits 0-3. The remaining
    960	 *   contents of the DR6 register are never cleared by the
    961	 *   processor. To avoid confusion in identifying debug
    962	 *   exceptions, debug handlers should clear the register before
    963	 *   returning to the interrupted task.
    964	 *
    965	 * Keep it simple: clear DR6 immediately.
    966	 */
    967	get_debugreg(dr6, 6);
    968	set_debugreg(DR6_RESERVED, 6);
    969	dr6 ^= DR6_RESERVED; /* Flip to positive polarity */
    970
    971	return dr6;
    972}
    973
    974/*
    975 * Our handling of the processor debug registers is non-trivial.
    976 * We do not clear them on entry and exit from the kernel. Therefore
    977 * it is possible to get a watchpoint trap here from inside the kernel.
    978 * However, the code in ./ptrace.c has ensured that the user can
    979 * only set watchpoints on userspace addresses. Therefore the in-kernel
    980 * watchpoint trap can only occur in code which is reading/writing
    981 * from user space. Such code must not hold kernel locks (since it
    982 * can equally take a page fault), therefore it is safe to call
    983 * force_sig_info even though that claims and releases locks.
    984 *
    985 * Code in ./signal.c ensures that the debug control register
    986 * is restored before we deliver any signal, and therefore that
    987 * user code runs with the correct debug control register even though
    988 * we clear it here.
    989 *
    990 * Being careful here means that we don't have to be as careful in a
    991 * lot of more complicated places (task switching can be a bit lazy
    992 * about restoring all the debug state, and ptrace doesn't have to
    993 * find every occurrence of the TF bit that could be saved away even
    994 * by user code)
    995 *
    996 * May run on IST stack.
    997 */
    998
    999static bool notify_debug(struct pt_regs *regs, unsigned long *dr6)
   1000{
   1001	/*
   1002	 * Notifiers will clear bits in @dr6 to indicate the event has been
   1003	 * consumed - hw_breakpoint_handler(), single_stop_cont().
   1004	 *
   1005	 * Notifiers will set bits in @virtual_dr6 to indicate the desire
   1006	 * for signals - ptrace_triggered(), kgdb_hw_overflow_handler().
   1007	 */
   1008	if (notify_die(DIE_DEBUG, "debug", regs, (long)dr6, 0, SIGTRAP) == NOTIFY_STOP)
   1009		return true;
   1010
   1011	return false;
   1012}
   1013
   1014static __always_inline void exc_debug_kernel(struct pt_regs *regs,
   1015					     unsigned long dr6)
   1016{
   1017	/*
   1018	 * Disable breakpoints during exception handling; recursive exceptions
   1019	 * are exceedingly 'fun'.
   1020	 *
   1021	 * Since this function is NOKPROBE, and that also applies to
   1022	 * HW_BREAKPOINT_X, we can't hit a breakpoint before this (XXX except a
   1023	 * HW_BREAKPOINT_W on our stack)
   1024	 *
   1025	 * Entry text is excluded for HW_BP_X and cpu_entry_area, which
   1026	 * includes the entry stack is excluded for everything.
   1027	 */
   1028	unsigned long dr7 = local_db_save();
   1029	irqentry_state_t irq_state = irqentry_nmi_enter(regs);
   1030	instrumentation_begin();
   1031
   1032	/*
   1033	 * If something gets miswired and we end up here for a user mode
   1034	 * #DB, we will malfunction.
   1035	 */
   1036	WARN_ON_ONCE(user_mode(regs));
   1037
   1038	if (test_thread_flag(TIF_BLOCKSTEP)) {
   1039		/*
   1040		 * The SDM says "The processor clears the BTF flag when it
   1041		 * generates a debug exception." but PTRACE_BLOCKSTEP requested
   1042		 * it for userspace, but we just took a kernel #DB, so re-set
   1043		 * BTF.
   1044		 */
   1045		unsigned long debugctl;
   1046
   1047		rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
   1048		debugctl |= DEBUGCTLMSR_BTF;
   1049		wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
   1050	}
   1051
   1052	/*
   1053	 * Catch SYSENTER with TF set and clear DR_STEP. If this hit a
   1054	 * watchpoint at the same time then that will still be handled.
   1055	 */
   1056	if ((dr6 & DR_STEP) && is_sysenter_singlestep(regs))
   1057		dr6 &= ~DR_STEP;
   1058
   1059	/*
   1060	 * The kernel doesn't use INT1
   1061	 */
   1062	if (!dr6)
   1063		goto out;
   1064
   1065	if (notify_debug(regs, &dr6))
   1066		goto out;
   1067
   1068	/*
   1069	 * The kernel doesn't use TF single-step outside of:
   1070	 *
   1071	 *  - Kprobes, consumed through kprobe_debug_handler()
   1072	 *  - KGDB, consumed through notify_debug()
   1073	 *
   1074	 * So if we get here with DR_STEP set, something is wonky.
   1075	 *
   1076	 * A known way to trigger this is through QEMU's GDB stub,
   1077	 * which leaks #DB into the guest and causes IST recursion.
   1078	 */
   1079	if (WARN_ON_ONCE(dr6 & DR_STEP))
   1080		regs->flags &= ~X86_EFLAGS_TF;
   1081out:
   1082	instrumentation_end();
   1083	irqentry_nmi_exit(regs, irq_state);
   1084
   1085	local_db_restore(dr7);
   1086}
   1087
   1088static __always_inline void exc_debug_user(struct pt_regs *regs,
   1089					   unsigned long dr6)
   1090{
   1091	bool icebp;
   1092
   1093	/*
   1094	 * If something gets miswired and we end up here for a kernel mode
   1095	 * #DB, we will malfunction.
   1096	 */
   1097	WARN_ON_ONCE(!user_mode(regs));
   1098
   1099	/*
   1100	 * NB: We can't easily clear DR7 here because
   1101	 * irqentry_exit_to_usermode() can invoke ptrace, schedule, access
   1102	 * user memory, etc.  This means that a recursive #DB is possible.  If
   1103	 * this happens, that #DB will hit exc_debug_kernel() and clear DR7.
   1104	 * Since we're not on the IST stack right now, everything will be
   1105	 * fine.
   1106	 */
   1107
   1108	irqentry_enter_from_user_mode(regs);
   1109	instrumentation_begin();
   1110
   1111	/*
   1112	 * Start the virtual/ptrace DR6 value with just the DR_STEP mask
   1113	 * of the real DR6. ptrace_triggered() will set the DR_TRAPn bits.
   1114	 *
   1115	 * Userspace expects DR_STEP to be visible in ptrace_get_debugreg(6)
   1116	 * even if it is not the result of PTRACE_SINGLESTEP.
   1117	 */
   1118	current->thread.virtual_dr6 = (dr6 & DR_STEP);
   1119
   1120	/*
   1121	 * The SDM says "The processor clears the BTF flag when it
   1122	 * generates a debug exception."  Clear TIF_BLOCKSTEP to keep
   1123	 * TIF_BLOCKSTEP in sync with the hardware BTF flag.
   1124	 */
   1125	clear_thread_flag(TIF_BLOCKSTEP);
   1126
   1127	/*
   1128	 * If dr6 has no reason to give us about the origin of this trap,
   1129	 * then it's very likely the result of an icebp/int01 trap.
   1130	 * User wants a sigtrap for that.
   1131	 */
   1132	icebp = !dr6;
   1133
   1134	if (notify_debug(regs, &dr6))
   1135		goto out;
   1136
   1137	/* It's safe to allow irq's after DR6 has been saved */
   1138	local_irq_enable();
   1139
   1140	if (v8086_mode(regs)) {
   1141		handle_vm86_trap((struct kernel_vm86_regs *)regs, 0, X86_TRAP_DB);
   1142		goto out_irq;
   1143	}
   1144
   1145	/* #DB for bus lock can only be triggered from userspace. */
   1146	if (dr6 & DR_BUS_LOCK)
   1147		handle_bus_lock(regs);
   1148
   1149	/* Add the virtual_dr6 bits for signals. */
   1150	dr6 |= current->thread.virtual_dr6;
   1151	if (dr6 & (DR_STEP | DR_TRAP_BITS) || icebp)
   1152		send_sigtrap(regs, 0, get_si_code(dr6));
   1153
   1154out_irq:
   1155	local_irq_disable();
   1156out:
   1157	instrumentation_end();
   1158	irqentry_exit_to_user_mode(regs);
   1159}
   1160
   1161#ifdef CONFIG_X86_64
   1162/* IST stack entry */
   1163DEFINE_IDTENTRY_DEBUG(exc_debug)
   1164{
   1165	exc_debug_kernel(regs, debug_read_clear_dr6());
   1166}
   1167
   1168/* User entry, runs on regular task stack */
   1169DEFINE_IDTENTRY_DEBUG_USER(exc_debug)
   1170{
   1171	exc_debug_user(regs, debug_read_clear_dr6());
   1172}
   1173#else
   1174/* 32 bit does not have separate entry points. */
   1175DEFINE_IDTENTRY_RAW(exc_debug)
   1176{
   1177	unsigned long dr6 = debug_read_clear_dr6();
   1178
   1179	if (user_mode(regs))
   1180		exc_debug_user(regs, dr6);
   1181	else
   1182		exc_debug_kernel(regs, dr6);
   1183}
   1184#endif
   1185
   1186/*
   1187 * Note that we play around with the 'TS' bit in an attempt to get
   1188 * the correct behaviour even in the presence of the asynchronous
   1189 * IRQ13 behaviour
   1190 */
   1191static void math_error(struct pt_regs *regs, int trapnr)
   1192{
   1193	struct task_struct *task = current;
   1194	struct fpu *fpu = &task->thread.fpu;
   1195	int si_code;
   1196	char *str = (trapnr == X86_TRAP_MF) ? "fpu exception" :
   1197						"simd exception";
   1198
   1199	cond_local_irq_enable(regs);
   1200
   1201	if (!user_mode(regs)) {
   1202		if (fixup_exception(regs, trapnr, 0, 0))
   1203			goto exit;
   1204
   1205		task->thread.error_code = 0;
   1206		task->thread.trap_nr = trapnr;
   1207
   1208		if (notify_die(DIE_TRAP, str, regs, 0, trapnr,
   1209			       SIGFPE) != NOTIFY_STOP)
   1210			die(str, regs, 0);
   1211		goto exit;
   1212	}
   1213
   1214	/*
   1215	 * Synchronize the FPU register state to the memory register state
   1216	 * if necessary. This allows the exception handler to inspect it.
   1217	 */
   1218	fpu_sync_fpstate(fpu);
   1219
   1220	task->thread.trap_nr	= trapnr;
   1221	task->thread.error_code = 0;
   1222
   1223	si_code = fpu__exception_code(fpu, trapnr);
   1224	/* Retry when we get spurious exceptions: */
   1225	if (!si_code)
   1226		goto exit;
   1227
   1228	if (fixup_vdso_exception(regs, trapnr, 0, 0))
   1229		goto exit;
   1230
   1231	force_sig_fault(SIGFPE, si_code,
   1232			(void __user *)uprobe_get_trap_addr(regs));
   1233exit:
   1234	cond_local_irq_disable(regs);
   1235}
   1236
   1237DEFINE_IDTENTRY(exc_coprocessor_error)
   1238{
   1239	math_error(regs, X86_TRAP_MF);
   1240}
   1241
   1242DEFINE_IDTENTRY(exc_simd_coprocessor_error)
   1243{
   1244	if (IS_ENABLED(CONFIG_X86_INVD_BUG)) {
   1245		/* AMD 486 bug: INVD in CPL 0 raises #XF instead of #GP */
   1246		if (!static_cpu_has(X86_FEATURE_XMM)) {
   1247			__exc_general_protection(regs, 0);
   1248			return;
   1249		}
   1250	}
   1251	math_error(regs, X86_TRAP_XF);
   1252}
   1253
   1254DEFINE_IDTENTRY(exc_spurious_interrupt_bug)
   1255{
   1256	/*
   1257	 * This addresses a Pentium Pro Erratum:
   1258	 *
   1259	 * PROBLEM: If the APIC subsystem is configured in mixed mode with
   1260	 * Virtual Wire mode implemented through the local APIC, an
   1261	 * interrupt vector of 0Fh (Intel reserved encoding) may be
   1262	 * generated by the local APIC (Int 15).  This vector may be
   1263	 * generated upon receipt of a spurious interrupt (an interrupt
   1264	 * which is removed before the system receives the INTA sequence)
   1265	 * instead of the programmed 8259 spurious interrupt vector.
   1266	 *
   1267	 * IMPLICATION: The spurious interrupt vector programmed in the
   1268	 * 8259 is normally handled by an operating system's spurious
   1269	 * interrupt handler. However, a vector of 0Fh is unknown to some
   1270	 * operating systems, which would crash if this erratum occurred.
   1271	 *
   1272	 * In theory this could be limited to 32bit, but the handler is not
   1273	 * hurting and who knows which other CPUs suffer from this.
   1274	 */
   1275}
   1276
   1277static bool handle_xfd_event(struct pt_regs *regs)
   1278{
   1279	u64 xfd_err;
   1280	int err;
   1281
   1282	if (!IS_ENABLED(CONFIG_X86_64) || !cpu_feature_enabled(X86_FEATURE_XFD))
   1283		return false;
   1284
   1285	rdmsrl(MSR_IA32_XFD_ERR, xfd_err);
   1286	if (!xfd_err)
   1287		return false;
   1288
   1289	wrmsrl(MSR_IA32_XFD_ERR, 0);
   1290
   1291	/* Die if that happens in kernel space */
   1292	if (WARN_ON(!user_mode(regs)))
   1293		return false;
   1294
   1295	local_irq_enable();
   1296
   1297	err = xfd_enable_feature(xfd_err);
   1298
   1299	switch (err) {
   1300	case -EPERM:
   1301		force_sig_fault(SIGILL, ILL_ILLOPC, error_get_trap_addr(regs));
   1302		break;
   1303	case -EFAULT:
   1304		force_sig(SIGSEGV);
   1305		break;
   1306	}
   1307
   1308	local_irq_disable();
   1309	return true;
   1310}
   1311
   1312DEFINE_IDTENTRY(exc_device_not_available)
   1313{
   1314	unsigned long cr0 = read_cr0();
   1315
   1316	if (handle_xfd_event(regs))
   1317		return;
   1318
   1319#ifdef CONFIG_MATH_EMULATION
   1320	if (!boot_cpu_has(X86_FEATURE_FPU) && (cr0 & X86_CR0_EM)) {
   1321		struct math_emu_info info = { };
   1322
   1323		cond_local_irq_enable(regs);
   1324
   1325		info.regs = regs;
   1326		math_emulate(&info);
   1327
   1328		cond_local_irq_disable(regs);
   1329		return;
   1330	}
   1331#endif
   1332
   1333	/* This should not happen. */
   1334	if (WARN(cr0 & X86_CR0_TS, "CR0.TS was set")) {
   1335		/* Try to fix it up and carry on. */
   1336		write_cr0(cr0 & ~X86_CR0_TS);
   1337	} else {
   1338		/*
   1339		 * Something terrible happened, and we're better off trying
   1340		 * to kill the task than getting stuck in a never-ending
   1341		 * loop of #NM faults.
   1342		 */
   1343		die("unexpected #NM exception", regs, 0);
   1344	}
   1345}
   1346
   1347#ifdef CONFIG_INTEL_TDX_GUEST
   1348
   1349#define VE_FAULT_STR "VE fault"
   1350
   1351static void ve_raise_fault(struct pt_regs *regs, long error_code)
   1352{
   1353	if (user_mode(regs)) {
   1354		gp_user_force_sig_segv(regs, X86_TRAP_VE, error_code, VE_FAULT_STR);
   1355		return;
   1356	}
   1357
   1358	if (gp_try_fixup_and_notify(regs, X86_TRAP_VE, error_code, VE_FAULT_STR))
   1359		return;
   1360
   1361	die_addr(VE_FAULT_STR, regs, error_code, 0);
   1362}
   1363
   1364/*
   1365 * Virtualization Exceptions (#VE) are delivered to TDX guests due to
   1366 * specific guest actions which may happen in either user space or the
   1367 * kernel:
   1368 *
   1369 *  * Specific instructions (WBINVD, for example)
   1370 *  * Specific MSR accesses
   1371 *  * Specific CPUID leaf accesses
   1372 *  * Access to specific guest physical addresses
   1373 *
   1374 * In the settings that Linux will run in, virtualization exceptions are
   1375 * never generated on accesses to normal, TD-private memory that has been
   1376 * accepted (by BIOS or with tdx_enc_status_changed()).
   1377 *
   1378 * Syscall entry code has a critical window where the kernel stack is not
   1379 * yet set up. Any exception in this window leads to hard to debug issues
   1380 * and can be exploited for privilege escalation. Exceptions in the NMI
   1381 * entry code also cause issues. Returning from the exception handler with
   1382 * IRET will re-enable NMIs and nested NMI will corrupt the NMI stack.
   1383 *
   1384 * For these reasons, the kernel avoids #VEs during the syscall gap and
   1385 * the NMI entry code. Entry code paths do not access TD-shared memory,
   1386 * MMIO regions, use #VE triggering MSRs, instructions, or CPUID leaves
   1387 * that might generate #VE. VMM can remove memory from TD at any point,
   1388 * but access to unaccepted (or missing) private memory leads to VM
   1389 * termination, not to #VE.
   1390 *
   1391 * Similarly to page faults and breakpoints, #VEs are allowed in NMI
   1392 * handlers once the kernel is ready to deal with nested NMIs.
   1393 *
   1394 * During #VE delivery, all interrupts, including NMIs, are blocked until
   1395 * TDGETVEINFO is called. It prevents #VE nesting until the kernel reads
   1396 * the VE info.
   1397 *
   1398 * If a guest kernel action which would normally cause a #VE occurs in
   1399 * the interrupt-disabled region before TDGETVEINFO, a #DF (fault
   1400 * exception) is delivered to the guest which will result in an oops.
   1401 *
   1402 * The entry code has been audited carefully for following these expectations.
   1403 * Changes in the entry code have to be audited for correctness vs. this
   1404 * aspect. Similarly to #PF, #VE in these places will expose kernel to
   1405 * privilege escalation or may lead to random crashes.
   1406 */
   1407DEFINE_IDTENTRY(exc_virtualization_exception)
   1408{
   1409	struct ve_info ve;
   1410
   1411	/*
   1412	 * NMIs/Machine-checks/Interrupts will be in a disabled state
   1413	 * till TDGETVEINFO TDCALL is executed. This ensures that VE
   1414	 * info cannot be overwritten by a nested #VE.
   1415	 */
   1416	tdx_get_ve_info(&ve);
   1417
   1418	cond_local_irq_enable(regs);
   1419
   1420	/*
   1421	 * If tdx_handle_virt_exception() could not process
   1422	 * it successfully, treat it as #GP(0) and handle it.
   1423	 */
   1424	if (!tdx_handle_virt_exception(regs, &ve))
   1425		ve_raise_fault(regs, 0);
   1426
   1427	cond_local_irq_disable(regs);
   1428}
   1429
   1430#endif
   1431
   1432#ifdef CONFIG_X86_32
   1433DEFINE_IDTENTRY_SW(iret_error)
   1434{
   1435	local_irq_enable();
   1436	if (notify_die(DIE_TRAP, "iret exception", regs, 0,
   1437			X86_TRAP_IRET, SIGILL) != NOTIFY_STOP) {
   1438		do_trap(X86_TRAP_IRET, SIGILL, "iret exception", regs, 0,
   1439			ILL_BADSTK, (void __user *)NULL);
   1440	}
   1441	local_irq_disable();
   1442}
   1443#endif
   1444
   1445void __init trap_init(void)
   1446{
   1447	/* Init cpu_entry_area before IST entries are set up */
   1448	setup_cpu_entry_areas();
   1449
   1450	/* Init GHCB memory pages when running as an SEV-ES guest */
   1451	sev_es_init_vc_handling();
   1452
   1453	/* Initialize TSS before setting up traps so ISTs work */
   1454	cpu_init_exception_handling();
   1455	/* Setup traps as cpu_init() might #GP */
   1456	idt_setup_traps();
   1457	cpu_init();
   1458}