cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

tsc.c (41126B)


      1// SPDX-License-Identifier: GPL-2.0-only
      2#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
      3
      4#include <linux/kernel.h>
      5#include <linux/sched.h>
      6#include <linux/sched/clock.h>
      7#include <linux/init.h>
      8#include <linux/export.h>
      9#include <linux/timer.h>
     10#include <linux/acpi_pmtmr.h>
     11#include <linux/cpufreq.h>
     12#include <linux/delay.h>
     13#include <linux/clocksource.h>
     14#include <linux/percpu.h>
     15#include <linux/timex.h>
     16#include <linux/static_key.h>
     17#include <linux/static_call.h>
     18
     19#include <asm/hpet.h>
     20#include <asm/timer.h>
     21#include <asm/vgtod.h>
     22#include <asm/time.h>
     23#include <asm/delay.h>
     24#include <asm/hypervisor.h>
     25#include <asm/nmi.h>
     26#include <asm/x86_init.h>
     27#include <asm/geode.h>
     28#include <asm/apic.h>
     29#include <asm/intel-family.h>
     30#include <asm/i8259.h>
     31#include <asm/uv/uv.h>
     32
     33unsigned int __read_mostly cpu_khz;	/* TSC clocks / usec, not used here */
     34EXPORT_SYMBOL(cpu_khz);
     35
     36unsigned int __read_mostly tsc_khz;
     37EXPORT_SYMBOL(tsc_khz);
     38
     39#define KHZ	1000
     40
     41/*
     42 * TSC can be unstable due to cpufreq or due to unsynced TSCs
     43 */
     44static int __read_mostly tsc_unstable;
     45static unsigned int __initdata tsc_early_khz;
     46
     47static DEFINE_STATIC_KEY_FALSE(__use_tsc);
     48
     49int tsc_clocksource_reliable;
     50
     51static u32 art_to_tsc_numerator;
     52static u32 art_to_tsc_denominator;
     53static u64 art_to_tsc_offset;
     54struct clocksource *art_related_clocksource;
     55
     56struct cyc2ns {
     57	struct cyc2ns_data data[2];	/*  0 + 2*16 = 32 */
     58	seqcount_latch_t   seq;		/* 32 + 4    = 36 */
     59
     60}; /* fits one cacheline */
     61
     62static DEFINE_PER_CPU_ALIGNED(struct cyc2ns, cyc2ns);
     63
     64static int __init tsc_early_khz_setup(char *buf)
     65{
     66	return kstrtouint(buf, 0, &tsc_early_khz);
     67}
     68early_param("tsc_early_khz", tsc_early_khz_setup);
     69
     70__always_inline void cyc2ns_read_begin(struct cyc2ns_data *data)
     71{
     72	int seq, idx;
     73
     74	preempt_disable_notrace();
     75
     76	do {
     77		seq = this_cpu_read(cyc2ns.seq.seqcount.sequence);
     78		idx = seq & 1;
     79
     80		data->cyc2ns_offset = this_cpu_read(cyc2ns.data[idx].cyc2ns_offset);
     81		data->cyc2ns_mul    = this_cpu_read(cyc2ns.data[idx].cyc2ns_mul);
     82		data->cyc2ns_shift  = this_cpu_read(cyc2ns.data[idx].cyc2ns_shift);
     83
     84	} while (unlikely(seq != this_cpu_read(cyc2ns.seq.seqcount.sequence)));
     85}
     86
     87__always_inline void cyc2ns_read_end(void)
     88{
     89	preempt_enable_notrace();
     90}
     91
     92/*
     93 * Accelerators for sched_clock()
     94 * convert from cycles(64bits) => nanoseconds (64bits)
     95 *  basic equation:
     96 *              ns = cycles / (freq / ns_per_sec)
     97 *              ns = cycles * (ns_per_sec / freq)
     98 *              ns = cycles * (10^9 / (cpu_khz * 10^3))
     99 *              ns = cycles * (10^6 / cpu_khz)
    100 *
    101 *      Then we use scaling math (suggested by george@mvista.com) to get:
    102 *              ns = cycles * (10^6 * SC / cpu_khz) / SC
    103 *              ns = cycles * cyc2ns_scale / SC
    104 *
    105 *      And since SC is a constant power of two, we can convert the div
    106 *  into a shift. The larger SC is, the more accurate the conversion, but
    107 *  cyc2ns_scale needs to be a 32-bit value so that 32-bit multiplication
    108 *  (64-bit result) can be used.
    109 *
    110 *  We can use khz divisor instead of mhz to keep a better precision.
    111 *  (mathieu.desnoyers@polymtl.ca)
    112 *
    113 *                      -johnstul@us.ibm.com "math is hard, lets go shopping!"
    114 */
    115
    116static __always_inline unsigned long long cycles_2_ns(unsigned long long cyc)
    117{
    118	struct cyc2ns_data data;
    119	unsigned long long ns;
    120
    121	cyc2ns_read_begin(&data);
    122
    123	ns = data.cyc2ns_offset;
    124	ns += mul_u64_u32_shr(cyc, data.cyc2ns_mul, data.cyc2ns_shift);
    125
    126	cyc2ns_read_end();
    127
    128	return ns;
    129}
    130
    131static void __set_cyc2ns_scale(unsigned long khz, int cpu, unsigned long long tsc_now)
    132{
    133	unsigned long long ns_now;
    134	struct cyc2ns_data data;
    135	struct cyc2ns *c2n;
    136
    137	ns_now = cycles_2_ns(tsc_now);
    138
    139	/*
    140	 * Compute a new multiplier as per the above comment and ensure our
    141	 * time function is continuous; see the comment near struct
    142	 * cyc2ns_data.
    143	 */
    144	clocks_calc_mult_shift(&data.cyc2ns_mul, &data.cyc2ns_shift, khz,
    145			       NSEC_PER_MSEC, 0);
    146
    147	/*
    148	 * cyc2ns_shift is exported via arch_perf_update_userpage() where it is
    149	 * not expected to be greater than 31 due to the original published
    150	 * conversion algorithm shifting a 32-bit value (now specifies a 64-bit
    151	 * value) - refer perf_event_mmap_page documentation in perf_event.h.
    152	 */
    153	if (data.cyc2ns_shift == 32) {
    154		data.cyc2ns_shift = 31;
    155		data.cyc2ns_mul >>= 1;
    156	}
    157
    158	data.cyc2ns_offset = ns_now -
    159		mul_u64_u32_shr(tsc_now, data.cyc2ns_mul, data.cyc2ns_shift);
    160
    161	c2n = per_cpu_ptr(&cyc2ns, cpu);
    162
    163	raw_write_seqcount_latch(&c2n->seq);
    164	c2n->data[0] = data;
    165	raw_write_seqcount_latch(&c2n->seq);
    166	c2n->data[1] = data;
    167}
    168
    169static void set_cyc2ns_scale(unsigned long khz, int cpu, unsigned long long tsc_now)
    170{
    171	unsigned long flags;
    172
    173	local_irq_save(flags);
    174	sched_clock_idle_sleep_event();
    175
    176	if (khz)
    177		__set_cyc2ns_scale(khz, cpu, tsc_now);
    178
    179	sched_clock_idle_wakeup_event();
    180	local_irq_restore(flags);
    181}
    182
    183/*
    184 * Initialize cyc2ns for boot cpu
    185 */
    186static void __init cyc2ns_init_boot_cpu(void)
    187{
    188	struct cyc2ns *c2n = this_cpu_ptr(&cyc2ns);
    189
    190	seqcount_latch_init(&c2n->seq);
    191	__set_cyc2ns_scale(tsc_khz, smp_processor_id(), rdtsc());
    192}
    193
    194/*
    195 * Secondary CPUs do not run through tsc_init(), so set up
    196 * all the scale factors for all CPUs, assuming the same
    197 * speed as the bootup CPU.
    198 */
    199static void __init cyc2ns_init_secondary_cpus(void)
    200{
    201	unsigned int cpu, this_cpu = smp_processor_id();
    202	struct cyc2ns *c2n = this_cpu_ptr(&cyc2ns);
    203	struct cyc2ns_data *data = c2n->data;
    204
    205	for_each_possible_cpu(cpu) {
    206		if (cpu != this_cpu) {
    207			seqcount_latch_init(&c2n->seq);
    208			c2n = per_cpu_ptr(&cyc2ns, cpu);
    209			c2n->data[0] = data[0];
    210			c2n->data[1] = data[1];
    211		}
    212	}
    213}
    214
    215/*
    216 * Scheduler clock - returns current time in nanosec units.
    217 */
    218u64 native_sched_clock(void)
    219{
    220	if (static_branch_likely(&__use_tsc)) {
    221		u64 tsc_now = rdtsc();
    222
    223		/* return the value in ns */
    224		return cycles_2_ns(tsc_now);
    225	}
    226
    227	/*
    228	 * Fall back to jiffies if there's no TSC available:
    229	 * ( But note that we still use it if the TSC is marked
    230	 *   unstable. We do this because unlike Time Of Day,
    231	 *   the scheduler clock tolerates small errors and it's
    232	 *   very important for it to be as fast as the platform
    233	 *   can achieve it. )
    234	 */
    235
    236	/* No locking but a rare wrong value is not a big deal: */
    237	return (jiffies_64 - INITIAL_JIFFIES) * (1000000000 / HZ);
    238}
    239
    240/*
    241 * Generate a sched_clock if you already have a TSC value.
    242 */
    243u64 native_sched_clock_from_tsc(u64 tsc)
    244{
    245	return cycles_2_ns(tsc);
    246}
    247
    248/* We need to define a real function for sched_clock, to override the
    249   weak default version */
    250#ifdef CONFIG_PARAVIRT
    251unsigned long long sched_clock(void)
    252{
    253	return paravirt_sched_clock();
    254}
    255
    256bool using_native_sched_clock(void)
    257{
    258	return static_call_query(pv_sched_clock) == native_sched_clock;
    259}
    260#else
    261unsigned long long
    262sched_clock(void) __attribute__((alias("native_sched_clock")));
    263
    264bool using_native_sched_clock(void) { return true; }
    265#endif
    266
    267int check_tsc_unstable(void)
    268{
    269	return tsc_unstable;
    270}
    271EXPORT_SYMBOL_GPL(check_tsc_unstable);
    272
    273#ifdef CONFIG_X86_TSC
    274int __init notsc_setup(char *str)
    275{
    276	mark_tsc_unstable("boot parameter notsc");
    277	return 1;
    278}
    279#else
    280/*
    281 * disable flag for tsc. Takes effect by clearing the TSC cpu flag
    282 * in cpu/common.c
    283 */
    284int __init notsc_setup(char *str)
    285{
    286	setup_clear_cpu_cap(X86_FEATURE_TSC);
    287	return 1;
    288}
    289#endif
    290
    291__setup("notsc", notsc_setup);
    292
    293static int no_sched_irq_time;
    294static int no_tsc_watchdog;
    295
    296static int __init tsc_setup(char *str)
    297{
    298	if (!strcmp(str, "reliable"))
    299		tsc_clocksource_reliable = 1;
    300	if (!strncmp(str, "noirqtime", 9))
    301		no_sched_irq_time = 1;
    302	if (!strcmp(str, "unstable"))
    303		mark_tsc_unstable("boot parameter");
    304	if (!strcmp(str, "nowatchdog"))
    305		no_tsc_watchdog = 1;
    306	return 1;
    307}
    308
    309__setup("tsc=", tsc_setup);
    310
    311#define MAX_RETRIES		5
    312#define TSC_DEFAULT_THRESHOLD	0x20000
    313
    314/*
    315 * Read TSC and the reference counters. Take care of any disturbances
    316 */
    317static u64 tsc_read_refs(u64 *p, int hpet)
    318{
    319	u64 t1, t2;
    320	u64 thresh = tsc_khz ? tsc_khz >> 5 : TSC_DEFAULT_THRESHOLD;
    321	int i;
    322
    323	for (i = 0; i < MAX_RETRIES; i++) {
    324		t1 = get_cycles();
    325		if (hpet)
    326			*p = hpet_readl(HPET_COUNTER) & 0xFFFFFFFF;
    327		else
    328			*p = acpi_pm_read_early();
    329		t2 = get_cycles();
    330		if ((t2 - t1) < thresh)
    331			return t2;
    332	}
    333	return ULLONG_MAX;
    334}
    335
    336/*
    337 * Calculate the TSC frequency from HPET reference
    338 */
    339static unsigned long calc_hpet_ref(u64 deltatsc, u64 hpet1, u64 hpet2)
    340{
    341	u64 tmp;
    342
    343	if (hpet2 < hpet1)
    344		hpet2 += 0x100000000ULL;
    345	hpet2 -= hpet1;
    346	tmp = ((u64)hpet2 * hpet_readl(HPET_PERIOD));
    347	do_div(tmp, 1000000);
    348	deltatsc = div64_u64(deltatsc, tmp);
    349
    350	return (unsigned long) deltatsc;
    351}
    352
    353/*
    354 * Calculate the TSC frequency from PMTimer reference
    355 */
    356static unsigned long calc_pmtimer_ref(u64 deltatsc, u64 pm1, u64 pm2)
    357{
    358	u64 tmp;
    359
    360	if (!pm1 && !pm2)
    361		return ULONG_MAX;
    362
    363	if (pm2 < pm1)
    364		pm2 += (u64)ACPI_PM_OVRRUN;
    365	pm2 -= pm1;
    366	tmp = pm2 * 1000000000LL;
    367	do_div(tmp, PMTMR_TICKS_PER_SEC);
    368	do_div(deltatsc, tmp);
    369
    370	return (unsigned long) deltatsc;
    371}
    372
    373#define CAL_MS		10
    374#define CAL_LATCH	(PIT_TICK_RATE / (1000 / CAL_MS))
    375#define CAL_PIT_LOOPS	1000
    376
    377#define CAL2_MS		50
    378#define CAL2_LATCH	(PIT_TICK_RATE / (1000 / CAL2_MS))
    379#define CAL2_PIT_LOOPS	5000
    380
    381
    382/*
    383 * Try to calibrate the TSC against the Programmable
    384 * Interrupt Timer and return the frequency of the TSC
    385 * in kHz.
    386 *
    387 * Return ULONG_MAX on failure to calibrate.
    388 */
    389static unsigned long pit_calibrate_tsc(u32 latch, unsigned long ms, int loopmin)
    390{
    391	u64 tsc, t1, t2, delta;
    392	unsigned long tscmin, tscmax;
    393	int pitcnt;
    394
    395	if (!has_legacy_pic()) {
    396		/*
    397		 * Relies on tsc_early_delay_calibrate() to have given us semi
    398		 * usable udelay(), wait for the same 50ms we would have with
    399		 * the PIT loop below.
    400		 */
    401		udelay(10 * USEC_PER_MSEC);
    402		udelay(10 * USEC_PER_MSEC);
    403		udelay(10 * USEC_PER_MSEC);
    404		udelay(10 * USEC_PER_MSEC);
    405		udelay(10 * USEC_PER_MSEC);
    406		return ULONG_MAX;
    407	}
    408
    409	/* Set the Gate high, disable speaker */
    410	outb((inb(0x61) & ~0x02) | 0x01, 0x61);
    411
    412	/*
    413	 * Setup CTC channel 2* for mode 0, (interrupt on terminal
    414	 * count mode), binary count. Set the latch register to 50ms
    415	 * (LSB then MSB) to begin countdown.
    416	 */
    417	outb(0xb0, 0x43);
    418	outb(latch & 0xff, 0x42);
    419	outb(latch >> 8, 0x42);
    420
    421	tsc = t1 = t2 = get_cycles();
    422
    423	pitcnt = 0;
    424	tscmax = 0;
    425	tscmin = ULONG_MAX;
    426	while ((inb(0x61) & 0x20) == 0) {
    427		t2 = get_cycles();
    428		delta = t2 - tsc;
    429		tsc = t2;
    430		if ((unsigned long) delta < tscmin)
    431			tscmin = (unsigned int) delta;
    432		if ((unsigned long) delta > tscmax)
    433			tscmax = (unsigned int) delta;
    434		pitcnt++;
    435	}
    436
    437	/*
    438	 * Sanity checks:
    439	 *
    440	 * If we were not able to read the PIT more than loopmin
    441	 * times, then we have been hit by a massive SMI
    442	 *
    443	 * If the maximum is 10 times larger than the minimum,
    444	 * then we got hit by an SMI as well.
    445	 */
    446	if (pitcnt < loopmin || tscmax > 10 * tscmin)
    447		return ULONG_MAX;
    448
    449	/* Calculate the PIT value */
    450	delta = t2 - t1;
    451	do_div(delta, ms);
    452	return delta;
    453}
    454
    455/*
    456 * This reads the current MSB of the PIT counter, and
    457 * checks if we are running on sufficiently fast and
    458 * non-virtualized hardware.
    459 *
    460 * Our expectations are:
    461 *
    462 *  - the PIT is running at roughly 1.19MHz
    463 *
    464 *  - each IO is going to take about 1us on real hardware,
    465 *    but we allow it to be much faster (by a factor of 10) or
    466 *    _slightly_ slower (ie we allow up to a 2us read+counter
    467 *    update - anything else implies a unacceptably slow CPU
    468 *    or PIT for the fast calibration to work.
    469 *
    470 *  - with 256 PIT ticks to read the value, we have 214us to
    471 *    see the same MSB (and overhead like doing a single TSC
    472 *    read per MSB value etc).
    473 *
    474 *  - We're doing 2 reads per loop (LSB, MSB), and we expect
    475 *    them each to take about a microsecond on real hardware.
    476 *    So we expect a count value of around 100. But we'll be
    477 *    generous, and accept anything over 50.
    478 *
    479 *  - if the PIT is stuck, and we see *many* more reads, we
    480 *    return early (and the next caller of pit_expect_msb()
    481 *    then consider it a failure when they don't see the
    482 *    next expected value).
    483 *
    484 * These expectations mean that we know that we have seen the
    485 * transition from one expected value to another with a fairly
    486 * high accuracy, and we didn't miss any events. We can thus
    487 * use the TSC value at the transitions to calculate a pretty
    488 * good value for the TSC frequency.
    489 */
    490static inline int pit_verify_msb(unsigned char val)
    491{
    492	/* Ignore LSB */
    493	inb(0x42);
    494	return inb(0x42) == val;
    495}
    496
    497static inline int pit_expect_msb(unsigned char val, u64 *tscp, unsigned long *deltap)
    498{
    499	int count;
    500	u64 tsc = 0, prev_tsc = 0;
    501
    502	for (count = 0; count < 50000; count++) {
    503		if (!pit_verify_msb(val))
    504			break;
    505		prev_tsc = tsc;
    506		tsc = get_cycles();
    507	}
    508	*deltap = get_cycles() - prev_tsc;
    509	*tscp = tsc;
    510
    511	/*
    512	 * We require _some_ success, but the quality control
    513	 * will be based on the error terms on the TSC values.
    514	 */
    515	return count > 5;
    516}
    517
    518/*
    519 * How many MSB values do we want to see? We aim for
    520 * a maximum error rate of 500ppm (in practice the
    521 * real error is much smaller), but refuse to spend
    522 * more than 50ms on it.
    523 */
    524#define MAX_QUICK_PIT_MS 50
    525#define MAX_QUICK_PIT_ITERATIONS (MAX_QUICK_PIT_MS * PIT_TICK_RATE / 1000 / 256)
    526
    527static unsigned long quick_pit_calibrate(void)
    528{
    529	int i;
    530	u64 tsc, delta;
    531	unsigned long d1, d2;
    532
    533	if (!has_legacy_pic())
    534		return 0;
    535
    536	/* Set the Gate high, disable speaker */
    537	outb((inb(0x61) & ~0x02) | 0x01, 0x61);
    538
    539	/*
    540	 * Counter 2, mode 0 (one-shot), binary count
    541	 *
    542	 * NOTE! Mode 2 decrements by two (and then the
    543	 * output is flipped each time, giving the same
    544	 * final output frequency as a decrement-by-one),
    545	 * so mode 0 is much better when looking at the
    546	 * individual counts.
    547	 */
    548	outb(0xb0, 0x43);
    549
    550	/* Start at 0xffff */
    551	outb(0xff, 0x42);
    552	outb(0xff, 0x42);
    553
    554	/*
    555	 * The PIT starts counting at the next edge, so we
    556	 * need to delay for a microsecond. The easiest way
    557	 * to do that is to just read back the 16-bit counter
    558	 * once from the PIT.
    559	 */
    560	pit_verify_msb(0);
    561
    562	if (pit_expect_msb(0xff, &tsc, &d1)) {
    563		for (i = 1; i <= MAX_QUICK_PIT_ITERATIONS; i++) {
    564			if (!pit_expect_msb(0xff-i, &delta, &d2))
    565				break;
    566
    567			delta -= tsc;
    568
    569			/*
    570			 * Extrapolate the error and fail fast if the error will
    571			 * never be below 500 ppm.
    572			 */
    573			if (i == 1 &&
    574			    d1 + d2 >= (delta * MAX_QUICK_PIT_ITERATIONS) >> 11)
    575				return 0;
    576
    577			/*
    578			 * Iterate until the error is less than 500 ppm
    579			 */
    580			if (d1+d2 >= delta >> 11)
    581				continue;
    582
    583			/*
    584			 * Check the PIT one more time to verify that
    585			 * all TSC reads were stable wrt the PIT.
    586			 *
    587			 * This also guarantees serialization of the
    588			 * last cycle read ('d2') in pit_expect_msb.
    589			 */
    590			if (!pit_verify_msb(0xfe - i))
    591				break;
    592			goto success;
    593		}
    594	}
    595	pr_info("Fast TSC calibration failed\n");
    596	return 0;
    597
    598success:
    599	/*
    600	 * Ok, if we get here, then we've seen the
    601	 * MSB of the PIT decrement 'i' times, and the
    602	 * error has shrunk to less than 500 ppm.
    603	 *
    604	 * As a result, we can depend on there not being
    605	 * any odd delays anywhere, and the TSC reads are
    606	 * reliable (within the error).
    607	 *
    608	 * kHz = ticks / time-in-seconds / 1000;
    609	 * kHz = (t2 - t1) / (I * 256 / PIT_TICK_RATE) / 1000
    610	 * kHz = ((t2 - t1) * PIT_TICK_RATE) / (I * 256 * 1000)
    611	 */
    612	delta *= PIT_TICK_RATE;
    613	do_div(delta, i*256*1000);
    614	pr_info("Fast TSC calibration using PIT\n");
    615	return delta;
    616}
    617
    618/**
    619 * native_calibrate_tsc
    620 * Determine TSC frequency via CPUID, else return 0.
    621 */
    622unsigned long native_calibrate_tsc(void)
    623{
    624	unsigned int eax_denominator, ebx_numerator, ecx_hz, edx;
    625	unsigned int crystal_khz;
    626
    627	if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
    628		return 0;
    629
    630	if (boot_cpu_data.cpuid_level < 0x15)
    631		return 0;
    632
    633	eax_denominator = ebx_numerator = ecx_hz = edx = 0;
    634
    635	/* CPUID 15H TSC/Crystal ratio, plus optionally Crystal Hz */
    636	cpuid(0x15, &eax_denominator, &ebx_numerator, &ecx_hz, &edx);
    637
    638	if (ebx_numerator == 0 || eax_denominator == 0)
    639		return 0;
    640
    641	crystal_khz = ecx_hz / 1000;
    642
    643	/*
    644	 * Denverton SoCs don't report crystal clock, and also don't support
    645	 * CPUID.0x16 for the calculation below, so hardcode the 25MHz crystal
    646	 * clock.
    647	 */
    648	if (crystal_khz == 0 &&
    649			boot_cpu_data.x86_model == INTEL_FAM6_ATOM_GOLDMONT_D)
    650		crystal_khz = 25000;
    651
    652	/*
    653	 * TSC frequency reported directly by CPUID is a "hardware reported"
    654	 * frequency and is the most accurate one so far we have. This
    655	 * is considered a known frequency.
    656	 */
    657	if (crystal_khz != 0)
    658		setup_force_cpu_cap(X86_FEATURE_TSC_KNOWN_FREQ);
    659
    660	/*
    661	 * Some Intel SoCs like Skylake and Kabylake don't report the crystal
    662	 * clock, but we can easily calculate it to a high degree of accuracy
    663	 * by considering the crystal ratio and the CPU speed.
    664	 */
    665	if (crystal_khz == 0 && boot_cpu_data.cpuid_level >= 0x16) {
    666		unsigned int eax_base_mhz, ebx, ecx, edx;
    667
    668		cpuid(0x16, &eax_base_mhz, &ebx, &ecx, &edx);
    669		crystal_khz = eax_base_mhz * 1000 *
    670			eax_denominator / ebx_numerator;
    671	}
    672
    673	if (crystal_khz == 0)
    674		return 0;
    675
    676	/*
    677	 * For Atom SoCs TSC is the only reliable clocksource.
    678	 * Mark TSC reliable so no watchdog on it.
    679	 */
    680	if (boot_cpu_data.x86_model == INTEL_FAM6_ATOM_GOLDMONT)
    681		setup_force_cpu_cap(X86_FEATURE_TSC_RELIABLE);
    682
    683#ifdef CONFIG_X86_LOCAL_APIC
    684	/*
    685	 * The local APIC appears to be fed by the core crystal clock
    686	 * (which sounds entirely sensible). We can set the global
    687	 * lapic_timer_period here to avoid having to calibrate the APIC
    688	 * timer later.
    689	 */
    690	lapic_timer_period = crystal_khz * 1000 / HZ;
    691#endif
    692
    693	return crystal_khz * ebx_numerator / eax_denominator;
    694}
    695
    696static unsigned long cpu_khz_from_cpuid(void)
    697{
    698	unsigned int eax_base_mhz, ebx_max_mhz, ecx_bus_mhz, edx;
    699
    700	if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
    701		return 0;
    702
    703	if (boot_cpu_data.cpuid_level < 0x16)
    704		return 0;
    705
    706	eax_base_mhz = ebx_max_mhz = ecx_bus_mhz = edx = 0;
    707
    708	cpuid(0x16, &eax_base_mhz, &ebx_max_mhz, &ecx_bus_mhz, &edx);
    709
    710	return eax_base_mhz * 1000;
    711}
    712
    713/*
    714 * calibrate cpu using pit, hpet, and ptimer methods. They are available
    715 * later in boot after acpi is initialized.
    716 */
    717static unsigned long pit_hpet_ptimer_calibrate_cpu(void)
    718{
    719	u64 tsc1, tsc2, delta, ref1, ref2;
    720	unsigned long tsc_pit_min = ULONG_MAX, tsc_ref_min = ULONG_MAX;
    721	unsigned long flags, latch, ms;
    722	int hpet = is_hpet_enabled(), i, loopmin;
    723
    724	/*
    725	 * Run 5 calibration loops to get the lowest frequency value
    726	 * (the best estimate). We use two different calibration modes
    727	 * here:
    728	 *
    729	 * 1) PIT loop. We set the PIT Channel 2 to oneshot mode and
    730	 * load a timeout of 50ms. We read the time right after we
    731	 * started the timer and wait until the PIT count down reaches
    732	 * zero. In each wait loop iteration we read the TSC and check
    733	 * the delta to the previous read. We keep track of the min
    734	 * and max values of that delta. The delta is mostly defined
    735	 * by the IO time of the PIT access, so we can detect when
    736	 * any disturbance happened between the two reads. If the
    737	 * maximum time is significantly larger than the minimum time,
    738	 * then we discard the result and have another try.
    739	 *
    740	 * 2) Reference counter. If available we use the HPET or the
    741	 * PMTIMER as a reference to check the sanity of that value.
    742	 * We use separate TSC readouts and check inside of the
    743	 * reference read for any possible disturbance. We discard
    744	 * disturbed values here as well. We do that around the PIT
    745	 * calibration delay loop as we have to wait for a certain
    746	 * amount of time anyway.
    747	 */
    748
    749	/* Preset PIT loop values */
    750	latch = CAL_LATCH;
    751	ms = CAL_MS;
    752	loopmin = CAL_PIT_LOOPS;
    753
    754	for (i = 0; i < 3; i++) {
    755		unsigned long tsc_pit_khz;
    756
    757		/*
    758		 * Read the start value and the reference count of
    759		 * hpet/pmtimer when available. Then do the PIT
    760		 * calibration, which will take at least 50ms, and
    761		 * read the end value.
    762		 */
    763		local_irq_save(flags);
    764		tsc1 = tsc_read_refs(&ref1, hpet);
    765		tsc_pit_khz = pit_calibrate_tsc(latch, ms, loopmin);
    766		tsc2 = tsc_read_refs(&ref2, hpet);
    767		local_irq_restore(flags);
    768
    769		/* Pick the lowest PIT TSC calibration so far */
    770		tsc_pit_min = min(tsc_pit_min, tsc_pit_khz);
    771
    772		/* hpet or pmtimer available ? */
    773		if (ref1 == ref2)
    774			continue;
    775
    776		/* Check, whether the sampling was disturbed */
    777		if (tsc1 == ULLONG_MAX || tsc2 == ULLONG_MAX)
    778			continue;
    779
    780		tsc2 = (tsc2 - tsc1) * 1000000LL;
    781		if (hpet)
    782			tsc2 = calc_hpet_ref(tsc2, ref1, ref2);
    783		else
    784			tsc2 = calc_pmtimer_ref(tsc2, ref1, ref2);
    785
    786		tsc_ref_min = min(tsc_ref_min, (unsigned long) tsc2);
    787
    788		/* Check the reference deviation */
    789		delta = ((u64) tsc_pit_min) * 100;
    790		do_div(delta, tsc_ref_min);
    791
    792		/*
    793		 * If both calibration results are inside a 10% window
    794		 * then we can be sure, that the calibration
    795		 * succeeded. We break out of the loop right away. We
    796		 * use the reference value, as it is more precise.
    797		 */
    798		if (delta >= 90 && delta <= 110) {
    799			pr_info("PIT calibration matches %s. %d loops\n",
    800				hpet ? "HPET" : "PMTIMER", i + 1);
    801			return tsc_ref_min;
    802		}
    803
    804		/*
    805		 * Check whether PIT failed more than once. This
    806		 * happens in virtualized environments. We need to
    807		 * give the virtual PC a slightly longer timeframe for
    808		 * the HPET/PMTIMER to make the result precise.
    809		 */
    810		if (i == 1 && tsc_pit_min == ULONG_MAX) {
    811			latch = CAL2_LATCH;
    812			ms = CAL2_MS;
    813			loopmin = CAL2_PIT_LOOPS;
    814		}
    815	}
    816
    817	/*
    818	 * Now check the results.
    819	 */
    820	if (tsc_pit_min == ULONG_MAX) {
    821		/* PIT gave no useful value */
    822		pr_warn("Unable to calibrate against PIT\n");
    823
    824		/* We don't have an alternative source, disable TSC */
    825		if (!hpet && !ref1 && !ref2) {
    826			pr_notice("No reference (HPET/PMTIMER) available\n");
    827			return 0;
    828		}
    829
    830		/* The alternative source failed as well, disable TSC */
    831		if (tsc_ref_min == ULONG_MAX) {
    832			pr_warn("HPET/PMTIMER calibration failed\n");
    833			return 0;
    834		}
    835
    836		/* Use the alternative source */
    837		pr_info("using %s reference calibration\n",
    838			hpet ? "HPET" : "PMTIMER");
    839
    840		return tsc_ref_min;
    841	}
    842
    843	/* We don't have an alternative source, use the PIT calibration value */
    844	if (!hpet && !ref1 && !ref2) {
    845		pr_info("Using PIT calibration value\n");
    846		return tsc_pit_min;
    847	}
    848
    849	/* The alternative source failed, use the PIT calibration value */
    850	if (tsc_ref_min == ULONG_MAX) {
    851		pr_warn("HPET/PMTIMER calibration failed. Using PIT calibration.\n");
    852		return tsc_pit_min;
    853	}
    854
    855	/*
    856	 * The calibration values differ too much. In doubt, we use
    857	 * the PIT value as we know that there are PMTIMERs around
    858	 * running at double speed. At least we let the user know:
    859	 */
    860	pr_warn("PIT calibration deviates from %s: %lu %lu\n",
    861		hpet ? "HPET" : "PMTIMER", tsc_pit_min, tsc_ref_min);
    862	pr_info("Using PIT calibration value\n");
    863	return tsc_pit_min;
    864}
    865
    866/**
    867 * native_calibrate_cpu_early - can calibrate the cpu early in boot
    868 */
    869unsigned long native_calibrate_cpu_early(void)
    870{
    871	unsigned long flags, fast_calibrate = cpu_khz_from_cpuid();
    872
    873	if (!fast_calibrate)
    874		fast_calibrate = cpu_khz_from_msr();
    875	if (!fast_calibrate) {
    876		local_irq_save(flags);
    877		fast_calibrate = quick_pit_calibrate();
    878		local_irq_restore(flags);
    879	}
    880	return fast_calibrate;
    881}
    882
    883
    884/**
    885 * native_calibrate_cpu - calibrate the cpu
    886 */
    887static unsigned long native_calibrate_cpu(void)
    888{
    889	unsigned long tsc_freq = native_calibrate_cpu_early();
    890
    891	if (!tsc_freq)
    892		tsc_freq = pit_hpet_ptimer_calibrate_cpu();
    893
    894	return tsc_freq;
    895}
    896
    897void recalibrate_cpu_khz(void)
    898{
    899#ifndef CONFIG_SMP
    900	unsigned long cpu_khz_old = cpu_khz;
    901
    902	if (!boot_cpu_has(X86_FEATURE_TSC))
    903		return;
    904
    905	cpu_khz = x86_platform.calibrate_cpu();
    906	tsc_khz = x86_platform.calibrate_tsc();
    907	if (tsc_khz == 0)
    908		tsc_khz = cpu_khz;
    909	else if (abs(cpu_khz - tsc_khz) * 10 > tsc_khz)
    910		cpu_khz = tsc_khz;
    911	cpu_data(0).loops_per_jiffy = cpufreq_scale(cpu_data(0).loops_per_jiffy,
    912						    cpu_khz_old, cpu_khz);
    913#endif
    914}
    915
    916EXPORT_SYMBOL(recalibrate_cpu_khz);
    917
    918
    919static unsigned long long cyc2ns_suspend;
    920
    921void tsc_save_sched_clock_state(void)
    922{
    923	if (!sched_clock_stable())
    924		return;
    925
    926	cyc2ns_suspend = sched_clock();
    927}
    928
    929/*
    930 * Even on processors with invariant TSC, TSC gets reset in some the
    931 * ACPI system sleep states. And in some systems BIOS seem to reinit TSC to
    932 * arbitrary value (still sync'd across cpu's) during resume from such sleep
    933 * states. To cope up with this, recompute the cyc2ns_offset for each cpu so
    934 * that sched_clock() continues from the point where it was left off during
    935 * suspend.
    936 */
    937void tsc_restore_sched_clock_state(void)
    938{
    939	unsigned long long offset;
    940	unsigned long flags;
    941	int cpu;
    942
    943	if (!sched_clock_stable())
    944		return;
    945
    946	local_irq_save(flags);
    947
    948	/*
    949	 * We're coming out of suspend, there's no concurrency yet; don't
    950	 * bother being nice about the RCU stuff, just write to both
    951	 * data fields.
    952	 */
    953
    954	this_cpu_write(cyc2ns.data[0].cyc2ns_offset, 0);
    955	this_cpu_write(cyc2ns.data[1].cyc2ns_offset, 0);
    956
    957	offset = cyc2ns_suspend - sched_clock();
    958
    959	for_each_possible_cpu(cpu) {
    960		per_cpu(cyc2ns.data[0].cyc2ns_offset, cpu) = offset;
    961		per_cpu(cyc2ns.data[1].cyc2ns_offset, cpu) = offset;
    962	}
    963
    964	local_irq_restore(flags);
    965}
    966
    967#ifdef CONFIG_CPU_FREQ
    968/*
    969 * Frequency scaling support. Adjust the TSC based timer when the CPU frequency
    970 * changes.
    971 *
    972 * NOTE: On SMP the situation is not fixable in general, so simply mark the TSC
    973 * as unstable and give up in those cases.
    974 *
    975 * Should fix up last_tsc too. Currently gettimeofday in the
    976 * first tick after the change will be slightly wrong.
    977 */
    978
    979static unsigned int  ref_freq;
    980static unsigned long loops_per_jiffy_ref;
    981static unsigned long tsc_khz_ref;
    982
    983static int time_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
    984				void *data)
    985{
    986	struct cpufreq_freqs *freq = data;
    987
    988	if (num_online_cpus() > 1) {
    989		mark_tsc_unstable("cpufreq changes on SMP");
    990		return 0;
    991	}
    992
    993	if (!ref_freq) {
    994		ref_freq = freq->old;
    995		loops_per_jiffy_ref = boot_cpu_data.loops_per_jiffy;
    996		tsc_khz_ref = tsc_khz;
    997	}
    998
    999	if ((val == CPUFREQ_PRECHANGE  && freq->old < freq->new) ||
   1000	    (val == CPUFREQ_POSTCHANGE && freq->old > freq->new)) {
   1001		boot_cpu_data.loops_per_jiffy =
   1002			cpufreq_scale(loops_per_jiffy_ref, ref_freq, freq->new);
   1003
   1004		tsc_khz = cpufreq_scale(tsc_khz_ref, ref_freq, freq->new);
   1005		if (!(freq->flags & CPUFREQ_CONST_LOOPS))
   1006			mark_tsc_unstable("cpufreq changes");
   1007
   1008		set_cyc2ns_scale(tsc_khz, freq->policy->cpu, rdtsc());
   1009	}
   1010
   1011	return 0;
   1012}
   1013
   1014static struct notifier_block time_cpufreq_notifier_block = {
   1015	.notifier_call  = time_cpufreq_notifier
   1016};
   1017
   1018static int __init cpufreq_register_tsc_scaling(void)
   1019{
   1020	if (!boot_cpu_has(X86_FEATURE_TSC))
   1021		return 0;
   1022	if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
   1023		return 0;
   1024	cpufreq_register_notifier(&time_cpufreq_notifier_block,
   1025				CPUFREQ_TRANSITION_NOTIFIER);
   1026	return 0;
   1027}
   1028
   1029core_initcall(cpufreq_register_tsc_scaling);
   1030
   1031#endif /* CONFIG_CPU_FREQ */
   1032
   1033#define ART_CPUID_LEAF (0x15)
   1034#define ART_MIN_DENOMINATOR (1)
   1035
   1036
   1037/*
   1038 * If ART is present detect the numerator:denominator to convert to TSC
   1039 */
   1040static void __init detect_art(void)
   1041{
   1042	unsigned int unused[2];
   1043
   1044	if (boot_cpu_data.cpuid_level < ART_CPUID_LEAF)
   1045		return;
   1046
   1047	/*
   1048	 * Don't enable ART in a VM, non-stop TSC and TSC_ADJUST required,
   1049	 * and the TSC counter resets must not occur asynchronously.
   1050	 */
   1051	if (boot_cpu_has(X86_FEATURE_HYPERVISOR) ||
   1052	    !boot_cpu_has(X86_FEATURE_NONSTOP_TSC) ||
   1053	    !boot_cpu_has(X86_FEATURE_TSC_ADJUST) ||
   1054	    tsc_async_resets)
   1055		return;
   1056
   1057	cpuid(ART_CPUID_LEAF, &art_to_tsc_denominator,
   1058	      &art_to_tsc_numerator, unused, unused+1);
   1059
   1060	if (art_to_tsc_denominator < ART_MIN_DENOMINATOR)
   1061		return;
   1062
   1063	rdmsrl(MSR_IA32_TSC_ADJUST, art_to_tsc_offset);
   1064
   1065	/* Make this sticky over multiple CPU init calls */
   1066	setup_force_cpu_cap(X86_FEATURE_ART);
   1067}
   1068
   1069
   1070/* clocksource code */
   1071
   1072static void tsc_resume(struct clocksource *cs)
   1073{
   1074	tsc_verify_tsc_adjust(true);
   1075}
   1076
   1077/*
   1078 * We used to compare the TSC to the cycle_last value in the clocksource
   1079 * structure to avoid a nasty time-warp. This can be observed in a
   1080 * very small window right after one CPU updated cycle_last under
   1081 * xtime/vsyscall_gtod lock and the other CPU reads a TSC value which
   1082 * is smaller than the cycle_last reference value due to a TSC which
   1083 * is slightly behind. This delta is nowhere else observable, but in
   1084 * that case it results in a forward time jump in the range of hours
   1085 * due to the unsigned delta calculation of the time keeping core
   1086 * code, which is necessary to support wrapping clocksources like pm
   1087 * timer.
   1088 *
   1089 * This sanity check is now done in the core timekeeping code.
   1090 * checking the result of read_tsc() - cycle_last for being negative.
   1091 * That works because CLOCKSOURCE_MASK(64) does not mask out any bit.
   1092 */
   1093static u64 read_tsc(struct clocksource *cs)
   1094{
   1095	return (u64)rdtsc_ordered();
   1096}
   1097
   1098static void tsc_cs_mark_unstable(struct clocksource *cs)
   1099{
   1100	if (tsc_unstable)
   1101		return;
   1102
   1103	tsc_unstable = 1;
   1104	if (using_native_sched_clock())
   1105		clear_sched_clock_stable();
   1106	disable_sched_clock_irqtime();
   1107	pr_info("Marking TSC unstable due to clocksource watchdog\n");
   1108}
   1109
   1110static void tsc_cs_tick_stable(struct clocksource *cs)
   1111{
   1112	if (tsc_unstable)
   1113		return;
   1114
   1115	if (using_native_sched_clock())
   1116		sched_clock_tick_stable();
   1117}
   1118
   1119static int tsc_cs_enable(struct clocksource *cs)
   1120{
   1121	vclocks_set_used(VDSO_CLOCKMODE_TSC);
   1122	return 0;
   1123}
   1124
   1125/*
   1126 * .mask MUST be CLOCKSOURCE_MASK(64). See comment above read_tsc()
   1127 */
   1128static struct clocksource clocksource_tsc_early = {
   1129	.name			= "tsc-early",
   1130	.rating			= 299,
   1131	.uncertainty_margin	= 32 * NSEC_PER_MSEC,
   1132	.read			= read_tsc,
   1133	.mask			= CLOCKSOURCE_MASK(64),
   1134	.flags			= CLOCK_SOURCE_IS_CONTINUOUS |
   1135				  CLOCK_SOURCE_MUST_VERIFY,
   1136	.vdso_clock_mode	= VDSO_CLOCKMODE_TSC,
   1137	.enable			= tsc_cs_enable,
   1138	.resume			= tsc_resume,
   1139	.mark_unstable		= tsc_cs_mark_unstable,
   1140	.tick_stable		= tsc_cs_tick_stable,
   1141	.list			= LIST_HEAD_INIT(clocksource_tsc_early.list),
   1142};
   1143
   1144/*
   1145 * Must mark VALID_FOR_HRES early such that when we unregister tsc_early
   1146 * this one will immediately take over. We will only register if TSC has
   1147 * been found good.
   1148 */
   1149static struct clocksource clocksource_tsc = {
   1150	.name			= "tsc",
   1151	.rating			= 300,
   1152	.read			= read_tsc,
   1153	.mask			= CLOCKSOURCE_MASK(64),
   1154	.flags			= CLOCK_SOURCE_IS_CONTINUOUS |
   1155				  CLOCK_SOURCE_VALID_FOR_HRES |
   1156				  CLOCK_SOURCE_MUST_VERIFY |
   1157				  CLOCK_SOURCE_VERIFY_PERCPU,
   1158	.vdso_clock_mode	= VDSO_CLOCKMODE_TSC,
   1159	.enable			= tsc_cs_enable,
   1160	.resume			= tsc_resume,
   1161	.mark_unstable		= tsc_cs_mark_unstable,
   1162	.tick_stable		= tsc_cs_tick_stable,
   1163	.list			= LIST_HEAD_INIT(clocksource_tsc.list),
   1164};
   1165
   1166void mark_tsc_unstable(char *reason)
   1167{
   1168	if (tsc_unstable)
   1169		return;
   1170
   1171	tsc_unstable = 1;
   1172	if (using_native_sched_clock())
   1173		clear_sched_clock_stable();
   1174	disable_sched_clock_irqtime();
   1175	pr_info("Marking TSC unstable due to %s\n", reason);
   1176
   1177	clocksource_mark_unstable(&clocksource_tsc_early);
   1178	clocksource_mark_unstable(&clocksource_tsc);
   1179}
   1180
   1181EXPORT_SYMBOL_GPL(mark_tsc_unstable);
   1182
   1183static void __init tsc_disable_clocksource_watchdog(void)
   1184{
   1185	clocksource_tsc_early.flags &= ~CLOCK_SOURCE_MUST_VERIFY;
   1186	clocksource_tsc.flags &= ~CLOCK_SOURCE_MUST_VERIFY;
   1187}
   1188
   1189static void __init check_system_tsc_reliable(void)
   1190{
   1191#if defined(CONFIG_MGEODEGX1) || defined(CONFIG_MGEODE_LX) || defined(CONFIG_X86_GENERIC)
   1192	if (is_geode_lx()) {
   1193		/* RTSC counts during suspend */
   1194#define RTSC_SUSP 0x100
   1195		unsigned long res_low, res_high;
   1196
   1197		rdmsr_safe(MSR_GEODE_BUSCONT_CONF0, &res_low, &res_high);
   1198		/* Geode_LX - the OLPC CPU has a very reliable TSC */
   1199		if (res_low & RTSC_SUSP)
   1200			tsc_clocksource_reliable = 1;
   1201	}
   1202#endif
   1203	if (boot_cpu_has(X86_FEATURE_TSC_RELIABLE))
   1204		tsc_clocksource_reliable = 1;
   1205
   1206	/*
   1207	 * Disable the clocksource watchdog when the system has:
   1208	 *  - TSC running at constant frequency
   1209	 *  - TSC which does not stop in C-States
   1210	 *  - the TSC_ADJUST register which allows to detect even minimal
   1211	 *    modifications
   1212	 *  - not more than two sockets. As the number of sockets cannot be
   1213	 *    evaluated at the early boot stage where this has to be
   1214	 *    invoked, check the number of online memory nodes as a
   1215	 *    fallback solution which is an reasonable estimate.
   1216	 */
   1217	if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC) &&
   1218	    boot_cpu_has(X86_FEATURE_NONSTOP_TSC) &&
   1219	    boot_cpu_has(X86_FEATURE_TSC_ADJUST) &&
   1220	    nr_online_nodes <= 2)
   1221		tsc_disable_clocksource_watchdog();
   1222}
   1223
   1224/*
   1225 * Make an educated guess if the TSC is trustworthy and synchronized
   1226 * over all CPUs.
   1227 */
   1228int unsynchronized_tsc(void)
   1229{
   1230	if (!boot_cpu_has(X86_FEATURE_TSC) || tsc_unstable)
   1231		return 1;
   1232
   1233#ifdef CONFIG_SMP
   1234	if (apic_is_clustered_box())
   1235		return 1;
   1236#endif
   1237
   1238	if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
   1239		return 0;
   1240
   1241	if (tsc_clocksource_reliable)
   1242		return 0;
   1243	/*
   1244	 * Intel systems are normally all synchronized.
   1245	 * Exceptions must mark TSC as unstable:
   1246	 */
   1247	if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) {
   1248		/* assume multi socket systems are not synchronized: */
   1249		if (num_possible_cpus() > 1)
   1250			return 1;
   1251	}
   1252
   1253	return 0;
   1254}
   1255
   1256/*
   1257 * Convert ART to TSC given numerator/denominator found in detect_art()
   1258 */
   1259struct system_counterval_t convert_art_to_tsc(u64 art)
   1260{
   1261	u64 tmp, res, rem;
   1262
   1263	rem = do_div(art, art_to_tsc_denominator);
   1264
   1265	res = art * art_to_tsc_numerator;
   1266	tmp = rem * art_to_tsc_numerator;
   1267
   1268	do_div(tmp, art_to_tsc_denominator);
   1269	res += tmp + art_to_tsc_offset;
   1270
   1271	return (struct system_counterval_t) {.cs = art_related_clocksource,
   1272			.cycles = res};
   1273}
   1274EXPORT_SYMBOL(convert_art_to_tsc);
   1275
   1276/**
   1277 * convert_art_ns_to_tsc() - Convert ART in nanoseconds to TSC.
   1278 * @art_ns: ART (Always Running Timer) in unit of nanoseconds
   1279 *
   1280 * PTM requires all timestamps to be in units of nanoseconds. When user
   1281 * software requests a cross-timestamp, this function converts system timestamp
   1282 * to TSC.
   1283 *
   1284 * This is valid when CPU feature flag X86_FEATURE_TSC_KNOWN_FREQ is set
   1285 * indicating the tsc_khz is derived from CPUID[15H]. Drivers should check
   1286 * that this flag is set before conversion to TSC is attempted.
   1287 *
   1288 * Return:
   1289 * struct system_counterval_t - system counter value with the pointer to the
   1290 *	corresponding clocksource
   1291 *	@cycles:	System counter value
   1292 *	@cs:		Clocksource corresponding to system counter value. Used
   1293 *			by timekeeping code to verify comparability of two cycle
   1294 *			values.
   1295 */
   1296
   1297struct system_counterval_t convert_art_ns_to_tsc(u64 art_ns)
   1298{
   1299	u64 tmp, res, rem;
   1300
   1301	rem = do_div(art_ns, USEC_PER_SEC);
   1302
   1303	res = art_ns * tsc_khz;
   1304	tmp = rem * tsc_khz;
   1305
   1306	do_div(tmp, USEC_PER_SEC);
   1307	res += tmp;
   1308
   1309	return (struct system_counterval_t) { .cs = art_related_clocksource,
   1310					      .cycles = res};
   1311}
   1312EXPORT_SYMBOL(convert_art_ns_to_tsc);
   1313
   1314
   1315static void tsc_refine_calibration_work(struct work_struct *work);
   1316static DECLARE_DELAYED_WORK(tsc_irqwork, tsc_refine_calibration_work);
   1317/**
   1318 * tsc_refine_calibration_work - Further refine tsc freq calibration
   1319 * @work - ignored.
   1320 *
   1321 * This functions uses delayed work over a period of a
   1322 * second to further refine the TSC freq value. Since this is
   1323 * timer based, instead of loop based, we don't block the boot
   1324 * process while this longer calibration is done.
   1325 *
   1326 * If there are any calibration anomalies (too many SMIs, etc),
   1327 * or the refined calibration is off by 1% of the fast early
   1328 * calibration, we throw out the new calibration and use the
   1329 * early calibration.
   1330 */
   1331static void tsc_refine_calibration_work(struct work_struct *work)
   1332{
   1333	static u64 tsc_start = ULLONG_MAX, ref_start;
   1334	static int hpet;
   1335	u64 tsc_stop, ref_stop, delta;
   1336	unsigned long freq;
   1337	int cpu;
   1338
   1339	/* Don't bother refining TSC on unstable systems */
   1340	if (tsc_unstable)
   1341		goto unreg;
   1342
   1343	/*
   1344	 * Since the work is started early in boot, we may be
   1345	 * delayed the first time we expire. So set the workqueue
   1346	 * again once we know timers are working.
   1347	 */
   1348	if (tsc_start == ULLONG_MAX) {
   1349restart:
   1350		/*
   1351		 * Only set hpet once, to avoid mixing hardware
   1352		 * if the hpet becomes enabled later.
   1353		 */
   1354		hpet = is_hpet_enabled();
   1355		tsc_start = tsc_read_refs(&ref_start, hpet);
   1356		schedule_delayed_work(&tsc_irqwork, HZ);
   1357		return;
   1358	}
   1359
   1360	tsc_stop = tsc_read_refs(&ref_stop, hpet);
   1361
   1362	/* hpet or pmtimer available ? */
   1363	if (ref_start == ref_stop)
   1364		goto out;
   1365
   1366	/* Check, whether the sampling was disturbed */
   1367	if (tsc_stop == ULLONG_MAX)
   1368		goto restart;
   1369
   1370	delta = tsc_stop - tsc_start;
   1371	delta *= 1000000LL;
   1372	if (hpet)
   1373		freq = calc_hpet_ref(delta, ref_start, ref_stop);
   1374	else
   1375		freq = calc_pmtimer_ref(delta, ref_start, ref_stop);
   1376
   1377	/* Make sure we're within 1% */
   1378	if (abs(tsc_khz - freq) > tsc_khz/100)
   1379		goto out;
   1380
   1381	tsc_khz = freq;
   1382	pr_info("Refined TSC clocksource calibration: %lu.%03lu MHz\n",
   1383		(unsigned long)tsc_khz / 1000,
   1384		(unsigned long)tsc_khz % 1000);
   1385
   1386	/* Inform the TSC deadline clockevent devices about the recalibration */
   1387	lapic_update_tsc_freq();
   1388
   1389	/* Update the sched_clock() rate to match the clocksource one */
   1390	for_each_possible_cpu(cpu)
   1391		set_cyc2ns_scale(tsc_khz, cpu, tsc_stop);
   1392
   1393out:
   1394	if (tsc_unstable)
   1395		goto unreg;
   1396
   1397	if (boot_cpu_has(X86_FEATURE_ART))
   1398		art_related_clocksource = &clocksource_tsc;
   1399	clocksource_register_khz(&clocksource_tsc, tsc_khz);
   1400unreg:
   1401	clocksource_unregister(&clocksource_tsc_early);
   1402}
   1403
   1404
   1405static int __init init_tsc_clocksource(void)
   1406{
   1407	if (!boot_cpu_has(X86_FEATURE_TSC) || !tsc_khz)
   1408		return 0;
   1409
   1410	if (tsc_unstable)
   1411		goto unreg;
   1412
   1413	if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC_S3))
   1414		clocksource_tsc.flags |= CLOCK_SOURCE_SUSPEND_NONSTOP;
   1415
   1416	/*
   1417	 * When TSC frequency is known (retrieved via MSR or CPUID), we skip
   1418	 * the refined calibration and directly register it as a clocksource.
   1419	 */
   1420	if (boot_cpu_has(X86_FEATURE_TSC_KNOWN_FREQ)) {
   1421		if (boot_cpu_has(X86_FEATURE_ART))
   1422			art_related_clocksource = &clocksource_tsc;
   1423		clocksource_register_khz(&clocksource_tsc, tsc_khz);
   1424unreg:
   1425		clocksource_unregister(&clocksource_tsc_early);
   1426		return 0;
   1427	}
   1428
   1429	schedule_delayed_work(&tsc_irqwork, 0);
   1430	return 0;
   1431}
   1432/*
   1433 * We use device_initcall here, to ensure we run after the hpet
   1434 * is fully initialized, which may occur at fs_initcall time.
   1435 */
   1436device_initcall(init_tsc_clocksource);
   1437
   1438static bool __init determine_cpu_tsc_frequencies(bool early)
   1439{
   1440	/* Make sure that cpu and tsc are not already calibrated */
   1441	WARN_ON(cpu_khz || tsc_khz);
   1442
   1443	if (early) {
   1444		cpu_khz = x86_platform.calibrate_cpu();
   1445		if (tsc_early_khz)
   1446			tsc_khz = tsc_early_khz;
   1447		else
   1448			tsc_khz = x86_platform.calibrate_tsc();
   1449	} else {
   1450		/* We should not be here with non-native cpu calibration */
   1451		WARN_ON(x86_platform.calibrate_cpu != native_calibrate_cpu);
   1452		cpu_khz = pit_hpet_ptimer_calibrate_cpu();
   1453	}
   1454
   1455	/*
   1456	 * Trust non-zero tsc_khz as authoritative,
   1457	 * and use it to sanity check cpu_khz,
   1458	 * which will be off if system timer is off.
   1459	 */
   1460	if (tsc_khz == 0)
   1461		tsc_khz = cpu_khz;
   1462	else if (abs(cpu_khz - tsc_khz) * 10 > tsc_khz)
   1463		cpu_khz = tsc_khz;
   1464
   1465	if (tsc_khz == 0)
   1466		return false;
   1467
   1468	pr_info("Detected %lu.%03lu MHz processor\n",
   1469		(unsigned long)cpu_khz / KHZ,
   1470		(unsigned long)cpu_khz % KHZ);
   1471
   1472	if (cpu_khz != tsc_khz) {
   1473		pr_info("Detected %lu.%03lu MHz TSC",
   1474			(unsigned long)tsc_khz / KHZ,
   1475			(unsigned long)tsc_khz % KHZ);
   1476	}
   1477	return true;
   1478}
   1479
   1480static unsigned long __init get_loops_per_jiffy(void)
   1481{
   1482	u64 lpj = (u64)tsc_khz * KHZ;
   1483
   1484	do_div(lpj, HZ);
   1485	return lpj;
   1486}
   1487
   1488static void __init tsc_enable_sched_clock(void)
   1489{
   1490	loops_per_jiffy = get_loops_per_jiffy();
   1491	use_tsc_delay();
   1492
   1493	/* Sanitize TSC ADJUST before cyc2ns gets initialized */
   1494	tsc_store_and_check_tsc_adjust(true);
   1495	cyc2ns_init_boot_cpu();
   1496	static_branch_enable(&__use_tsc);
   1497}
   1498
   1499void __init tsc_early_init(void)
   1500{
   1501	if (!boot_cpu_has(X86_FEATURE_TSC))
   1502		return;
   1503	/* Don't change UV TSC multi-chassis synchronization */
   1504	if (is_early_uv_system())
   1505		return;
   1506	if (!determine_cpu_tsc_frequencies(true))
   1507		return;
   1508	tsc_enable_sched_clock();
   1509}
   1510
   1511void __init tsc_init(void)
   1512{
   1513	/*
   1514	 * native_calibrate_cpu_early can only calibrate using methods that are
   1515	 * available early in boot.
   1516	 */
   1517	if (x86_platform.calibrate_cpu == native_calibrate_cpu_early)
   1518		x86_platform.calibrate_cpu = native_calibrate_cpu;
   1519
   1520	if (!boot_cpu_has(X86_FEATURE_TSC)) {
   1521		setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER);
   1522		return;
   1523	}
   1524
   1525	if (!tsc_khz) {
   1526		/* We failed to determine frequencies earlier, try again */
   1527		if (!determine_cpu_tsc_frequencies(false)) {
   1528			mark_tsc_unstable("could not calculate TSC khz");
   1529			setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER);
   1530			return;
   1531		}
   1532		tsc_enable_sched_clock();
   1533	}
   1534
   1535	cyc2ns_init_secondary_cpus();
   1536
   1537	if (!no_sched_irq_time)
   1538		enable_sched_clock_irqtime();
   1539
   1540	lpj_fine = get_loops_per_jiffy();
   1541
   1542	check_system_tsc_reliable();
   1543
   1544	if (unsynchronized_tsc()) {
   1545		mark_tsc_unstable("TSCs unsynchronized");
   1546		return;
   1547	}
   1548
   1549	if (tsc_clocksource_reliable || no_tsc_watchdog)
   1550		tsc_disable_clocksource_watchdog();
   1551
   1552	clocksource_register_khz(&clocksource_tsc_early, tsc_khz);
   1553	detect_art();
   1554}
   1555
   1556#ifdef CONFIG_SMP
   1557/*
   1558 * If we have a constant TSC and are using the TSC for the delay loop,
   1559 * we can skip clock calibration if another cpu in the same socket has already
   1560 * been calibrated. This assumes that CONSTANT_TSC applies to all
   1561 * cpus in the socket - this should be a safe assumption.
   1562 */
   1563unsigned long calibrate_delay_is_known(void)
   1564{
   1565	int sibling, cpu = smp_processor_id();
   1566	int constant_tsc = cpu_has(&cpu_data(cpu), X86_FEATURE_CONSTANT_TSC);
   1567	const struct cpumask *mask = topology_core_cpumask(cpu);
   1568
   1569	if (!constant_tsc || !mask)
   1570		return 0;
   1571
   1572	sibling = cpumask_any_but(mask, cpu);
   1573	if (sibling < nr_cpu_ids)
   1574		return cpu_data(sibling).loops_per_jiffy;
   1575	return 0;
   1576}
   1577#endif