cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

tsc_msr.c (7291B)


      1// SPDX-License-Identifier: GPL-2.0
      2/*
      3 * TSC frequency enumeration via MSR
      4 *
      5 * Copyright (C) 2013, 2018 Intel Corporation
      6 * Author: Bin Gao <bin.gao@intel.com>
      7 */
      8
      9#include <linux/kernel.h>
     10#include <linux/thread_info.h>
     11
     12#include <asm/apic.h>
     13#include <asm/cpu_device_id.h>
     14#include <asm/intel-family.h>
     15#include <asm/msr.h>
     16#include <asm/param.h>
     17#include <asm/tsc.h>
     18
     19#define MAX_NUM_FREQS	16 /* 4 bits to select the frequency */
     20
     21/*
     22 * The frequency numbers in the SDM are e.g. 83.3 MHz, which does not contain a
     23 * lot of accuracy which leads to clock drift. As far as we know Bay Trail SoCs
     24 * use a 25 MHz crystal and Cherry Trail uses a 19.2 MHz crystal, the crystal
     25 * is the source clk for a root PLL which outputs 1600 and 100 MHz. It is
     26 * unclear if the root PLL outputs are used directly by the CPU clock PLL or
     27 * if there is another PLL in between.
     28 * This does not matter though, we can model the chain of PLLs as a single PLL
     29 * with a quotient equal to the quotients of all PLLs in the chain multiplied.
     30 * So we can create a simplified model of the CPU clock setup using a reference
     31 * clock of 100 MHz plus a quotient which gets us as close to the frequency
     32 * from the SDM as possible.
     33 * For the 83.3 MHz example from above this would give us 100 MHz * 5 / 6 =
     34 * 83 and 1/3 MHz, which matches exactly what has been measured on actual hw.
     35 */
     36#define TSC_REFERENCE_KHZ 100000
     37
     38struct muldiv {
     39	u32 multiplier;
     40	u32 divider;
     41};
     42
     43/*
     44 * If MSR_PERF_STAT[31] is set, the maximum resolved bus ratio can be
     45 * read in MSR_PLATFORM_ID[12:8], otherwise in MSR_PERF_STAT[44:40].
     46 * Unfortunately some Intel Atom SoCs aren't quite compliant to this,
     47 * so we need manually differentiate SoC families. This is what the
     48 * field use_msr_plat does.
     49 */
     50struct freq_desc {
     51	bool use_msr_plat;
     52	struct muldiv muldiv[MAX_NUM_FREQS];
     53	/*
     54	 * Some CPU frequencies in the SDM do not map to known PLL freqs, in
     55	 * that case the muldiv array is empty and the freqs array is used.
     56	 */
     57	u32 freqs[MAX_NUM_FREQS];
     58	u32 mask;
     59};
     60
     61/*
     62 * Penwell and Clovertrail use spread spectrum clock,
     63 * so the freq number is not exactly the same as reported
     64 * by MSR based on SDM.
     65 */
     66static const struct freq_desc freq_desc_pnw = {
     67	.use_msr_plat = false,
     68	.freqs = { 0, 0, 0, 0, 0, 99840, 0, 83200 },
     69	.mask = 0x07,
     70};
     71
     72static const struct freq_desc freq_desc_clv = {
     73	.use_msr_plat = false,
     74	.freqs = { 0, 133200, 0, 0, 0, 99840, 0, 83200 },
     75	.mask = 0x07,
     76};
     77
     78/*
     79 * Bay Trail SDM MSR_FSB_FREQ frequencies simplified PLL model:
     80 *  000:   100 *  5 /  6  =  83.3333 MHz
     81 *  001:   100 *  1 /  1  = 100.0000 MHz
     82 *  010:   100 *  4 /  3  = 133.3333 MHz
     83 *  011:   100 *  7 /  6  = 116.6667 MHz
     84 *  100:   100 *  4 /  5  =  80.0000 MHz
     85 */
     86static const struct freq_desc freq_desc_byt = {
     87	.use_msr_plat = true,
     88	.muldiv = { { 5, 6 }, { 1, 1 }, { 4, 3 }, { 7, 6 },
     89		    { 4, 5 } },
     90	.mask = 0x07,
     91};
     92
     93/*
     94 * Cherry Trail SDM MSR_FSB_FREQ frequencies simplified PLL model:
     95 * 0000:   100 *  5 /  6  =  83.3333 MHz
     96 * 0001:   100 *  1 /  1  = 100.0000 MHz
     97 * 0010:   100 *  4 /  3  = 133.3333 MHz
     98 * 0011:   100 *  7 /  6  = 116.6667 MHz
     99 * 0100:   100 *  4 /  5  =  80.0000 MHz
    100 * 0101:   100 * 14 / 15  =  93.3333 MHz
    101 * 0110:   100 *  9 / 10  =  90.0000 MHz
    102 * 0111:   100 *  8 /  9  =  88.8889 MHz
    103 * 1000:   100 *  7 /  8  =  87.5000 MHz
    104 */
    105static const struct freq_desc freq_desc_cht = {
    106	.use_msr_plat = true,
    107	.muldiv = { { 5, 6 }, {  1,  1 }, { 4,  3 }, { 7, 6 },
    108		    { 4, 5 }, { 14, 15 }, { 9, 10 }, { 8, 9 },
    109		    { 7, 8 } },
    110	.mask = 0x0f,
    111};
    112
    113/*
    114 * Merriefield SDM MSR_FSB_FREQ frequencies simplified PLL model:
    115 * 0001:   100 *  1 /  1  = 100.0000 MHz
    116 * 0010:   100 *  4 /  3  = 133.3333 MHz
    117 */
    118static const struct freq_desc freq_desc_tng = {
    119	.use_msr_plat = true,
    120	.muldiv = { { 0, 0 }, { 1, 1 }, { 4, 3 } },
    121	.mask = 0x07,
    122};
    123
    124/*
    125 * Moorefield SDM MSR_FSB_FREQ frequencies simplified PLL model:
    126 * 0000:   100 *  5 /  6  =  83.3333 MHz
    127 * 0001:   100 *  1 /  1  = 100.0000 MHz
    128 * 0010:   100 *  4 /  3  = 133.3333 MHz
    129 * 0011:   100 *  1 /  1  = 100.0000 MHz
    130 */
    131static const struct freq_desc freq_desc_ann = {
    132	.use_msr_plat = true,
    133	.muldiv = { { 5, 6 }, { 1, 1 }, { 4, 3 }, { 1, 1 } },
    134	.mask = 0x0f,
    135};
    136
    137/*
    138 * 24 MHz crystal? : 24 * 13 / 4 = 78 MHz
    139 * Frequency step for Lightning Mountain SoC is fixed to 78 MHz,
    140 * so all the frequency entries are 78000.
    141 */
    142static const struct freq_desc freq_desc_lgm = {
    143	.use_msr_plat = true,
    144	.freqs = { 78000, 78000, 78000, 78000, 78000, 78000, 78000, 78000,
    145		   78000, 78000, 78000, 78000, 78000, 78000, 78000, 78000 },
    146	.mask = 0x0f,
    147};
    148
    149static const struct x86_cpu_id tsc_msr_cpu_ids[] = {
    150	X86_MATCH_INTEL_FAM6_MODEL(ATOM_SALTWELL_MID,	&freq_desc_pnw),
    151	X86_MATCH_INTEL_FAM6_MODEL(ATOM_SALTWELL_TABLET,&freq_desc_clv),
    152	X86_MATCH_INTEL_FAM6_MODEL(ATOM_SILVERMONT,	&freq_desc_byt),
    153	X86_MATCH_INTEL_FAM6_MODEL(ATOM_SILVERMONT_MID,	&freq_desc_tng),
    154	X86_MATCH_INTEL_FAM6_MODEL(ATOM_AIRMONT,	&freq_desc_cht),
    155	X86_MATCH_INTEL_FAM6_MODEL(ATOM_AIRMONT_MID,	&freq_desc_ann),
    156	X86_MATCH_INTEL_FAM6_MODEL(ATOM_AIRMONT_NP,	&freq_desc_lgm),
    157	{}
    158};
    159
    160/*
    161 * MSR-based CPU/TSC frequency discovery for certain CPUs.
    162 *
    163 * Set global "lapic_timer_period" to bus_clock_cycles/jiffy
    164 * Return processor base frequency in KHz, or 0 on failure.
    165 */
    166unsigned long cpu_khz_from_msr(void)
    167{
    168	u32 lo, hi, ratio, freq, tscref;
    169	const struct freq_desc *freq_desc;
    170	const struct x86_cpu_id *id;
    171	const struct muldiv *md;
    172	unsigned long res;
    173	int index;
    174
    175	id = x86_match_cpu(tsc_msr_cpu_ids);
    176	if (!id)
    177		return 0;
    178
    179	freq_desc = (struct freq_desc *)id->driver_data;
    180	if (freq_desc->use_msr_plat) {
    181		rdmsr(MSR_PLATFORM_INFO, lo, hi);
    182		ratio = (lo >> 8) & 0xff;
    183	} else {
    184		rdmsr(MSR_IA32_PERF_STATUS, lo, hi);
    185		ratio = (hi >> 8) & 0x1f;
    186	}
    187
    188	/* Get FSB FREQ ID */
    189	rdmsr(MSR_FSB_FREQ, lo, hi);
    190	index = lo & freq_desc->mask;
    191	md = &freq_desc->muldiv[index];
    192
    193	/*
    194	 * Note this also catches cases where the index points to an unpopulated
    195	 * part of muldiv, in that case the else will set freq and res to 0.
    196	 */
    197	if (md->divider) {
    198		tscref = TSC_REFERENCE_KHZ * md->multiplier;
    199		freq = DIV_ROUND_CLOSEST(tscref, md->divider);
    200		/*
    201		 * Multiplying by ratio before the division has better
    202		 * accuracy than just calculating freq * ratio.
    203		 */
    204		res = DIV_ROUND_CLOSEST(tscref * ratio, md->divider);
    205	} else {
    206		freq = freq_desc->freqs[index];
    207		res = freq * ratio;
    208	}
    209
    210	if (freq == 0)
    211		pr_err("Error MSR_FSB_FREQ index %d is unknown\n", index);
    212
    213#ifdef CONFIG_X86_LOCAL_APIC
    214	lapic_timer_period = (freq * 1000) / HZ;
    215#endif
    216
    217	/*
    218	 * TSC frequency determined by MSR is always considered "known"
    219	 * because it is reported by HW.
    220	 * Another fact is that on MSR capable platforms, PIT/HPET is
    221	 * generally not available so calibration won't work at all.
    222	 */
    223	setup_force_cpu_cap(X86_FEATURE_TSC_KNOWN_FREQ);
    224
    225	/*
    226	 * Unfortunately there is no way for hardware to tell whether the
    227	 * TSC is reliable.  We were told by silicon design team that TSC
    228	 * on Atom SoCs are always "reliable". TSC is also the only
    229	 * reliable clocksource on these SoCs (HPET is either not present
    230	 * or not functional) so mark TSC reliable which removes the
    231	 * requirement for a watchdog clocksource.
    232	 */
    233	setup_force_cpu_cap(X86_FEATURE_TSC_RELIABLE);
    234
    235	return res;
    236}