cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

umip.c (13707B)


      1/*
      2 * umip.c Emulation for instruction protected by the User-Mode Instruction
      3 * Prevention feature
      4 *
      5 * Copyright (c) 2017, Intel Corporation.
      6 * Ricardo Neri <ricardo.neri-calderon@linux.intel.com>
      7 */
      8
      9#include <linux/uaccess.h>
     10#include <asm/umip.h>
     11#include <asm/traps.h>
     12#include <asm/insn.h>
     13#include <asm/insn-eval.h>
     14#include <linux/ratelimit.h>
     15
     16#undef pr_fmt
     17#define pr_fmt(fmt) "umip: " fmt
     18
     19/** DOC: Emulation for User-Mode Instruction Prevention (UMIP)
     20 *
     21 * User-Mode Instruction Prevention is a security feature present in recent
     22 * x86 processors that, when enabled, prevents a group of instructions (SGDT,
     23 * SIDT, SLDT, SMSW and STR) from being run in user mode by issuing a general
     24 * protection fault if the instruction is executed with CPL > 0.
     25 *
     26 * Rather than relaying to the user space the general protection fault caused by
     27 * the UMIP-protected instructions (in the form of a SIGSEGV signal), it can be
     28 * trapped and emulate the result of such instructions to provide dummy values.
     29 * This allows to both conserve the current kernel behavior and not reveal the
     30 * system resources that UMIP intends to protect (i.e., the locations of the
     31 * global descriptor and interrupt descriptor tables, the segment selectors of
     32 * the local descriptor table, the value of the task state register and the
     33 * contents of the CR0 register).
     34 *
     35 * This emulation is needed because certain applications (e.g., WineHQ and
     36 * DOSEMU2) rely on this subset of instructions to function.
     37 *
     38 * The instructions protected by UMIP can be split in two groups. Those which
     39 * return a kernel memory address (SGDT and SIDT) and those which return a
     40 * value (SLDT, STR and SMSW).
     41 *
     42 * For the instructions that return a kernel memory address, applications
     43 * such as WineHQ rely on the result being located in the kernel memory space,
     44 * not the actual location of the table. The result is emulated as a hard-coded
     45 * value that, lies close to the top of the kernel memory. The limit for the GDT
     46 * and the IDT are set to zero.
     47 *
     48 * The instruction SMSW is emulated to return the value that the register CR0
     49 * has at boot time as set in the head_32.
     50 * SLDT and STR are emulated to return the values that the kernel programmatically
     51 * assigns:
     52 * - SLDT returns (GDT_ENTRY_LDT * 8) if an LDT has been set, 0 if not.
     53 * - STR returns (GDT_ENTRY_TSS * 8).
     54 *
     55 * Emulation is provided for both 32-bit and 64-bit processes.
     56 *
     57 * Care is taken to appropriately emulate the results when segmentation is
     58 * used. That is, rather than relying on USER_DS and USER_CS, the function
     59 * insn_get_addr_ref() inspects the segment descriptor pointed by the
     60 * registers in pt_regs. This ensures that we correctly obtain the segment
     61 * base address and the address and operand sizes even if the user space
     62 * application uses a local descriptor table.
     63 */
     64
     65#define UMIP_DUMMY_GDT_BASE 0xfffffffffffe0000ULL
     66#define UMIP_DUMMY_IDT_BASE 0xffffffffffff0000ULL
     67
     68/*
     69 * The SGDT and SIDT instructions store the contents of the global descriptor
     70 * table and interrupt table registers, respectively. The destination is a
     71 * memory operand of X+2 bytes. X bytes are used to store the base address of
     72 * the table and 2 bytes are used to store the limit. In 32-bit processes X
     73 * has a value of 4, in 64-bit processes X has a value of 8.
     74 */
     75#define UMIP_GDT_IDT_BASE_SIZE_64BIT 8
     76#define UMIP_GDT_IDT_BASE_SIZE_32BIT 4
     77#define UMIP_GDT_IDT_LIMIT_SIZE 2
     78
     79#define	UMIP_INST_SGDT	0	/* 0F 01 /0 */
     80#define	UMIP_INST_SIDT	1	/* 0F 01 /1 */
     81#define	UMIP_INST_SMSW	2	/* 0F 01 /4 */
     82#define	UMIP_INST_SLDT  3       /* 0F 00 /0 */
     83#define	UMIP_INST_STR   4       /* 0F 00 /1 */
     84
     85static const char * const umip_insns[5] = {
     86	[UMIP_INST_SGDT] = "SGDT",
     87	[UMIP_INST_SIDT] = "SIDT",
     88	[UMIP_INST_SMSW] = "SMSW",
     89	[UMIP_INST_SLDT] = "SLDT",
     90	[UMIP_INST_STR] = "STR",
     91};
     92
     93#define umip_pr_err(regs, fmt, ...) \
     94	umip_printk(regs, KERN_ERR, fmt, ##__VA_ARGS__)
     95#define umip_pr_debug(regs, fmt, ...) \
     96	umip_printk(regs, KERN_DEBUG, fmt,  ##__VA_ARGS__)
     97
     98/**
     99 * umip_printk() - Print a rate-limited message
    100 * @regs:	Register set with the context in which the warning is printed
    101 * @log_level:	Kernel log level to print the message
    102 * @fmt:	The text string to print
    103 *
    104 * Print the text contained in @fmt. The print rate is limited to bursts of 5
    105 * messages every two minutes. The purpose of this customized version of
    106 * printk() is to print messages when user space processes use any of the
    107 * UMIP-protected instructions. Thus, the printed text is prepended with the
    108 * task name and process ID number of the current task as well as the
    109 * instruction and stack pointers in @regs as seen when entering kernel mode.
    110 *
    111 * Returns:
    112 *
    113 * None.
    114 */
    115static __printf(3, 4)
    116void umip_printk(const struct pt_regs *regs, const char *log_level,
    117		 const char *fmt, ...)
    118{
    119	/* Bursts of 5 messages every two minutes */
    120	static DEFINE_RATELIMIT_STATE(ratelimit, 2 * 60 * HZ, 5);
    121	struct task_struct *tsk = current;
    122	struct va_format vaf;
    123	va_list args;
    124
    125	if (!__ratelimit(&ratelimit))
    126		return;
    127
    128	va_start(args, fmt);
    129	vaf.fmt = fmt;
    130	vaf.va = &args;
    131	printk("%s" pr_fmt("%s[%d] ip:%lx sp:%lx: %pV"), log_level, tsk->comm,
    132	       task_pid_nr(tsk), regs->ip, regs->sp, &vaf);
    133	va_end(args);
    134}
    135
    136/**
    137 * identify_insn() - Identify a UMIP-protected instruction
    138 * @insn:	Instruction structure with opcode and ModRM byte.
    139 *
    140 * From the opcode and ModRM.reg in @insn identify, if any, a UMIP-protected
    141 * instruction that can be emulated.
    142 *
    143 * Returns:
    144 *
    145 * On success, a constant identifying a specific UMIP-protected instruction that
    146 * can be emulated.
    147 *
    148 * -EINVAL on error or when not an UMIP-protected instruction that can be
    149 * emulated.
    150 */
    151static int identify_insn(struct insn *insn)
    152{
    153	/* By getting modrm we also get the opcode. */
    154	insn_get_modrm(insn);
    155
    156	if (!insn->modrm.nbytes)
    157		return -EINVAL;
    158
    159	/* All the instructions of interest start with 0x0f. */
    160	if (insn->opcode.bytes[0] != 0xf)
    161		return -EINVAL;
    162
    163	if (insn->opcode.bytes[1] == 0x1) {
    164		switch (X86_MODRM_REG(insn->modrm.value)) {
    165		case 0:
    166			return UMIP_INST_SGDT;
    167		case 1:
    168			return UMIP_INST_SIDT;
    169		case 4:
    170			return UMIP_INST_SMSW;
    171		default:
    172			return -EINVAL;
    173		}
    174	} else if (insn->opcode.bytes[1] == 0x0) {
    175		if (X86_MODRM_REG(insn->modrm.value) == 0)
    176			return UMIP_INST_SLDT;
    177		else if (X86_MODRM_REG(insn->modrm.value) == 1)
    178			return UMIP_INST_STR;
    179		else
    180			return -EINVAL;
    181	} else {
    182		return -EINVAL;
    183	}
    184}
    185
    186/**
    187 * emulate_umip_insn() - Emulate UMIP instructions and return dummy values
    188 * @insn:	Instruction structure with operands
    189 * @umip_inst:	A constant indicating the instruction to emulate
    190 * @data:	Buffer into which the dummy result is stored
    191 * @data_size:	Size of the emulated result
    192 * @x86_64:	true if process is 64-bit, false otherwise
    193 *
    194 * Emulate an instruction protected by UMIP and provide a dummy result. The
    195 * result of the emulation is saved in @data. The size of the results depends
    196 * on both the instruction and type of operand (register vs memory address).
    197 * The size of the result is updated in @data_size. Caller is responsible
    198 * of providing a @data buffer of at least UMIP_GDT_IDT_BASE_SIZE +
    199 * UMIP_GDT_IDT_LIMIT_SIZE bytes.
    200 *
    201 * Returns:
    202 *
    203 * 0 on success, -EINVAL on error while emulating.
    204 */
    205static int emulate_umip_insn(struct insn *insn, int umip_inst,
    206			     unsigned char *data, int *data_size, bool x86_64)
    207{
    208	if (!data || !data_size || !insn)
    209		return -EINVAL;
    210	/*
    211	 * These two instructions return the base address and limit of the
    212	 * global and interrupt descriptor table, respectively. According to the
    213	 * Intel Software Development manual, the base address can be 24-bit,
    214	 * 32-bit or 64-bit. Limit is always 16-bit. If the operand size is
    215	 * 16-bit, the returned value of the base address is supposed to be a
    216	 * zero-extended 24-byte number. However, it seems that a 32-byte number
    217	 * is always returned irrespective of the operand size.
    218	 */
    219	if (umip_inst == UMIP_INST_SGDT || umip_inst == UMIP_INST_SIDT) {
    220		u64 dummy_base_addr;
    221		u16 dummy_limit = 0;
    222
    223		/* SGDT and SIDT do not use registers operands. */
    224		if (X86_MODRM_MOD(insn->modrm.value) == 3)
    225			return -EINVAL;
    226
    227		if (umip_inst == UMIP_INST_SGDT)
    228			dummy_base_addr = UMIP_DUMMY_GDT_BASE;
    229		else
    230			dummy_base_addr = UMIP_DUMMY_IDT_BASE;
    231
    232		/*
    233		 * 64-bit processes use the entire dummy base address.
    234		 * 32-bit processes use the lower 32 bits of the base address.
    235		 * dummy_base_addr is always 64 bits, but we memcpy the correct
    236		 * number of bytes from it to the destination.
    237		 */
    238		if (x86_64)
    239			*data_size = UMIP_GDT_IDT_BASE_SIZE_64BIT;
    240		else
    241			*data_size = UMIP_GDT_IDT_BASE_SIZE_32BIT;
    242
    243		memcpy(data + 2, &dummy_base_addr, *data_size);
    244
    245		*data_size += UMIP_GDT_IDT_LIMIT_SIZE;
    246		memcpy(data, &dummy_limit, UMIP_GDT_IDT_LIMIT_SIZE);
    247
    248	} else if (umip_inst == UMIP_INST_SMSW || umip_inst == UMIP_INST_SLDT ||
    249		   umip_inst == UMIP_INST_STR) {
    250		unsigned long dummy_value;
    251
    252		if (umip_inst == UMIP_INST_SMSW) {
    253			dummy_value = CR0_STATE;
    254		} else if (umip_inst == UMIP_INST_STR) {
    255			dummy_value = GDT_ENTRY_TSS * 8;
    256		} else if (umip_inst == UMIP_INST_SLDT) {
    257#ifdef CONFIG_MODIFY_LDT_SYSCALL
    258			down_read(&current->mm->context.ldt_usr_sem);
    259			if (current->mm->context.ldt)
    260				dummy_value = GDT_ENTRY_LDT * 8;
    261			else
    262				dummy_value = 0;
    263			up_read(&current->mm->context.ldt_usr_sem);
    264#else
    265			dummy_value = 0;
    266#endif
    267		}
    268
    269		/*
    270		 * For these 3 instructions, the number
    271		 * of bytes to be copied in the result buffer is determined
    272		 * by whether the operand is a register or a memory location.
    273		 * If operand is a register, return as many bytes as the operand
    274		 * size. If operand is memory, return only the two least
    275		 * significant bytes.
    276		 */
    277		if (X86_MODRM_MOD(insn->modrm.value) == 3)
    278			*data_size = insn->opnd_bytes;
    279		else
    280			*data_size = 2;
    281
    282		memcpy(data, &dummy_value, *data_size);
    283	} else {
    284		return -EINVAL;
    285	}
    286
    287	return 0;
    288}
    289
    290/**
    291 * force_sig_info_umip_fault() - Force a SIGSEGV with SEGV_MAPERR
    292 * @addr:	Address that caused the signal
    293 * @regs:	Register set containing the instruction pointer
    294 *
    295 * Force a SIGSEGV signal with SEGV_MAPERR as the error code. This function is
    296 * intended to be used to provide a segmentation fault when the result of the
    297 * UMIP emulation could not be copied to the user space memory.
    298 *
    299 * Returns: none
    300 */
    301static void force_sig_info_umip_fault(void __user *addr, struct pt_regs *regs)
    302{
    303	struct task_struct *tsk = current;
    304
    305	tsk->thread.cr2		= (unsigned long)addr;
    306	tsk->thread.error_code	= X86_PF_USER | X86_PF_WRITE;
    307	tsk->thread.trap_nr	= X86_TRAP_PF;
    308
    309	force_sig_fault(SIGSEGV, SEGV_MAPERR, addr);
    310
    311	if (!(show_unhandled_signals && unhandled_signal(tsk, SIGSEGV)))
    312		return;
    313
    314	umip_pr_err(regs, "segfault in emulation. error%x\n",
    315		    X86_PF_USER | X86_PF_WRITE);
    316}
    317
    318/**
    319 * fixup_umip_exception() - Fixup a general protection fault caused by UMIP
    320 * @regs:	Registers as saved when entering the #GP handler
    321 *
    322 * The instructions SGDT, SIDT, STR, SMSW and SLDT cause a general protection
    323 * fault if executed with CPL > 0 (i.e., from user space). This function fixes
    324 * the exception up and provides dummy results for SGDT, SIDT and SMSW; STR
    325 * and SLDT are not fixed up.
    326 *
    327 * If operands are memory addresses, results are copied to user-space memory as
    328 * indicated by the instruction pointed by eIP using the registers indicated in
    329 * the instruction operands. If operands are registers, results are copied into
    330 * the context that was saved when entering kernel mode.
    331 *
    332 * Returns:
    333 *
    334 * True if emulation was successful; false if not.
    335 */
    336bool fixup_umip_exception(struct pt_regs *regs)
    337{
    338	int nr_copied, reg_offset, dummy_data_size, umip_inst;
    339	/* 10 bytes is the maximum size of the result of UMIP instructions */
    340	unsigned char dummy_data[10] = { 0 };
    341	unsigned char buf[MAX_INSN_SIZE];
    342	unsigned long *reg_addr;
    343	void __user *uaddr;
    344	struct insn insn;
    345
    346	if (!regs)
    347		return false;
    348
    349	/*
    350	 * Give up on emulation if fetching the instruction failed. Should a
    351	 * page fault or a #GP be issued?
    352	 */
    353	nr_copied = insn_fetch_from_user(regs, buf);
    354	if (nr_copied <= 0)
    355		return false;
    356
    357	if (!insn_decode_from_regs(&insn, regs, buf, nr_copied))
    358		return false;
    359
    360	umip_inst = identify_insn(&insn);
    361	if (umip_inst < 0)
    362		return false;
    363
    364	umip_pr_debug(regs, "%s instruction cannot be used by applications.\n",
    365			umip_insns[umip_inst]);
    366
    367	umip_pr_debug(regs, "For now, expensive software emulation returns the result.\n");
    368
    369	if (emulate_umip_insn(&insn, umip_inst, dummy_data, &dummy_data_size,
    370			      user_64bit_mode(regs)))
    371		return false;
    372
    373	/*
    374	 * If operand is a register, write result to the copy of the register
    375	 * value that was pushed to the stack when entering into kernel mode.
    376	 * Upon exit, the value we write will be restored to the actual hardware
    377	 * register.
    378	 */
    379	if (X86_MODRM_MOD(insn.modrm.value) == 3) {
    380		reg_offset = insn_get_modrm_rm_off(&insn, regs);
    381
    382		/*
    383		 * Negative values are usually errors. In memory addressing,
    384		 * the exception is -EDOM. Since we expect a register operand,
    385		 * all negative values are errors.
    386		 */
    387		if (reg_offset < 0)
    388			return false;
    389
    390		reg_addr = (unsigned long *)((unsigned long)regs + reg_offset);
    391		memcpy(reg_addr, dummy_data, dummy_data_size);
    392	} else {
    393		uaddr = insn_get_addr_ref(&insn, regs);
    394		if ((unsigned long)uaddr == -1L)
    395			return false;
    396
    397		nr_copied = copy_to_user(uaddr, dummy_data, dummy_data_size);
    398		if (nr_copied  > 0) {
    399			/*
    400			 * If copy fails, send a signal and tell caller that
    401			 * fault was fixed up.
    402			 */
    403			force_sig_info_umip_fault(uaddr, regs);
    404			return true;
    405		}
    406	}
    407
    408	/* increase IP to let the program keep going */
    409	regs->ip += insn.length;
    410	return true;
    411}