cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

unwind_frame.c (11017B)


      1// SPDX-License-Identifier: GPL-2.0-only
      2#include <linux/sched.h>
      3#include <linux/sched/task.h>
      4#include <linux/sched/task_stack.h>
      5#include <linux/interrupt.h>
      6#include <asm/sections.h>
      7#include <asm/ptrace.h>
      8#include <asm/bitops.h>
      9#include <asm/stacktrace.h>
     10#include <asm/unwind.h>
     11
     12#define FRAME_HEADER_SIZE (sizeof(long) * 2)
     13
     14unsigned long unwind_get_return_address(struct unwind_state *state)
     15{
     16	if (unwind_done(state))
     17		return 0;
     18
     19	return __kernel_text_address(state->ip) ? state->ip : 0;
     20}
     21EXPORT_SYMBOL_GPL(unwind_get_return_address);
     22
     23unsigned long *unwind_get_return_address_ptr(struct unwind_state *state)
     24{
     25	if (unwind_done(state))
     26		return NULL;
     27
     28	return state->regs ? &state->regs->ip : state->bp + 1;
     29}
     30
     31static void unwind_dump(struct unwind_state *state)
     32{
     33	static bool dumped_before = false;
     34	bool prev_zero, zero = false;
     35	unsigned long word, *sp;
     36	struct stack_info stack_info = {0};
     37	unsigned long visit_mask = 0;
     38
     39	if (dumped_before)
     40		return;
     41
     42	dumped_before = true;
     43
     44	printk_deferred("unwind stack type:%d next_sp:%p mask:0x%lx graph_idx:%d\n",
     45			state->stack_info.type, state->stack_info.next_sp,
     46			state->stack_mask, state->graph_idx);
     47
     48	for (sp = PTR_ALIGN(state->orig_sp, sizeof(long)); sp;
     49	     sp = PTR_ALIGN(stack_info.next_sp, sizeof(long))) {
     50		if (get_stack_info(sp, state->task, &stack_info, &visit_mask))
     51			break;
     52
     53		for (; sp < stack_info.end; sp++) {
     54
     55			word = READ_ONCE_NOCHECK(*sp);
     56
     57			prev_zero = zero;
     58			zero = word == 0;
     59
     60			if (zero) {
     61				if (!prev_zero)
     62					printk_deferred("%p: %0*x ...\n",
     63							sp, BITS_PER_LONG/4, 0);
     64				continue;
     65			}
     66
     67			printk_deferred("%p: %0*lx (%pB)\n",
     68					sp, BITS_PER_LONG/4, word, (void *)word);
     69		}
     70	}
     71}
     72
     73static bool in_entry_code(unsigned long ip)
     74{
     75	char *addr = (char *)ip;
     76
     77	return addr >= __entry_text_start && addr < __entry_text_end;
     78}
     79
     80static inline unsigned long *last_frame(struct unwind_state *state)
     81{
     82	return (unsigned long *)task_pt_regs(state->task) - 2;
     83}
     84
     85static bool is_last_frame(struct unwind_state *state)
     86{
     87	return state->bp == last_frame(state);
     88}
     89
     90#ifdef CONFIG_X86_32
     91#define GCC_REALIGN_WORDS 3
     92#else
     93#define GCC_REALIGN_WORDS 1
     94#endif
     95
     96static inline unsigned long *last_aligned_frame(struct unwind_state *state)
     97{
     98	return last_frame(state) - GCC_REALIGN_WORDS;
     99}
    100
    101static bool is_last_aligned_frame(struct unwind_state *state)
    102{
    103	unsigned long *last_bp = last_frame(state);
    104	unsigned long *aligned_bp = last_aligned_frame(state);
    105
    106	/*
    107	 * GCC can occasionally decide to realign the stack pointer and change
    108	 * the offset of the stack frame in the prologue of a function called
    109	 * by head/entry code.  Examples:
    110	 *
    111	 * <start_secondary>:
    112	 *      push   %edi
    113	 *      lea    0x8(%esp),%edi
    114	 *      and    $0xfffffff8,%esp
    115	 *      pushl  -0x4(%edi)
    116	 *      push   %ebp
    117	 *      mov    %esp,%ebp
    118	 *
    119	 * <x86_64_start_kernel>:
    120	 *      lea    0x8(%rsp),%r10
    121	 *      and    $0xfffffffffffffff0,%rsp
    122	 *      pushq  -0x8(%r10)
    123	 *      push   %rbp
    124	 *      mov    %rsp,%rbp
    125	 *
    126	 * After aligning the stack, it pushes a duplicate copy of the return
    127	 * address before pushing the frame pointer.
    128	 */
    129	return (state->bp == aligned_bp && *(aligned_bp + 1) == *(last_bp + 1));
    130}
    131
    132static bool is_last_ftrace_frame(struct unwind_state *state)
    133{
    134	unsigned long *last_bp = last_frame(state);
    135	unsigned long *last_ftrace_bp = last_bp - 3;
    136
    137	/*
    138	 * When unwinding from an ftrace handler of a function called by entry
    139	 * code, the stack layout of the last frame is:
    140	 *
    141	 *   bp
    142	 *   parent ret addr
    143	 *   bp
    144	 *   function ret addr
    145	 *   parent ret addr
    146	 *   pt_regs
    147	 *   -----------------
    148	 */
    149	return (state->bp == last_ftrace_bp &&
    150		*state->bp == *(state->bp + 2) &&
    151		*(state->bp + 1) == *(state->bp + 4));
    152}
    153
    154static bool is_last_task_frame(struct unwind_state *state)
    155{
    156	return is_last_frame(state) || is_last_aligned_frame(state) ||
    157	       is_last_ftrace_frame(state);
    158}
    159
    160/*
    161 * This determines if the frame pointer actually contains an encoded pointer to
    162 * pt_regs on the stack.  See ENCODE_FRAME_POINTER.
    163 */
    164#ifdef CONFIG_X86_64
    165static struct pt_regs *decode_frame_pointer(unsigned long *bp)
    166{
    167	unsigned long regs = (unsigned long)bp;
    168
    169	if (!(regs & 0x1))
    170		return NULL;
    171
    172	return (struct pt_regs *)(regs & ~0x1);
    173}
    174#else
    175static struct pt_regs *decode_frame_pointer(unsigned long *bp)
    176{
    177	unsigned long regs = (unsigned long)bp;
    178
    179	if (regs & 0x80000000)
    180		return NULL;
    181
    182	return (struct pt_regs *)(regs | 0x80000000);
    183}
    184#endif
    185
    186static bool update_stack_state(struct unwind_state *state,
    187			       unsigned long *next_bp)
    188{
    189	struct stack_info *info = &state->stack_info;
    190	enum stack_type prev_type = info->type;
    191	struct pt_regs *regs;
    192	unsigned long *frame, *prev_frame_end, *addr_p, addr;
    193	size_t len;
    194
    195	if (state->regs)
    196		prev_frame_end = (void *)state->regs + sizeof(*state->regs);
    197	else
    198		prev_frame_end = (void *)state->bp + FRAME_HEADER_SIZE;
    199
    200	/* Is the next frame pointer an encoded pointer to pt_regs? */
    201	regs = decode_frame_pointer(next_bp);
    202	if (regs) {
    203		frame = (unsigned long *)regs;
    204		len = sizeof(*regs);
    205		state->got_irq = true;
    206	} else {
    207		frame = next_bp;
    208		len = FRAME_HEADER_SIZE;
    209	}
    210
    211	/*
    212	 * If the next bp isn't on the current stack, switch to the next one.
    213	 *
    214	 * We may have to traverse multiple stacks to deal with the possibility
    215	 * that info->next_sp could point to an empty stack and the next bp
    216	 * could be on a subsequent stack.
    217	 */
    218	while (!on_stack(info, frame, len))
    219		if (get_stack_info(info->next_sp, state->task, info,
    220				   &state->stack_mask))
    221			return false;
    222
    223	/* Make sure it only unwinds up and doesn't overlap the prev frame: */
    224	if (state->orig_sp && state->stack_info.type == prev_type &&
    225	    frame < prev_frame_end)
    226		return false;
    227
    228	/* Move state to the next frame: */
    229	if (regs) {
    230		state->regs = regs;
    231		state->bp = NULL;
    232	} else {
    233		state->bp = next_bp;
    234		state->regs = NULL;
    235	}
    236
    237	/* Save the return address: */
    238	if (state->regs && user_mode(state->regs))
    239		state->ip = 0;
    240	else {
    241		addr_p = unwind_get_return_address_ptr(state);
    242		addr = READ_ONCE_TASK_STACK(state->task, *addr_p);
    243		state->ip = unwind_recover_ret_addr(state, addr, addr_p);
    244	}
    245
    246	/* Save the original stack pointer for unwind_dump(): */
    247	if (!state->orig_sp)
    248		state->orig_sp = frame;
    249
    250	return true;
    251}
    252
    253bool unwind_next_frame(struct unwind_state *state)
    254{
    255	struct pt_regs *regs;
    256	unsigned long *next_bp;
    257
    258	if (unwind_done(state))
    259		return false;
    260
    261	/* Have we reached the end? */
    262	if (state->regs && user_mode(state->regs))
    263		goto the_end;
    264
    265	if (is_last_task_frame(state)) {
    266		regs = task_pt_regs(state->task);
    267
    268		/*
    269		 * kthreads (other than the boot CPU's idle thread) have some
    270		 * partial regs at the end of their stack which were placed
    271		 * there by copy_thread().  But the regs don't have any
    272		 * useful information, so we can skip them.
    273		 *
    274		 * This user_mode() check is slightly broader than a PF_KTHREAD
    275		 * check because it also catches the awkward situation where a
    276		 * newly forked kthread transitions into a user task by calling
    277		 * kernel_execve(), which eventually clears PF_KTHREAD.
    278		 */
    279		if (!user_mode(regs))
    280			goto the_end;
    281
    282		/*
    283		 * We're almost at the end, but not quite: there's still the
    284		 * syscall regs frame.  Entry code doesn't encode the regs
    285		 * pointer for syscalls, so we have to set it manually.
    286		 */
    287		state->regs = regs;
    288		state->bp = NULL;
    289		state->ip = 0;
    290		return true;
    291	}
    292
    293	/* Get the next frame pointer: */
    294	if (state->next_bp) {
    295		next_bp = state->next_bp;
    296		state->next_bp = NULL;
    297	} else if (state->regs) {
    298		next_bp = (unsigned long *)state->regs->bp;
    299	} else {
    300		next_bp = (unsigned long *)READ_ONCE_TASK_STACK(state->task, *state->bp);
    301	}
    302
    303	/* Move to the next frame if it's safe: */
    304	if (!update_stack_state(state, next_bp))
    305		goto bad_address;
    306
    307	return true;
    308
    309bad_address:
    310	state->error = true;
    311
    312	/*
    313	 * When unwinding a non-current task, the task might actually be
    314	 * running on another CPU, in which case it could be modifying its
    315	 * stack while we're reading it.  This is generally not a problem and
    316	 * can be ignored as long as the caller understands that unwinding
    317	 * another task will not always succeed.
    318	 */
    319	if (state->task != current)
    320		goto the_end;
    321
    322	/*
    323	 * Don't warn if the unwinder got lost due to an interrupt in entry
    324	 * code or in the C handler before the first frame pointer got set up:
    325	 */
    326	if (state->got_irq && in_entry_code(state->ip))
    327		goto the_end;
    328	if (state->regs &&
    329	    state->regs->sp >= (unsigned long)last_aligned_frame(state) &&
    330	    state->regs->sp < (unsigned long)task_pt_regs(state->task))
    331		goto the_end;
    332
    333	/*
    334	 * There are some known frame pointer issues on 32-bit.  Disable
    335	 * unwinder warnings on 32-bit until it gets objtool support.
    336	 */
    337	if (IS_ENABLED(CONFIG_X86_32))
    338		goto the_end;
    339
    340	if (state->task != current)
    341		goto the_end;
    342
    343	if (state->regs) {
    344		printk_deferred_once(KERN_WARNING
    345			"WARNING: kernel stack regs at %p in %s:%d has bad 'bp' value %p\n",
    346			state->regs, state->task->comm,
    347			state->task->pid, next_bp);
    348		unwind_dump(state);
    349	} else {
    350		printk_deferred_once(KERN_WARNING
    351			"WARNING: kernel stack frame pointer at %p in %s:%d has bad value %p\n",
    352			state->bp, state->task->comm,
    353			state->task->pid, next_bp);
    354		unwind_dump(state);
    355	}
    356the_end:
    357	state->stack_info.type = STACK_TYPE_UNKNOWN;
    358	return false;
    359}
    360EXPORT_SYMBOL_GPL(unwind_next_frame);
    361
    362void __unwind_start(struct unwind_state *state, struct task_struct *task,
    363		    struct pt_regs *regs, unsigned long *first_frame)
    364{
    365	unsigned long *bp;
    366
    367	memset(state, 0, sizeof(*state));
    368	state->task = task;
    369	state->got_irq = (regs);
    370
    371	/* Don't even attempt to start from user mode regs: */
    372	if (regs && user_mode(regs)) {
    373		state->stack_info.type = STACK_TYPE_UNKNOWN;
    374		return;
    375	}
    376
    377	bp = get_frame_pointer(task, regs);
    378
    379	/*
    380	 * If we crash with IP==0, the last successfully executed instruction
    381	 * was probably an indirect function call with a NULL function pointer.
    382	 * That means that SP points into the middle of an incomplete frame:
    383	 * *SP is a return pointer, and *(SP-sizeof(unsigned long)) is where we
    384	 * would have written a frame pointer if we hadn't crashed.
    385	 * Pretend that the frame is complete and that BP points to it, but save
    386	 * the real BP so that we can use it when looking for the next frame.
    387	 */
    388	if (regs && regs->ip == 0 && (unsigned long *)regs->sp >= first_frame) {
    389		state->next_bp = bp;
    390		bp = ((unsigned long *)regs->sp) - 1;
    391	}
    392
    393	/* Initialize stack info and make sure the frame data is accessible: */
    394	get_stack_info(bp, state->task, &state->stack_info,
    395		       &state->stack_mask);
    396	update_stack_state(state, bp);
    397
    398	/*
    399	 * The caller can provide the address of the first frame directly
    400	 * (first_frame) or indirectly (regs->sp) to indicate which stack frame
    401	 * to start unwinding at.  Skip ahead until we reach it.
    402	 */
    403	while (!unwind_done(state) &&
    404	       (!on_stack(&state->stack_info, first_frame, sizeof(long)) ||
    405			(state->next_bp == NULL && state->bp < first_frame)))
    406		unwind_next_frame(state);
    407}
    408EXPORT_SYMBOL_GPL(__unwind_start);