cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

uprobes.c (34628B)


      1// SPDX-License-Identifier: GPL-2.0-or-later
      2/*
      3 * User-space Probes (UProbes) for x86
      4 *
      5 * Copyright (C) IBM Corporation, 2008-2011
      6 * Authors:
      7 *	Srikar Dronamraju
      8 *	Jim Keniston
      9 */
     10#include <linux/kernel.h>
     11#include <linux/sched.h>
     12#include <linux/ptrace.h>
     13#include <linux/uprobes.h>
     14#include <linux/uaccess.h>
     15
     16#include <linux/kdebug.h>
     17#include <asm/processor.h>
     18#include <asm/insn.h>
     19#include <asm/mmu_context.h>
     20
     21/* Post-execution fixups. */
     22
     23/* Adjust IP back to vicinity of actual insn */
     24#define UPROBE_FIX_IP		0x01
     25
     26/* Adjust the return address of a call insn */
     27#define UPROBE_FIX_CALL		0x02
     28
     29/* Instruction will modify TF, don't change it */
     30#define UPROBE_FIX_SETF		0x04
     31
     32#define UPROBE_FIX_RIP_SI	0x08
     33#define UPROBE_FIX_RIP_DI	0x10
     34#define UPROBE_FIX_RIP_BX	0x20
     35#define UPROBE_FIX_RIP_MASK	\
     36	(UPROBE_FIX_RIP_SI | UPROBE_FIX_RIP_DI | UPROBE_FIX_RIP_BX)
     37
     38#define	UPROBE_TRAP_NR		UINT_MAX
     39
     40/* Adaptations for mhiramat x86 decoder v14. */
     41#define OPCODE1(insn)		((insn)->opcode.bytes[0])
     42#define OPCODE2(insn)		((insn)->opcode.bytes[1])
     43#define OPCODE3(insn)		((insn)->opcode.bytes[2])
     44#define MODRM_REG(insn)		X86_MODRM_REG((insn)->modrm.value)
     45
     46#define W(row, b0, b1, b2, b3, b4, b5, b6, b7, b8, b9, ba, bb, bc, bd, be, bf)\
     47	(((b0##UL << 0x0)|(b1##UL << 0x1)|(b2##UL << 0x2)|(b3##UL << 0x3) |   \
     48	  (b4##UL << 0x4)|(b5##UL << 0x5)|(b6##UL << 0x6)|(b7##UL << 0x7) |   \
     49	  (b8##UL << 0x8)|(b9##UL << 0x9)|(ba##UL << 0xa)|(bb##UL << 0xb) |   \
     50	  (bc##UL << 0xc)|(bd##UL << 0xd)|(be##UL << 0xe)|(bf##UL << 0xf))    \
     51	 << (row % 32))
     52
     53/*
     54 * Good-instruction tables for 32-bit apps.  This is non-const and volatile
     55 * to keep gcc from statically optimizing it out, as variable_test_bit makes
     56 * some versions of gcc to think only *(unsigned long*) is used.
     57 *
     58 * Opcodes we'll probably never support:
     59 * 6c-6f - ins,outs. SEGVs if used in userspace
     60 * e4-e7 - in,out imm. SEGVs if used in userspace
     61 * ec-ef - in,out acc. SEGVs if used in userspace
     62 * cc - int3. SIGTRAP if used in userspace
     63 * ce - into. Not used in userspace - no kernel support to make it useful. SEGVs
     64 *	(why we support bound (62) then? it's similar, and similarly unused...)
     65 * f1 - int1. SIGTRAP if used in userspace
     66 * f4 - hlt. SEGVs if used in userspace
     67 * fa - cli. SEGVs if used in userspace
     68 * fb - sti. SEGVs if used in userspace
     69 *
     70 * Opcodes which need some work to be supported:
     71 * 07,17,1f - pop es/ss/ds
     72 *	Normally not used in userspace, but would execute if used.
     73 *	Can cause GP or stack exception if tries to load wrong segment descriptor.
     74 *	We hesitate to run them under single step since kernel's handling
     75 *	of userspace single-stepping (TF flag) is fragile.
     76 *	We can easily refuse to support push es/cs/ss/ds (06/0e/16/1e)
     77 *	on the same grounds that they are never used.
     78 * cd - int N.
     79 *	Used by userspace for "int 80" syscall entry. (Other "int N"
     80 *	cause GP -> SEGV since their IDT gates don't allow calls from CPL 3).
     81 *	Not supported since kernel's handling of userspace single-stepping
     82 *	(TF flag) is fragile.
     83 * cf - iret. Normally not used in userspace. Doesn't SEGV unless arguments are bad
     84 */
     85#if defined(CONFIG_X86_32) || defined(CONFIG_IA32_EMULATION)
     86static volatile u32 good_insns_32[256 / 32] = {
     87	/*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f         */
     88	/*      ----------------------------------------------         */
     89	W(0x00, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1) | /* 00 */
     90	W(0x10, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0) , /* 10 */
     91	W(0x20, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 20 */
     92	W(0x30, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 30 */
     93	W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */
     94	W(0x50, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 50 */
     95	W(0x60, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0) | /* 60 */
     96	W(0x70, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 70 */
     97	W(0x80, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 80 */
     98	W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */
     99	W(0xa0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* a0 */
    100	W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* b0 */
    101	W(0xc0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0) | /* c0 */
    102	W(0xd0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* d0 */
    103	W(0xe0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0) | /* e0 */
    104	W(0xf0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1)   /* f0 */
    105	/*      ----------------------------------------------         */
    106	/*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f         */
    107};
    108#else
    109#define good_insns_32	NULL
    110#endif
    111
    112/* Good-instruction tables for 64-bit apps.
    113 *
    114 * Genuinely invalid opcodes:
    115 * 06,07 - formerly push/pop es
    116 * 0e - formerly push cs
    117 * 16,17 - formerly push/pop ss
    118 * 1e,1f - formerly push/pop ds
    119 * 27,2f,37,3f - formerly daa/das/aaa/aas
    120 * 60,61 - formerly pusha/popa
    121 * 62 - formerly bound. EVEX prefix for AVX512 (not yet supported)
    122 * 82 - formerly redundant encoding of Group1
    123 * 9a - formerly call seg:ofs
    124 * ce - formerly into
    125 * d4,d5 - formerly aam/aad
    126 * d6 - formerly undocumented salc
    127 * ea - formerly jmp seg:ofs
    128 *
    129 * Opcodes we'll probably never support:
    130 * 6c-6f - ins,outs. SEGVs if used in userspace
    131 * e4-e7 - in,out imm. SEGVs if used in userspace
    132 * ec-ef - in,out acc. SEGVs if used in userspace
    133 * cc - int3. SIGTRAP if used in userspace
    134 * f1 - int1. SIGTRAP if used in userspace
    135 * f4 - hlt. SEGVs if used in userspace
    136 * fa - cli. SEGVs if used in userspace
    137 * fb - sti. SEGVs if used in userspace
    138 *
    139 * Opcodes which need some work to be supported:
    140 * cd - int N.
    141 *	Used by userspace for "int 80" syscall entry. (Other "int N"
    142 *	cause GP -> SEGV since their IDT gates don't allow calls from CPL 3).
    143 *	Not supported since kernel's handling of userspace single-stepping
    144 *	(TF flag) is fragile.
    145 * cf - iret. Normally not used in userspace. Doesn't SEGV unless arguments are bad
    146 */
    147#if defined(CONFIG_X86_64)
    148static volatile u32 good_insns_64[256 / 32] = {
    149	/*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f         */
    150	/*      ----------------------------------------------         */
    151	W(0x00, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1) | /* 00 */
    152	W(0x10, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0) , /* 10 */
    153	W(0x20, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0) | /* 20 */
    154	W(0x30, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0) , /* 30 */
    155	W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */
    156	W(0x50, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 50 */
    157	W(0x60, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0) | /* 60 */
    158	W(0x70, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 70 */
    159	W(0x80, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 80 */
    160	W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1) , /* 90 */
    161	W(0xa0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* a0 */
    162	W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* b0 */
    163	W(0xc0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0) | /* c0 */
    164	W(0xd0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* d0 */
    165	W(0xe0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0) | /* e0 */
    166	W(0xf0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1)   /* f0 */
    167	/*      ----------------------------------------------         */
    168	/*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f         */
    169};
    170#else
    171#define good_insns_64	NULL
    172#endif
    173
    174/* Using this for both 64-bit and 32-bit apps.
    175 * Opcodes we don't support:
    176 * 0f 00 - SLDT/STR/LLDT/LTR/VERR/VERW/-/- group. System insns
    177 * 0f 01 - SGDT/SIDT/LGDT/LIDT/SMSW/-/LMSW/INVLPG group.
    178 *	Also encodes tons of other system insns if mod=11.
    179 *	Some are in fact non-system: xend, xtest, rdtscp, maybe more
    180 * 0f 05 - syscall
    181 * 0f 06 - clts (CPL0 insn)
    182 * 0f 07 - sysret
    183 * 0f 08 - invd (CPL0 insn)
    184 * 0f 09 - wbinvd (CPL0 insn)
    185 * 0f 0b - ud2
    186 * 0f 30 - wrmsr (CPL0 insn) (then why rdmsr is allowed, it's also CPL0 insn?)
    187 * 0f 34 - sysenter
    188 * 0f 35 - sysexit
    189 * 0f 37 - getsec
    190 * 0f 78 - vmread (Intel VMX. CPL0 insn)
    191 * 0f 79 - vmwrite (Intel VMX. CPL0 insn)
    192 *	Note: with prefixes, these two opcodes are
    193 *	extrq/insertq/AVX512 convert vector ops.
    194 * 0f ae - group15: [f]xsave,[f]xrstor,[v]{ld,st}mxcsr,clflush[opt],
    195 *	{rd,wr}{fs,gs}base,{s,l,m}fence.
    196 *	Why? They are all user-executable.
    197 */
    198static volatile u32 good_2byte_insns[256 / 32] = {
    199	/*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f         */
    200	/*      ----------------------------------------------         */
    201	W(0x00, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1) | /* 00 */
    202	W(0x10, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 10 */
    203	W(0x20, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 20 */
    204	W(0x30, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1) , /* 30 */
    205	W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */
    206	W(0x50, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 50 */
    207	W(0x60, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 60 */
    208	W(0x70, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1) , /* 70 */
    209	W(0x80, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 80 */
    210	W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */
    211	W(0xa0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1) | /* a0 */
    212	W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* b0 */
    213	W(0xc0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* c0 */
    214	W(0xd0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* d0 */
    215	W(0xe0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* e0 */
    216	W(0xf0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1)   /* f0 */
    217	/*      ----------------------------------------------         */
    218	/*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f         */
    219};
    220#undef W
    221
    222/*
    223 * opcodes we may need to refine support for:
    224 *
    225 *  0f - 2-byte instructions: For many of these instructions, the validity
    226 *  depends on the prefix and/or the reg field.  On such instructions, we
    227 *  just consider the opcode combination valid if it corresponds to any
    228 *  valid instruction.
    229 *
    230 *  8f - Group 1 - only reg = 0 is OK
    231 *  c6-c7 - Group 11 - only reg = 0 is OK
    232 *  d9-df - fpu insns with some illegal encodings
    233 *  f2, f3 - repnz, repz prefixes.  These are also the first byte for
    234 *  certain floating-point instructions, such as addsd.
    235 *
    236 *  fe - Group 4 - only reg = 0 or 1 is OK
    237 *  ff - Group 5 - only reg = 0-6 is OK
    238 *
    239 * others -- Do we need to support these?
    240 *
    241 *  0f - (floating-point?) prefetch instructions
    242 *  07, 17, 1f - pop es, pop ss, pop ds
    243 *  26, 2e, 36, 3e - es:, cs:, ss:, ds: segment prefixes --
    244 *	but 64 and 65 (fs: and gs:) seem to be used, so we support them
    245 *  67 - addr16 prefix
    246 *  ce - into
    247 *  f0 - lock prefix
    248 */
    249
    250/*
    251 * TODO:
    252 * - Where necessary, examine the modrm byte and allow only valid instructions
    253 * in the different Groups and fpu instructions.
    254 */
    255
    256static bool is_prefix_bad(struct insn *insn)
    257{
    258	insn_byte_t p;
    259	int i;
    260
    261	for_each_insn_prefix(insn, i, p) {
    262		insn_attr_t attr;
    263
    264		attr = inat_get_opcode_attribute(p);
    265		switch (attr) {
    266		case INAT_MAKE_PREFIX(INAT_PFX_ES):
    267		case INAT_MAKE_PREFIX(INAT_PFX_CS):
    268		case INAT_MAKE_PREFIX(INAT_PFX_DS):
    269		case INAT_MAKE_PREFIX(INAT_PFX_SS):
    270		case INAT_MAKE_PREFIX(INAT_PFX_LOCK):
    271			return true;
    272		}
    273	}
    274	return false;
    275}
    276
    277static int uprobe_init_insn(struct arch_uprobe *auprobe, struct insn *insn, bool x86_64)
    278{
    279	enum insn_mode m = x86_64 ? INSN_MODE_64 : INSN_MODE_32;
    280	u32 volatile *good_insns;
    281	int ret;
    282
    283	ret = insn_decode(insn, auprobe->insn, sizeof(auprobe->insn), m);
    284	if (ret < 0)
    285		return -ENOEXEC;
    286
    287	if (is_prefix_bad(insn))
    288		return -ENOTSUPP;
    289
    290	/* We should not singlestep on the exception masking instructions */
    291	if (insn_masking_exception(insn))
    292		return -ENOTSUPP;
    293
    294	if (x86_64)
    295		good_insns = good_insns_64;
    296	else
    297		good_insns = good_insns_32;
    298
    299	if (test_bit(OPCODE1(insn), (unsigned long *)good_insns))
    300		return 0;
    301
    302	if (insn->opcode.nbytes == 2) {
    303		if (test_bit(OPCODE2(insn), (unsigned long *)good_2byte_insns))
    304			return 0;
    305	}
    306
    307	return -ENOTSUPP;
    308}
    309
    310#ifdef CONFIG_X86_64
    311/*
    312 * If arch_uprobe->insn doesn't use rip-relative addressing, return
    313 * immediately.  Otherwise, rewrite the instruction so that it accesses
    314 * its memory operand indirectly through a scratch register.  Set
    315 * defparam->fixups accordingly. (The contents of the scratch register
    316 * will be saved before we single-step the modified instruction,
    317 * and restored afterward).
    318 *
    319 * We do this because a rip-relative instruction can access only a
    320 * relatively small area (+/- 2 GB from the instruction), and the XOL
    321 * area typically lies beyond that area.  At least for instructions
    322 * that store to memory, we can't execute the original instruction
    323 * and "fix things up" later, because the misdirected store could be
    324 * disastrous.
    325 *
    326 * Some useful facts about rip-relative instructions:
    327 *
    328 *  - There's always a modrm byte with bit layout "00 reg 101".
    329 *  - There's never a SIB byte.
    330 *  - The displacement is always 4 bytes.
    331 *  - REX.B=1 bit in REX prefix, which normally extends r/m field,
    332 *    has no effect on rip-relative mode. It doesn't make modrm byte
    333 *    with r/m=101 refer to register 1101 = R13.
    334 */
    335static void riprel_analyze(struct arch_uprobe *auprobe, struct insn *insn)
    336{
    337	u8 *cursor;
    338	u8 reg;
    339	u8 reg2;
    340
    341	if (!insn_rip_relative(insn))
    342		return;
    343
    344	/*
    345	 * insn_rip_relative() would have decoded rex_prefix, vex_prefix, modrm.
    346	 * Clear REX.b bit (extension of MODRM.rm field):
    347	 * we want to encode low numbered reg, not r8+.
    348	 */
    349	if (insn->rex_prefix.nbytes) {
    350		cursor = auprobe->insn + insn_offset_rex_prefix(insn);
    351		/* REX byte has 0100wrxb layout, clearing REX.b bit */
    352		*cursor &= 0xfe;
    353	}
    354	/*
    355	 * Similar treatment for VEX3/EVEX prefix.
    356	 * TODO: add XOP treatment when insn decoder supports them
    357	 */
    358	if (insn->vex_prefix.nbytes >= 3) {
    359		/*
    360		 * vex2:     c5    rvvvvLpp   (has no b bit)
    361		 * vex3/xop: c4/8f rxbmmmmm wvvvvLpp
    362		 * evex:     62    rxbR00mm wvvvv1pp zllBVaaa
    363		 * Setting VEX3.b (setting because it has inverted meaning).
    364		 * Setting EVEX.x since (in non-SIB encoding) EVEX.x
    365		 * is the 4th bit of MODRM.rm, and needs the same treatment.
    366		 * For VEX3-encoded insns, VEX3.x value has no effect in
    367		 * non-SIB encoding, the change is superfluous but harmless.
    368		 */
    369		cursor = auprobe->insn + insn_offset_vex_prefix(insn) + 1;
    370		*cursor |= 0x60;
    371	}
    372
    373	/*
    374	 * Convert from rip-relative addressing to register-relative addressing
    375	 * via a scratch register.
    376	 *
    377	 * This is tricky since there are insns with modrm byte
    378	 * which also use registers not encoded in modrm byte:
    379	 * [i]div/[i]mul: implicitly use dx:ax
    380	 * shift ops: implicitly use cx
    381	 * cmpxchg: implicitly uses ax
    382	 * cmpxchg8/16b: implicitly uses dx:ax and bx:cx
    383	 *   Encoding: 0f c7/1 modrm
    384	 *   The code below thinks that reg=1 (cx), chooses si as scratch.
    385	 * mulx: implicitly uses dx: mulx r/m,r1,r2 does r1:r2 = dx * r/m.
    386	 *   First appeared in Haswell (BMI2 insn). It is vex-encoded.
    387	 *   Example where none of bx,cx,dx can be used as scratch reg:
    388	 *   c4 e2 63 f6 0d disp32   mulx disp32(%rip),%ebx,%ecx
    389	 * [v]pcmpistri: implicitly uses cx, xmm0
    390	 * [v]pcmpistrm: implicitly uses xmm0
    391	 * [v]pcmpestri: implicitly uses ax, dx, cx, xmm0
    392	 * [v]pcmpestrm: implicitly uses ax, dx, xmm0
    393	 *   Evil SSE4.2 string comparison ops from hell.
    394	 * maskmovq/[v]maskmovdqu: implicitly uses (ds:rdi) as destination.
    395	 *   Encoding: 0f f7 modrm, 66 0f f7 modrm, vex-encoded: c5 f9 f7 modrm.
    396	 *   Store op1, byte-masked by op2 msb's in each byte, to (ds:rdi).
    397	 *   AMD says it has no 3-operand form (vex.vvvv must be 1111)
    398	 *   and that it can have only register operands, not mem
    399	 *   (its modrm byte must have mode=11).
    400	 *   If these restrictions will ever be lifted,
    401	 *   we'll need code to prevent selection of di as scratch reg!
    402	 *
    403	 * Summary: I don't know any insns with modrm byte which
    404	 * use SI register implicitly. DI register is used only
    405	 * by one insn (maskmovq) and BX register is used
    406	 * only by one too (cmpxchg8b).
    407	 * BP is stack-segment based (may be a problem?).
    408	 * AX, DX, CX are off-limits (many implicit users).
    409	 * SP is unusable (it's stack pointer - think about "pop mem";
    410	 * also, rsp+disp32 needs sib encoding -> insn length change).
    411	 */
    412
    413	reg = MODRM_REG(insn);	/* Fetch modrm.reg */
    414	reg2 = 0xff;		/* Fetch vex.vvvv */
    415	if (insn->vex_prefix.nbytes)
    416		reg2 = insn->vex_prefix.bytes[2];
    417	/*
    418	 * TODO: add XOP vvvv reading.
    419	 *
    420	 * vex.vvvv field is in bits 6-3, bits are inverted.
    421	 * But in 32-bit mode, high-order bit may be ignored.
    422	 * Therefore, let's consider only 3 low-order bits.
    423	 */
    424	reg2 = ((reg2 >> 3) & 0x7) ^ 0x7;
    425	/*
    426	 * Register numbering is ax,cx,dx,bx, sp,bp,si,di, r8..r15.
    427	 *
    428	 * Choose scratch reg. Order is important: must not select bx
    429	 * if we can use si (cmpxchg8b case!)
    430	 */
    431	if (reg != 6 && reg2 != 6) {
    432		reg2 = 6;
    433		auprobe->defparam.fixups |= UPROBE_FIX_RIP_SI;
    434	} else if (reg != 7 && reg2 != 7) {
    435		reg2 = 7;
    436		auprobe->defparam.fixups |= UPROBE_FIX_RIP_DI;
    437		/* TODO (paranoia): force maskmovq to not use di */
    438	} else {
    439		reg2 = 3;
    440		auprobe->defparam.fixups |= UPROBE_FIX_RIP_BX;
    441	}
    442	/*
    443	 * Point cursor at the modrm byte.  The next 4 bytes are the
    444	 * displacement.  Beyond the displacement, for some instructions,
    445	 * is the immediate operand.
    446	 */
    447	cursor = auprobe->insn + insn_offset_modrm(insn);
    448	/*
    449	 * Change modrm from "00 reg 101" to "10 reg reg2". Example:
    450	 * 89 05 disp32  mov %eax,disp32(%rip) becomes
    451	 * 89 86 disp32  mov %eax,disp32(%rsi)
    452	 */
    453	*cursor = 0x80 | (reg << 3) | reg2;
    454}
    455
    456static inline unsigned long *
    457scratch_reg(struct arch_uprobe *auprobe, struct pt_regs *regs)
    458{
    459	if (auprobe->defparam.fixups & UPROBE_FIX_RIP_SI)
    460		return &regs->si;
    461	if (auprobe->defparam.fixups & UPROBE_FIX_RIP_DI)
    462		return &regs->di;
    463	return &regs->bx;
    464}
    465
    466/*
    467 * If we're emulating a rip-relative instruction, save the contents
    468 * of the scratch register and store the target address in that register.
    469 */
    470static void riprel_pre_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
    471{
    472	if (auprobe->defparam.fixups & UPROBE_FIX_RIP_MASK) {
    473		struct uprobe_task *utask = current->utask;
    474		unsigned long *sr = scratch_reg(auprobe, regs);
    475
    476		utask->autask.saved_scratch_register = *sr;
    477		*sr = utask->vaddr + auprobe->defparam.ilen;
    478	}
    479}
    480
    481static void riprel_post_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
    482{
    483	if (auprobe->defparam.fixups & UPROBE_FIX_RIP_MASK) {
    484		struct uprobe_task *utask = current->utask;
    485		unsigned long *sr = scratch_reg(auprobe, regs);
    486
    487		*sr = utask->autask.saved_scratch_register;
    488	}
    489}
    490#else /* 32-bit: */
    491/*
    492 * No RIP-relative addressing on 32-bit
    493 */
    494static void riprel_analyze(struct arch_uprobe *auprobe, struct insn *insn)
    495{
    496}
    497static void riprel_pre_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
    498{
    499}
    500static void riprel_post_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
    501{
    502}
    503#endif /* CONFIG_X86_64 */
    504
    505struct uprobe_xol_ops {
    506	bool	(*emulate)(struct arch_uprobe *, struct pt_regs *);
    507	int	(*pre_xol)(struct arch_uprobe *, struct pt_regs *);
    508	int	(*post_xol)(struct arch_uprobe *, struct pt_regs *);
    509	void	(*abort)(struct arch_uprobe *, struct pt_regs *);
    510};
    511
    512static inline int sizeof_long(struct pt_regs *regs)
    513{
    514	/*
    515	 * Check registers for mode as in_xxx_syscall() does not apply here.
    516	 */
    517	return user_64bit_mode(regs) ? 8 : 4;
    518}
    519
    520static int default_pre_xol_op(struct arch_uprobe *auprobe, struct pt_regs *regs)
    521{
    522	riprel_pre_xol(auprobe, regs);
    523	return 0;
    524}
    525
    526static int emulate_push_stack(struct pt_regs *regs, unsigned long val)
    527{
    528	unsigned long new_sp = regs->sp - sizeof_long(regs);
    529
    530	if (copy_to_user((void __user *)new_sp, &val, sizeof_long(regs)))
    531		return -EFAULT;
    532
    533	regs->sp = new_sp;
    534	return 0;
    535}
    536
    537/*
    538 * We have to fix things up as follows:
    539 *
    540 * Typically, the new ip is relative to the copied instruction.  We need
    541 * to make it relative to the original instruction (FIX_IP).  Exceptions
    542 * are return instructions and absolute or indirect jump or call instructions.
    543 *
    544 * If the single-stepped instruction was a call, the return address that
    545 * is atop the stack is the address following the copied instruction.  We
    546 * need to make it the address following the original instruction (FIX_CALL).
    547 *
    548 * If the original instruction was a rip-relative instruction such as
    549 * "movl %edx,0xnnnn(%rip)", we have instead executed an equivalent
    550 * instruction using a scratch register -- e.g., "movl %edx,0xnnnn(%rsi)".
    551 * We need to restore the contents of the scratch register
    552 * (FIX_RIP_reg).
    553 */
    554static int default_post_xol_op(struct arch_uprobe *auprobe, struct pt_regs *regs)
    555{
    556	struct uprobe_task *utask = current->utask;
    557
    558	riprel_post_xol(auprobe, regs);
    559	if (auprobe->defparam.fixups & UPROBE_FIX_IP) {
    560		long correction = utask->vaddr - utask->xol_vaddr;
    561		regs->ip += correction;
    562	} else if (auprobe->defparam.fixups & UPROBE_FIX_CALL) {
    563		regs->sp += sizeof_long(regs); /* Pop incorrect return address */
    564		if (emulate_push_stack(regs, utask->vaddr + auprobe->defparam.ilen))
    565			return -ERESTART;
    566	}
    567	/* popf; tell the caller to not touch TF */
    568	if (auprobe->defparam.fixups & UPROBE_FIX_SETF)
    569		utask->autask.saved_tf = true;
    570
    571	return 0;
    572}
    573
    574static void default_abort_op(struct arch_uprobe *auprobe, struct pt_regs *regs)
    575{
    576	riprel_post_xol(auprobe, regs);
    577}
    578
    579static const struct uprobe_xol_ops default_xol_ops = {
    580	.pre_xol  = default_pre_xol_op,
    581	.post_xol = default_post_xol_op,
    582	.abort	  = default_abort_op,
    583};
    584
    585static bool branch_is_call(struct arch_uprobe *auprobe)
    586{
    587	return auprobe->branch.opc1 == 0xe8;
    588}
    589
    590#define CASE_COND					\
    591	COND(70, 71, XF(OF))				\
    592	COND(72, 73, XF(CF))				\
    593	COND(74, 75, XF(ZF))				\
    594	COND(78, 79, XF(SF))				\
    595	COND(7a, 7b, XF(PF))				\
    596	COND(76, 77, XF(CF) || XF(ZF))			\
    597	COND(7c, 7d, XF(SF) != XF(OF))			\
    598	COND(7e, 7f, XF(ZF) || XF(SF) != XF(OF))
    599
    600#define COND(op_y, op_n, expr)				\
    601	case 0x ## op_y: DO((expr) != 0)		\
    602	case 0x ## op_n: DO((expr) == 0)
    603
    604#define XF(xf)	(!!(flags & X86_EFLAGS_ ## xf))
    605
    606static bool is_cond_jmp_opcode(u8 opcode)
    607{
    608	switch (opcode) {
    609	#define DO(expr)	\
    610		return true;
    611	CASE_COND
    612	#undef	DO
    613
    614	default:
    615		return false;
    616	}
    617}
    618
    619static bool check_jmp_cond(struct arch_uprobe *auprobe, struct pt_regs *regs)
    620{
    621	unsigned long flags = regs->flags;
    622
    623	switch (auprobe->branch.opc1) {
    624	#define DO(expr)	\
    625		return expr;
    626	CASE_COND
    627	#undef	DO
    628
    629	default:	/* not a conditional jmp */
    630		return true;
    631	}
    632}
    633
    634#undef	XF
    635#undef	COND
    636#undef	CASE_COND
    637
    638static bool branch_emulate_op(struct arch_uprobe *auprobe, struct pt_regs *regs)
    639{
    640	unsigned long new_ip = regs->ip += auprobe->branch.ilen;
    641	unsigned long offs = (long)auprobe->branch.offs;
    642
    643	if (branch_is_call(auprobe)) {
    644		/*
    645		 * If it fails we execute this (mangled, see the comment in
    646		 * branch_clear_offset) insn out-of-line. In the likely case
    647		 * this should trigger the trap, and the probed application
    648		 * should die or restart the same insn after it handles the
    649		 * signal, arch_uprobe_post_xol() won't be even called.
    650		 *
    651		 * But there is corner case, see the comment in ->post_xol().
    652		 */
    653		if (emulate_push_stack(regs, new_ip))
    654			return false;
    655	} else if (!check_jmp_cond(auprobe, regs)) {
    656		offs = 0;
    657	}
    658
    659	regs->ip = new_ip + offs;
    660	return true;
    661}
    662
    663static bool push_emulate_op(struct arch_uprobe *auprobe, struct pt_regs *regs)
    664{
    665	unsigned long *src_ptr = (void *)regs + auprobe->push.reg_offset;
    666
    667	if (emulate_push_stack(regs, *src_ptr))
    668		return false;
    669	regs->ip += auprobe->push.ilen;
    670	return true;
    671}
    672
    673static int branch_post_xol_op(struct arch_uprobe *auprobe, struct pt_regs *regs)
    674{
    675	BUG_ON(!branch_is_call(auprobe));
    676	/*
    677	 * We can only get here if branch_emulate_op() failed to push the ret
    678	 * address _and_ another thread expanded our stack before the (mangled)
    679	 * "call" insn was executed out-of-line. Just restore ->sp and restart.
    680	 * We could also restore ->ip and try to call branch_emulate_op() again.
    681	 */
    682	regs->sp += sizeof_long(regs);
    683	return -ERESTART;
    684}
    685
    686static void branch_clear_offset(struct arch_uprobe *auprobe, struct insn *insn)
    687{
    688	/*
    689	 * Turn this insn into "call 1f; 1:", this is what we will execute
    690	 * out-of-line if ->emulate() fails. We only need this to generate
    691	 * a trap, so that the probed task receives the correct signal with
    692	 * the properly filled siginfo.
    693	 *
    694	 * But see the comment in ->post_xol(), in the unlikely case it can
    695	 * succeed. So we need to ensure that the new ->ip can not fall into
    696	 * the non-canonical area and trigger #GP.
    697	 *
    698	 * We could turn it into (say) "pushf", but then we would need to
    699	 * divorce ->insn[] and ->ixol[]. We need to preserve the 1st byte
    700	 * of ->insn[] for set_orig_insn().
    701	 */
    702	memset(auprobe->insn + insn_offset_immediate(insn),
    703		0, insn->immediate.nbytes);
    704}
    705
    706static const struct uprobe_xol_ops branch_xol_ops = {
    707	.emulate  = branch_emulate_op,
    708	.post_xol = branch_post_xol_op,
    709};
    710
    711static const struct uprobe_xol_ops push_xol_ops = {
    712	.emulate  = push_emulate_op,
    713};
    714
    715/* Returns -ENOSYS if branch_xol_ops doesn't handle this insn */
    716static int branch_setup_xol_ops(struct arch_uprobe *auprobe, struct insn *insn)
    717{
    718	u8 opc1 = OPCODE1(insn);
    719	insn_byte_t p;
    720	int i;
    721
    722	switch (opc1) {
    723	case 0xeb:	/* jmp 8 */
    724	case 0xe9:	/* jmp 32 */
    725	case 0x90:	/* prefix* + nop; same as jmp with .offs = 0 */
    726		break;
    727
    728	case 0xe8:	/* call relative */
    729		branch_clear_offset(auprobe, insn);
    730		break;
    731
    732	case 0x0f:
    733		if (insn->opcode.nbytes != 2)
    734			return -ENOSYS;
    735		/*
    736		 * If it is a "near" conditional jmp, OPCODE2() - 0x10 matches
    737		 * OPCODE1() of the "short" jmp which checks the same condition.
    738		 */
    739		opc1 = OPCODE2(insn) - 0x10;
    740		fallthrough;
    741	default:
    742		if (!is_cond_jmp_opcode(opc1))
    743			return -ENOSYS;
    744	}
    745
    746	/*
    747	 * 16-bit overrides such as CALLW (66 e8 nn nn) are not supported.
    748	 * Intel and AMD behavior differ in 64-bit mode: Intel ignores 66 prefix.
    749	 * No one uses these insns, reject any branch insns with such prefix.
    750	 */
    751	for_each_insn_prefix(insn, i, p) {
    752		if (p == 0x66)
    753			return -ENOTSUPP;
    754	}
    755
    756	auprobe->branch.opc1 = opc1;
    757	auprobe->branch.ilen = insn->length;
    758	auprobe->branch.offs = insn->immediate.value;
    759
    760	auprobe->ops = &branch_xol_ops;
    761	return 0;
    762}
    763
    764/* Returns -ENOSYS if push_xol_ops doesn't handle this insn */
    765static int push_setup_xol_ops(struct arch_uprobe *auprobe, struct insn *insn)
    766{
    767	u8 opc1 = OPCODE1(insn), reg_offset = 0;
    768
    769	if (opc1 < 0x50 || opc1 > 0x57)
    770		return -ENOSYS;
    771
    772	if (insn->length > 2)
    773		return -ENOSYS;
    774	if (insn->length == 2) {
    775		/* only support rex_prefix 0x41 (x64 only) */
    776#ifdef CONFIG_X86_64
    777		if (insn->rex_prefix.nbytes != 1 ||
    778		    insn->rex_prefix.bytes[0] != 0x41)
    779			return -ENOSYS;
    780
    781		switch (opc1) {
    782		case 0x50:
    783			reg_offset = offsetof(struct pt_regs, r8);
    784			break;
    785		case 0x51:
    786			reg_offset = offsetof(struct pt_regs, r9);
    787			break;
    788		case 0x52:
    789			reg_offset = offsetof(struct pt_regs, r10);
    790			break;
    791		case 0x53:
    792			reg_offset = offsetof(struct pt_regs, r11);
    793			break;
    794		case 0x54:
    795			reg_offset = offsetof(struct pt_regs, r12);
    796			break;
    797		case 0x55:
    798			reg_offset = offsetof(struct pt_regs, r13);
    799			break;
    800		case 0x56:
    801			reg_offset = offsetof(struct pt_regs, r14);
    802			break;
    803		case 0x57:
    804			reg_offset = offsetof(struct pt_regs, r15);
    805			break;
    806		}
    807#else
    808		return -ENOSYS;
    809#endif
    810	} else {
    811		switch (opc1) {
    812		case 0x50:
    813			reg_offset = offsetof(struct pt_regs, ax);
    814			break;
    815		case 0x51:
    816			reg_offset = offsetof(struct pt_regs, cx);
    817			break;
    818		case 0x52:
    819			reg_offset = offsetof(struct pt_regs, dx);
    820			break;
    821		case 0x53:
    822			reg_offset = offsetof(struct pt_regs, bx);
    823			break;
    824		case 0x54:
    825			reg_offset = offsetof(struct pt_regs, sp);
    826			break;
    827		case 0x55:
    828			reg_offset = offsetof(struct pt_regs, bp);
    829			break;
    830		case 0x56:
    831			reg_offset = offsetof(struct pt_regs, si);
    832			break;
    833		case 0x57:
    834			reg_offset = offsetof(struct pt_regs, di);
    835			break;
    836		}
    837	}
    838
    839	auprobe->push.reg_offset = reg_offset;
    840	auprobe->push.ilen = insn->length;
    841	auprobe->ops = &push_xol_ops;
    842	return 0;
    843}
    844
    845/**
    846 * arch_uprobe_analyze_insn - instruction analysis including validity and fixups.
    847 * @auprobe: the probepoint information.
    848 * @mm: the probed address space.
    849 * @addr: virtual address at which to install the probepoint
    850 * Return 0 on success or a -ve number on error.
    851 */
    852int arch_uprobe_analyze_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long addr)
    853{
    854	struct insn insn;
    855	u8 fix_ip_or_call = UPROBE_FIX_IP;
    856	int ret;
    857
    858	ret = uprobe_init_insn(auprobe, &insn, is_64bit_mm(mm));
    859	if (ret)
    860		return ret;
    861
    862	ret = branch_setup_xol_ops(auprobe, &insn);
    863	if (ret != -ENOSYS)
    864		return ret;
    865
    866	ret = push_setup_xol_ops(auprobe, &insn);
    867	if (ret != -ENOSYS)
    868		return ret;
    869
    870	/*
    871	 * Figure out which fixups default_post_xol_op() will need to perform,
    872	 * and annotate defparam->fixups accordingly.
    873	 */
    874	switch (OPCODE1(&insn)) {
    875	case 0x9d:		/* popf */
    876		auprobe->defparam.fixups |= UPROBE_FIX_SETF;
    877		break;
    878	case 0xc3:		/* ret or lret -- ip is correct */
    879	case 0xcb:
    880	case 0xc2:
    881	case 0xca:
    882	case 0xea:		/* jmp absolute -- ip is correct */
    883		fix_ip_or_call = 0;
    884		break;
    885	case 0x9a:		/* call absolute - Fix return addr, not ip */
    886		fix_ip_or_call = UPROBE_FIX_CALL;
    887		break;
    888	case 0xff:
    889		switch (MODRM_REG(&insn)) {
    890		case 2: case 3:			/* call or lcall, indirect */
    891			fix_ip_or_call = UPROBE_FIX_CALL;
    892			break;
    893		case 4: case 5:			/* jmp or ljmp, indirect */
    894			fix_ip_or_call = 0;
    895			break;
    896		}
    897		fallthrough;
    898	default:
    899		riprel_analyze(auprobe, &insn);
    900	}
    901
    902	auprobe->defparam.ilen = insn.length;
    903	auprobe->defparam.fixups |= fix_ip_or_call;
    904
    905	auprobe->ops = &default_xol_ops;
    906	return 0;
    907}
    908
    909/*
    910 * arch_uprobe_pre_xol - prepare to execute out of line.
    911 * @auprobe: the probepoint information.
    912 * @regs: reflects the saved user state of current task.
    913 */
    914int arch_uprobe_pre_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
    915{
    916	struct uprobe_task *utask = current->utask;
    917
    918	if (auprobe->ops->pre_xol) {
    919		int err = auprobe->ops->pre_xol(auprobe, regs);
    920		if (err)
    921			return err;
    922	}
    923
    924	regs->ip = utask->xol_vaddr;
    925	utask->autask.saved_trap_nr = current->thread.trap_nr;
    926	current->thread.trap_nr = UPROBE_TRAP_NR;
    927
    928	utask->autask.saved_tf = !!(regs->flags & X86_EFLAGS_TF);
    929	regs->flags |= X86_EFLAGS_TF;
    930	if (test_tsk_thread_flag(current, TIF_BLOCKSTEP))
    931		set_task_blockstep(current, false);
    932
    933	return 0;
    934}
    935
    936/*
    937 * If xol insn itself traps and generates a signal(Say,
    938 * SIGILL/SIGSEGV/etc), then detect the case where a singlestepped
    939 * instruction jumps back to its own address. It is assumed that anything
    940 * like do_page_fault/do_trap/etc sets thread.trap_nr != -1.
    941 *
    942 * arch_uprobe_pre_xol/arch_uprobe_post_xol save/restore thread.trap_nr,
    943 * arch_uprobe_xol_was_trapped() simply checks that ->trap_nr is not equal to
    944 * UPROBE_TRAP_NR == -1 set by arch_uprobe_pre_xol().
    945 */
    946bool arch_uprobe_xol_was_trapped(struct task_struct *t)
    947{
    948	if (t->thread.trap_nr != UPROBE_TRAP_NR)
    949		return true;
    950
    951	return false;
    952}
    953
    954/*
    955 * Called after single-stepping. To avoid the SMP problems that can
    956 * occur when we temporarily put back the original opcode to
    957 * single-step, we single-stepped a copy of the instruction.
    958 *
    959 * This function prepares to resume execution after the single-step.
    960 */
    961int arch_uprobe_post_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
    962{
    963	struct uprobe_task *utask = current->utask;
    964	bool send_sigtrap = utask->autask.saved_tf;
    965	int err = 0;
    966
    967	WARN_ON_ONCE(current->thread.trap_nr != UPROBE_TRAP_NR);
    968	current->thread.trap_nr = utask->autask.saved_trap_nr;
    969
    970	if (auprobe->ops->post_xol) {
    971		err = auprobe->ops->post_xol(auprobe, regs);
    972		if (err) {
    973			/*
    974			 * Restore ->ip for restart or post mortem analysis.
    975			 * ->post_xol() must not return -ERESTART unless this
    976			 * is really possible.
    977			 */
    978			regs->ip = utask->vaddr;
    979			if (err == -ERESTART)
    980				err = 0;
    981			send_sigtrap = false;
    982		}
    983	}
    984	/*
    985	 * arch_uprobe_pre_xol() doesn't save the state of TIF_BLOCKSTEP
    986	 * so we can get an extra SIGTRAP if we do not clear TF. We need
    987	 * to examine the opcode to make it right.
    988	 */
    989	if (send_sigtrap)
    990		send_sig(SIGTRAP, current, 0);
    991
    992	if (!utask->autask.saved_tf)
    993		regs->flags &= ~X86_EFLAGS_TF;
    994
    995	return err;
    996}
    997
    998/* callback routine for handling exceptions. */
    999int arch_uprobe_exception_notify(struct notifier_block *self, unsigned long val, void *data)
   1000{
   1001	struct die_args *args = data;
   1002	struct pt_regs *regs = args->regs;
   1003	int ret = NOTIFY_DONE;
   1004
   1005	/* We are only interested in userspace traps */
   1006	if (regs && !user_mode(regs))
   1007		return NOTIFY_DONE;
   1008
   1009	switch (val) {
   1010	case DIE_INT3:
   1011		if (uprobe_pre_sstep_notifier(regs))
   1012			ret = NOTIFY_STOP;
   1013
   1014		break;
   1015
   1016	case DIE_DEBUG:
   1017		if (uprobe_post_sstep_notifier(regs))
   1018			ret = NOTIFY_STOP;
   1019
   1020		break;
   1021
   1022	default:
   1023		break;
   1024	}
   1025
   1026	return ret;
   1027}
   1028
   1029/*
   1030 * This function gets called when XOL instruction either gets trapped or
   1031 * the thread has a fatal signal. Reset the instruction pointer to its
   1032 * probed address for the potential restart or for post mortem analysis.
   1033 */
   1034void arch_uprobe_abort_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
   1035{
   1036	struct uprobe_task *utask = current->utask;
   1037
   1038	if (auprobe->ops->abort)
   1039		auprobe->ops->abort(auprobe, regs);
   1040
   1041	current->thread.trap_nr = utask->autask.saved_trap_nr;
   1042	regs->ip = utask->vaddr;
   1043	/* clear TF if it was set by us in arch_uprobe_pre_xol() */
   1044	if (!utask->autask.saved_tf)
   1045		regs->flags &= ~X86_EFLAGS_TF;
   1046}
   1047
   1048static bool __skip_sstep(struct arch_uprobe *auprobe, struct pt_regs *regs)
   1049{
   1050	if (auprobe->ops->emulate)
   1051		return auprobe->ops->emulate(auprobe, regs);
   1052	return false;
   1053}
   1054
   1055bool arch_uprobe_skip_sstep(struct arch_uprobe *auprobe, struct pt_regs *regs)
   1056{
   1057	bool ret = __skip_sstep(auprobe, regs);
   1058	if (ret && (regs->flags & X86_EFLAGS_TF))
   1059		send_sig(SIGTRAP, current, 0);
   1060	return ret;
   1061}
   1062
   1063unsigned long
   1064arch_uretprobe_hijack_return_addr(unsigned long trampoline_vaddr, struct pt_regs *regs)
   1065{
   1066	int rasize = sizeof_long(regs), nleft;
   1067	unsigned long orig_ret_vaddr = 0; /* clear high bits for 32-bit apps */
   1068
   1069	if (copy_from_user(&orig_ret_vaddr, (void __user *)regs->sp, rasize))
   1070		return -1;
   1071
   1072	/* check whether address has been already hijacked */
   1073	if (orig_ret_vaddr == trampoline_vaddr)
   1074		return orig_ret_vaddr;
   1075
   1076	nleft = copy_to_user((void __user *)regs->sp, &trampoline_vaddr, rasize);
   1077	if (likely(!nleft))
   1078		return orig_ret_vaddr;
   1079
   1080	if (nleft != rasize) {
   1081		pr_err("return address clobbered: pid=%d, %%sp=%#lx, %%ip=%#lx\n",
   1082		       current->pid, regs->sp, regs->ip);
   1083
   1084		force_sig(SIGSEGV);
   1085	}
   1086
   1087	return -1;
   1088}
   1089
   1090bool arch_uretprobe_is_alive(struct return_instance *ret, enum rp_check ctx,
   1091				struct pt_regs *regs)
   1092{
   1093	if (ctx == RP_CHECK_CALL) /* sp was just decremented by "call" insn */
   1094		return regs->sp < ret->stack;
   1095	else
   1096		return regs->sp <= ret->stack;
   1097}