cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

cpuid.c (40976B)


      1// SPDX-License-Identifier: GPL-2.0-only
      2/*
      3 * Kernel-based Virtual Machine driver for Linux
      4 * cpuid support routines
      5 *
      6 * derived from arch/x86/kvm/x86.c
      7 *
      8 * Copyright 2011 Red Hat, Inc. and/or its affiliates.
      9 * Copyright IBM Corporation, 2008
     10 */
     11
     12#include <linux/kvm_host.h>
     13#include <linux/export.h>
     14#include <linux/vmalloc.h>
     15#include <linux/uaccess.h>
     16#include <linux/sched/stat.h>
     17
     18#include <asm/processor.h>
     19#include <asm/user.h>
     20#include <asm/fpu/xstate.h>
     21#include <asm/sgx.h>
     22#include <asm/cpuid.h>
     23#include "cpuid.h"
     24#include "lapic.h"
     25#include "mmu.h"
     26#include "trace.h"
     27#include "pmu.h"
     28
     29/*
     30 * Unlike "struct cpuinfo_x86.x86_capability", kvm_cpu_caps doesn't need to be
     31 * aligned to sizeof(unsigned long) because it's not accessed via bitops.
     32 */
     33u32 kvm_cpu_caps[NR_KVM_CPU_CAPS] __read_mostly;
     34EXPORT_SYMBOL_GPL(kvm_cpu_caps);
     35
     36u32 xstate_required_size(u64 xstate_bv, bool compacted)
     37{
     38	int feature_bit = 0;
     39	u32 ret = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
     40
     41	xstate_bv &= XFEATURE_MASK_EXTEND;
     42	while (xstate_bv) {
     43		if (xstate_bv & 0x1) {
     44		        u32 eax, ebx, ecx, edx, offset;
     45		        cpuid_count(0xD, feature_bit, &eax, &ebx, &ecx, &edx);
     46			/* ECX[1]: 64B alignment in compacted form */
     47			if (compacted)
     48				offset = (ecx & 0x2) ? ALIGN(ret, 64) : ret;
     49			else
     50				offset = ebx;
     51			ret = max(ret, offset + eax);
     52		}
     53
     54		xstate_bv >>= 1;
     55		feature_bit++;
     56	}
     57
     58	return ret;
     59}
     60
     61/*
     62 * This one is tied to SSB in the user API, and not
     63 * visible in /proc/cpuinfo.
     64 */
     65#define KVM_X86_FEATURE_PSFD		(13*32+28) /* Predictive Store Forwarding Disable */
     66
     67#define F feature_bit
     68#define SF(name) (boot_cpu_has(X86_FEATURE_##name) ? F(name) : 0)
     69
     70
     71static inline struct kvm_cpuid_entry2 *cpuid_entry2_find(
     72	struct kvm_cpuid_entry2 *entries, int nent, u32 function, u32 index)
     73{
     74	struct kvm_cpuid_entry2 *e;
     75	int i;
     76
     77	for (i = 0; i < nent; i++) {
     78		e = &entries[i];
     79
     80		if (e->function == function &&
     81		    (!(e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) || e->index == index))
     82			return e;
     83	}
     84
     85	return NULL;
     86}
     87
     88static int kvm_check_cpuid(struct kvm_vcpu *vcpu,
     89			   struct kvm_cpuid_entry2 *entries,
     90			   int nent)
     91{
     92	struct kvm_cpuid_entry2 *best;
     93	u64 xfeatures;
     94
     95	/*
     96	 * The existing code assumes virtual address is 48-bit or 57-bit in the
     97	 * canonical address checks; exit if it is ever changed.
     98	 */
     99	best = cpuid_entry2_find(entries, nent, 0x80000008, 0);
    100	if (best) {
    101		int vaddr_bits = (best->eax & 0xff00) >> 8;
    102
    103		if (vaddr_bits != 48 && vaddr_bits != 57 && vaddr_bits != 0)
    104			return -EINVAL;
    105	}
    106
    107	/*
    108	 * Exposing dynamic xfeatures to the guest requires additional
    109	 * enabling in the FPU, e.g. to expand the guest XSAVE state size.
    110	 */
    111	best = cpuid_entry2_find(entries, nent, 0xd, 0);
    112	if (!best)
    113		return 0;
    114
    115	xfeatures = best->eax | ((u64)best->edx << 32);
    116	xfeatures &= XFEATURE_MASK_USER_DYNAMIC;
    117	if (!xfeatures)
    118		return 0;
    119
    120	return fpu_enable_guest_xfd_features(&vcpu->arch.guest_fpu, xfeatures);
    121}
    122
    123/* Check whether the supplied CPUID data is equal to what is already set for the vCPU. */
    124static int kvm_cpuid_check_equal(struct kvm_vcpu *vcpu, struct kvm_cpuid_entry2 *e2,
    125				 int nent)
    126{
    127	struct kvm_cpuid_entry2 *orig;
    128	int i;
    129
    130	if (nent != vcpu->arch.cpuid_nent)
    131		return -EINVAL;
    132
    133	for (i = 0; i < nent; i++) {
    134		orig = &vcpu->arch.cpuid_entries[i];
    135		if (e2[i].function != orig->function ||
    136		    e2[i].index != orig->index ||
    137		    e2[i].flags != orig->flags ||
    138		    e2[i].eax != orig->eax || e2[i].ebx != orig->ebx ||
    139		    e2[i].ecx != orig->ecx || e2[i].edx != orig->edx)
    140			return -EINVAL;
    141	}
    142
    143	return 0;
    144}
    145
    146static void kvm_update_kvm_cpuid_base(struct kvm_vcpu *vcpu)
    147{
    148	u32 function;
    149	struct kvm_cpuid_entry2 *entry;
    150
    151	vcpu->arch.kvm_cpuid_base = 0;
    152
    153	for_each_possible_hypervisor_cpuid_base(function) {
    154		entry = kvm_find_cpuid_entry(vcpu, function, 0);
    155
    156		if (entry) {
    157			u32 signature[3];
    158
    159			signature[0] = entry->ebx;
    160			signature[1] = entry->ecx;
    161			signature[2] = entry->edx;
    162
    163			BUILD_BUG_ON(sizeof(signature) > sizeof(KVM_SIGNATURE));
    164			if (!memcmp(signature, KVM_SIGNATURE, sizeof(signature))) {
    165				vcpu->arch.kvm_cpuid_base = function;
    166				break;
    167			}
    168		}
    169	}
    170}
    171
    172static struct kvm_cpuid_entry2 *__kvm_find_kvm_cpuid_features(struct kvm_vcpu *vcpu,
    173					      struct kvm_cpuid_entry2 *entries, int nent)
    174{
    175	u32 base = vcpu->arch.kvm_cpuid_base;
    176
    177	if (!base)
    178		return NULL;
    179
    180	return cpuid_entry2_find(entries, nent, base | KVM_CPUID_FEATURES, 0);
    181}
    182
    183static struct kvm_cpuid_entry2 *kvm_find_kvm_cpuid_features(struct kvm_vcpu *vcpu)
    184{
    185	return __kvm_find_kvm_cpuid_features(vcpu, vcpu->arch.cpuid_entries,
    186					     vcpu->arch.cpuid_nent);
    187}
    188
    189void kvm_update_pv_runtime(struct kvm_vcpu *vcpu)
    190{
    191	struct kvm_cpuid_entry2 *best = kvm_find_kvm_cpuid_features(vcpu);
    192
    193	/*
    194	 * save the feature bitmap to avoid cpuid lookup for every PV
    195	 * operation
    196	 */
    197	if (best)
    198		vcpu->arch.pv_cpuid.features = best->eax;
    199}
    200
    201/*
    202 * Calculate guest's supported XCR0 taking into account guest CPUID data and
    203 * supported_xcr0 (comprised of host configuration and KVM_SUPPORTED_XCR0).
    204 */
    205static u64 cpuid_get_supported_xcr0(struct kvm_cpuid_entry2 *entries, int nent)
    206{
    207	struct kvm_cpuid_entry2 *best;
    208
    209	best = cpuid_entry2_find(entries, nent, 0xd, 0);
    210	if (!best)
    211		return 0;
    212
    213	return (best->eax | ((u64)best->edx << 32)) & supported_xcr0;
    214}
    215
    216static void __kvm_update_cpuid_runtime(struct kvm_vcpu *vcpu, struct kvm_cpuid_entry2 *entries,
    217				       int nent)
    218{
    219	struct kvm_cpuid_entry2 *best;
    220	u64 guest_supported_xcr0 = cpuid_get_supported_xcr0(entries, nent);
    221
    222	best = cpuid_entry2_find(entries, nent, 1, 0);
    223	if (best) {
    224		/* Update OSXSAVE bit */
    225		if (boot_cpu_has(X86_FEATURE_XSAVE))
    226			cpuid_entry_change(best, X86_FEATURE_OSXSAVE,
    227				   kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE));
    228
    229		cpuid_entry_change(best, X86_FEATURE_APIC,
    230			   vcpu->arch.apic_base & MSR_IA32_APICBASE_ENABLE);
    231	}
    232
    233	best = cpuid_entry2_find(entries, nent, 7, 0);
    234	if (best && boot_cpu_has(X86_FEATURE_PKU) && best->function == 0x7)
    235		cpuid_entry_change(best, X86_FEATURE_OSPKE,
    236				   kvm_read_cr4_bits(vcpu, X86_CR4_PKE));
    237
    238	best = cpuid_entry2_find(entries, nent, 0xD, 0);
    239	if (best)
    240		best->ebx = xstate_required_size(vcpu->arch.xcr0, false);
    241
    242	best = cpuid_entry2_find(entries, nent, 0xD, 1);
    243	if (best && (cpuid_entry_has(best, X86_FEATURE_XSAVES) ||
    244		     cpuid_entry_has(best, X86_FEATURE_XSAVEC)))
    245		best->ebx = xstate_required_size(vcpu->arch.xcr0, true);
    246
    247	best = __kvm_find_kvm_cpuid_features(vcpu, entries, nent);
    248	if (kvm_hlt_in_guest(vcpu->kvm) && best &&
    249		(best->eax & (1 << KVM_FEATURE_PV_UNHALT)))
    250		best->eax &= ~(1 << KVM_FEATURE_PV_UNHALT);
    251
    252	if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT)) {
    253		best = cpuid_entry2_find(entries, nent, 0x1, 0);
    254		if (best)
    255			cpuid_entry_change(best, X86_FEATURE_MWAIT,
    256					   vcpu->arch.ia32_misc_enable_msr &
    257					   MSR_IA32_MISC_ENABLE_MWAIT);
    258	}
    259
    260	/*
    261	 * Bits 127:0 of the allowed SECS.ATTRIBUTES (CPUID.0x12.0x1) enumerate
    262	 * the supported XSAVE Feature Request Mask (XFRM), i.e. the enclave's
    263	 * requested XCR0 value.  The enclave's XFRM must be a subset of XCRO
    264	 * at the time of EENTER, thus adjust the allowed XFRM by the guest's
    265	 * supported XCR0.  Similar to XCR0 handling, FP and SSE are forced to
    266	 * '1' even on CPUs that don't support XSAVE.
    267	 */
    268	best = cpuid_entry2_find(entries, nent, 0x12, 0x1);
    269	if (best) {
    270		best->ecx &= guest_supported_xcr0 & 0xffffffff;
    271		best->edx &= guest_supported_xcr0 >> 32;
    272		best->ecx |= XFEATURE_MASK_FPSSE;
    273	}
    274}
    275
    276void kvm_update_cpuid_runtime(struct kvm_vcpu *vcpu)
    277{
    278	__kvm_update_cpuid_runtime(vcpu, vcpu->arch.cpuid_entries, vcpu->arch.cpuid_nent);
    279}
    280EXPORT_SYMBOL_GPL(kvm_update_cpuid_runtime);
    281
    282static void kvm_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu)
    283{
    284	struct kvm_lapic *apic = vcpu->arch.apic;
    285	struct kvm_cpuid_entry2 *best;
    286	u64 guest_supported_xcr0;
    287
    288	best = kvm_find_cpuid_entry(vcpu, 1, 0);
    289	if (best && apic) {
    290		if (cpuid_entry_has(best, X86_FEATURE_TSC_DEADLINE_TIMER))
    291			apic->lapic_timer.timer_mode_mask = 3 << 17;
    292		else
    293			apic->lapic_timer.timer_mode_mask = 1 << 17;
    294
    295		kvm_apic_set_version(vcpu);
    296	}
    297
    298	guest_supported_xcr0 =
    299		cpuid_get_supported_xcr0(vcpu->arch.cpuid_entries, vcpu->arch.cpuid_nent);
    300
    301	vcpu->arch.guest_fpu.fpstate->user_xfeatures = guest_supported_xcr0;
    302
    303	kvm_update_pv_runtime(vcpu);
    304
    305	vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
    306	vcpu->arch.reserved_gpa_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu);
    307
    308	kvm_pmu_refresh(vcpu);
    309	vcpu->arch.cr4_guest_rsvd_bits =
    310	    __cr4_reserved_bits(guest_cpuid_has, vcpu);
    311
    312	kvm_hv_set_cpuid(vcpu);
    313
    314	/* Invoke the vendor callback only after the above state is updated. */
    315	static_call(kvm_x86_vcpu_after_set_cpuid)(vcpu);
    316
    317	/*
    318	 * Except for the MMU, which needs to do its thing any vendor specific
    319	 * adjustments to the reserved GPA bits.
    320	 */
    321	kvm_mmu_after_set_cpuid(vcpu);
    322}
    323
    324int cpuid_query_maxphyaddr(struct kvm_vcpu *vcpu)
    325{
    326	struct kvm_cpuid_entry2 *best;
    327
    328	best = kvm_find_cpuid_entry(vcpu, 0x80000000, 0);
    329	if (!best || best->eax < 0x80000008)
    330		goto not_found;
    331	best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
    332	if (best)
    333		return best->eax & 0xff;
    334not_found:
    335	return 36;
    336}
    337
    338/*
    339 * This "raw" version returns the reserved GPA bits without any adjustments for
    340 * encryption technologies that usurp bits.  The raw mask should be used if and
    341 * only if hardware does _not_ strip the usurped bits, e.g. in virtual MTRRs.
    342 */
    343u64 kvm_vcpu_reserved_gpa_bits_raw(struct kvm_vcpu *vcpu)
    344{
    345	return rsvd_bits(cpuid_maxphyaddr(vcpu), 63);
    346}
    347
    348static int kvm_set_cpuid(struct kvm_vcpu *vcpu, struct kvm_cpuid_entry2 *e2,
    349                        int nent)
    350{
    351	int r;
    352
    353	__kvm_update_cpuid_runtime(vcpu, e2, nent);
    354
    355	/*
    356	 * KVM does not correctly handle changing guest CPUID after KVM_RUN, as
    357	 * MAXPHYADDR, GBPAGES support, AMD reserved bit behavior, etc.. aren't
    358	 * tracked in kvm_mmu_page_role.  As a result, KVM may miss guest page
    359	 * faults due to reusing SPs/SPTEs. In practice no sane VMM mucks with
    360	 * the core vCPU model on the fly. It would've been better to forbid any
    361	 * KVM_SET_CPUID{,2} calls after KVM_RUN altogether but unfortunately
    362	 * some VMMs (e.g. QEMU) reuse vCPU fds for CPU hotplug/unplug and do
    363	 * KVM_SET_CPUID{,2} again. To support this legacy behavior, check
    364	 * whether the supplied CPUID data is equal to what's already set.
    365	 */
    366	if (vcpu->arch.last_vmentry_cpu != -1) {
    367		r = kvm_cpuid_check_equal(vcpu, e2, nent);
    368		if (r)
    369			return r;
    370
    371		kvfree(e2);
    372		return 0;
    373	}
    374
    375	r = kvm_check_cpuid(vcpu, e2, nent);
    376	if (r)
    377		return r;
    378
    379	kvfree(vcpu->arch.cpuid_entries);
    380	vcpu->arch.cpuid_entries = e2;
    381	vcpu->arch.cpuid_nent = nent;
    382
    383	kvm_update_kvm_cpuid_base(vcpu);
    384	kvm_vcpu_after_set_cpuid(vcpu);
    385
    386	return 0;
    387}
    388
    389/* when an old userspace process fills a new kernel module */
    390int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
    391			     struct kvm_cpuid *cpuid,
    392			     struct kvm_cpuid_entry __user *entries)
    393{
    394	int r, i;
    395	struct kvm_cpuid_entry *e = NULL;
    396	struct kvm_cpuid_entry2 *e2 = NULL;
    397
    398	if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
    399		return -E2BIG;
    400
    401	if (cpuid->nent) {
    402		e = vmemdup_user(entries, array_size(sizeof(*e), cpuid->nent));
    403		if (IS_ERR(e))
    404			return PTR_ERR(e);
    405
    406		e2 = kvmalloc_array(cpuid->nent, sizeof(*e2), GFP_KERNEL_ACCOUNT);
    407		if (!e2) {
    408			r = -ENOMEM;
    409			goto out_free_cpuid;
    410		}
    411	}
    412	for (i = 0; i < cpuid->nent; i++) {
    413		e2[i].function = e[i].function;
    414		e2[i].eax = e[i].eax;
    415		e2[i].ebx = e[i].ebx;
    416		e2[i].ecx = e[i].ecx;
    417		e2[i].edx = e[i].edx;
    418		e2[i].index = 0;
    419		e2[i].flags = 0;
    420		e2[i].padding[0] = 0;
    421		e2[i].padding[1] = 0;
    422		e2[i].padding[2] = 0;
    423	}
    424
    425	r = kvm_set_cpuid(vcpu, e2, cpuid->nent);
    426	if (r)
    427		kvfree(e2);
    428
    429out_free_cpuid:
    430	kvfree(e);
    431
    432	return r;
    433}
    434
    435int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
    436			      struct kvm_cpuid2 *cpuid,
    437			      struct kvm_cpuid_entry2 __user *entries)
    438{
    439	struct kvm_cpuid_entry2 *e2 = NULL;
    440	int r;
    441
    442	if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
    443		return -E2BIG;
    444
    445	if (cpuid->nent) {
    446		e2 = vmemdup_user(entries, array_size(sizeof(*e2), cpuid->nent));
    447		if (IS_ERR(e2))
    448			return PTR_ERR(e2);
    449	}
    450
    451	r = kvm_set_cpuid(vcpu, e2, cpuid->nent);
    452	if (r)
    453		kvfree(e2);
    454
    455	return r;
    456}
    457
    458int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
    459			      struct kvm_cpuid2 *cpuid,
    460			      struct kvm_cpuid_entry2 __user *entries)
    461{
    462	int r;
    463
    464	r = -E2BIG;
    465	if (cpuid->nent < vcpu->arch.cpuid_nent)
    466		goto out;
    467	r = -EFAULT;
    468	if (copy_to_user(entries, vcpu->arch.cpuid_entries,
    469			 vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
    470		goto out;
    471	return 0;
    472
    473out:
    474	cpuid->nent = vcpu->arch.cpuid_nent;
    475	return r;
    476}
    477
    478/* Mask kvm_cpu_caps for @leaf with the raw CPUID capabilities of this CPU. */
    479static __always_inline void __kvm_cpu_cap_mask(unsigned int leaf)
    480{
    481	const struct cpuid_reg cpuid = x86_feature_cpuid(leaf * 32);
    482	struct kvm_cpuid_entry2 entry;
    483
    484	reverse_cpuid_check(leaf);
    485
    486	cpuid_count(cpuid.function, cpuid.index,
    487		    &entry.eax, &entry.ebx, &entry.ecx, &entry.edx);
    488
    489	kvm_cpu_caps[leaf] &= *__cpuid_entry_get_reg(&entry, cpuid.reg);
    490}
    491
    492static __always_inline
    493void kvm_cpu_cap_init_scattered(enum kvm_only_cpuid_leafs leaf, u32 mask)
    494{
    495	/* Use kvm_cpu_cap_mask for non-scattered leafs. */
    496	BUILD_BUG_ON(leaf < NCAPINTS);
    497
    498	kvm_cpu_caps[leaf] = mask;
    499
    500	__kvm_cpu_cap_mask(leaf);
    501}
    502
    503static __always_inline void kvm_cpu_cap_mask(enum cpuid_leafs leaf, u32 mask)
    504{
    505	/* Use kvm_cpu_cap_init_scattered for scattered leafs. */
    506	BUILD_BUG_ON(leaf >= NCAPINTS);
    507
    508	kvm_cpu_caps[leaf] &= mask;
    509
    510	__kvm_cpu_cap_mask(leaf);
    511}
    512
    513void kvm_set_cpu_caps(void)
    514{
    515#ifdef CONFIG_X86_64
    516	unsigned int f_gbpages = F(GBPAGES);
    517	unsigned int f_lm = F(LM);
    518	unsigned int f_xfd = F(XFD);
    519#else
    520	unsigned int f_gbpages = 0;
    521	unsigned int f_lm = 0;
    522	unsigned int f_xfd = 0;
    523#endif
    524	memset(kvm_cpu_caps, 0, sizeof(kvm_cpu_caps));
    525
    526	BUILD_BUG_ON(sizeof(kvm_cpu_caps) - (NKVMCAPINTS * sizeof(*kvm_cpu_caps)) >
    527		     sizeof(boot_cpu_data.x86_capability));
    528
    529	memcpy(&kvm_cpu_caps, &boot_cpu_data.x86_capability,
    530	       sizeof(kvm_cpu_caps) - (NKVMCAPINTS * sizeof(*kvm_cpu_caps)));
    531
    532	kvm_cpu_cap_mask(CPUID_1_ECX,
    533		/*
    534		 * NOTE: MONITOR (and MWAIT) are emulated as NOP, but *not*
    535		 * advertised to guests via CPUID!
    536		 */
    537		F(XMM3) | F(PCLMULQDQ) | 0 /* DTES64, MONITOR */ |
    538		0 /* DS-CPL, VMX, SMX, EST */ |
    539		0 /* TM2 */ | F(SSSE3) | 0 /* CNXT-ID */ | 0 /* Reserved */ |
    540		F(FMA) | F(CX16) | 0 /* xTPR Update */ | F(PDCM) |
    541		F(PCID) | 0 /* Reserved, DCA */ | F(XMM4_1) |
    542		F(XMM4_2) | F(X2APIC) | F(MOVBE) | F(POPCNT) |
    543		0 /* Reserved*/ | F(AES) | F(XSAVE) | 0 /* OSXSAVE */ | F(AVX) |
    544		F(F16C) | F(RDRAND)
    545	);
    546	/* KVM emulates x2apic in software irrespective of host support. */
    547	kvm_cpu_cap_set(X86_FEATURE_X2APIC);
    548
    549	kvm_cpu_cap_mask(CPUID_1_EDX,
    550		F(FPU) | F(VME) | F(DE) | F(PSE) |
    551		F(TSC) | F(MSR) | F(PAE) | F(MCE) |
    552		F(CX8) | F(APIC) | 0 /* Reserved */ | F(SEP) |
    553		F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
    554		F(PAT) | F(PSE36) | 0 /* PSN */ | F(CLFLUSH) |
    555		0 /* Reserved, DS, ACPI */ | F(MMX) |
    556		F(FXSR) | F(XMM) | F(XMM2) | F(SELFSNOOP) |
    557		0 /* HTT, TM, Reserved, PBE */
    558	);
    559
    560	kvm_cpu_cap_mask(CPUID_7_0_EBX,
    561		F(FSGSBASE) | F(SGX) | F(BMI1) | F(HLE) | F(AVX2) |
    562		F(FDP_EXCPTN_ONLY) | F(SMEP) | F(BMI2) | F(ERMS) | F(INVPCID) |
    563		F(RTM) | F(ZERO_FCS_FDS) | 0 /*MPX*/ | F(AVX512F) |
    564		F(AVX512DQ) | F(RDSEED) | F(ADX) | F(SMAP) | F(AVX512IFMA) |
    565		F(CLFLUSHOPT) | F(CLWB) | 0 /*INTEL_PT*/ | F(AVX512PF) |
    566		F(AVX512ER) | F(AVX512CD) | F(SHA_NI) | F(AVX512BW) |
    567		F(AVX512VL));
    568
    569	kvm_cpu_cap_mask(CPUID_7_ECX,
    570		F(AVX512VBMI) | F(LA57) | F(PKU) | 0 /*OSPKE*/ | F(RDPID) |
    571		F(AVX512_VPOPCNTDQ) | F(UMIP) | F(AVX512_VBMI2) | F(GFNI) |
    572		F(VAES) | F(VPCLMULQDQ) | F(AVX512_VNNI) | F(AVX512_BITALG) |
    573		F(CLDEMOTE) | F(MOVDIRI) | F(MOVDIR64B) | 0 /*WAITPKG*/ |
    574		F(SGX_LC) | F(BUS_LOCK_DETECT)
    575	);
    576	/* Set LA57 based on hardware capability. */
    577	if (cpuid_ecx(7) & F(LA57))
    578		kvm_cpu_cap_set(X86_FEATURE_LA57);
    579
    580	/*
    581	 * PKU not yet implemented for shadow paging and requires OSPKE
    582	 * to be set on the host. Clear it if that is not the case
    583	 */
    584	if (!tdp_enabled || !boot_cpu_has(X86_FEATURE_OSPKE))
    585		kvm_cpu_cap_clear(X86_FEATURE_PKU);
    586
    587	kvm_cpu_cap_mask(CPUID_7_EDX,
    588		F(AVX512_4VNNIW) | F(AVX512_4FMAPS) | F(SPEC_CTRL) |
    589		F(SPEC_CTRL_SSBD) | F(ARCH_CAPABILITIES) | F(INTEL_STIBP) |
    590		F(MD_CLEAR) | F(AVX512_VP2INTERSECT) | F(FSRM) |
    591		F(SERIALIZE) | F(TSXLDTRK) | F(AVX512_FP16) |
    592		F(AMX_TILE) | F(AMX_INT8) | F(AMX_BF16)
    593	);
    594
    595	/* TSC_ADJUST and ARCH_CAPABILITIES are emulated in software. */
    596	kvm_cpu_cap_set(X86_FEATURE_TSC_ADJUST);
    597	kvm_cpu_cap_set(X86_FEATURE_ARCH_CAPABILITIES);
    598
    599	if (boot_cpu_has(X86_FEATURE_IBPB) && boot_cpu_has(X86_FEATURE_IBRS))
    600		kvm_cpu_cap_set(X86_FEATURE_SPEC_CTRL);
    601	if (boot_cpu_has(X86_FEATURE_STIBP))
    602		kvm_cpu_cap_set(X86_FEATURE_INTEL_STIBP);
    603	if (boot_cpu_has(X86_FEATURE_AMD_SSBD))
    604		kvm_cpu_cap_set(X86_FEATURE_SPEC_CTRL_SSBD);
    605
    606	kvm_cpu_cap_mask(CPUID_7_1_EAX,
    607		F(AVX_VNNI) | F(AVX512_BF16)
    608	);
    609
    610	kvm_cpu_cap_mask(CPUID_D_1_EAX,
    611		F(XSAVEOPT) | F(XSAVEC) | F(XGETBV1) | F(XSAVES) | f_xfd
    612	);
    613
    614	kvm_cpu_cap_init_scattered(CPUID_12_EAX,
    615		SF(SGX1) | SF(SGX2)
    616	);
    617
    618	kvm_cpu_cap_mask(CPUID_8000_0001_ECX,
    619		F(LAHF_LM) | F(CMP_LEGACY) | 0 /*SVM*/ | 0 /* ExtApicSpace */ |
    620		F(CR8_LEGACY) | F(ABM) | F(SSE4A) | F(MISALIGNSSE) |
    621		F(3DNOWPREFETCH) | F(OSVW) | 0 /* IBS */ | F(XOP) |
    622		0 /* SKINIT, WDT, LWP */ | F(FMA4) | F(TBM) |
    623		F(TOPOEXT) | 0 /* PERFCTR_CORE */
    624	);
    625
    626	kvm_cpu_cap_mask(CPUID_8000_0001_EDX,
    627		F(FPU) | F(VME) | F(DE) | F(PSE) |
    628		F(TSC) | F(MSR) | F(PAE) | F(MCE) |
    629		F(CX8) | F(APIC) | 0 /* Reserved */ | F(SYSCALL) |
    630		F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
    631		F(PAT) | F(PSE36) | 0 /* Reserved */ |
    632		F(NX) | 0 /* Reserved */ | F(MMXEXT) | F(MMX) |
    633		F(FXSR) | F(FXSR_OPT) | f_gbpages | F(RDTSCP) |
    634		0 /* Reserved */ | f_lm | F(3DNOWEXT) | F(3DNOW)
    635	);
    636
    637	if (!tdp_enabled && IS_ENABLED(CONFIG_X86_64))
    638		kvm_cpu_cap_set(X86_FEATURE_GBPAGES);
    639
    640	kvm_cpu_cap_mask(CPUID_8000_0008_EBX,
    641		F(CLZERO) | F(XSAVEERPTR) |
    642		F(WBNOINVD) | F(AMD_IBPB) | F(AMD_IBRS) | F(AMD_SSBD) | F(VIRT_SSBD) |
    643		F(AMD_SSB_NO) | F(AMD_STIBP) | F(AMD_STIBP_ALWAYS_ON) |
    644		__feature_bit(KVM_X86_FEATURE_PSFD)
    645	);
    646
    647	/*
    648	 * AMD has separate bits for each SPEC_CTRL bit.
    649	 * arch/x86/kernel/cpu/bugs.c is kind enough to
    650	 * record that in cpufeatures so use them.
    651	 */
    652	if (boot_cpu_has(X86_FEATURE_IBPB))
    653		kvm_cpu_cap_set(X86_FEATURE_AMD_IBPB);
    654	if (boot_cpu_has(X86_FEATURE_IBRS))
    655		kvm_cpu_cap_set(X86_FEATURE_AMD_IBRS);
    656	if (boot_cpu_has(X86_FEATURE_STIBP))
    657		kvm_cpu_cap_set(X86_FEATURE_AMD_STIBP);
    658	if (boot_cpu_has(X86_FEATURE_SPEC_CTRL_SSBD))
    659		kvm_cpu_cap_set(X86_FEATURE_AMD_SSBD);
    660	if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
    661		kvm_cpu_cap_set(X86_FEATURE_AMD_SSB_NO);
    662	/*
    663	 * The preference is to use SPEC CTRL MSR instead of the
    664	 * VIRT_SPEC MSR.
    665	 */
    666	if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD) &&
    667	    !boot_cpu_has(X86_FEATURE_AMD_SSBD))
    668		kvm_cpu_cap_set(X86_FEATURE_VIRT_SSBD);
    669
    670	/*
    671	 * Hide all SVM features by default, SVM will set the cap bits for
    672	 * features it emulates and/or exposes for L1.
    673	 */
    674	kvm_cpu_cap_mask(CPUID_8000_000A_EDX, 0);
    675
    676	kvm_cpu_cap_mask(CPUID_8000_001F_EAX,
    677		0 /* SME */ | F(SEV) | 0 /* VM_PAGE_FLUSH */ | F(SEV_ES) |
    678		F(SME_COHERENT));
    679
    680	kvm_cpu_cap_mask(CPUID_C000_0001_EDX,
    681		F(XSTORE) | F(XSTORE_EN) | F(XCRYPT) | F(XCRYPT_EN) |
    682		F(ACE2) | F(ACE2_EN) | F(PHE) | F(PHE_EN) |
    683		F(PMM) | F(PMM_EN)
    684	);
    685
    686	/*
    687	 * Hide RDTSCP and RDPID if either feature is reported as supported but
    688	 * probing MSR_TSC_AUX failed.  This is purely a sanity check and
    689	 * should never happen, but the guest will likely crash if RDTSCP or
    690	 * RDPID is misreported, and KVM has botched MSR_TSC_AUX emulation in
    691	 * the past.  For example, the sanity check may fire if this instance of
    692	 * KVM is running as L1 on top of an older, broken KVM.
    693	 */
    694	if (WARN_ON((kvm_cpu_cap_has(X86_FEATURE_RDTSCP) ||
    695		     kvm_cpu_cap_has(X86_FEATURE_RDPID)) &&
    696		     !kvm_is_supported_user_return_msr(MSR_TSC_AUX))) {
    697		kvm_cpu_cap_clear(X86_FEATURE_RDTSCP);
    698		kvm_cpu_cap_clear(X86_FEATURE_RDPID);
    699	}
    700}
    701EXPORT_SYMBOL_GPL(kvm_set_cpu_caps);
    702
    703struct kvm_cpuid_array {
    704	struct kvm_cpuid_entry2 *entries;
    705	int maxnent;
    706	int nent;
    707};
    708
    709static struct kvm_cpuid_entry2 *do_host_cpuid(struct kvm_cpuid_array *array,
    710					      u32 function, u32 index)
    711{
    712	struct kvm_cpuid_entry2 *entry;
    713
    714	if (array->nent >= array->maxnent)
    715		return NULL;
    716
    717	entry = &array->entries[array->nent++];
    718
    719	memset(entry, 0, sizeof(*entry));
    720	entry->function = function;
    721	entry->index = index;
    722	switch (function & 0xC0000000) {
    723	case 0x40000000:
    724		/* Hypervisor leaves are always synthesized by __do_cpuid_func.  */
    725		return entry;
    726
    727	case 0x80000000:
    728		/*
    729		 * 0x80000021 is sometimes synthesized by __do_cpuid_func, which
    730		 * would result in out-of-bounds calls to do_host_cpuid.
    731		 */
    732		{
    733			static int max_cpuid_80000000;
    734			if (!READ_ONCE(max_cpuid_80000000))
    735				WRITE_ONCE(max_cpuid_80000000, cpuid_eax(0x80000000));
    736			if (function > READ_ONCE(max_cpuid_80000000))
    737				return entry;
    738		}
    739		break;
    740
    741	default:
    742		break;
    743	}
    744
    745	cpuid_count(entry->function, entry->index,
    746		    &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
    747
    748	if (cpuid_function_is_indexed(function))
    749		entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
    750
    751	return entry;
    752}
    753
    754static int __do_cpuid_func_emulated(struct kvm_cpuid_array *array, u32 func)
    755{
    756	struct kvm_cpuid_entry2 *entry;
    757
    758	if (array->nent >= array->maxnent)
    759		return -E2BIG;
    760
    761	entry = &array->entries[array->nent];
    762	entry->function = func;
    763	entry->index = 0;
    764	entry->flags = 0;
    765
    766	switch (func) {
    767	case 0:
    768		entry->eax = 7;
    769		++array->nent;
    770		break;
    771	case 1:
    772		entry->ecx = F(MOVBE);
    773		++array->nent;
    774		break;
    775	case 7:
    776		entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
    777		entry->eax = 0;
    778		if (kvm_cpu_cap_has(X86_FEATURE_RDTSCP))
    779			entry->ecx = F(RDPID);
    780		++array->nent;
    781		break;
    782	default:
    783		break;
    784	}
    785
    786	return 0;
    787}
    788
    789static inline int __do_cpuid_func(struct kvm_cpuid_array *array, u32 function)
    790{
    791	struct kvm_cpuid_entry2 *entry;
    792	int r, i, max_idx;
    793
    794	/* all calls to cpuid_count() should be made on the same cpu */
    795	get_cpu();
    796
    797	r = -E2BIG;
    798
    799	entry = do_host_cpuid(array, function, 0);
    800	if (!entry)
    801		goto out;
    802
    803	switch (function) {
    804	case 0:
    805		/* Limited to the highest leaf implemented in KVM. */
    806		entry->eax = min(entry->eax, 0x1fU);
    807		break;
    808	case 1:
    809		cpuid_entry_override(entry, CPUID_1_EDX);
    810		cpuid_entry_override(entry, CPUID_1_ECX);
    811		break;
    812	case 2:
    813		/*
    814		 * On ancient CPUs, function 2 entries are STATEFUL.  That is,
    815		 * CPUID(function=2, index=0) may return different results each
    816		 * time, with the least-significant byte in EAX enumerating the
    817		 * number of times software should do CPUID(2, 0).
    818		 *
    819		 * Modern CPUs, i.e. every CPU KVM has *ever* run on are less
    820		 * idiotic.  Intel's SDM states that EAX & 0xff "will always
    821		 * return 01H. Software should ignore this value and not
    822		 * interpret it as an informational descriptor", while AMD's
    823		 * APM states that CPUID(2) is reserved.
    824		 *
    825		 * WARN if a frankenstein CPU that supports virtualization and
    826		 * a stateful CPUID.0x2 is encountered.
    827		 */
    828		WARN_ON_ONCE((entry->eax & 0xff) > 1);
    829		break;
    830	/* functions 4 and 0x8000001d have additional index. */
    831	case 4:
    832	case 0x8000001d:
    833		/*
    834		 * Read entries until the cache type in the previous entry is
    835		 * zero, i.e. indicates an invalid entry.
    836		 */
    837		for (i = 1; entry->eax & 0x1f; ++i) {
    838			entry = do_host_cpuid(array, function, i);
    839			if (!entry)
    840				goto out;
    841		}
    842		break;
    843	case 6: /* Thermal management */
    844		entry->eax = 0x4; /* allow ARAT */
    845		entry->ebx = 0;
    846		entry->ecx = 0;
    847		entry->edx = 0;
    848		break;
    849	/* function 7 has additional index. */
    850	case 7:
    851		entry->eax = min(entry->eax, 1u);
    852		cpuid_entry_override(entry, CPUID_7_0_EBX);
    853		cpuid_entry_override(entry, CPUID_7_ECX);
    854		cpuid_entry_override(entry, CPUID_7_EDX);
    855
    856		/* KVM only supports 0x7.0 and 0x7.1, capped above via min(). */
    857		if (entry->eax == 1) {
    858			entry = do_host_cpuid(array, function, 1);
    859			if (!entry)
    860				goto out;
    861
    862			cpuid_entry_override(entry, CPUID_7_1_EAX);
    863			entry->ebx = 0;
    864			entry->ecx = 0;
    865			entry->edx = 0;
    866		}
    867		break;
    868	case 9:
    869		break;
    870	case 0xa: { /* Architectural Performance Monitoring */
    871		struct x86_pmu_capability cap;
    872		union cpuid10_eax eax;
    873		union cpuid10_edx edx;
    874
    875		if (!static_cpu_has(X86_FEATURE_ARCH_PERFMON)) {
    876			entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
    877			break;
    878		}
    879
    880		perf_get_x86_pmu_capability(&cap);
    881
    882		/*
    883		 * The guest architecture pmu is only supported if the architecture
    884		 * pmu exists on the host and the module parameters allow it.
    885		 */
    886		if (!cap.version || !enable_pmu)
    887			memset(&cap, 0, sizeof(cap));
    888
    889		eax.split.version_id = min(cap.version, 2);
    890		eax.split.num_counters = cap.num_counters_gp;
    891		eax.split.bit_width = cap.bit_width_gp;
    892		eax.split.mask_length = cap.events_mask_len;
    893
    894		edx.split.num_counters_fixed =
    895			min(cap.num_counters_fixed, KVM_PMC_MAX_FIXED);
    896		edx.split.bit_width_fixed = cap.bit_width_fixed;
    897		if (cap.version)
    898			edx.split.anythread_deprecated = 1;
    899		edx.split.reserved1 = 0;
    900		edx.split.reserved2 = 0;
    901
    902		entry->eax = eax.full;
    903		entry->ebx = cap.events_mask;
    904		entry->ecx = 0;
    905		entry->edx = edx.full;
    906		break;
    907	}
    908	/*
    909	 * Per Intel's SDM, the 0x1f is a superset of 0xb,
    910	 * thus they can be handled by common code.
    911	 */
    912	case 0x1f:
    913	case 0xb:
    914		/*
    915		 * Populate entries until the level type (ECX[15:8]) of the
    916		 * previous entry is zero.  Note, CPUID EAX.{0x1f,0xb}.0 is
    917		 * the starting entry, filled by the primary do_host_cpuid().
    918		 */
    919		for (i = 1; entry->ecx & 0xff00; ++i) {
    920			entry = do_host_cpuid(array, function, i);
    921			if (!entry)
    922				goto out;
    923		}
    924		break;
    925	case 0xd: {
    926		u64 permitted_xcr0 = supported_xcr0 & xstate_get_guest_group_perm();
    927		u64 permitted_xss = supported_xss;
    928
    929		entry->eax &= permitted_xcr0;
    930		entry->ebx = xstate_required_size(permitted_xcr0, false);
    931		entry->ecx = entry->ebx;
    932		entry->edx &= permitted_xcr0 >> 32;
    933		if (!permitted_xcr0)
    934			break;
    935
    936		entry = do_host_cpuid(array, function, 1);
    937		if (!entry)
    938			goto out;
    939
    940		cpuid_entry_override(entry, CPUID_D_1_EAX);
    941		if (entry->eax & (F(XSAVES)|F(XSAVEC)))
    942			entry->ebx = xstate_required_size(permitted_xcr0 | permitted_xss,
    943							  true);
    944		else {
    945			WARN_ON_ONCE(permitted_xss != 0);
    946			entry->ebx = 0;
    947		}
    948		entry->ecx &= permitted_xss;
    949		entry->edx &= permitted_xss >> 32;
    950
    951		for (i = 2; i < 64; ++i) {
    952			bool s_state;
    953			if (permitted_xcr0 & BIT_ULL(i))
    954				s_state = false;
    955			else if (permitted_xss & BIT_ULL(i))
    956				s_state = true;
    957			else
    958				continue;
    959
    960			entry = do_host_cpuid(array, function, i);
    961			if (!entry)
    962				goto out;
    963
    964			/*
    965			 * The supported check above should have filtered out
    966			 * invalid sub-leafs.  Only valid sub-leafs should
    967			 * reach this point, and they should have a non-zero
    968			 * save state size.  Furthermore, check whether the
    969			 * processor agrees with permitted_xcr0/permitted_xss
    970			 * on whether this is an XCR0- or IA32_XSS-managed area.
    971			 */
    972			if (WARN_ON_ONCE(!entry->eax || (entry->ecx & 0x1) != s_state)) {
    973				--array->nent;
    974				continue;
    975			}
    976
    977			if (!kvm_cpu_cap_has(X86_FEATURE_XFD))
    978				entry->ecx &= ~BIT_ULL(2);
    979			entry->edx = 0;
    980		}
    981		break;
    982	}
    983	case 0x12:
    984		/* Intel SGX */
    985		if (!kvm_cpu_cap_has(X86_FEATURE_SGX)) {
    986			entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
    987			break;
    988		}
    989
    990		/*
    991		 * Index 0: Sub-features, MISCSELECT (a.k.a extended features)
    992		 * and max enclave sizes.   The SGX sub-features and MISCSELECT
    993		 * are restricted by kernel and KVM capabilities (like most
    994		 * feature flags), while enclave size is unrestricted.
    995		 */
    996		cpuid_entry_override(entry, CPUID_12_EAX);
    997		entry->ebx &= SGX_MISC_EXINFO;
    998
    999		entry = do_host_cpuid(array, function, 1);
   1000		if (!entry)
   1001			goto out;
   1002
   1003		/*
   1004		 * Index 1: SECS.ATTRIBUTES.  ATTRIBUTES are restricted a la
   1005		 * feature flags.  Advertise all supported flags, including
   1006		 * privileged attributes that require explicit opt-in from
   1007		 * userspace.  ATTRIBUTES.XFRM is not adjusted as userspace is
   1008		 * expected to derive it from supported XCR0.
   1009		 */
   1010		entry->eax &= SGX_ATTR_DEBUG | SGX_ATTR_MODE64BIT |
   1011			      SGX_ATTR_PROVISIONKEY | SGX_ATTR_EINITTOKENKEY |
   1012			      SGX_ATTR_KSS;
   1013		entry->ebx &= 0;
   1014		break;
   1015	/* Intel PT */
   1016	case 0x14:
   1017		if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT)) {
   1018			entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
   1019			break;
   1020		}
   1021
   1022		for (i = 1, max_idx = entry->eax; i <= max_idx; ++i) {
   1023			if (!do_host_cpuid(array, function, i))
   1024				goto out;
   1025		}
   1026		break;
   1027	/* Intel AMX TILE */
   1028	case 0x1d:
   1029		if (!kvm_cpu_cap_has(X86_FEATURE_AMX_TILE)) {
   1030			entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
   1031			break;
   1032		}
   1033
   1034		for (i = 1, max_idx = entry->eax; i <= max_idx; ++i) {
   1035			if (!do_host_cpuid(array, function, i))
   1036				goto out;
   1037		}
   1038		break;
   1039	case 0x1e: /* TMUL information */
   1040		if (!kvm_cpu_cap_has(X86_FEATURE_AMX_TILE)) {
   1041			entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
   1042			break;
   1043		}
   1044		break;
   1045	case KVM_CPUID_SIGNATURE: {
   1046		const u32 *sigptr = (const u32 *)KVM_SIGNATURE;
   1047		entry->eax = KVM_CPUID_FEATURES;
   1048		entry->ebx = sigptr[0];
   1049		entry->ecx = sigptr[1];
   1050		entry->edx = sigptr[2];
   1051		break;
   1052	}
   1053	case KVM_CPUID_FEATURES:
   1054		entry->eax = (1 << KVM_FEATURE_CLOCKSOURCE) |
   1055			     (1 << KVM_FEATURE_NOP_IO_DELAY) |
   1056			     (1 << KVM_FEATURE_CLOCKSOURCE2) |
   1057			     (1 << KVM_FEATURE_ASYNC_PF) |
   1058			     (1 << KVM_FEATURE_PV_EOI) |
   1059			     (1 << KVM_FEATURE_CLOCKSOURCE_STABLE_BIT) |
   1060			     (1 << KVM_FEATURE_PV_UNHALT) |
   1061			     (1 << KVM_FEATURE_PV_TLB_FLUSH) |
   1062			     (1 << KVM_FEATURE_ASYNC_PF_VMEXIT) |
   1063			     (1 << KVM_FEATURE_PV_SEND_IPI) |
   1064			     (1 << KVM_FEATURE_POLL_CONTROL) |
   1065			     (1 << KVM_FEATURE_PV_SCHED_YIELD) |
   1066			     (1 << KVM_FEATURE_ASYNC_PF_INT);
   1067
   1068		if (sched_info_on())
   1069			entry->eax |= (1 << KVM_FEATURE_STEAL_TIME);
   1070
   1071		entry->ebx = 0;
   1072		entry->ecx = 0;
   1073		entry->edx = 0;
   1074		break;
   1075	case 0x80000000:
   1076		entry->eax = min(entry->eax, 0x80000021);
   1077		/*
   1078		 * Serializing LFENCE is reported in a multitude of ways, and
   1079		 * NullSegClearsBase is not reported in CPUID on Zen2; help
   1080		 * userspace by providing the CPUID leaf ourselves.
   1081		 *
   1082		 * However, only do it if the host has CPUID leaf 0x8000001d.
   1083		 * QEMU thinks that it can query the host blindly for that
   1084		 * CPUID leaf if KVM reports that it supports 0x8000001d or
   1085		 * above.  The processor merrily returns values from the
   1086		 * highest Intel leaf which QEMU tries to use as the guest's
   1087		 * 0x8000001d.  Even worse, this can result in an infinite
   1088		 * loop if said highest leaf has no subleaves indexed by ECX.
   1089		 */
   1090		if (entry->eax >= 0x8000001d &&
   1091		    (static_cpu_has(X86_FEATURE_LFENCE_RDTSC)
   1092		     || !static_cpu_has_bug(X86_BUG_NULL_SEG)))
   1093			entry->eax = max(entry->eax, 0x80000021);
   1094		break;
   1095	case 0x80000001:
   1096		cpuid_entry_override(entry, CPUID_8000_0001_EDX);
   1097		cpuid_entry_override(entry, CPUID_8000_0001_ECX);
   1098		break;
   1099	case 0x80000006:
   1100		/* L2 cache and TLB: pass through host info. */
   1101		break;
   1102	case 0x80000007: /* Advanced power management */
   1103		/* invariant TSC is CPUID.80000007H:EDX[8] */
   1104		entry->edx &= (1 << 8);
   1105		/* mask against host */
   1106		entry->edx &= boot_cpu_data.x86_power;
   1107		entry->eax = entry->ebx = entry->ecx = 0;
   1108		break;
   1109	case 0x80000008: {
   1110		unsigned g_phys_as = (entry->eax >> 16) & 0xff;
   1111		unsigned virt_as = max((entry->eax >> 8) & 0xff, 48U);
   1112		unsigned phys_as = entry->eax & 0xff;
   1113
   1114		/*
   1115		 * If TDP (NPT) is disabled use the adjusted host MAXPHYADDR as
   1116		 * the guest operates in the same PA space as the host, i.e.
   1117		 * reductions in MAXPHYADDR for memory encryption affect shadow
   1118		 * paging, too.
   1119		 *
   1120		 * If TDP is enabled but an explicit guest MAXPHYADDR is not
   1121		 * provided, use the raw bare metal MAXPHYADDR as reductions to
   1122		 * the HPAs do not affect GPAs.
   1123		 */
   1124		if (!tdp_enabled)
   1125			g_phys_as = boot_cpu_data.x86_phys_bits;
   1126		else if (!g_phys_as)
   1127			g_phys_as = phys_as;
   1128
   1129		entry->eax = g_phys_as | (virt_as << 8);
   1130		entry->edx = 0;
   1131		cpuid_entry_override(entry, CPUID_8000_0008_EBX);
   1132		break;
   1133	}
   1134	case 0x8000000A:
   1135		if (!kvm_cpu_cap_has(X86_FEATURE_SVM)) {
   1136			entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
   1137			break;
   1138		}
   1139		entry->eax = 1; /* SVM revision 1 */
   1140		entry->ebx = 8; /* Lets support 8 ASIDs in case we add proper
   1141				   ASID emulation to nested SVM */
   1142		entry->ecx = 0; /* Reserved */
   1143		cpuid_entry_override(entry, CPUID_8000_000A_EDX);
   1144		break;
   1145	case 0x80000019:
   1146		entry->ecx = entry->edx = 0;
   1147		break;
   1148	case 0x8000001a:
   1149	case 0x8000001e:
   1150		break;
   1151	case 0x8000001F:
   1152		if (!kvm_cpu_cap_has(X86_FEATURE_SEV)) {
   1153			entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
   1154		} else {
   1155			cpuid_entry_override(entry, CPUID_8000_001F_EAX);
   1156
   1157			/*
   1158			 * Enumerate '0' for "PA bits reduction", the adjusted
   1159			 * MAXPHYADDR is enumerated directly (see 0x80000008).
   1160			 */
   1161			entry->ebx &= ~GENMASK(11, 6);
   1162		}
   1163		break;
   1164	case 0x80000020:
   1165		entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
   1166		break;
   1167	case 0x80000021:
   1168		entry->ebx = entry->ecx = entry->edx = 0;
   1169		/*
   1170		 * Pass down these bits:
   1171		 *    EAX      0      NNDBP, Processor ignores nested data breakpoints
   1172		 *    EAX      2      LAS, LFENCE always serializing
   1173		 *    EAX      6      NSCB, Null selector clear base
   1174		 *
   1175		 * Other defined bits are for MSRs that KVM does not expose:
   1176		 *   EAX      3      SPCL, SMM page configuration lock
   1177		 *   EAX      13     PCMSR, Prefetch control MSR
   1178		 */
   1179		entry->eax &= BIT(0) | BIT(2) | BIT(6);
   1180		if (static_cpu_has(X86_FEATURE_LFENCE_RDTSC))
   1181			entry->eax |= BIT(2);
   1182		if (!static_cpu_has_bug(X86_BUG_NULL_SEG))
   1183			entry->eax |= BIT(6);
   1184		break;
   1185	/*Add support for Centaur's CPUID instruction*/
   1186	case 0xC0000000:
   1187		/*Just support up to 0xC0000004 now*/
   1188		entry->eax = min(entry->eax, 0xC0000004);
   1189		break;
   1190	case 0xC0000001:
   1191		cpuid_entry_override(entry, CPUID_C000_0001_EDX);
   1192		break;
   1193	case 3: /* Processor serial number */
   1194	case 5: /* MONITOR/MWAIT */
   1195	case 0xC0000002:
   1196	case 0xC0000003:
   1197	case 0xC0000004:
   1198	default:
   1199		entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
   1200		break;
   1201	}
   1202
   1203	r = 0;
   1204
   1205out:
   1206	put_cpu();
   1207
   1208	return r;
   1209}
   1210
   1211static int do_cpuid_func(struct kvm_cpuid_array *array, u32 func,
   1212			 unsigned int type)
   1213{
   1214	if (type == KVM_GET_EMULATED_CPUID)
   1215		return __do_cpuid_func_emulated(array, func);
   1216
   1217	return __do_cpuid_func(array, func);
   1218}
   1219
   1220#define CENTAUR_CPUID_SIGNATURE 0xC0000000
   1221
   1222static int get_cpuid_func(struct kvm_cpuid_array *array, u32 func,
   1223			  unsigned int type)
   1224{
   1225	u32 limit;
   1226	int r;
   1227
   1228	if (func == CENTAUR_CPUID_SIGNATURE &&
   1229	    boot_cpu_data.x86_vendor != X86_VENDOR_CENTAUR)
   1230		return 0;
   1231
   1232	r = do_cpuid_func(array, func, type);
   1233	if (r)
   1234		return r;
   1235
   1236	limit = array->entries[array->nent - 1].eax;
   1237	for (func = func + 1; func <= limit; ++func) {
   1238		r = do_cpuid_func(array, func, type);
   1239		if (r)
   1240			break;
   1241	}
   1242
   1243	return r;
   1244}
   1245
   1246static bool sanity_check_entries(struct kvm_cpuid_entry2 __user *entries,
   1247				 __u32 num_entries, unsigned int ioctl_type)
   1248{
   1249	int i;
   1250	__u32 pad[3];
   1251
   1252	if (ioctl_type != KVM_GET_EMULATED_CPUID)
   1253		return false;
   1254
   1255	/*
   1256	 * We want to make sure that ->padding is being passed clean from
   1257	 * userspace in case we want to use it for something in the future.
   1258	 *
   1259	 * Sadly, this wasn't enforced for KVM_GET_SUPPORTED_CPUID and so we
   1260	 * have to give ourselves satisfied only with the emulated side. /me
   1261	 * sheds a tear.
   1262	 */
   1263	for (i = 0; i < num_entries; i++) {
   1264		if (copy_from_user(pad, entries[i].padding, sizeof(pad)))
   1265			return true;
   1266
   1267		if (pad[0] || pad[1] || pad[2])
   1268			return true;
   1269	}
   1270	return false;
   1271}
   1272
   1273int kvm_dev_ioctl_get_cpuid(struct kvm_cpuid2 *cpuid,
   1274			    struct kvm_cpuid_entry2 __user *entries,
   1275			    unsigned int type)
   1276{
   1277	static const u32 funcs[] = {
   1278		0, 0x80000000, CENTAUR_CPUID_SIGNATURE, KVM_CPUID_SIGNATURE,
   1279	};
   1280
   1281	struct kvm_cpuid_array array = {
   1282		.nent = 0,
   1283	};
   1284	int r, i;
   1285
   1286	if (cpuid->nent < 1)
   1287		return -E2BIG;
   1288	if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
   1289		cpuid->nent = KVM_MAX_CPUID_ENTRIES;
   1290
   1291	if (sanity_check_entries(entries, cpuid->nent, type))
   1292		return -EINVAL;
   1293
   1294	array.entries = kvcalloc(sizeof(struct kvm_cpuid_entry2), cpuid->nent, GFP_KERNEL);
   1295	if (!array.entries)
   1296		return -ENOMEM;
   1297
   1298	array.maxnent = cpuid->nent;
   1299
   1300	for (i = 0; i < ARRAY_SIZE(funcs); i++) {
   1301		r = get_cpuid_func(&array, funcs[i], type);
   1302		if (r)
   1303			goto out_free;
   1304	}
   1305	cpuid->nent = array.nent;
   1306
   1307	if (copy_to_user(entries, array.entries,
   1308			 array.nent * sizeof(struct kvm_cpuid_entry2)))
   1309		r = -EFAULT;
   1310
   1311out_free:
   1312	kvfree(array.entries);
   1313	return r;
   1314}
   1315
   1316struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
   1317					      u32 function, u32 index)
   1318{
   1319	return cpuid_entry2_find(vcpu->arch.cpuid_entries, vcpu->arch.cpuid_nent,
   1320				 function, index);
   1321}
   1322EXPORT_SYMBOL_GPL(kvm_find_cpuid_entry);
   1323
   1324/*
   1325 * Intel CPUID semantics treats any query for an out-of-range leaf as if the
   1326 * highest basic leaf (i.e. CPUID.0H:EAX) were requested.  AMD CPUID semantics
   1327 * returns all zeroes for any undefined leaf, whether or not the leaf is in
   1328 * range.  Centaur/VIA follows Intel semantics.
   1329 *
   1330 * A leaf is considered out-of-range if its function is higher than the maximum
   1331 * supported leaf of its associated class or if its associated class does not
   1332 * exist.
   1333 *
   1334 * There are three primary classes to be considered, with their respective
   1335 * ranges described as "<base> - <top>[,<base2> - <top2>] inclusive.  A primary
   1336 * class exists if a guest CPUID entry for its <base> leaf exists.  For a given
   1337 * class, CPUID.<base>.EAX contains the max supported leaf for the class.
   1338 *
   1339 *  - Basic:      0x00000000 - 0x3fffffff, 0x50000000 - 0x7fffffff
   1340 *  - Hypervisor: 0x40000000 - 0x4fffffff
   1341 *  - Extended:   0x80000000 - 0xbfffffff
   1342 *  - Centaur:    0xc0000000 - 0xcfffffff
   1343 *
   1344 * The Hypervisor class is further subdivided into sub-classes that each act as
   1345 * their own independent class associated with a 0x100 byte range.  E.g. if Qemu
   1346 * is advertising support for both HyperV and KVM, the resulting Hypervisor
   1347 * CPUID sub-classes are:
   1348 *
   1349 *  - HyperV:     0x40000000 - 0x400000ff
   1350 *  - KVM:        0x40000100 - 0x400001ff
   1351 */
   1352static struct kvm_cpuid_entry2 *
   1353get_out_of_range_cpuid_entry(struct kvm_vcpu *vcpu, u32 *fn_ptr, u32 index)
   1354{
   1355	struct kvm_cpuid_entry2 *basic, *class;
   1356	u32 function = *fn_ptr;
   1357
   1358	basic = kvm_find_cpuid_entry(vcpu, 0, 0);
   1359	if (!basic)
   1360		return NULL;
   1361
   1362	if (is_guest_vendor_amd(basic->ebx, basic->ecx, basic->edx) ||
   1363	    is_guest_vendor_hygon(basic->ebx, basic->ecx, basic->edx))
   1364		return NULL;
   1365
   1366	if (function >= 0x40000000 && function <= 0x4fffffff)
   1367		class = kvm_find_cpuid_entry(vcpu, function & 0xffffff00, 0);
   1368	else if (function >= 0xc0000000)
   1369		class = kvm_find_cpuid_entry(vcpu, 0xc0000000, 0);
   1370	else
   1371		class = kvm_find_cpuid_entry(vcpu, function & 0x80000000, 0);
   1372
   1373	if (class && function <= class->eax)
   1374		return NULL;
   1375
   1376	/*
   1377	 * Leaf specific adjustments are also applied when redirecting to the
   1378	 * max basic entry, e.g. if the max basic leaf is 0xb but there is no
   1379	 * entry for CPUID.0xb.index (see below), then the output value for EDX
   1380	 * needs to be pulled from CPUID.0xb.1.
   1381	 */
   1382	*fn_ptr = basic->eax;
   1383
   1384	/*
   1385	 * The class does not exist or the requested function is out of range;
   1386	 * the effective CPUID entry is the max basic leaf.  Note, the index of
   1387	 * the original requested leaf is observed!
   1388	 */
   1389	return kvm_find_cpuid_entry(vcpu, basic->eax, index);
   1390}
   1391
   1392bool kvm_cpuid(struct kvm_vcpu *vcpu, u32 *eax, u32 *ebx,
   1393	       u32 *ecx, u32 *edx, bool exact_only)
   1394{
   1395	u32 orig_function = *eax, function = *eax, index = *ecx;
   1396	struct kvm_cpuid_entry2 *entry;
   1397	bool exact, used_max_basic = false;
   1398
   1399	entry = kvm_find_cpuid_entry(vcpu, function, index);
   1400	exact = !!entry;
   1401
   1402	if (!entry && !exact_only) {
   1403		entry = get_out_of_range_cpuid_entry(vcpu, &function, index);
   1404		used_max_basic = !!entry;
   1405	}
   1406
   1407	if (entry) {
   1408		*eax = entry->eax;
   1409		*ebx = entry->ebx;
   1410		*ecx = entry->ecx;
   1411		*edx = entry->edx;
   1412		if (function == 7 && index == 0) {
   1413			u64 data;
   1414		        if (!__kvm_get_msr(vcpu, MSR_IA32_TSX_CTRL, &data, true) &&
   1415			    (data & TSX_CTRL_CPUID_CLEAR))
   1416				*ebx &= ~(F(RTM) | F(HLE));
   1417		}
   1418	} else {
   1419		*eax = *ebx = *ecx = *edx = 0;
   1420		/*
   1421		 * When leaf 0BH or 1FH is defined, CL is pass-through
   1422		 * and EDX is always the x2APIC ID, even for undefined
   1423		 * subleaves. Index 1 will exist iff the leaf is
   1424		 * implemented, so we pass through CL iff leaf 1
   1425		 * exists. EDX can be copied from any existing index.
   1426		 */
   1427		if (function == 0xb || function == 0x1f) {
   1428			entry = kvm_find_cpuid_entry(vcpu, function, 1);
   1429			if (entry) {
   1430				*ecx = index & 0xff;
   1431				*edx = entry->edx;
   1432			}
   1433		}
   1434	}
   1435	trace_kvm_cpuid(orig_function, index, *eax, *ebx, *ecx, *edx, exact,
   1436			used_max_basic);
   1437	return exact;
   1438}
   1439EXPORT_SYMBOL_GPL(kvm_cpuid);
   1440
   1441int kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
   1442{
   1443	u32 eax, ebx, ecx, edx;
   1444
   1445	if (cpuid_fault_enabled(vcpu) && !kvm_require_cpl(vcpu, 0))
   1446		return 1;
   1447
   1448	eax = kvm_rax_read(vcpu);
   1449	ecx = kvm_rcx_read(vcpu);
   1450	kvm_cpuid(vcpu, &eax, &ebx, &ecx, &edx, false);
   1451	kvm_rax_write(vcpu, eax);
   1452	kvm_rbx_write(vcpu, ebx);
   1453	kvm_rcx_write(vcpu, ecx);
   1454	kvm_rdx_write(vcpu, edx);
   1455	return kvm_skip_emulated_instruction(vcpu);
   1456}
   1457EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);