cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

hyperv.c (68594B)


      1// SPDX-License-Identifier: GPL-2.0-only
      2/*
      3 * KVM Microsoft Hyper-V emulation
      4 *
      5 * derived from arch/x86/kvm/x86.c
      6 *
      7 * Copyright (C) 2006 Qumranet, Inc.
      8 * Copyright (C) 2008 Qumranet, Inc.
      9 * Copyright IBM Corporation, 2008
     10 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
     11 * Copyright (C) 2015 Andrey Smetanin <asmetanin@virtuozzo.com>
     12 *
     13 * Authors:
     14 *   Avi Kivity   <avi@qumranet.com>
     15 *   Yaniv Kamay  <yaniv@qumranet.com>
     16 *   Amit Shah    <amit.shah@qumranet.com>
     17 *   Ben-Ami Yassour <benami@il.ibm.com>
     18 *   Andrey Smetanin <asmetanin@virtuozzo.com>
     19 */
     20
     21#include "x86.h"
     22#include "lapic.h"
     23#include "ioapic.h"
     24#include "cpuid.h"
     25#include "hyperv.h"
     26#include "xen.h"
     27
     28#include <linux/cpu.h>
     29#include <linux/kvm_host.h>
     30#include <linux/highmem.h>
     31#include <linux/sched/cputime.h>
     32#include <linux/eventfd.h>
     33
     34#include <asm/apicdef.h>
     35#include <trace/events/kvm.h>
     36
     37#include "trace.h"
     38#include "irq.h"
     39#include "fpu.h"
     40
     41/* "Hv#1" signature */
     42#define HYPERV_CPUID_SIGNATURE_EAX 0x31237648
     43
     44#define KVM_HV_MAX_SPARSE_VCPU_SET_BITS DIV_ROUND_UP(KVM_MAX_VCPUS, 64)
     45
     46static void stimer_mark_pending(struct kvm_vcpu_hv_stimer *stimer,
     47				bool vcpu_kick);
     48
     49static inline u64 synic_read_sint(struct kvm_vcpu_hv_synic *synic, int sint)
     50{
     51	return atomic64_read(&synic->sint[sint]);
     52}
     53
     54static inline int synic_get_sint_vector(u64 sint_value)
     55{
     56	if (sint_value & HV_SYNIC_SINT_MASKED)
     57		return -1;
     58	return sint_value & HV_SYNIC_SINT_VECTOR_MASK;
     59}
     60
     61static bool synic_has_vector_connected(struct kvm_vcpu_hv_synic *synic,
     62				      int vector)
     63{
     64	int i;
     65
     66	for (i = 0; i < ARRAY_SIZE(synic->sint); i++) {
     67		if (synic_get_sint_vector(synic_read_sint(synic, i)) == vector)
     68			return true;
     69	}
     70	return false;
     71}
     72
     73static bool synic_has_vector_auto_eoi(struct kvm_vcpu_hv_synic *synic,
     74				     int vector)
     75{
     76	int i;
     77	u64 sint_value;
     78
     79	for (i = 0; i < ARRAY_SIZE(synic->sint); i++) {
     80		sint_value = synic_read_sint(synic, i);
     81		if (synic_get_sint_vector(sint_value) == vector &&
     82		    sint_value & HV_SYNIC_SINT_AUTO_EOI)
     83			return true;
     84	}
     85	return false;
     86}
     87
     88static void synic_update_vector(struct kvm_vcpu_hv_synic *synic,
     89				int vector)
     90{
     91	struct kvm_vcpu *vcpu = hv_synic_to_vcpu(synic);
     92	struct kvm_hv *hv = to_kvm_hv(vcpu->kvm);
     93	bool auto_eoi_old, auto_eoi_new;
     94
     95	if (vector < HV_SYNIC_FIRST_VALID_VECTOR)
     96		return;
     97
     98	if (synic_has_vector_connected(synic, vector))
     99		__set_bit(vector, synic->vec_bitmap);
    100	else
    101		__clear_bit(vector, synic->vec_bitmap);
    102
    103	auto_eoi_old = !bitmap_empty(synic->auto_eoi_bitmap, 256);
    104
    105	if (synic_has_vector_auto_eoi(synic, vector))
    106		__set_bit(vector, synic->auto_eoi_bitmap);
    107	else
    108		__clear_bit(vector, synic->auto_eoi_bitmap);
    109
    110	auto_eoi_new = !bitmap_empty(synic->auto_eoi_bitmap, 256);
    111
    112	if (auto_eoi_old == auto_eoi_new)
    113		return;
    114
    115	if (!enable_apicv)
    116		return;
    117
    118	down_write(&vcpu->kvm->arch.apicv_update_lock);
    119
    120	if (auto_eoi_new)
    121		hv->synic_auto_eoi_used++;
    122	else
    123		hv->synic_auto_eoi_used--;
    124
    125	/*
    126	 * Inhibit APICv if any vCPU is using SynIC's AutoEOI, which relies on
    127	 * the hypervisor to manually inject IRQs.
    128	 */
    129	__kvm_set_or_clear_apicv_inhibit(vcpu->kvm,
    130					 APICV_INHIBIT_REASON_HYPERV,
    131					 !!hv->synic_auto_eoi_used);
    132
    133	up_write(&vcpu->kvm->arch.apicv_update_lock);
    134}
    135
    136static int synic_set_sint(struct kvm_vcpu_hv_synic *synic, int sint,
    137			  u64 data, bool host)
    138{
    139	int vector, old_vector;
    140	bool masked;
    141
    142	vector = data & HV_SYNIC_SINT_VECTOR_MASK;
    143	masked = data & HV_SYNIC_SINT_MASKED;
    144
    145	/*
    146	 * Valid vectors are 16-255, however, nested Hyper-V attempts to write
    147	 * default '0x10000' value on boot and this should not #GP. We need to
    148	 * allow zero-initing the register from host as well.
    149	 */
    150	if (vector < HV_SYNIC_FIRST_VALID_VECTOR && !host && !masked)
    151		return 1;
    152	/*
    153	 * Guest may configure multiple SINTs to use the same vector, so
    154	 * we maintain a bitmap of vectors handled by synic, and a
    155	 * bitmap of vectors with auto-eoi behavior.  The bitmaps are
    156	 * updated here, and atomically queried on fast paths.
    157	 */
    158	old_vector = synic_read_sint(synic, sint) & HV_SYNIC_SINT_VECTOR_MASK;
    159
    160	atomic64_set(&synic->sint[sint], data);
    161
    162	synic_update_vector(synic, old_vector);
    163
    164	synic_update_vector(synic, vector);
    165
    166	/* Load SynIC vectors into EOI exit bitmap */
    167	kvm_make_request(KVM_REQ_SCAN_IOAPIC, hv_synic_to_vcpu(synic));
    168	return 0;
    169}
    170
    171static struct kvm_vcpu *get_vcpu_by_vpidx(struct kvm *kvm, u32 vpidx)
    172{
    173	struct kvm_vcpu *vcpu = NULL;
    174	unsigned long i;
    175
    176	if (vpidx >= KVM_MAX_VCPUS)
    177		return NULL;
    178
    179	vcpu = kvm_get_vcpu(kvm, vpidx);
    180	if (vcpu && kvm_hv_get_vpindex(vcpu) == vpidx)
    181		return vcpu;
    182	kvm_for_each_vcpu(i, vcpu, kvm)
    183		if (kvm_hv_get_vpindex(vcpu) == vpidx)
    184			return vcpu;
    185	return NULL;
    186}
    187
    188static struct kvm_vcpu_hv_synic *synic_get(struct kvm *kvm, u32 vpidx)
    189{
    190	struct kvm_vcpu *vcpu;
    191	struct kvm_vcpu_hv_synic *synic;
    192
    193	vcpu = get_vcpu_by_vpidx(kvm, vpidx);
    194	if (!vcpu || !to_hv_vcpu(vcpu))
    195		return NULL;
    196	synic = to_hv_synic(vcpu);
    197	return (synic->active) ? synic : NULL;
    198}
    199
    200static void kvm_hv_notify_acked_sint(struct kvm_vcpu *vcpu, u32 sint)
    201{
    202	struct kvm *kvm = vcpu->kvm;
    203	struct kvm_vcpu_hv_synic *synic = to_hv_synic(vcpu);
    204	struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
    205	struct kvm_vcpu_hv_stimer *stimer;
    206	int gsi, idx;
    207
    208	trace_kvm_hv_notify_acked_sint(vcpu->vcpu_id, sint);
    209
    210	/* Try to deliver pending Hyper-V SynIC timers messages */
    211	for (idx = 0; idx < ARRAY_SIZE(hv_vcpu->stimer); idx++) {
    212		stimer = &hv_vcpu->stimer[idx];
    213		if (stimer->msg_pending && stimer->config.enable &&
    214		    !stimer->config.direct_mode &&
    215		    stimer->config.sintx == sint)
    216			stimer_mark_pending(stimer, false);
    217	}
    218
    219	idx = srcu_read_lock(&kvm->irq_srcu);
    220	gsi = atomic_read(&synic->sint_to_gsi[sint]);
    221	if (gsi != -1)
    222		kvm_notify_acked_gsi(kvm, gsi);
    223	srcu_read_unlock(&kvm->irq_srcu, idx);
    224}
    225
    226static void synic_exit(struct kvm_vcpu_hv_synic *synic, u32 msr)
    227{
    228	struct kvm_vcpu *vcpu = hv_synic_to_vcpu(synic);
    229	struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
    230
    231	hv_vcpu->exit.type = KVM_EXIT_HYPERV_SYNIC;
    232	hv_vcpu->exit.u.synic.msr = msr;
    233	hv_vcpu->exit.u.synic.control = synic->control;
    234	hv_vcpu->exit.u.synic.evt_page = synic->evt_page;
    235	hv_vcpu->exit.u.synic.msg_page = synic->msg_page;
    236
    237	kvm_make_request(KVM_REQ_HV_EXIT, vcpu);
    238}
    239
    240static int synic_set_msr(struct kvm_vcpu_hv_synic *synic,
    241			 u32 msr, u64 data, bool host)
    242{
    243	struct kvm_vcpu *vcpu = hv_synic_to_vcpu(synic);
    244	int ret;
    245
    246	if (!synic->active && (!host || data))
    247		return 1;
    248
    249	trace_kvm_hv_synic_set_msr(vcpu->vcpu_id, msr, data, host);
    250
    251	ret = 0;
    252	switch (msr) {
    253	case HV_X64_MSR_SCONTROL:
    254		synic->control = data;
    255		if (!host)
    256			synic_exit(synic, msr);
    257		break;
    258	case HV_X64_MSR_SVERSION:
    259		if (!host) {
    260			ret = 1;
    261			break;
    262		}
    263		synic->version = data;
    264		break;
    265	case HV_X64_MSR_SIEFP:
    266		if ((data & HV_SYNIC_SIEFP_ENABLE) && !host &&
    267		    !synic->dont_zero_synic_pages)
    268			if (kvm_clear_guest(vcpu->kvm,
    269					    data & PAGE_MASK, PAGE_SIZE)) {
    270				ret = 1;
    271				break;
    272			}
    273		synic->evt_page = data;
    274		if (!host)
    275			synic_exit(synic, msr);
    276		break;
    277	case HV_X64_MSR_SIMP:
    278		if ((data & HV_SYNIC_SIMP_ENABLE) && !host &&
    279		    !synic->dont_zero_synic_pages)
    280			if (kvm_clear_guest(vcpu->kvm,
    281					    data & PAGE_MASK, PAGE_SIZE)) {
    282				ret = 1;
    283				break;
    284			}
    285		synic->msg_page = data;
    286		if (!host)
    287			synic_exit(synic, msr);
    288		break;
    289	case HV_X64_MSR_EOM: {
    290		int i;
    291
    292		if (!synic->active)
    293			break;
    294
    295		for (i = 0; i < ARRAY_SIZE(synic->sint); i++)
    296			kvm_hv_notify_acked_sint(vcpu, i);
    297		break;
    298	}
    299	case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15:
    300		ret = synic_set_sint(synic, msr - HV_X64_MSR_SINT0, data, host);
    301		break;
    302	default:
    303		ret = 1;
    304		break;
    305	}
    306	return ret;
    307}
    308
    309static bool kvm_hv_is_syndbg_enabled(struct kvm_vcpu *vcpu)
    310{
    311	struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
    312
    313	return hv_vcpu->cpuid_cache.syndbg_cap_eax &
    314		HV_X64_SYNDBG_CAP_ALLOW_KERNEL_DEBUGGING;
    315}
    316
    317static int kvm_hv_syndbg_complete_userspace(struct kvm_vcpu *vcpu)
    318{
    319	struct kvm_hv *hv = to_kvm_hv(vcpu->kvm);
    320
    321	if (vcpu->run->hyperv.u.syndbg.msr == HV_X64_MSR_SYNDBG_CONTROL)
    322		hv->hv_syndbg.control.status =
    323			vcpu->run->hyperv.u.syndbg.status;
    324	return 1;
    325}
    326
    327static void syndbg_exit(struct kvm_vcpu *vcpu, u32 msr)
    328{
    329	struct kvm_hv_syndbg *syndbg = to_hv_syndbg(vcpu);
    330	struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
    331
    332	hv_vcpu->exit.type = KVM_EXIT_HYPERV_SYNDBG;
    333	hv_vcpu->exit.u.syndbg.msr = msr;
    334	hv_vcpu->exit.u.syndbg.control = syndbg->control.control;
    335	hv_vcpu->exit.u.syndbg.send_page = syndbg->control.send_page;
    336	hv_vcpu->exit.u.syndbg.recv_page = syndbg->control.recv_page;
    337	hv_vcpu->exit.u.syndbg.pending_page = syndbg->control.pending_page;
    338	vcpu->arch.complete_userspace_io =
    339			kvm_hv_syndbg_complete_userspace;
    340
    341	kvm_make_request(KVM_REQ_HV_EXIT, vcpu);
    342}
    343
    344static int syndbg_set_msr(struct kvm_vcpu *vcpu, u32 msr, u64 data, bool host)
    345{
    346	struct kvm_hv_syndbg *syndbg = to_hv_syndbg(vcpu);
    347
    348	if (!kvm_hv_is_syndbg_enabled(vcpu) && !host)
    349		return 1;
    350
    351	trace_kvm_hv_syndbg_set_msr(vcpu->vcpu_id,
    352				    to_hv_vcpu(vcpu)->vp_index, msr, data);
    353	switch (msr) {
    354	case HV_X64_MSR_SYNDBG_CONTROL:
    355		syndbg->control.control = data;
    356		if (!host)
    357			syndbg_exit(vcpu, msr);
    358		break;
    359	case HV_X64_MSR_SYNDBG_STATUS:
    360		syndbg->control.status = data;
    361		break;
    362	case HV_X64_MSR_SYNDBG_SEND_BUFFER:
    363		syndbg->control.send_page = data;
    364		break;
    365	case HV_X64_MSR_SYNDBG_RECV_BUFFER:
    366		syndbg->control.recv_page = data;
    367		break;
    368	case HV_X64_MSR_SYNDBG_PENDING_BUFFER:
    369		syndbg->control.pending_page = data;
    370		if (!host)
    371			syndbg_exit(vcpu, msr);
    372		break;
    373	case HV_X64_MSR_SYNDBG_OPTIONS:
    374		syndbg->options = data;
    375		break;
    376	default:
    377		break;
    378	}
    379
    380	return 0;
    381}
    382
    383static int syndbg_get_msr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host)
    384{
    385	struct kvm_hv_syndbg *syndbg = to_hv_syndbg(vcpu);
    386
    387	if (!kvm_hv_is_syndbg_enabled(vcpu) && !host)
    388		return 1;
    389
    390	switch (msr) {
    391	case HV_X64_MSR_SYNDBG_CONTROL:
    392		*pdata = syndbg->control.control;
    393		break;
    394	case HV_X64_MSR_SYNDBG_STATUS:
    395		*pdata = syndbg->control.status;
    396		break;
    397	case HV_X64_MSR_SYNDBG_SEND_BUFFER:
    398		*pdata = syndbg->control.send_page;
    399		break;
    400	case HV_X64_MSR_SYNDBG_RECV_BUFFER:
    401		*pdata = syndbg->control.recv_page;
    402		break;
    403	case HV_X64_MSR_SYNDBG_PENDING_BUFFER:
    404		*pdata = syndbg->control.pending_page;
    405		break;
    406	case HV_X64_MSR_SYNDBG_OPTIONS:
    407		*pdata = syndbg->options;
    408		break;
    409	default:
    410		break;
    411	}
    412
    413	trace_kvm_hv_syndbg_get_msr(vcpu->vcpu_id, kvm_hv_get_vpindex(vcpu), msr, *pdata);
    414
    415	return 0;
    416}
    417
    418static int synic_get_msr(struct kvm_vcpu_hv_synic *synic, u32 msr, u64 *pdata,
    419			 bool host)
    420{
    421	int ret;
    422
    423	if (!synic->active && !host)
    424		return 1;
    425
    426	ret = 0;
    427	switch (msr) {
    428	case HV_X64_MSR_SCONTROL:
    429		*pdata = synic->control;
    430		break;
    431	case HV_X64_MSR_SVERSION:
    432		*pdata = synic->version;
    433		break;
    434	case HV_X64_MSR_SIEFP:
    435		*pdata = synic->evt_page;
    436		break;
    437	case HV_X64_MSR_SIMP:
    438		*pdata = synic->msg_page;
    439		break;
    440	case HV_X64_MSR_EOM:
    441		*pdata = 0;
    442		break;
    443	case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15:
    444		*pdata = atomic64_read(&synic->sint[msr - HV_X64_MSR_SINT0]);
    445		break;
    446	default:
    447		ret = 1;
    448		break;
    449	}
    450	return ret;
    451}
    452
    453static int synic_set_irq(struct kvm_vcpu_hv_synic *synic, u32 sint)
    454{
    455	struct kvm_vcpu *vcpu = hv_synic_to_vcpu(synic);
    456	struct kvm_lapic_irq irq;
    457	int ret, vector;
    458
    459	if (KVM_BUG_ON(!lapic_in_kernel(vcpu), vcpu->kvm))
    460		return -EINVAL;
    461
    462	if (sint >= ARRAY_SIZE(synic->sint))
    463		return -EINVAL;
    464
    465	vector = synic_get_sint_vector(synic_read_sint(synic, sint));
    466	if (vector < 0)
    467		return -ENOENT;
    468
    469	memset(&irq, 0, sizeof(irq));
    470	irq.shorthand = APIC_DEST_SELF;
    471	irq.dest_mode = APIC_DEST_PHYSICAL;
    472	irq.delivery_mode = APIC_DM_FIXED;
    473	irq.vector = vector;
    474	irq.level = 1;
    475
    476	ret = kvm_irq_delivery_to_apic(vcpu->kvm, vcpu->arch.apic, &irq, NULL);
    477	trace_kvm_hv_synic_set_irq(vcpu->vcpu_id, sint, irq.vector, ret);
    478	return ret;
    479}
    480
    481int kvm_hv_synic_set_irq(struct kvm *kvm, u32 vpidx, u32 sint)
    482{
    483	struct kvm_vcpu_hv_synic *synic;
    484
    485	synic = synic_get(kvm, vpidx);
    486	if (!synic)
    487		return -EINVAL;
    488
    489	return synic_set_irq(synic, sint);
    490}
    491
    492void kvm_hv_synic_send_eoi(struct kvm_vcpu *vcpu, int vector)
    493{
    494	struct kvm_vcpu_hv_synic *synic = to_hv_synic(vcpu);
    495	int i;
    496
    497	trace_kvm_hv_synic_send_eoi(vcpu->vcpu_id, vector);
    498
    499	for (i = 0; i < ARRAY_SIZE(synic->sint); i++)
    500		if (synic_get_sint_vector(synic_read_sint(synic, i)) == vector)
    501			kvm_hv_notify_acked_sint(vcpu, i);
    502}
    503
    504static int kvm_hv_set_sint_gsi(struct kvm *kvm, u32 vpidx, u32 sint, int gsi)
    505{
    506	struct kvm_vcpu_hv_synic *synic;
    507
    508	synic = synic_get(kvm, vpidx);
    509	if (!synic)
    510		return -EINVAL;
    511
    512	if (sint >= ARRAY_SIZE(synic->sint_to_gsi))
    513		return -EINVAL;
    514
    515	atomic_set(&synic->sint_to_gsi[sint], gsi);
    516	return 0;
    517}
    518
    519void kvm_hv_irq_routing_update(struct kvm *kvm)
    520{
    521	struct kvm_irq_routing_table *irq_rt;
    522	struct kvm_kernel_irq_routing_entry *e;
    523	u32 gsi;
    524
    525	irq_rt = srcu_dereference_check(kvm->irq_routing, &kvm->irq_srcu,
    526					lockdep_is_held(&kvm->irq_lock));
    527
    528	for (gsi = 0; gsi < irq_rt->nr_rt_entries; gsi++) {
    529		hlist_for_each_entry(e, &irq_rt->map[gsi], link) {
    530			if (e->type == KVM_IRQ_ROUTING_HV_SINT)
    531				kvm_hv_set_sint_gsi(kvm, e->hv_sint.vcpu,
    532						    e->hv_sint.sint, gsi);
    533		}
    534	}
    535}
    536
    537static void synic_init(struct kvm_vcpu_hv_synic *synic)
    538{
    539	int i;
    540
    541	memset(synic, 0, sizeof(*synic));
    542	synic->version = HV_SYNIC_VERSION_1;
    543	for (i = 0; i < ARRAY_SIZE(synic->sint); i++) {
    544		atomic64_set(&synic->sint[i], HV_SYNIC_SINT_MASKED);
    545		atomic_set(&synic->sint_to_gsi[i], -1);
    546	}
    547}
    548
    549static u64 get_time_ref_counter(struct kvm *kvm)
    550{
    551	struct kvm_hv *hv = to_kvm_hv(kvm);
    552	struct kvm_vcpu *vcpu;
    553	u64 tsc;
    554
    555	/*
    556	 * Fall back to get_kvmclock_ns() when TSC page hasn't been set up,
    557	 * is broken, disabled or being updated.
    558	 */
    559	if (hv->hv_tsc_page_status != HV_TSC_PAGE_SET)
    560		return div_u64(get_kvmclock_ns(kvm), 100);
    561
    562	vcpu = kvm_get_vcpu(kvm, 0);
    563	tsc = kvm_read_l1_tsc(vcpu, rdtsc());
    564	return mul_u64_u64_shr(tsc, hv->tsc_ref.tsc_scale, 64)
    565		+ hv->tsc_ref.tsc_offset;
    566}
    567
    568static void stimer_mark_pending(struct kvm_vcpu_hv_stimer *stimer,
    569				bool vcpu_kick)
    570{
    571	struct kvm_vcpu *vcpu = hv_stimer_to_vcpu(stimer);
    572
    573	set_bit(stimer->index,
    574		to_hv_vcpu(vcpu)->stimer_pending_bitmap);
    575	kvm_make_request(KVM_REQ_HV_STIMER, vcpu);
    576	if (vcpu_kick)
    577		kvm_vcpu_kick(vcpu);
    578}
    579
    580static void stimer_cleanup(struct kvm_vcpu_hv_stimer *stimer)
    581{
    582	struct kvm_vcpu *vcpu = hv_stimer_to_vcpu(stimer);
    583
    584	trace_kvm_hv_stimer_cleanup(hv_stimer_to_vcpu(stimer)->vcpu_id,
    585				    stimer->index);
    586
    587	hrtimer_cancel(&stimer->timer);
    588	clear_bit(stimer->index,
    589		  to_hv_vcpu(vcpu)->stimer_pending_bitmap);
    590	stimer->msg_pending = false;
    591	stimer->exp_time = 0;
    592}
    593
    594static enum hrtimer_restart stimer_timer_callback(struct hrtimer *timer)
    595{
    596	struct kvm_vcpu_hv_stimer *stimer;
    597
    598	stimer = container_of(timer, struct kvm_vcpu_hv_stimer, timer);
    599	trace_kvm_hv_stimer_callback(hv_stimer_to_vcpu(stimer)->vcpu_id,
    600				     stimer->index);
    601	stimer_mark_pending(stimer, true);
    602
    603	return HRTIMER_NORESTART;
    604}
    605
    606/*
    607 * stimer_start() assumptions:
    608 * a) stimer->count is not equal to 0
    609 * b) stimer->config has HV_STIMER_ENABLE flag
    610 */
    611static int stimer_start(struct kvm_vcpu_hv_stimer *stimer)
    612{
    613	u64 time_now;
    614	ktime_t ktime_now;
    615
    616	time_now = get_time_ref_counter(hv_stimer_to_vcpu(stimer)->kvm);
    617	ktime_now = ktime_get();
    618
    619	if (stimer->config.periodic) {
    620		if (stimer->exp_time) {
    621			if (time_now >= stimer->exp_time) {
    622				u64 remainder;
    623
    624				div64_u64_rem(time_now - stimer->exp_time,
    625					      stimer->count, &remainder);
    626				stimer->exp_time =
    627					time_now + (stimer->count - remainder);
    628			}
    629		} else
    630			stimer->exp_time = time_now + stimer->count;
    631
    632		trace_kvm_hv_stimer_start_periodic(
    633					hv_stimer_to_vcpu(stimer)->vcpu_id,
    634					stimer->index,
    635					time_now, stimer->exp_time);
    636
    637		hrtimer_start(&stimer->timer,
    638			      ktime_add_ns(ktime_now,
    639					   100 * (stimer->exp_time - time_now)),
    640			      HRTIMER_MODE_ABS);
    641		return 0;
    642	}
    643	stimer->exp_time = stimer->count;
    644	if (time_now >= stimer->count) {
    645		/*
    646		 * Expire timer according to Hypervisor Top-Level Functional
    647		 * specification v4(15.3.1):
    648		 * "If a one shot is enabled and the specified count is in
    649		 * the past, it will expire immediately."
    650		 */
    651		stimer_mark_pending(stimer, false);
    652		return 0;
    653	}
    654
    655	trace_kvm_hv_stimer_start_one_shot(hv_stimer_to_vcpu(stimer)->vcpu_id,
    656					   stimer->index,
    657					   time_now, stimer->count);
    658
    659	hrtimer_start(&stimer->timer,
    660		      ktime_add_ns(ktime_now, 100 * (stimer->count - time_now)),
    661		      HRTIMER_MODE_ABS);
    662	return 0;
    663}
    664
    665static int stimer_set_config(struct kvm_vcpu_hv_stimer *stimer, u64 config,
    666			     bool host)
    667{
    668	union hv_stimer_config new_config = {.as_uint64 = config},
    669		old_config = {.as_uint64 = stimer->config.as_uint64};
    670	struct kvm_vcpu *vcpu = hv_stimer_to_vcpu(stimer);
    671	struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
    672	struct kvm_vcpu_hv_synic *synic = to_hv_synic(vcpu);
    673
    674	if (!synic->active && (!host || config))
    675		return 1;
    676
    677	if (unlikely(!host && hv_vcpu->enforce_cpuid && new_config.direct_mode &&
    678		     !(hv_vcpu->cpuid_cache.features_edx &
    679		       HV_STIMER_DIRECT_MODE_AVAILABLE)))
    680		return 1;
    681
    682	trace_kvm_hv_stimer_set_config(hv_stimer_to_vcpu(stimer)->vcpu_id,
    683				       stimer->index, config, host);
    684
    685	stimer_cleanup(stimer);
    686	if (old_config.enable &&
    687	    !new_config.direct_mode && new_config.sintx == 0)
    688		new_config.enable = 0;
    689	stimer->config.as_uint64 = new_config.as_uint64;
    690
    691	if (stimer->config.enable)
    692		stimer_mark_pending(stimer, false);
    693
    694	return 0;
    695}
    696
    697static int stimer_set_count(struct kvm_vcpu_hv_stimer *stimer, u64 count,
    698			    bool host)
    699{
    700	struct kvm_vcpu *vcpu = hv_stimer_to_vcpu(stimer);
    701	struct kvm_vcpu_hv_synic *synic = to_hv_synic(vcpu);
    702
    703	if (!synic->active && (!host || count))
    704		return 1;
    705
    706	trace_kvm_hv_stimer_set_count(hv_stimer_to_vcpu(stimer)->vcpu_id,
    707				      stimer->index, count, host);
    708
    709	stimer_cleanup(stimer);
    710	stimer->count = count;
    711	if (stimer->count == 0)
    712		stimer->config.enable = 0;
    713	else if (stimer->config.auto_enable)
    714		stimer->config.enable = 1;
    715
    716	if (stimer->config.enable)
    717		stimer_mark_pending(stimer, false);
    718
    719	return 0;
    720}
    721
    722static int stimer_get_config(struct kvm_vcpu_hv_stimer *stimer, u64 *pconfig)
    723{
    724	*pconfig = stimer->config.as_uint64;
    725	return 0;
    726}
    727
    728static int stimer_get_count(struct kvm_vcpu_hv_stimer *stimer, u64 *pcount)
    729{
    730	*pcount = stimer->count;
    731	return 0;
    732}
    733
    734static int synic_deliver_msg(struct kvm_vcpu_hv_synic *synic, u32 sint,
    735			     struct hv_message *src_msg, bool no_retry)
    736{
    737	struct kvm_vcpu *vcpu = hv_synic_to_vcpu(synic);
    738	int msg_off = offsetof(struct hv_message_page, sint_message[sint]);
    739	gfn_t msg_page_gfn;
    740	struct hv_message_header hv_hdr;
    741	int r;
    742
    743	if (!(synic->msg_page & HV_SYNIC_SIMP_ENABLE))
    744		return -ENOENT;
    745
    746	msg_page_gfn = synic->msg_page >> PAGE_SHIFT;
    747
    748	/*
    749	 * Strictly following the spec-mandated ordering would assume setting
    750	 * .msg_pending before checking .message_type.  However, this function
    751	 * is only called in vcpu context so the entire update is atomic from
    752	 * guest POV and thus the exact order here doesn't matter.
    753	 */
    754	r = kvm_vcpu_read_guest_page(vcpu, msg_page_gfn, &hv_hdr.message_type,
    755				     msg_off + offsetof(struct hv_message,
    756							header.message_type),
    757				     sizeof(hv_hdr.message_type));
    758	if (r < 0)
    759		return r;
    760
    761	if (hv_hdr.message_type != HVMSG_NONE) {
    762		if (no_retry)
    763			return 0;
    764
    765		hv_hdr.message_flags.msg_pending = 1;
    766		r = kvm_vcpu_write_guest_page(vcpu, msg_page_gfn,
    767					      &hv_hdr.message_flags,
    768					      msg_off +
    769					      offsetof(struct hv_message,
    770						       header.message_flags),
    771					      sizeof(hv_hdr.message_flags));
    772		if (r < 0)
    773			return r;
    774		return -EAGAIN;
    775	}
    776
    777	r = kvm_vcpu_write_guest_page(vcpu, msg_page_gfn, src_msg, msg_off,
    778				      sizeof(src_msg->header) +
    779				      src_msg->header.payload_size);
    780	if (r < 0)
    781		return r;
    782
    783	r = synic_set_irq(synic, sint);
    784	if (r < 0)
    785		return r;
    786	if (r == 0)
    787		return -EFAULT;
    788	return 0;
    789}
    790
    791static int stimer_send_msg(struct kvm_vcpu_hv_stimer *stimer)
    792{
    793	struct kvm_vcpu *vcpu = hv_stimer_to_vcpu(stimer);
    794	struct hv_message *msg = &stimer->msg;
    795	struct hv_timer_message_payload *payload =
    796			(struct hv_timer_message_payload *)&msg->u.payload;
    797
    798	/*
    799	 * To avoid piling up periodic ticks, don't retry message
    800	 * delivery for them (within "lazy" lost ticks policy).
    801	 */
    802	bool no_retry = stimer->config.periodic;
    803
    804	payload->expiration_time = stimer->exp_time;
    805	payload->delivery_time = get_time_ref_counter(vcpu->kvm);
    806	return synic_deliver_msg(to_hv_synic(vcpu),
    807				 stimer->config.sintx, msg,
    808				 no_retry);
    809}
    810
    811static int stimer_notify_direct(struct kvm_vcpu_hv_stimer *stimer)
    812{
    813	struct kvm_vcpu *vcpu = hv_stimer_to_vcpu(stimer);
    814	struct kvm_lapic_irq irq = {
    815		.delivery_mode = APIC_DM_FIXED,
    816		.vector = stimer->config.apic_vector
    817	};
    818
    819	if (lapic_in_kernel(vcpu))
    820		return !kvm_apic_set_irq(vcpu, &irq, NULL);
    821	return 0;
    822}
    823
    824static void stimer_expiration(struct kvm_vcpu_hv_stimer *stimer)
    825{
    826	int r, direct = stimer->config.direct_mode;
    827
    828	stimer->msg_pending = true;
    829	if (!direct)
    830		r = stimer_send_msg(stimer);
    831	else
    832		r = stimer_notify_direct(stimer);
    833	trace_kvm_hv_stimer_expiration(hv_stimer_to_vcpu(stimer)->vcpu_id,
    834				       stimer->index, direct, r);
    835	if (!r) {
    836		stimer->msg_pending = false;
    837		if (!(stimer->config.periodic))
    838			stimer->config.enable = 0;
    839	}
    840}
    841
    842void kvm_hv_process_stimers(struct kvm_vcpu *vcpu)
    843{
    844	struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
    845	struct kvm_vcpu_hv_stimer *stimer;
    846	u64 time_now, exp_time;
    847	int i;
    848
    849	if (!hv_vcpu)
    850		return;
    851
    852	for (i = 0; i < ARRAY_SIZE(hv_vcpu->stimer); i++)
    853		if (test_and_clear_bit(i, hv_vcpu->stimer_pending_bitmap)) {
    854			stimer = &hv_vcpu->stimer[i];
    855			if (stimer->config.enable) {
    856				exp_time = stimer->exp_time;
    857
    858				if (exp_time) {
    859					time_now =
    860						get_time_ref_counter(vcpu->kvm);
    861					if (time_now >= exp_time)
    862						stimer_expiration(stimer);
    863				}
    864
    865				if ((stimer->config.enable) &&
    866				    stimer->count) {
    867					if (!stimer->msg_pending)
    868						stimer_start(stimer);
    869				} else
    870					stimer_cleanup(stimer);
    871			}
    872		}
    873}
    874
    875void kvm_hv_vcpu_uninit(struct kvm_vcpu *vcpu)
    876{
    877	struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
    878	int i;
    879
    880	if (!hv_vcpu)
    881		return;
    882
    883	for (i = 0; i < ARRAY_SIZE(hv_vcpu->stimer); i++)
    884		stimer_cleanup(&hv_vcpu->stimer[i]);
    885
    886	kfree(hv_vcpu);
    887	vcpu->arch.hyperv = NULL;
    888}
    889
    890bool kvm_hv_assist_page_enabled(struct kvm_vcpu *vcpu)
    891{
    892	struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
    893
    894	if (!hv_vcpu)
    895		return false;
    896
    897	if (!(hv_vcpu->hv_vapic & HV_X64_MSR_VP_ASSIST_PAGE_ENABLE))
    898		return false;
    899	return vcpu->arch.pv_eoi.msr_val & KVM_MSR_ENABLED;
    900}
    901EXPORT_SYMBOL_GPL(kvm_hv_assist_page_enabled);
    902
    903bool kvm_hv_get_assist_page(struct kvm_vcpu *vcpu,
    904			    struct hv_vp_assist_page *assist_page)
    905{
    906	if (!kvm_hv_assist_page_enabled(vcpu))
    907		return false;
    908	return !kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.pv_eoi.data,
    909				      assist_page, sizeof(*assist_page));
    910}
    911EXPORT_SYMBOL_GPL(kvm_hv_get_assist_page);
    912
    913static void stimer_prepare_msg(struct kvm_vcpu_hv_stimer *stimer)
    914{
    915	struct hv_message *msg = &stimer->msg;
    916	struct hv_timer_message_payload *payload =
    917			(struct hv_timer_message_payload *)&msg->u.payload;
    918
    919	memset(&msg->header, 0, sizeof(msg->header));
    920	msg->header.message_type = HVMSG_TIMER_EXPIRED;
    921	msg->header.payload_size = sizeof(*payload);
    922
    923	payload->timer_index = stimer->index;
    924	payload->expiration_time = 0;
    925	payload->delivery_time = 0;
    926}
    927
    928static void stimer_init(struct kvm_vcpu_hv_stimer *stimer, int timer_index)
    929{
    930	memset(stimer, 0, sizeof(*stimer));
    931	stimer->index = timer_index;
    932	hrtimer_init(&stimer->timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
    933	stimer->timer.function = stimer_timer_callback;
    934	stimer_prepare_msg(stimer);
    935}
    936
    937static int kvm_hv_vcpu_init(struct kvm_vcpu *vcpu)
    938{
    939	struct kvm_vcpu_hv *hv_vcpu;
    940	int i;
    941
    942	hv_vcpu = kzalloc(sizeof(struct kvm_vcpu_hv), GFP_KERNEL_ACCOUNT);
    943	if (!hv_vcpu)
    944		return -ENOMEM;
    945
    946	vcpu->arch.hyperv = hv_vcpu;
    947	hv_vcpu->vcpu = vcpu;
    948
    949	synic_init(&hv_vcpu->synic);
    950
    951	bitmap_zero(hv_vcpu->stimer_pending_bitmap, HV_SYNIC_STIMER_COUNT);
    952	for (i = 0; i < ARRAY_SIZE(hv_vcpu->stimer); i++)
    953		stimer_init(&hv_vcpu->stimer[i], i);
    954
    955	hv_vcpu->vp_index = vcpu->vcpu_idx;
    956
    957	return 0;
    958}
    959
    960int kvm_hv_activate_synic(struct kvm_vcpu *vcpu, bool dont_zero_synic_pages)
    961{
    962	struct kvm_vcpu_hv_synic *synic;
    963	int r;
    964
    965	if (!to_hv_vcpu(vcpu)) {
    966		r = kvm_hv_vcpu_init(vcpu);
    967		if (r)
    968			return r;
    969	}
    970
    971	synic = to_hv_synic(vcpu);
    972
    973	synic->active = true;
    974	synic->dont_zero_synic_pages = dont_zero_synic_pages;
    975	synic->control = HV_SYNIC_CONTROL_ENABLE;
    976	return 0;
    977}
    978
    979static bool kvm_hv_msr_partition_wide(u32 msr)
    980{
    981	bool r = false;
    982
    983	switch (msr) {
    984	case HV_X64_MSR_GUEST_OS_ID:
    985	case HV_X64_MSR_HYPERCALL:
    986	case HV_X64_MSR_REFERENCE_TSC:
    987	case HV_X64_MSR_TIME_REF_COUNT:
    988	case HV_X64_MSR_CRASH_CTL:
    989	case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
    990	case HV_X64_MSR_RESET:
    991	case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
    992	case HV_X64_MSR_TSC_EMULATION_CONTROL:
    993	case HV_X64_MSR_TSC_EMULATION_STATUS:
    994	case HV_X64_MSR_SYNDBG_OPTIONS:
    995	case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
    996		r = true;
    997		break;
    998	}
    999
   1000	return r;
   1001}
   1002
   1003static int kvm_hv_msr_get_crash_data(struct kvm *kvm, u32 index, u64 *pdata)
   1004{
   1005	struct kvm_hv *hv = to_kvm_hv(kvm);
   1006	size_t size = ARRAY_SIZE(hv->hv_crash_param);
   1007
   1008	if (WARN_ON_ONCE(index >= size))
   1009		return -EINVAL;
   1010
   1011	*pdata = hv->hv_crash_param[array_index_nospec(index, size)];
   1012	return 0;
   1013}
   1014
   1015static int kvm_hv_msr_get_crash_ctl(struct kvm *kvm, u64 *pdata)
   1016{
   1017	struct kvm_hv *hv = to_kvm_hv(kvm);
   1018
   1019	*pdata = hv->hv_crash_ctl;
   1020	return 0;
   1021}
   1022
   1023static int kvm_hv_msr_set_crash_ctl(struct kvm *kvm, u64 data)
   1024{
   1025	struct kvm_hv *hv = to_kvm_hv(kvm);
   1026
   1027	hv->hv_crash_ctl = data & HV_CRASH_CTL_CRASH_NOTIFY;
   1028
   1029	return 0;
   1030}
   1031
   1032static int kvm_hv_msr_set_crash_data(struct kvm *kvm, u32 index, u64 data)
   1033{
   1034	struct kvm_hv *hv = to_kvm_hv(kvm);
   1035	size_t size = ARRAY_SIZE(hv->hv_crash_param);
   1036
   1037	if (WARN_ON_ONCE(index >= size))
   1038		return -EINVAL;
   1039
   1040	hv->hv_crash_param[array_index_nospec(index, size)] = data;
   1041	return 0;
   1042}
   1043
   1044/*
   1045 * The kvmclock and Hyper-V TSC page use similar formulas, and converting
   1046 * between them is possible:
   1047 *
   1048 * kvmclock formula:
   1049 *    nsec = (ticks - tsc_timestamp) * tsc_to_system_mul * 2^(tsc_shift-32)
   1050 *           + system_time
   1051 *
   1052 * Hyper-V formula:
   1053 *    nsec/100 = ticks * scale / 2^64 + offset
   1054 *
   1055 * When tsc_timestamp = system_time = 0, offset is zero in the Hyper-V formula.
   1056 * By dividing the kvmclock formula by 100 and equating what's left we get:
   1057 *    ticks * scale / 2^64 = ticks * tsc_to_system_mul * 2^(tsc_shift-32) / 100
   1058 *            scale / 2^64 =         tsc_to_system_mul * 2^(tsc_shift-32) / 100
   1059 *            scale        =         tsc_to_system_mul * 2^(32+tsc_shift) / 100
   1060 *
   1061 * Now expand the kvmclock formula and divide by 100:
   1062 *    nsec = ticks * tsc_to_system_mul * 2^(tsc_shift-32)
   1063 *           - tsc_timestamp * tsc_to_system_mul * 2^(tsc_shift-32)
   1064 *           + system_time
   1065 *    nsec/100 = ticks * tsc_to_system_mul * 2^(tsc_shift-32) / 100
   1066 *               - tsc_timestamp * tsc_to_system_mul * 2^(tsc_shift-32) / 100
   1067 *               + system_time / 100
   1068 *
   1069 * Replace tsc_to_system_mul * 2^(tsc_shift-32) / 100 by scale / 2^64:
   1070 *    nsec/100 = ticks * scale / 2^64
   1071 *               - tsc_timestamp * scale / 2^64
   1072 *               + system_time / 100
   1073 *
   1074 * Equate with the Hyper-V formula so that ticks * scale / 2^64 cancels out:
   1075 *    offset = system_time / 100 - tsc_timestamp * scale / 2^64
   1076 *
   1077 * These two equivalencies are implemented in this function.
   1078 */
   1079static bool compute_tsc_page_parameters(struct pvclock_vcpu_time_info *hv_clock,
   1080					struct ms_hyperv_tsc_page *tsc_ref)
   1081{
   1082	u64 max_mul;
   1083
   1084	if (!(hv_clock->flags & PVCLOCK_TSC_STABLE_BIT))
   1085		return false;
   1086
   1087	/*
   1088	 * check if scale would overflow, if so we use the time ref counter
   1089	 *    tsc_to_system_mul * 2^(tsc_shift+32) / 100 >= 2^64
   1090	 *    tsc_to_system_mul / 100 >= 2^(32-tsc_shift)
   1091	 *    tsc_to_system_mul >= 100 * 2^(32-tsc_shift)
   1092	 */
   1093	max_mul = 100ull << (32 - hv_clock->tsc_shift);
   1094	if (hv_clock->tsc_to_system_mul >= max_mul)
   1095		return false;
   1096
   1097	/*
   1098	 * Otherwise compute the scale and offset according to the formulas
   1099	 * derived above.
   1100	 */
   1101	tsc_ref->tsc_scale =
   1102		mul_u64_u32_div(1ULL << (32 + hv_clock->tsc_shift),
   1103				hv_clock->tsc_to_system_mul,
   1104				100);
   1105
   1106	tsc_ref->tsc_offset = hv_clock->system_time;
   1107	do_div(tsc_ref->tsc_offset, 100);
   1108	tsc_ref->tsc_offset -=
   1109		mul_u64_u64_shr(hv_clock->tsc_timestamp, tsc_ref->tsc_scale, 64);
   1110	return true;
   1111}
   1112
   1113/*
   1114 * Don't touch TSC page values if the guest has opted for TSC emulation after
   1115 * migration. KVM doesn't fully support reenlightenment notifications and TSC
   1116 * access emulation and Hyper-V is known to expect the values in TSC page to
   1117 * stay constant before TSC access emulation is disabled from guest side
   1118 * (HV_X64_MSR_TSC_EMULATION_STATUS). KVM userspace is expected to preserve TSC
   1119 * frequency and guest visible TSC value across migration (and prevent it when
   1120 * TSC scaling is unsupported).
   1121 */
   1122static inline bool tsc_page_update_unsafe(struct kvm_hv *hv)
   1123{
   1124	return (hv->hv_tsc_page_status != HV_TSC_PAGE_GUEST_CHANGED) &&
   1125		hv->hv_tsc_emulation_control;
   1126}
   1127
   1128void kvm_hv_setup_tsc_page(struct kvm *kvm,
   1129			   struct pvclock_vcpu_time_info *hv_clock)
   1130{
   1131	struct kvm_hv *hv = to_kvm_hv(kvm);
   1132	u32 tsc_seq;
   1133	u64 gfn;
   1134
   1135	BUILD_BUG_ON(sizeof(tsc_seq) != sizeof(hv->tsc_ref.tsc_sequence));
   1136	BUILD_BUG_ON(offsetof(struct ms_hyperv_tsc_page, tsc_sequence) != 0);
   1137
   1138	mutex_lock(&hv->hv_lock);
   1139
   1140	if (hv->hv_tsc_page_status == HV_TSC_PAGE_BROKEN ||
   1141	    hv->hv_tsc_page_status == HV_TSC_PAGE_SET ||
   1142	    hv->hv_tsc_page_status == HV_TSC_PAGE_UNSET)
   1143		goto out_unlock;
   1144
   1145	if (!(hv->hv_tsc_page & HV_X64_MSR_TSC_REFERENCE_ENABLE))
   1146		goto out_unlock;
   1147
   1148	gfn = hv->hv_tsc_page >> HV_X64_MSR_TSC_REFERENCE_ADDRESS_SHIFT;
   1149	/*
   1150	 * Because the TSC parameters only vary when there is a
   1151	 * change in the master clock, do not bother with caching.
   1152	 */
   1153	if (unlikely(kvm_read_guest(kvm, gfn_to_gpa(gfn),
   1154				    &tsc_seq, sizeof(tsc_seq))))
   1155		goto out_err;
   1156
   1157	if (tsc_seq && tsc_page_update_unsafe(hv)) {
   1158		if (kvm_read_guest(kvm, gfn_to_gpa(gfn), &hv->tsc_ref, sizeof(hv->tsc_ref)))
   1159			goto out_err;
   1160
   1161		hv->hv_tsc_page_status = HV_TSC_PAGE_SET;
   1162		goto out_unlock;
   1163	}
   1164
   1165	/*
   1166	 * While we're computing and writing the parameters, force the
   1167	 * guest to use the time reference count MSR.
   1168	 */
   1169	hv->tsc_ref.tsc_sequence = 0;
   1170	if (kvm_write_guest(kvm, gfn_to_gpa(gfn),
   1171			    &hv->tsc_ref, sizeof(hv->tsc_ref.tsc_sequence)))
   1172		goto out_err;
   1173
   1174	if (!compute_tsc_page_parameters(hv_clock, &hv->tsc_ref))
   1175		goto out_err;
   1176
   1177	/* Ensure sequence is zero before writing the rest of the struct.  */
   1178	smp_wmb();
   1179	if (kvm_write_guest(kvm, gfn_to_gpa(gfn), &hv->tsc_ref, sizeof(hv->tsc_ref)))
   1180		goto out_err;
   1181
   1182	/*
   1183	 * Now switch to the TSC page mechanism by writing the sequence.
   1184	 */
   1185	tsc_seq++;
   1186	if (tsc_seq == 0xFFFFFFFF || tsc_seq == 0)
   1187		tsc_seq = 1;
   1188
   1189	/* Write the struct entirely before the non-zero sequence.  */
   1190	smp_wmb();
   1191
   1192	hv->tsc_ref.tsc_sequence = tsc_seq;
   1193	if (kvm_write_guest(kvm, gfn_to_gpa(gfn),
   1194			    &hv->tsc_ref, sizeof(hv->tsc_ref.tsc_sequence)))
   1195		goto out_err;
   1196
   1197	hv->hv_tsc_page_status = HV_TSC_PAGE_SET;
   1198	goto out_unlock;
   1199
   1200out_err:
   1201	hv->hv_tsc_page_status = HV_TSC_PAGE_BROKEN;
   1202out_unlock:
   1203	mutex_unlock(&hv->hv_lock);
   1204}
   1205
   1206void kvm_hv_request_tsc_page_update(struct kvm *kvm)
   1207{
   1208	struct kvm_hv *hv = to_kvm_hv(kvm);
   1209
   1210	mutex_lock(&hv->hv_lock);
   1211
   1212	if (hv->hv_tsc_page_status == HV_TSC_PAGE_SET &&
   1213	    !tsc_page_update_unsafe(hv))
   1214		hv->hv_tsc_page_status = HV_TSC_PAGE_HOST_CHANGED;
   1215
   1216	mutex_unlock(&hv->hv_lock);
   1217}
   1218
   1219static bool hv_check_msr_access(struct kvm_vcpu_hv *hv_vcpu, u32 msr)
   1220{
   1221	if (!hv_vcpu->enforce_cpuid)
   1222		return true;
   1223
   1224	switch (msr) {
   1225	case HV_X64_MSR_GUEST_OS_ID:
   1226	case HV_X64_MSR_HYPERCALL:
   1227		return hv_vcpu->cpuid_cache.features_eax &
   1228			HV_MSR_HYPERCALL_AVAILABLE;
   1229	case HV_X64_MSR_VP_RUNTIME:
   1230		return hv_vcpu->cpuid_cache.features_eax &
   1231			HV_MSR_VP_RUNTIME_AVAILABLE;
   1232	case HV_X64_MSR_TIME_REF_COUNT:
   1233		return hv_vcpu->cpuid_cache.features_eax &
   1234			HV_MSR_TIME_REF_COUNT_AVAILABLE;
   1235	case HV_X64_MSR_VP_INDEX:
   1236		return hv_vcpu->cpuid_cache.features_eax &
   1237			HV_MSR_VP_INDEX_AVAILABLE;
   1238	case HV_X64_MSR_RESET:
   1239		return hv_vcpu->cpuid_cache.features_eax &
   1240			HV_MSR_RESET_AVAILABLE;
   1241	case HV_X64_MSR_REFERENCE_TSC:
   1242		return hv_vcpu->cpuid_cache.features_eax &
   1243			HV_MSR_REFERENCE_TSC_AVAILABLE;
   1244	case HV_X64_MSR_SCONTROL:
   1245	case HV_X64_MSR_SVERSION:
   1246	case HV_X64_MSR_SIEFP:
   1247	case HV_X64_MSR_SIMP:
   1248	case HV_X64_MSR_EOM:
   1249	case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15:
   1250		return hv_vcpu->cpuid_cache.features_eax &
   1251			HV_MSR_SYNIC_AVAILABLE;
   1252	case HV_X64_MSR_STIMER0_CONFIG:
   1253	case HV_X64_MSR_STIMER1_CONFIG:
   1254	case HV_X64_MSR_STIMER2_CONFIG:
   1255	case HV_X64_MSR_STIMER3_CONFIG:
   1256	case HV_X64_MSR_STIMER0_COUNT:
   1257	case HV_X64_MSR_STIMER1_COUNT:
   1258	case HV_X64_MSR_STIMER2_COUNT:
   1259	case HV_X64_MSR_STIMER3_COUNT:
   1260		return hv_vcpu->cpuid_cache.features_eax &
   1261			HV_MSR_SYNTIMER_AVAILABLE;
   1262	case HV_X64_MSR_EOI:
   1263	case HV_X64_MSR_ICR:
   1264	case HV_X64_MSR_TPR:
   1265	case HV_X64_MSR_VP_ASSIST_PAGE:
   1266		return hv_vcpu->cpuid_cache.features_eax &
   1267			HV_MSR_APIC_ACCESS_AVAILABLE;
   1268		break;
   1269	case HV_X64_MSR_TSC_FREQUENCY:
   1270	case HV_X64_MSR_APIC_FREQUENCY:
   1271		return hv_vcpu->cpuid_cache.features_eax &
   1272			HV_ACCESS_FREQUENCY_MSRS;
   1273	case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
   1274	case HV_X64_MSR_TSC_EMULATION_CONTROL:
   1275	case HV_X64_MSR_TSC_EMULATION_STATUS:
   1276		return hv_vcpu->cpuid_cache.features_eax &
   1277			HV_ACCESS_REENLIGHTENMENT;
   1278	case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
   1279	case HV_X64_MSR_CRASH_CTL:
   1280		return hv_vcpu->cpuid_cache.features_edx &
   1281			HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE;
   1282	case HV_X64_MSR_SYNDBG_OPTIONS:
   1283	case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
   1284		return hv_vcpu->cpuid_cache.features_edx &
   1285			HV_FEATURE_DEBUG_MSRS_AVAILABLE;
   1286	default:
   1287		break;
   1288	}
   1289
   1290	return false;
   1291}
   1292
   1293static int kvm_hv_set_msr_pw(struct kvm_vcpu *vcpu, u32 msr, u64 data,
   1294			     bool host)
   1295{
   1296	struct kvm *kvm = vcpu->kvm;
   1297	struct kvm_hv *hv = to_kvm_hv(kvm);
   1298
   1299	if (unlikely(!host && !hv_check_msr_access(to_hv_vcpu(vcpu), msr)))
   1300		return 1;
   1301
   1302	switch (msr) {
   1303	case HV_X64_MSR_GUEST_OS_ID:
   1304		hv->hv_guest_os_id = data;
   1305		/* setting guest os id to zero disables hypercall page */
   1306		if (!hv->hv_guest_os_id)
   1307			hv->hv_hypercall &= ~HV_X64_MSR_HYPERCALL_ENABLE;
   1308		break;
   1309	case HV_X64_MSR_HYPERCALL: {
   1310		u8 instructions[9];
   1311		int i = 0;
   1312		u64 addr;
   1313
   1314		/* if guest os id is not set hypercall should remain disabled */
   1315		if (!hv->hv_guest_os_id)
   1316			break;
   1317		if (!(data & HV_X64_MSR_HYPERCALL_ENABLE)) {
   1318			hv->hv_hypercall = data;
   1319			break;
   1320		}
   1321
   1322		/*
   1323		 * If Xen and Hyper-V hypercalls are both enabled, disambiguate
   1324		 * the same way Xen itself does, by setting the bit 31 of EAX
   1325		 * which is RsvdZ in the 32-bit Hyper-V hypercall ABI and just
   1326		 * going to be clobbered on 64-bit.
   1327		 */
   1328		if (kvm_xen_hypercall_enabled(kvm)) {
   1329			/* orl $0x80000000, %eax */
   1330			instructions[i++] = 0x0d;
   1331			instructions[i++] = 0x00;
   1332			instructions[i++] = 0x00;
   1333			instructions[i++] = 0x00;
   1334			instructions[i++] = 0x80;
   1335		}
   1336
   1337		/* vmcall/vmmcall */
   1338		static_call(kvm_x86_patch_hypercall)(vcpu, instructions + i);
   1339		i += 3;
   1340
   1341		/* ret */
   1342		((unsigned char *)instructions)[i++] = 0xc3;
   1343
   1344		addr = data & HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_MASK;
   1345		if (kvm_vcpu_write_guest(vcpu, addr, instructions, i))
   1346			return 1;
   1347		hv->hv_hypercall = data;
   1348		break;
   1349	}
   1350	case HV_X64_MSR_REFERENCE_TSC:
   1351		hv->hv_tsc_page = data;
   1352		if (hv->hv_tsc_page & HV_X64_MSR_TSC_REFERENCE_ENABLE) {
   1353			if (!host)
   1354				hv->hv_tsc_page_status = HV_TSC_PAGE_GUEST_CHANGED;
   1355			else
   1356				hv->hv_tsc_page_status = HV_TSC_PAGE_HOST_CHANGED;
   1357			kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
   1358		} else {
   1359			hv->hv_tsc_page_status = HV_TSC_PAGE_UNSET;
   1360		}
   1361		break;
   1362	case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
   1363		return kvm_hv_msr_set_crash_data(kvm,
   1364						 msr - HV_X64_MSR_CRASH_P0,
   1365						 data);
   1366	case HV_X64_MSR_CRASH_CTL:
   1367		if (host)
   1368			return kvm_hv_msr_set_crash_ctl(kvm, data);
   1369
   1370		if (data & HV_CRASH_CTL_CRASH_NOTIFY) {
   1371			vcpu_debug(vcpu, "hv crash (0x%llx 0x%llx 0x%llx 0x%llx 0x%llx)\n",
   1372				   hv->hv_crash_param[0],
   1373				   hv->hv_crash_param[1],
   1374				   hv->hv_crash_param[2],
   1375				   hv->hv_crash_param[3],
   1376				   hv->hv_crash_param[4]);
   1377
   1378			/* Send notification about crash to user space */
   1379			kvm_make_request(KVM_REQ_HV_CRASH, vcpu);
   1380		}
   1381		break;
   1382	case HV_X64_MSR_RESET:
   1383		if (data == 1) {
   1384			vcpu_debug(vcpu, "hyper-v reset requested\n");
   1385			kvm_make_request(KVM_REQ_HV_RESET, vcpu);
   1386		}
   1387		break;
   1388	case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
   1389		hv->hv_reenlightenment_control = data;
   1390		break;
   1391	case HV_X64_MSR_TSC_EMULATION_CONTROL:
   1392		hv->hv_tsc_emulation_control = data;
   1393		break;
   1394	case HV_X64_MSR_TSC_EMULATION_STATUS:
   1395		if (data && !host)
   1396			return 1;
   1397
   1398		hv->hv_tsc_emulation_status = data;
   1399		break;
   1400	case HV_X64_MSR_TIME_REF_COUNT:
   1401		/* read-only, but still ignore it if host-initiated */
   1402		if (!host)
   1403			return 1;
   1404		break;
   1405	case HV_X64_MSR_SYNDBG_OPTIONS:
   1406	case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
   1407		return syndbg_set_msr(vcpu, msr, data, host);
   1408	default:
   1409		vcpu_unimpl(vcpu, "Hyper-V unhandled wrmsr: 0x%x data 0x%llx\n",
   1410			    msr, data);
   1411		return 1;
   1412	}
   1413	return 0;
   1414}
   1415
   1416/* Calculate cpu time spent by current task in 100ns units */
   1417static u64 current_task_runtime_100ns(void)
   1418{
   1419	u64 utime, stime;
   1420
   1421	task_cputime_adjusted(current, &utime, &stime);
   1422
   1423	return div_u64(utime + stime, 100);
   1424}
   1425
   1426static int kvm_hv_set_msr(struct kvm_vcpu *vcpu, u32 msr, u64 data, bool host)
   1427{
   1428	struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
   1429
   1430	if (unlikely(!host && !hv_check_msr_access(hv_vcpu, msr)))
   1431		return 1;
   1432
   1433	switch (msr) {
   1434	case HV_X64_MSR_VP_INDEX: {
   1435		struct kvm_hv *hv = to_kvm_hv(vcpu->kvm);
   1436		u32 new_vp_index = (u32)data;
   1437
   1438		if (!host || new_vp_index >= KVM_MAX_VCPUS)
   1439			return 1;
   1440
   1441		if (new_vp_index == hv_vcpu->vp_index)
   1442			return 0;
   1443
   1444		/*
   1445		 * The VP index is initialized to vcpu_index by
   1446		 * kvm_hv_vcpu_postcreate so they initially match.  Now the
   1447		 * VP index is changing, adjust num_mismatched_vp_indexes if
   1448		 * it now matches or no longer matches vcpu_idx.
   1449		 */
   1450		if (hv_vcpu->vp_index == vcpu->vcpu_idx)
   1451			atomic_inc(&hv->num_mismatched_vp_indexes);
   1452		else if (new_vp_index == vcpu->vcpu_idx)
   1453			atomic_dec(&hv->num_mismatched_vp_indexes);
   1454
   1455		hv_vcpu->vp_index = new_vp_index;
   1456		break;
   1457	}
   1458	case HV_X64_MSR_VP_ASSIST_PAGE: {
   1459		u64 gfn;
   1460		unsigned long addr;
   1461
   1462		if (!(data & HV_X64_MSR_VP_ASSIST_PAGE_ENABLE)) {
   1463			hv_vcpu->hv_vapic = data;
   1464			if (kvm_lapic_set_pv_eoi(vcpu, 0, 0))
   1465				return 1;
   1466			break;
   1467		}
   1468		gfn = data >> HV_X64_MSR_VP_ASSIST_PAGE_ADDRESS_SHIFT;
   1469		addr = kvm_vcpu_gfn_to_hva(vcpu, gfn);
   1470		if (kvm_is_error_hva(addr))
   1471			return 1;
   1472
   1473		/*
   1474		 * Clear apic_assist portion of struct hv_vp_assist_page
   1475		 * only, there can be valuable data in the rest which needs
   1476		 * to be preserved e.g. on migration.
   1477		 */
   1478		if (__put_user(0, (u32 __user *)addr))
   1479			return 1;
   1480		hv_vcpu->hv_vapic = data;
   1481		kvm_vcpu_mark_page_dirty(vcpu, gfn);
   1482		if (kvm_lapic_set_pv_eoi(vcpu,
   1483					    gfn_to_gpa(gfn) | KVM_MSR_ENABLED,
   1484					    sizeof(struct hv_vp_assist_page)))
   1485			return 1;
   1486		break;
   1487	}
   1488	case HV_X64_MSR_EOI:
   1489		return kvm_hv_vapic_msr_write(vcpu, APIC_EOI, data);
   1490	case HV_X64_MSR_ICR:
   1491		return kvm_hv_vapic_msr_write(vcpu, APIC_ICR, data);
   1492	case HV_X64_MSR_TPR:
   1493		return kvm_hv_vapic_msr_write(vcpu, APIC_TASKPRI, data);
   1494	case HV_X64_MSR_VP_RUNTIME:
   1495		if (!host)
   1496			return 1;
   1497		hv_vcpu->runtime_offset = data - current_task_runtime_100ns();
   1498		break;
   1499	case HV_X64_MSR_SCONTROL:
   1500	case HV_X64_MSR_SVERSION:
   1501	case HV_X64_MSR_SIEFP:
   1502	case HV_X64_MSR_SIMP:
   1503	case HV_X64_MSR_EOM:
   1504	case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15:
   1505		return synic_set_msr(to_hv_synic(vcpu), msr, data, host);
   1506	case HV_X64_MSR_STIMER0_CONFIG:
   1507	case HV_X64_MSR_STIMER1_CONFIG:
   1508	case HV_X64_MSR_STIMER2_CONFIG:
   1509	case HV_X64_MSR_STIMER3_CONFIG: {
   1510		int timer_index = (msr - HV_X64_MSR_STIMER0_CONFIG)/2;
   1511
   1512		return stimer_set_config(to_hv_stimer(vcpu, timer_index),
   1513					 data, host);
   1514	}
   1515	case HV_X64_MSR_STIMER0_COUNT:
   1516	case HV_X64_MSR_STIMER1_COUNT:
   1517	case HV_X64_MSR_STIMER2_COUNT:
   1518	case HV_X64_MSR_STIMER3_COUNT: {
   1519		int timer_index = (msr - HV_X64_MSR_STIMER0_COUNT)/2;
   1520
   1521		return stimer_set_count(to_hv_stimer(vcpu, timer_index),
   1522					data, host);
   1523	}
   1524	case HV_X64_MSR_TSC_FREQUENCY:
   1525	case HV_X64_MSR_APIC_FREQUENCY:
   1526		/* read-only, but still ignore it if host-initiated */
   1527		if (!host)
   1528			return 1;
   1529		break;
   1530	default:
   1531		vcpu_unimpl(vcpu, "Hyper-V unhandled wrmsr: 0x%x data 0x%llx\n",
   1532			    msr, data);
   1533		return 1;
   1534	}
   1535
   1536	return 0;
   1537}
   1538
   1539static int kvm_hv_get_msr_pw(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata,
   1540			     bool host)
   1541{
   1542	u64 data = 0;
   1543	struct kvm *kvm = vcpu->kvm;
   1544	struct kvm_hv *hv = to_kvm_hv(kvm);
   1545
   1546	if (unlikely(!host && !hv_check_msr_access(to_hv_vcpu(vcpu), msr)))
   1547		return 1;
   1548
   1549	switch (msr) {
   1550	case HV_X64_MSR_GUEST_OS_ID:
   1551		data = hv->hv_guest_os_id;
   1552		break;
   1553	case HV_X64_MSR_HYPERCALL:
   1554		data = hv->hv_hypercall;
   1555		break;
   1556	case HV_X64_MSR_TIME_REF_COUNT:
   1557		data = get_time_ref_counter(kvm);
   1558		break;
   1559	case HV_X64_MSR_REFERENCE_TSC:
   1560		data = hv->hv_tsc_page;
   1561		break;
   1562	case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
   1563		return kvm_hv_msr_get_crash_data(kvm,
   1564						 msr - HV_X64_MSR_CRASH_P0,
   1565						 pdata);
   1566	case HV_X64_MSR_CRASH_CTL:
   1567		return kvm_hv_msr_get_crash_ctl(kvm, pdata);
   1568	case HV_X64_MSR_RESET:
   1569		data = 0;
   1570		break;
   1571	case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
   1572		data = hv->hv_reenlightenment_control;
   1573		break;
   1574	case HV_X64_MSR_TSC_EMULATION_CONTROL:
   1575		data = hv->hv_tsc_emulation_control;
   1576		break;
   1577	case HV_X64_MSR_TSC_EMULATION_STATUS:
   1578		data = hv->hv_tsc_emulation_status;
   1579		break;
   1580	case HV_X64_MSR_SYNDBG_OPTIONS:
   1581	case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
   1582		return syndbg_get_msr(vcpu, msr, pdata, host);
   1583	default:
   1584		vcpu_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
   1585		return 1;
   1586	}
   1587
   1588	*pdata = data;
   1589	return 0;
   1590}
   1591
   1592static int kvm_hv_get_msr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata,
   1593			  bool host)
   1594{
   1595	u64 data = 0;
   1596	struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
   1597
   1598	if (unlikely(!host && !hv_check_msr_access(hv_vcpu, msr)))
   1599		return 1;
   1600
   1601	switch (msr) {
   1602	case HV_X64_MSR_VP_INDEX:
   1603		data = hv_vcpu->vp_index;
   1604		break;
   1605	case HV_X64_MSR_EOI:
   1606		return kvm_hv_vapic_msr_read(vcpu, APIC_EOI, pdata);
   1607	case HV_X64_MSR_ICR:
   1608		return kvm_hv_vapic_msr_read(vcpu, APIC_ICR, pdata);
   1609	case HV_X64_MSR_TPR:
   1610		return kvm_hv_vapic_msr_read(vcpu, APIC_TASKPRI, pdata);
   1611	case HV_X64_MSR_VP_ASSIST_PAGE:
   1612		data = hv_vcpu->hv_vapic;
   1613		break;
   1614	case HV_X64_MSR_VP_RUNTIME:
   1615		data = current_task_runtime_100ns() + hv_vcpu->runtime_offset;
   1616		break;
   1617	case HV_X64_MSR_SCONTROL:
   1618	case HV_X64_MSR_SVERSION:
   1619	case HV_X64_MSR_SIEFP:
   1620	case HV_X64_MSR_SIMP:
   1621	case HV_X64_MSR_EOM:
   1622	case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15:
   1623		return synic_get_msr(to_hv_synic(vcpu), msr, pdata, host);
   1624	case HV_X64_MSR_STIMER0_CONFIG:
   1625	case HV_X64_MSR_STIMER1_CONFIG:
   1626	case HV_X64_MSR_STIMER2_CONFIG:
   1627	case HV_X64_MSR_STIMER3_CONFIG: {
   1628		int timer_index = (msr - HV_X64_MSR_STIMER0_CONFIG)/2;
   1629
   1630		return stimer_get_config(to_hv_stimer(vcpu, timer_index),
   1631					 pdata);
   1632	}
   1633	case HV_X64_MSR_STIMER0_COUNT:
   1634	case HV_X64_MSR_STIMER1_COUNT:
   1635	case HV_X64_MSR_STIMER2_COUNT:
   1636	case HV_X64_MSR_STIMER3_COUNT: {
   1637		int timer_index = (msr - HV_X64_MSR_STIMER0_COUNT)/2;
   1638
   1639		return stimer_get_count(to_hv_stimer(vcpu, timer_index),
   1640					pdata);
   1641	}
   1642	case HV_X64_MSR_TSC_FREQUENCY:
   1643		data = (u64)vcpu->arch.virtual_tsc_khz * 1000;
   1644		break;
   1645	case HV_X64_MSR_APIC_FREQUENCY:
   1646		data = APIC_BUS_FREQUENCY;
   1647		break;
   1648	default:
   1649		vcpu_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
   1650		return 1;
   1651	}
   1652	*pdata = data;
   1653	return 0;
   1654}
   1655
   1656int kvm_hv_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data, bool host)
   1657{
   1658	struct kvm_hv *hv = to_kvm_hv(vcpu->kvm);
   1659
   1660	if (!host && !vcpu->arch.hyperv_enabled)
   1661		return 1;
   1662
   1663	if (!to_hv_vcpu(vcpu)) {
   1664		if (kvm_hv_vcpu_init(vcpu))
   1665			return 1;
   1666	}
   1667
   1668	if (kvm_hv_msr_partition_wide(msr)) {
   1669		int r;
   1670
   1671		mutex_lock(&hv->hv_lock);
   1672		r = kvm_hv_set_msr_pw(vcpu, msr, data, host);
   1673		mutex_unlock(&hv->hv_lock);
   1674		return r;
   1675	} else
   1676		return kvm_hv_set_msr(vcpu, msr, data, host);
   1677}
   1678
   1679int kvm_hv_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host)
   1680{
   1681	struct kvm_hv *hv = to_kvm_hv(vcpu->kvm);
   1682
   1683	if (!host && !vcpu->arch.hyperv_enabled)
   1684		return 1;
   1685
   1686	if (!to_hv_vcpu(vcpu)) {
   1687		if (kvm_hv_vcpu_init(vcpu))
   1688			return 1;
   1689	}
   1690
   1691	if (kvm_hv_msr_partition_wide(msr)) {
   1692		int r;
   1693
   1694		mutex_lock(&hv->hv_lock);
   1695		r = kvm_hv_get_msr_pw(vcpu, msr, pdata, host);
   1696		mutex_unlock(&hv->hv_lock);
   1697		return r;
   1698	} else
   1699		return kvm_hv_get_msr(vcpu, msr, pdata, host);
   1700}
   1701
   1702static void sparse_set_to_vcpu_mask(struct kvm *kvm, u64 *sparse_banks,
   1703				    u64 valid_bank_mask, unsigned long *vcpu_mask)
   1704{
   1705	struct kvm_hv *hv = to_kvm_hv(kvm);
   1706	bool has_mismatch = atomic_read(&hv->num_mismatched_vp_indexes);
   1707	u64 vp_bitmap[KVM_HV_MAX_SPARSE_VCPU_SET_BITS];
   1708	struct kvm_vcpu *vcpu;
   1709	int bank, sbank = 0;
   1710	unsigned long i;
   1711	u64 *bitmap;
   1712
   1713	BUILD_BUG_ON(sizeof(vp_bitmap) >
   1714		     sizeof(*vcpu_mask) * BITS_TO_LONGS(KVM_MAX_VCPUS));
   1715
   1716	/*
   1717	 * If vp_index == vcpu_idx for all vCPUs, fill vcpu_mask directly, else
   1718	 * fill a temporary buffer and manually test each vCPU's VP index.
   1719	 */
   1720	if (likely(!has_mismatch))
   1721		bitmap = (u64 *)vcpu_mask;
   1722	else
   1723		bitmap = vp_bitmap;
   1724
   1725	/*
   1726	 * Each set of 64 VPs is packed into sparse_banks, with valid_bank_mask
   1727	 * having a '1' for each bank that exists in sparse_banks.  Sets must
   1728	 * be in ascending order, i.e. bank0..bankN.
   1729	 */
   1730	memset(bitmap, 0, sizeof(vp_bitmap));
   1731	for_each_set_bit(bank, (unsigned long *)&valid_bank_mask,
   1732			 KVM_HV_MAX_SPARSE_VCPU_SET_BITS)
   1733		bitmap[bank] = sparse_banks[sbank++];
   1734
   1735	if (likely(!has_mismatch))
   1736		return;
   1737
   1738	bitmap_zero(vcpu_mask, KVM_MAX_VCPUS);
   1739	kvm_for_each_vcpu(i, vcpu, kvm) {
   1740		if (test_bit(kvm_hv_get_vpindex(vcpu), (unsigned long *)vp_bitmap))
   1741			__set_bit(i, vcpu_mask);
   1742	}
   1743}
   1744
   1745struct kvm_hv_hcall {
   1746	u64 param;
   1747	u64 ingpa;
   1748	u64 outgpa;
   1749	u16 code;
   1750	u16 var_cnt;
   1751	u16 rep_cnt;
   1752	u16 rep_idx;
   1753	bool fast;
   1754	bool rep;
   1755	sse128_t xmm[HV_HYPERCALL_MAX_XMM_REGISTERS];
   1756};
   1757
   1758static u64 kvm_get_sparse_vp_set(struct kvm *kvm, struct kvm_hv_hcall *hc,
   1759				 int consumed_xmm_halves,
   1760				 u64 *sparse_banks, gpa_t offset)
   1761{
   1762	u16 var_cnt;
   1763	int i;
   1764
   1765	if (hc->var_cnt > 64)
   1766		return -EINVAL;
   1767
   1768	/* Ignore banks that cannot possibly contain a legal VP index. */
   1769	var_cnt = min_t(u16, hc->var_cnt, KVM_HV_MAX_SPARSE_VCPU_SET_BITS);
   1770
   1771	if (hc->fast) {
   1772		/*
   1773		 * Each XMM holds two sparse banks, but do not count halves that
   1774		 * have already been consumed for hypercall parameters.
   1775		 */
   1776		if (hc->var_cnt > 2 * HV_HYPERCALL_MAX_XMM_REGISTERS - consumed_xmm_halves)
   1777			return HV_STATUS_INVALID_HYPERCALL_INPUT;
   1778		for (i = 0; i < var_cnt; i++) {
   1779			int j = i + consumed_xmm_halves;
   1780			if (j % 2)
   1781				sparse_banks[i] = sse128_hi(hc->xmm[j / 2]);
   1782			else
   1783				sparse_banks[i] = sse128_lo(hc->xmm[j / 2]);
   1784		}
   1785		return 0;
   1786	}
   1787
   1788	return kvm_read_guest(kvm, hc->ingpa + offset, sparse_banks,
   1789			      var_cnt * sizeof(*sparse_banks));
   1790}
   1791
   1792static u64 kvm_hv_flush_tlb(struct kvm_vcpu *vcpu, struct kvm_hv_hcall *hc)
   1793{
   1794	struct kvm *kvm = vcpu->kvm;
   1795	struct hv_tlb_flush_ex flush_ex;
   1796	struct hv_tlb_flush flush;
   1797	DECLARE_BITMAP(vcpu_mask, KVM_MAX_VCPUS);
   1798	u64 valid_bank_mask;
   1799	u64 sparse_banks[KVM_HV_MAX_SPARSE_VCPU_SET_BITS];
   1800	bool all_cpus;
   1801
   1802	/*
   1803	 * The Hyper-V TLFS doesn't allow more than 64 sparse banks, e.g. the
   1804	 * valid mask is a u64.  Fail the build if KVM's max allowed number of
   1805	 * vCPUs (>4096) would exceed this limit, KVM will additional changes
   1806	 * for Hyper-V support to avoid setting the guest up to fail.
   1807	 */
   1808	BUILD_BUG_ON(KVM_HV_MAX_SPARSE_VCPU_SET_BITS > 64);
   1809
   1810	if (hc->code == HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST ||
   1811	    hc->code == HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE) {
   1812		if (hc->fast) {
   1813			flush.address_space = hc->ingpa;
   1814			flush.flags = hc->outgpa;
   1815			flush.processor_mask = sse128_lo(hc->xmm[0]);
   1816		} else {
   1817			if (unlikely(kvm_read_guest(kvm, hc->ingpa,
   1818						    &flush, sizeof(flush))))
   1819				return HV_STATUS_INVALID_HYPERCALL_INPUT;
   1820		}
   1821
   1822		trace_kvm_hv_flush_tlb(flush.processor_mask,
   1823				       flush.address_space, flush.flags);
   1824
   1825		valid_bank_mask = BIT_ULL(0);
   1826		sparse_banks[0] = flush.processor_mask;
   1827
   1828		/*
   1829		 * Work around possible WS2012 bug: it sends hypercalls
   1830		 * with processor_mask = 0x0 and HV_FLUSH_ALL_PROCESSORS clear,
   1831		 * while also expecting us to flush something and crashing if
   1832		 * we don't. Let's treat processor_mask == 0 same as
   1833		 * HV_FLUSH_ALL_PROCESSORS.
   1834		 */
   1835		all_cpus = (flush.flags & HV_FLUSH_ALL_PROCESSORS) ||
   1836			flush.processor_mask == 0;
   1837	} else {
   1838		if (hc->fast) {
   1839			flush_ex.address_space = hc->ingpa;
   1840			flush_ex.flags = hc->outgpa;
   1841			memcpy(&flush_ex.hv_vp_set,
   1842			       &hc->xmm[0], sizeof(hc->xmm[0]));
   1843		} else {
   1844			if (unlikely(kvm_read_guest(kvm, hc->ingpa, &flush_ex,
   1845						    sizeof(flush_ex))))
   1846				return HV_STATUS_INVALID_HYPERCALL_INPUT;
   1847		}
   1848
   1849		trace_kvm_hv_flush_tlb_ex(flush_ex.hv_vp_set.valid_bank_mask,
   1850					  flush_ex.hv_vp_set.format,
   1851					  flush_ex.address_space,
   1852					  flush_ex.flags);
   1853
   1854		valid_bank_mask = flush_ex.hv_vp_set.valid_bank_mask;
   1855		all_cpus = flush_ex.hv_vp_set.format !=
   1856			HV_GENERIC_SET_SPARSE_4K;
   1857
   1858		if (hc->var_cnt != hweight64(valid_bank_mask))
   1859			return HV_STATUS_INVALID_HYPERCALL_INPUT;
   1860
   1861		if (all_cpus)
   1862			goto do_flush;
   1863
   1864		if (!hc->var_cnt)
   1865			goto ret_success;
   1866
   1867		if (kvm_get_sparse_vp_set(kvm, hc, 2, sparse_banks,
   1868					  offsetof(struct hv_tlb_flush_ex,
   1869						   hv_vp_set.bank_contents)))
   1870			return HV_STATUS_INVALID_HYPERCALL_INPUT;
   1871	}
   1872
   1873do_flush:
   1874	/*
   1875	 * vcpu->arch.cr3 may not be up-to-date for running vCPUs so we can't
   1876	 * analyze it here, flush TLB regardless of the specified address space.
   1877	 */
   1878	if (all_cpus) {
   1879		kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH_GUEST);
   1880	} else {
   1881		sparse_set_to_vcpu_mask(kvm, sparse_banks, valid_bank_mask, vcpu_mask);
   1882
   1883		kvm_make_vcpus_request_mask(kvm, KVM_REQ_TLB_FLUSH_GUEST, vcpu_mask);
   1884	}
   1885
   1886ret_success:
   1887	/* We always do full TLB flush, set 'Reps completed' = 'Rep Count' */
   1888	return (u64)HV_STATUS_SUCCESS |
   1889		((u64)hc->rep_cnt << HV_HYPERCALL_REP_COMP_OFFSET);
   1890}
   1891
   1892static void kvm_send_ipi_to_many(struct kvm *kvm, u32 vector,
   1893				 unsigned long *vcpu_bitmap)
   1894{
   1895	struct kvm_lapic_irq irq = {
   1896		.delivery_mode = APIC_DM_FIXED,
   1897		.vector = vector
   1898	};
   1899	struct kvm_vcpu *vcpu;
   1900	unsigned long i;
   1901
   1902	kvm_for_each_vcpu(i, vcpu, kvm) {
   1903		if (vcpu_bitmap && !test_bit(i, vcpu_bitmap))
   1904			continue;
   1905
   1906		/* We fail only when APIC is disabled */
   1907		kvm_apic_set_irq(vcpu, &irq, NULL);
   1908	}
   1909}
   1910
   1911static u64 kvm_hv_send_ipi(struct kvm_vcpu *vcpu, struct kvm_hv_hcall *hc)
   1912{
   1913	struct kvm *kvm = vcpu->kvm;
   1914	struct hv_send_ipi_ex send_ipi_ex;
   1915	struct hv_send_ipi send_ipi;
   1916	DECLARE_BITMAP(vcpu_mask, KVM_MAX_VCPUS);
   1917	u64 valid_bank_mask;
   1918	u64 sparse_banks[KVM_HV_MAX_SPARSE_VCPU_SET_BITS];
   1919	u32 vector;
   1920	bool all_cpus;
   1921
   1922	if (hc->code == HVCALL_SEND_IPI) {
   1923		if (!hc->fast) {
   1924			if (unlikely(kvm_read_guest(kvm, hc->ingpa, &send_ipi,
   1925						    sizeof(send_ipi))))
   1926				return HV_STATUS_INVALID_HYPERCALL_INPUT;
   1927			sparse_banks[0] = send_ipi.cpu_mask;
   1928			vector = send_ipi.vector;
   1929		} else {
   1930			/* 'reserved' part of hv_send_ipi should be 0 */
   1931			if (unlikely(hc->ingpa >> 32 != 0))
   1932				return HV_STATUS_INVALID_HYPERCALL_INPUT;
   1933			sparse_banks[0] = hc->outgpa;
   1934			vector = (u32)hc->ingpa;
   1935		}
   1936		all_cpus = false;
   1937		valid_bank_mask = BIT_ULL(0);
   1938
   1939		trace_kvm_hv_send_ipi(vector, sparse_banks[0]);
   1940	} else {
   1941		if (!hc->fast) {
   1942			if (unlikely(kvm_read_guest(kvm, hc->ingpa, &send_ipi_ex,
   1943						    sizeof(send_ipi_ex))))
   1944				return HV_STATUS_INVALID_HYPERCALL_INPUT;
   1945		} else {
   1946			send_ipi_ex.vector = (u32)hc->ingpa;
   1947			send_ipi_ex.vp_set.format = hc->outgpa;
   1948			send_ipi_ex.vp_set.valid_bank_mask = sse128_lo(hc->xmm[0]);
   1949		}
   1950
   1951		trace_kvm_hv_send_ipi_ex(send_ipi_ex.vector,
   1952					 send_ipi_ex.vp_set.format,
   1953					 send_ipi_ex.vp_set.valid_bank_mask);
   1954
   1955		vector = send_ipi_ex.vector;
   1956		valid_bank_mask = send_ipi_ex.vp_set.valid_bank_mask;
   1957		all_cpus = send_ipi_ex.vp_set.format == HV_GENERIC_SET_ALL;
   1958
   1959		if (hc->var_cnt != hweight64(valid_bank_mask))
   1960			return HV_STATUS_INVALID_HYPERCALL_INPUT;
   1961
   1962		if (all_cpus)
   1963			goto check_and_send_ipi;
   1964
   1965		if (!hc->var_cnt)
   1966			goto ret_success;
   1967
   1968		if (kvm_get_sparse_vp_set(kvm, hc, 1, sparse_banks,
   1969					  offsetof(struct hv_send_ipi_ex,
   1970						   vp_set.bank_contents)))
   1971			return HV_STATUS_INVALID_HYPERCALL_INPUT;
   1972	}
   1973
   1974check_and_send_ipi:
   1975	if ((vector < HV_IPI_LOW_VECTOR) || (vector > HV_IPI_HIGH_VECTOR))
   1976		return HV_STATUS_INVALID_HYPERCALL_INPUT;
   1977
   1978	if (all_cpus) {
   1979		kvm_send_ipi_to_many(kvm, vector, NULL);
   1980	} else {
   1981		sparse_set_to_vcpu_mask(kvm, sparse_banks, valid_bank_mask, vcpu_mask);
   1982
   1983		kvm_send_ipi_to_many(kvm, vector, vcpu_mask);
   1984	}
   1985
   1986ret_success:
   1987	return HV_STATUS_SUCCESS;
   1988}
   1989
   1990void kvm_hv_set_cpuid(struct kvm_vcpu *vcpu)
   1991{
   1992	struct kvm_cpuid_entry2 *entry;
   1993	struct kvm_vcpu_hv *hv_vcpu;
   1994
   1995	entry = kvm_find_cpuid_entry(vcpu, HYPERV_CPUID_INTERFACE, 0);
   1996	if (entry && entry->eax == HYPERV_CPUID_SIGNATURE_EAX) {
   1997		vcpu->arch.hyperv_enabled = true;
   1998	} else {
   1999		vcpu->arch.hyperv_enabled = false;
   2000		return;
   2001	}
   2002
   2003	if (!to_hv_vcpu(vcpu) && kvm_hv_vcpu_init(vcpu))
   2004		return;
   2005
   2006	hv_vcpu = to_hv_vcpu(vcpu);
   2007
   2008	entry = kvm_find_cpuid_entry(vcpu, HYPERV_CPUID_FEATURES, 0);
   2009	if (entry) {
   2010		hv_vcpu->cpuid_cache.features_eax = entry->eax;
   2011		hv_vcpu->cpuid_cache.features_ebx = entry->ebx;
   2012		hv_vcpu->cpuid_cache.features_edx = entry->edx;
   2013	} else {
   2014		hv_vcpu->cpuid_cache.features_eax = 0;
   2015		hv_vcpu->cpuid_cache.features_ebx = 0;
   2016		hv_vcpu->cpuid_cache.features_edx = 0;
   2017	}
   2018
   2019	entry = kvm_find_cpuid_entry(vcpu, HYPERV_CPUID_ENLIGHTMENT_INFO, 0);
   2020	if (entry) {
   2021		hv_vcpu->cpuid_cache.enlightenments_eax = entry->eax;
   2022		hv_vcpu->cpuid_cache.enlightenments_ebx = entry->ebx;
   2023	} else {
   2024		hv_vcpu->cpuid_cache.enlightenments_eax = 0;
   2025		hv_vcpu->cpuid_cache.enlightenments_ebx = 0;
   2026	}
   2027
   2028	entry = kvm_find_cpuid_entry(vcpu, HYPERV_CPUID_SYNDBG_PLATFORM_CAPABILITIES, 0);
   2029	if (entry)
   2030		hv_vcpu->cpuid_cache.syndbg_cap_eax = entry->eax;
   2031	else
   2032		hv_vcpu->cpuid_cache.syndbg_cap_eax = 0;
   2033}
   2034
   2035int kvm_hv_set_enforce_cpuid(struct kvm_vcpu *vcpu, bool enforce)
   2036{
   2037	struct kvm_vcpu_hv *hv_vcpu;
   2038	int ret = 0;
   2039
   2040	if (!to_hv_vcpu(vcpu)) {
   2041		if (enforce) {
   2042			ret = kvm_hv_vcpu_init(vcpu);
   2043			if (ret)
   2044				return ret;
   2045		} else {
   2046			return 0;
   2047		}
   2048	}
   2049
   2050	hv_vcpu = to_hv_vcpu(vcpu);
   2051	hv_vcpu->enforce_cpuid = enforce;
   2052
   2053	return ret;
   2054}
   2055
   2056static void kvm_hv_hypercall_set_result(struct kvm_vcpu *vcpu, u64 result)
   2057{
   2058	bool longmode;
   2059
   2060	longmode = is_64_bit_hypercall(vcpu);
   2061	if (longmode)
   2062		kvm_rax_write(vcpu, result);
   2063	else {
   2064		kvm_rdx_write(vcpu, result >> 32);
   2065		kvm_rax_write(vcpu, result & 0xffffffff);
   2066	}
   2067}
   2068
   2069static int kvm_hv_hypercall_complete(struct kvm_vcpu *vcpu, u64 result)
   2070{
   2071	trace_kvm_hv_hypercall_done(result);
   2072	kvm_hv_hypercall_set_result(vcpu, result);
   2073	++vcpu->stat.hypercalls;
   2074	return kvm_skip_emulated_instruction(vcpu);
   2075}
   2076
   2077static int kvm_hv_hypercall_complete_userspace(struct kvm_vcpu *vcpu)
   2078{
   2079	return kvm_hv_hypercall_complete(vcpu, vcpu->run->hyperv.u.hcall.result);
   2080}
   2081
   2082static u16 kvm_hvcall_signal_event(struct kvm_vcpu *vcpu, struct kvm_hv_hcall *hc)
   2083{
   2084	struct kvm_hv *hv = to_kvm_hv(vcpu->kvm);
   2085	struct eventfd_ctx *eventfd;
   2086
   2087	if (unlikely(!hc->fast)) {
   2088		int ret;
   2089		gpa_t gpa = hc->ingpa;
   2090
   2091		if ((gpa & (__alignof__(hc->ingpa) - 1)) ||
   2092		    offset_in_page(gpa) + sizeof(hc->ingpa) > PAGE_SIZE)
   2093			return HV_STATUS_INVALID_ALIGNMENT;
   2094
   2095		ret = kvm_vcpu_read_guest(vcpu, gpa,
   2096					  &hc->ingpa, sizeof(hc->ingpa));
   2097		if (ret < 0)
   2098			return HV_STATUS_INVALID_ALIGNMENT;
   2099	}
   2100
   2101	/*
   2102	 * Per spec, bits 32-47 contain the extra "flag number".  However, we
   2103	 * have no use for it, and in all known usecases it is zero, so just
   2104	 * report lookup failure if it isn't.
   2105	 */
   2106	if (hc->ingpa & 0xffff00000000ULL)
   2107		return HV_STATUS_INVALID_PORT_ID;
   2108	/* remaining bits are reserved-zero */
   2109	if (hc->ingpa & ~KVM_HYPERV_CONN_ID_MASK)
   2110		return HV_STATUS_INVALID_HYPERCALL_INPUT;
   2111
   2112	/* the eventfd is protected by vcpu->kvm->srcu, but conn_to_evt isn't */
   2113	rcu_read_lock();
   2114	eventfd = idr_find(&hv->conn_to_evt, hc->ingpa);
   2115	rcu_read_unlock();
   2116	if (!eventfd)
   2117		return HV_STATUS_INVALID_PORT_ID;
   2118
   2119	eventfd_signal(eventfd, 1);
   2120	return HV_STATUS_SUCCESS;
   2121}
   2122
   2123static bool is_xmm_fast_hypercall(struct kvm_hv_hcall *hc)
   2124{
   2125	switch (hc->code) {
   2126	case HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST:
   2127	case HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE:
   2128	case HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST_EX:
   2129	case HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE_EX:
   2130	case HVCALL_SEND_IPI_EX:
   2131		return true;
   2132	}
   2133
   2134	return false;
   2135}
   2136
   2137static void kvm_hv_hypercall_read_xmm(struct kvm_hv_hcall *hc)
   2138{
   2139	int reg;
   2140
   2141	kvm_fpu_get();
   2142	for (reg = 0; reg < HV_HYPERCALL_MAX_XMM_REGISTERS; reg++)
   2143		_kvm_read_sse_reg(reg, &hc->xmm[reg]);
   2144	kvm_fpu_put();
   2145}
   2146
   2147static bool hv_check_hypercall_access(struct kvm_vcpu_hv *hv_vcpu, u16 code)
   2148{
   2149	if (!hv_vcpu->enforce_cpuid)
   2150		return true;
   2151
   2152	switch (code) {
   2153	case HVCALL_NOTIFY_LONG_SPIN_WAIT:
   2154		return hv_vcpu->cpuid_cache.enlightenments_ebx &&
   2155			hv_vcpu->cpuid_cache.enlightenments_ebx != U32_MAX;
   2156	case HVCALL_POST_MESSAGE:
   2157		return hv_vcpu->cpuid_cache.features_ebx & HV_POST_MESSAGES;
   2158	case HVCALL_SIGNAL_EVENT:
   2159		return hv_vcpu->cpuid_cache.features_ebx & HV_SIGNAL_EVENTS;
   2160	case HVCALL_POST_DEBUG_DATA:
   2161	case HVCALL_RETRIEVE_DEBUG_DATA:
   2162	case HVCALL_RESET_DEBUG_SESSION:
   2163		/*
   2164		 * Return 'true' when SynDBG is disabled so the resulting code
   2165		 * will be HV_STATUS_INVALID_HYPERCALL_CODE.
   2166		 */
   2167		return !kvm_hv_is_syndbg_enabled(hv_vcpu->vcpu) ||
   2168			hv_vcpu->cpuid_cache.features_ebx & HV_DEBUGGING;
   2169	case HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST_EX:
   2170	case HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE_EX:
   2171		if (!(hv_vcpu->cpuid_cache.enlightenments_eax &
   2172		      HV_X64_EX_PROCESSOR_MASKS_RECOMMENDED))
   2173			return false;
   2174		fallthrough;
   2175	case HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST:
   2176	case HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE:
   2177		return hv_vcpu->cpuid_cache.enlightenments_eax &
   2178			HV_X64_REMOTE_TLB_FLUSH_RECOMMENDED;
   2179	case HVCALL_SEND_IPI_EX:
   2180		if (!(hv_vcpu->cpuid_cache.enlightenments_eax &
   2181		      HV_X64_EX_PROCESSOR_MASKS_RECOMMENDED))
   2182			return false;
   2183		fallthrough;
   2184	case HVCALL_SEND_IPI:
   2185		return hv_vcpu->cpuid_cache.enlightenments_eax &
   2186			HV_X64_CLUSTER_IPI_RECOMMENDED;
   2187	default:
   2188		break;
   2189	}
   2190
   2191	return true;
   2192}
   2193
   2194int kvm_hv_hypercall(struct kvm_vcpu *vcpu)
   2195{
   2196	struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
   2197	struct kvm_hv_hcall hc;
   2198	u64 ret = HV_STATUS_SUCCESS;
   2199
   2200	/*
   2201	 * hypercall generates UD from non zero cpl and real mode
   2202	 * per HYPER-V spec
   2203	 */
   2204	if (static_call(kvm_x86_get_cpl)(vcpu) != 0 || !is_protmode(vcpu)) {
   2205		kvm_queue_exception(vcpu, UD_VECTOR);
   2206		return 1;
   2207	}
   2208
   2209#ifdef CONFIG_X86_64
   2210	if (is_64_bit_hypercall(vcpu)) {
   2211		hc.param = kvm_rcx_read(vcpu);
   2212		hc.ingpa = kvm_rdx_read(vcpu);
   2213		hc.outgpa = kvm_r8_read(vcpu);
   2214	} else
   2215#endif
   2216	{
   2217		hc.param = ((u64)kvm_rdx_read(vcpu) << 32) |
   2218			    (kvm_rax_read(vcpu) & 0xffffffff);
   2219		hc.ingpa = ((u64)kvm_rbx_read(vcpu) << 32) |
   2220			    (kvm_rcx_read(vcpu) & 0xffffffff);
   2221		hc.outgpa = ((u64)kvm_rdi_read(vcpu) << 32) |
   2222			     (kvm_rsi_read(vcpu) & 0xffffffff);
   2223	}
   2224
   2225	hc.code = hc.param & 0xffff;
   2226	hc.var_cnt = (hc.param & HV_HYPERCALL_VARHEAD_MASK) >> HV_HYPERCALL_VARHEAD_OFFSET;
   2227	hc.fast = !!(hc.param & HV_HYPERCALL_FAST_BIT);
   2228	hc.rep_cnt = (hc.param >> HV_HYPERCALL_REP_COMP_OFFSET) & 0xfff;
   2229	hc.rep_idx = (hc.param >> HV_HYPERCALL_REP_START_OFFSET) & 0xfff;
   2230	hc.rep = !!(hc.rep_cnt || hc.rep_idx);
   2231
   2232	trace_kvm_hv_hypercall(hc.code, hc.fast, hc.var_cnt, hc.rep_cnt,
   2233			       hc.rep_idx, hc.ingpa, hc.outgpa);
   2234
   2235	if (unlikely(!hv_check_hypercall_access(hv_vcpu, hc.code))) {
   2236		ret = HV_STATUS_ACCESS_DENIED;
   2237		goto hypercall_complete;
   2238	}
   2239
   2240	if (unlikely(hc.param & HV_HYPERCALL_RSVD_MASK)) {
   2241		ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
   2242		goto hypercall_complete;
   2243	}
   2244
   2245	if (hc.fast && is_xmm_fast_hypercall(&hc)) {
   2246		if (unlikely(hv_vcpu->enforce_cpuid &&
   2247			     !(hv_vcpu->cpuid_cache.features_edx &
   2248			       HV_X64_HYPERCALL_XMM_INPUT_AVAILABLE))) {
   2249			kvm_queue_exception(vcpu, UD_VECTOR);
   2250			return 1;
   2251		}
   2252
   2253		kvm_hv_hypercall_read_xmm(&hc);
   2254	}
   2255
   2256	switch (hc.code) {
   2257	case HVCALL_NOTIFY_LONG_SPIN_WAIT:
   2258		if (unlikely(hc.rep || hc.var_cnt)) {
   2259			ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
   2260			break;
   2261		}
   2262		kvm_vcpu_on_spin(vcpu, true);
   2263		break;
   2264	case HVCALL_SIGNAL_EVENT:
   2265		if (unlikely(hc.rep || hc.var_cnt)) {
   2266			ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
   2267			break;
   2268		}
   2269		ret = kvm_hvcall_signal_event(vcpu, &hc);
   2270		if (ret != HV_STATUS_INVALID_PORT_ID)
   2271			break;
   2272		fallthrough;	/* maybe userspace knows this conn_id */
   2273	case HVCALL_POST_MESSAGE:
   2274		/* don't bother userspace if it has no way to handle it */
   2275		if (unlikely(hc.rep || hc.var_cnt || !to_hv_synic(vcpu)->active)) {
   2276			ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
   2277			break;
   2278		}
   2279		vcpu->run->exit_reason = KVM_EXIT_HYPERV;
   2280		vcpu->run->hyperv.type = KVM_EXIT_HYPERV_HCALL;
   2281		vcpu->run->hyperv.u.hcall.input = hc.param;
   2282		vcpu->run->hyperv.u.hcall.params[0] = hc.ingpa;
   2283		vcpu->run->hyperv.u.hcall.params[1] = hc.outgpa;
   2284		vcpu->arch.complete_userspace_io =
   2285				kvm_hv_hypercall_complete_userspace;
   2286		return 0;
   2287	case HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST:
   2288		if (unlikely(hc.var_cnt)) {
   2289			ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
   2290			break;
   2291		}
   2292		fallthrough;
   2293	case HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST_EX:
   2294		if (unlikely(!hc.rep_cnt || hc.rep_idx)) {
   2295			ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
   2296			break;
   2297		}
   2298		ret = kvm_hv_flush_tlb(vcpu, &hc);
   2299		break;
   2300	case HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE:
   2301		if (unlikely(hc.var_cnt)) {
   2302			ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
   2303			break;
   2304		}
   2305		fallthrough;
   2306	case HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE_EX:
   2307		if (unlikely(hc.rep)) {
   2308			ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
   2309			break;
   2310		}
   2311		ret = kvm_hv_flush_tlb(vcpu, &hc);
   2312		break;
   2313	case HVCALL_SEND_IPI:
   2314		if (unlikely(hc.var_cnt)) {
   2315			ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
   2316			break;
   2317		}
   2318		fallthrough;
   2319	case HVCALL_SEND_IPI_EX:
   2320		if (unlikely(hc.rep)) {
   2321			ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
   2322			break;
   2323		}
   2324		ret = kvm_hv_send_ipi(vcpu, &hc);
   2325		break;
   2326	case HVCALL_POST_DEBUG_DATA:
   2327	case HVCALL_RETRIEVE_DEBUG_DATA:
   2328		if (unlikely(hc.fast)) {
   2329			ret = HV_STATUS_INVALID_PARAMETER;
   2330			break;
   2331		}
   2332		fallthrough;
   2333	case HVCALL_RESET_DEBUG_SESSION: {
   2334		struct kvm_hv_syndbg *syndbg = to_hv_syndbg(vcpu);
   2335
   2336		if (!kvm_hv_is_syndbg_enabled(vcpu)) {
   2337			ret = HV_STATUS_INVALID_HYPERCALL_CODE;
   2338			break;
   2339		}
   2340
   2341		if (!(syndbg->options & HV_X64_SYNDBG_OPTION_USE_HCALLS)) {
   2342			ret = HV_STATUS_OPERATION_DENIED;
   2343			break;
   2344		}
   2345		vcpu->run->exit_reason = KVM_EXIT_HYPERV;
   2346		vcpu->run->hyperv.type = KVM_EXIT_HYPERV_HCALL;
   2347		vcpu->run->hyperv.u.hcall.input = hc.param;
   2348		vcpu->run->hyperv.u.hcall.params[0] = hc.ingpa;
   2349		vcpu->run->hyperv.u.hcall.params[1] = hc.outgpa;
   2350		vcpu->arch.complete_userspace_io =
   2351				kvm_hv_hypercall_complete_userspace;
   2352		return 0;
   2353	}
   2354	default:
   2355		ret = HV_STATUS_INVALID_HYPERCALL_CODE;
   2356		break;
   2357	}
   2358
   2359hypercall_complete:
   2360	return kvm_hv_hypercall_complete(vcpu, ret);
   2361}
   2362
   2363void kvm_hv_init_vm(struct kvm *kvm)
   2364{
   2365	struct kvm_hv *hv = to_kvm_hv(kvm);
   2366
   2367	mutex_init(&hv->hv_lock);
   2368	idr_init(&hv->conn_to_evt);
   2369}
   2370
   2371void kvm_hv_destroy_vm(struct kvm *kvm)
   2372{
   2373	struct kvm_hv *hv = to_kvm_hv(kvm);
   2374	struct eventfd_ctx *eventfd;
   2375	int i;
   2376
   2377	idr_for_each_entry(&hv->conn_to_evt, eventfd, i)
   2378		eventfd_ctx_put(eventfd);
   2379	idr_destroy(&hv->conn_to_evt);
   2380}
   2381
   2382static int kvm_hv_eventfd_assign(struct kvm *kvm, u32 conn_id, int fd)
   2383{
   2384	struct kvm_hv *hv = to_kvm_hv(kvm);
   2385	struct eventfd_ctx *eventfd;
   2386	int ret;
   2387
   2388	eventfd = eventfd_ctx_fdget(fd);
   2389	if (IS_ERR(eventfd))
   2390		return PTR_ERR(eventfd);
   2391
   2392	mutex_lock(&hv->hv_lock);
   2393	ret = idr_alloc(&hv->conn_to_evt, eventfd, conn_id, conn_id + 1,
   2394			GFP_KERNEL_ACCOUNT);
   2395	mutex_unlock(&hv->hv_lock);
   2396
   2397	if (ret >= 0)
   2398		return 0;
   2399
   2400	if (ret == -ENOSPC)
   2401		ret = -EEXIST;
   2402	eventfd_ctx_put(eventfd);
   2403	return ret;
   2404}
   2405
   2406static int kvm_hv_eventfd_deassign(struct kvm *kvm, u32 conn_id)
   2407{
   2408	struct kvm_hv *hv = to_kvm_hv(kvm);
   2409	struct eventfd_ctx *eventfd;
   2410
   2411	mutex_lock(&hv->hv_lock);
   2412	eventfd = idr_remove(&hv->conn_to_evt, conn_id);
   2413	mutex_unlock(&hv->hv_lock);
   2414
   2415	if (!eventfd)
   2416		return -ENOENT;
   2417
   2418	synchronize_srcu(&kvm->srcu);
   2419	eventfd_ctx_put(eventfd);
   2420	return 0;
   2421}
   2422
   2423int kvm_vm_ioctl_hv_eventfd(struct kvm *kvm, struct kvm_hyperv_eventfd *args)
   2424{
   2425	if ((args->flags & ~KVM_HYPERV_EVENTFD_DEASSIGN) ||
   2426	    (args->conn_id & ~KVM_HYPERV_CONN_ID_MASK))
   2427		return -EINVAL;
   2428
   2429	if (args->flags == KVM_HYPERV_EVENTFD_DEASSIGN)
   2430		return kvm_hv_eventfd_deassign(kvm, args->conn_id);
   2431	return kvm_hv_eventfd_assign(kvm, args->conn_id, args->fd);
   2432}
   2433
   2434int kvm_get_hv_cpuid(struct kvm_vcpu *vcpu, struct kvm_cpuid2 *cpuid,
   2435		     struct kvm_cpuid_entry2 __user *entries)
   2436{
   2437	uint16_t evmcs_ver = 0;
   2438	struct kvm_cpuid_entry2 cpuid_entries[] = {
   2439		{ .function = HYPERV_CPUID_VENDOR_AND_MAX_FUNCTIONS },
   2440		{ .function = HYPERV_CPUID_INTERFACE },
   2441		{ .function = HYPERV_CPUID_VERSION },
   2442		{ .function = HYPERV_CPUID_FEATURES },
   2443		{ .function = HYPERV_CPUID_ENLIGHTMENT_INFO },
   2444		{ .function = HYPERV_CPUID_IMPLEMENT_LIMITS },
   2445		{ .function = HYPERV_CPUID_SYNDBG_VENDOR_AND_MAX_FUNCTIONS },
   2446		{ .function = HYPERV_CPUID_SYNDBG_INTERFACE },
   2447		{ .function = HYPERV_CPUID_SYNDBG_PLATFORM_CAPABILITIES	},
   2448		{ .function = HYPERV_CPUID_NESTED_FEATURES },
   2449	};
   2450	int i, nent = ARRAY_SIZE(cpuid_entries);
   2451
   2452	if (kvm_x86_ops.nested_ops->get_evmcs_version)
   2453		evmcs_ver = kvm_x86_ops.nested_ops->get_evmcs_version(vcpu);
   2454
   2455	if (cpuid->nent < nent)
   2456		return -E2BIG;
   2457
   2458	if (cpuid->nent > nent)
   2459		cpuid->nent = nent;
   2460
   2461	for (i = 0; i < nent; i++) {
   2462		struct kvm_cpuid_entry2 *ent = &cpuid_entries[i];
   2463		u32 signature[3];
   2464
   2465		switch (ent->function) {
   2466		case HYPERV_CPUID_VENDOR_AND_MAX_FUNCTIONS:
   2467			memcpy(signature, "Linux KVM Hv", 12);
   2468
   2469			ent->eax = HYPERV_CPUID_SYNDBG_PLATFORM_CAPABILITIES;
   2470			ent->ebx = signature[0];
   2471			ent->ecx = signature[1];
   2472			ent->edx = signature[2];
   2473			break;
   2474
   2475		case HYPERV_CPUID_INTERFACE:
   2476			ent->eax = HYPERV_CPUID_SIGNATURE_EAX;
   2477			break;
   2478
   2479		case HYPERV_CPUID_VERSION:
   2480			/*
   2481			 * We implement some Hyper-V 2016 functions so let's use
   2482			 * this version.
   2483			 */
   2484			ent->eax = 0x00003839;
   2485			ent->ebx = 0x000A0000;
   2486			break;
   2487
   2488		case HYPERV_CPUID_FEATURES:
   2489			ent->eax |= HV_MSR_VP_RUNTIME_AVAILABLE;
   2490			ent->eax |= HV_MSR_TIME_REF_COUNT_AVAILABLE;
   2491			ent->eax |= HV_MSR_SYNIC_AVAILABLE;
   2492			ent->eax |= HV_MSR_SYNTIMER_AVAILABLE;
   2493			ent->eax |= HV_MSR_APIC_ACCESS_AVAILABLE;
   2494			ent->eax |= HV_MSR_HYPERCALL_AVAILABLE;
   2495			ent->eax |= HV_MSR_VP_INDEX_AVAILABLE;
   2496			ent->eax |= HV_MSR_RESET_AVAILABLE;
   2497			ent->eax |= HV_MSR_REFERENCE_TSC_AVAILABLE;
   2498			ent->eax |= HV_ACCESS_FREQUENCY_MSRS;
   2499			ent->eax |= HV_ACCESS_REENLIGHTENMENT;
   2500
   2501			ent->ebx |= HV_POST_MESSAGES;
   2502			ent->ebx |= HV_SIGNAL_EVENTS;
   2503
   2504			ent->edx |= HV_X64_HYPERCALL_XMM_INPUT_AVAILABLE;
   2505			ent->edx |= HV_FEATURE_FREQUENCY_MSRS_AVAILABLE;
   2506			ent->edx |= HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE;
   2507
   2508			ent->ebx |= HV_DEBUGGING;
   2509			ent->edx |= HV_X64_GUEST_DEBUGGING_AVAILABLE;
   2510			ent->edx |= HV_FEATURE_DEBUG_MSRS_AVAILABLE;
   2511
   2512			/*
   2513			 * Direct Synthetic timers only make sense with in-kernel
   2514			 * LAPIC
   2515			 */
   2516			if (!vcpu || lapic_in_kernel(vcpu))
   2517				ent->edx |= HV_STIMER_DIRECT_MODE_AVAILABLE;
   2518
   2519			break;
   2520
   2521		case HYPERV_CPUID_ENLIGHTMENT_INFO:
   2522			ent->eax |= HV_X64_REMOTE_TLB_FLUSH_RECOMMENDED;
   2523			ent->eax |= HV_X64_APIC_ACCESS_RECOMMENDED;
   2524			ent->eax |= HV_X64_RELAXED_TIMING_RECOMMENDED;
   2525			ent->eax |= HV_X64_CLUSTER_IPI_RECOMMENDED;
   2526			ent->eax |= HV_X64_EX_PROCESSOR_MASKS_RECOMMENDED;
   2527			if (evmcs_ver)
   2528				ent->eax |= HV_X64_ENLIGHTENED_VMCS_RECOMMENDED;
   2529			if (!cpu_smt_possible())
   2530				ent->eax |= HV_X64_NO_NONARCH_CORESHARING;
   2531
   2532			ent->eax |= HV_DEPRECATING_AEOI_RECOMMENDED;
   2533			/*
   2534			 * Default number of spinlock retry attempts, matches
   2535			 * HyperV 2016.
   2536			 */
   2537			ent->ebx = 0x00000FFF;
   2538
   2539			break;
   2540
   2541		case HYPERV_CPUID_IMPLEMENT_LIMITS:
   2542			/* Maximum number of virtual processors */
   2543			ent->eax = KVM_MAX_VCPUS;
   2544			/*
   2545			 * Maximum number of logical processors, matches
   2546			 * HyperV 2016.
   2547			 */
   2548			ent->ebx = 64;
   2549
   2550			break;
   2551
   2552		case HYPERV_CPUID_NESTED_FEATURES:
   2553			ent->eax = evmcs_ver;
   2554			ent->eax |= HV_X64_NESTED_MSR_BITMAP;
   2555
   2556			break;
   2557
   2558		case HYPERV_CPUID_SYNDBG_VENDOR_AND_MAX_FUNCTIONS:
   2559			memcpy(signature, "Linux KVM Hv", 12);
   2560
   2561			ent->eax = 0;
   2562			ent->ebx = signature[0];
   2563			ent->ecx = signature[1];
   2564			ent->edx = signature[2];
   2565			break;
   2566
   2567		case HYPERV_CPUID_SYNDBG_INTERFACE:
   2568			memcpy(signature, "VS#1\0\0\0\0\0\0\0\0", 12);
   2569			ent->eax = signature[0];
   2570			break;
   2571
   2572		case HYPERV_CPUID_SYNDBG_PLATFORM_CAPABILITIES:
   2573			ent->eax |= HV_X64_SYNDBG_CAP_ALLOW_KERNEL_DEBUGGING;
   2574			break;
   2575
   2576		default:
   2577			break;
   2578		}
   2579	}
   2580
   2581	if (copy_to_user(entries, cpuid_entries,
   2582			 nent * sizeof(struct kvm_cpuid_entry2)))
   2583		return -EFAULT;
   2584
   2585	return 0;
   2586}