cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

i8254.c (19015B)


      1/*
      2 * 8253/8254 interval timer emulation
      3 *
      4 * Copyright (c) 2003-2004 Fabrice Bellard
      5 * Copyright (c) 2006 Intel Corporation
      6 * Copyright (c) 2007 Keir Fraser, XenSource Inc
      7 * Copyright (c) 2008 Intel Corporation
      8 * Copyright 2009 Red Hat, Inc. and/or its affiliates.
      9 *
     10 * Permission is hereby granted, free of charge, to any person obtaining a copy
     11 * of this software and associated documentation files (the "Software"), to deal
     12 * in the Software without restriction, including without limitation the rights
     13 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
     14 * copies of the Software, and to permit persons to whom the Software is
     15 * furnished to do so, subject to the following conditions:
     16 *
     17 * The above copyright notice and this permission notice shall be included in
     18 * all copies or substantial portions of the Software.
     19 *
     20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
     21 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
     22 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
     23 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
     24 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
     25 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
     26 * THE SOFTWARE.
     27 *
     28 * Authors:
     29 *   Sheng Yang <sheng.yang@intel.com>
     30 *   Based on QEMU and Xen.
     31 */
     32
     33#define pr_fmt(fmt) "pit: " fmt
     34
     35#include <linux/kvm_host.h>
     36#include <linux/slab.h>
     37
     38#include "ioapic.h"
     39#include "irq.h"
     40#include "i8254.h"
     41#include "x86.h"
     42
     43#ifndef CONFIG_X86_64
     44#define mod_64(x, y) ((x) - (y) * div64_u64(x, y))
     45#else
     46#define mod_64(x, y) ((x) % (y))
     47#endif
     48
     49#define RW_STATE_LSB 1
     50#define RW_STATE_MSB 2
     51#define RW_STATE_WORD0 3
     52#define RW_STATE_WORD1 4
     53
     54static void pit_set_gate(struct kvm_pit *pit, int channel, u32 val)
     55{
     56	struct kvm_kpit_channel_state *c = &pit->pit_state.channels[channel];
     57
     58	switch (c->mode) {
     59	default:
     60	case 0:
     61	case 4:
     62		/* XXX: just disable/enable counting */
     63		break;
     64	case 1:
     65	case 2:
     66	case 3:
     67	case 5:
     68		/* Restart counting on rising edge. */
     69		if (c->gate < val)
     70			c->count_load_time = ktime_get();
     71		break;
     72	}
     73
     74	c->gate = val;
     75}
     76
     77static int pit_get_gate(struct kvm_pit *pit, int channel)
     78{
     79	return pit->pit_state.channels[channel].gate;
     80}
     81
     82static s64 __kpit_elapsed(struct kvm_pit *pit)
     83{
     84	s64 elapsed;
     85	ktime_t remaining;
     86	struct kvm_kpit_state *ps = &pit->pit_state;
     87
     88	if (!ps->period)
     89		return 0;
     90
     91	/*
     92	 * The Counter does not stop when it reaches zero. In
     93	 * Modes 0, 1, 4, and 5 the Counter ``wraps around'' to
     94	 * the highest count, either FFFF hex for binary counting
     95	 * or 9999 for BCD counting, and continues counting.
     96	 * Modes 2 and 3 are periodic; the Counter reloads
     97	 * itself with the initial count and continues counting
     98	 * from there.
     99	 */
    100	remaining = hrtimer_get_remaining(&ps->timer);
    101	elapsed = ps->period - ktime_to_ns(remaining);
    102
    103	return elapsed;
    104}
    105
    106static s64 kpit_elapsed(struct kvm_pit *pit, struct kvm_kpit_channel_state *c,
    107			int channel)
    108{
    109	if (channel == 0)
    110		return __kpit_elapsed(pit);
    111
    112	return ktime_to_ns(ktime_sub(ktime_get(), c->count_load_time));
    113}
    114
    115static int pit_get_count(struct kvm_pit *pit, int channel)
    116{
    117	struct kvm_kpit_channel_state *c = &pit->pit_state.channels[channel];
    118	s64 d, t;
    119	int counter;
    120
    121	t = kpit_elapsed(pit, c, channel);
    122	d = mul_u64_u32_div(t, KVM_PIT_FREQ, NSEC_PER_SEC);
    123
    124	switch (c->mode) {
    125	case 0:
    126	case 1:
    127	case 4:
    128	case 5:
    129		counter = (c->count - d) & 0xffff;
    130		break;
    131	case 3:
    132		/* XXX: may be incorrect for odd counts */
    133		counter = c->count - (mod_64((2 * d), c->count));
    134		break;
    135	default:
    136		counter = c->count - mod_64(d, c->count);
    137		break;
    138	}
    139	return counter;
    140}
    141
    142static int pit_get_out(struct kvm_pit *pit, int channel)
    143{
    144	struct kvm_kpit_channel_state *c = &pit->pit_state.channels[channel];
    145	s64 d, t;
    146	int out;
    147
    148	t = kpit_elapsed(pit, c, channel);
    149	d = mul_u64_u32_div(t, KVM_PIT_FREQ, NSEC_PER_SEC);
    150
    151	switch (c->mode) {
    152	default:
    153	case 0:
    154		out = (d >= c->count);
    155		break;
    156	case 1:
    157		out = (d < c->count);
    158		break;
    159	case 2:
    160		out = ((mod_64(d, c->count) == 0) && (d != 0));
    161		break;
    162	case 3:
    163		out = (mod_64(d, c->count) < ((c->count + 1) >> 1));
    164		break;
    165	case 4:
    166	case 5:
    167		out = (d == c->count);
    168		break;
    169	}
    170
    171	return out;
    172}
    173
    174static void pit_latch_count(struct kvm_pit *pit, int channel)
    175{
    176	struct kvm_kpit_channel_state *c = &pit->pit_state.channels[channel];
    177
    178	if (!c->count_latched) {
    179		c->latched_count = pit_get_count(pit, channel);
    180		c->count_latched = c->rw_mode;
    181	}
    182}
    183
    184static void pit_latch_status(struct kvm_pit *pit, int channel)
    185{
    186	struct kvm_kpit_channel_state *c = &pit->pit_state.channels[channel];
    187
    188	if (!c->status_latched) {
    189		/* TODO: Return NULL COUNT (bit 6). */
    190		c->status = ((pit_get_out(pit, channel) << 7) |
    191				(c->rw_mode << 4) |
    192				(c->mode << 1) |
    193				c->bcd);
    194		c->status_latched = 1;
    195	}
    196}
    197
    198static inline struct kvm_pit *pit_state_to_pit(struct kvm_kpit_state *ps)
    199{
    200	return container_of(ps, struct kvm_pit, pit_state);
    201}
    202
    203static void kvm_pit_ack_irq(struct kvm_irq_ack_notifier *kian)
    204{
    205	struct kvm_kpit_state *ps = container_of(kian, struct kvm_kpit_state,
    206						 irq_ack_notifier);
    207	struct kvm_pit *pit = pit_state_to_pit(ps);
    208
    209	atomic_set(&ps->irq_ack, 1);
    210	/* irq_ack should be set before pending is read.  Order accesses with
    211	 * inc(pending) in pit_timer_fn and xchg(irq_ack, 0) in pit_do_work.
    212	 */
    213	smp_mb();
    214	if (atomic_dec_if_positive(&ps->pending) > 0)
    215		kthread_queue_work(pit->worker, &pit->expired);
    216}
    217
    218void __kvm_migrate_pit_timer(struct kvm_vcpu *vcpu)
    219{
    220	struct kvm_pit *pit = vcpu->kvm->arch.vpit;
    221	struct hrtimer *timer;
    222
    223	/* Somewhat arbitrarily make vcpu0 the owner of the PIT. */
    224	if (vcpu->vcpu_id || !pit)
    225		return;
    226
    227	timer = &pit->pit_state.timer;
    228	mutex_lock(&pit->pit_state.lock);
    229	if (hrtimer_cancel(timer))
    230		hrtimer_start_expires(timer, HRTIMER_MODE_ABS);
    231	mutex_unlock(&pit->pit_state.lock);
    232}
    233
    234static void destroy_pit_timer(struct kvm_pit *pit)
    235{
    236	hrtimer_cancel(&pit->pit_state.timer);
    237	kthread_flush_work(&pit->expired);
    238}
    239
    240static void pit_do_work(struct kthread_work *work)
    241{
    242	struct kvm_pit *pit = container_of(work, struct kvm_pit, expired);
    243	struct kvm *kvm = pit->kvm;
    244	struct kvm_vcpu *vcpu;
    245	unsigned long i;
    246	struct kvm_kpit_state *ps = &pit->pit_state;
    247
    248	if (atomic_read(&ps->reinject) && !atomic_xchg(&ps->irq_ack, 0))
    249		return;
    250
    251	kvm_set_irq(kvm, pit->irq_source_id, 0, 1, false);
    252	kvm_set_irq(kvm, pit->irq_source_id, 0, 0, false);
    253
    254	/*
    255	 * Provides NMI watchdog support via Virtual Wire mode.
    256	 * The route is: PIT -> LVT0 in NMI mode.
    257	 *
    258	 * Note: Our Virtual Wire implementation does not follow
    259	 * the MP specification.  We propagate a PIT interrupt to all
    260	 * VCPUs and only when LVT0 is in NMI mode.  The interrupt can
    261	 * also be simultaneously delivered through PIC and IOAPIC.
    262	 */
    263	if (atomic_read(&kvm->arch.vapics_in_nmi_mode) > 0)
    264		kvm_for_each_vcpu(i, vcpu, kvm)
    265			kvm_apic_nmi_wd_deliver(vcpu);
    266}
    267
    268static enum hrtimer_restart pit_timer_fn(struct hrtimer *data)
    269{
    270	struct kvm_kpit_state *ps = container_of(data, struct kvm_kpit_state, timer);
    271	struct kvm_pit *pt = pit_state_to_pit(ps);
    272
    273	if (atomic_read(&ps->reinject))
    274		atomic_inc(&ps->pending);
    275
    276	kthread_queue_work(pt->worker, &pt->expired);
    277
    278	if (ps->is_periodic) {
    279		hrtimer_add_expires_ns(&ps->timer, ps->period);
    280		return HRTIMER_RESTART;
    281	} else
    282		return HRTIMER_NORESTART;
    283}
    284
    285static inline void kvm_pit_reset_reinject(struct kvm_pit *pit)
    286{
    287	atomic_set(&pit->pit_state.pending, 0);
    288	atomic_set(&pit->pit_state.irq_ack, 1);
    289}
    290
    291void kvm_pit_set_reinject(struct kvm_pit *pit, bool reinject)
    292{
    293	struct kvm_kpit_state *ps = &pit->pit_state;
    294	struct kvm *kvm = pit->kvm;
    295
    296	if (atomic_read(&ps->reinject) == reinject)
    297		return;
    298
    299	/*
    300	 * AMD SVM AVIC accelerates EOI write and does not trap.
    301	 * This cause in-kernel PIT re-inject mode to fail
    302	 * since it checks ps->irq_ack before kvm_set_irq()
    303	 * and relies on the ack notifier to timely queue
    304	 * the pt->worker work iterm and reinject the missed tick.
    305	 * So, deactivate APICv when PIT is in reinject mode.
    306	 */
    307	if (reinject) {
    308		kvm_set_apicv_inhibit(kvm, APICV_INHIBIT_REASON_PIT_REINJ);
    309		/* The initial state is preserved while ps->reinject == 0. */
    310		kvm_pit_reset_reinject(pit);
    311		kvm_register_irq_ack_notifier(kvm, &ps->irq_ack_notifier);
    312		kvm_register_irq_mask_notifier(kvm, 0, &pit->mask_notifier);
    313	} else {
    314		kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_PIT_REINJ);
    315		kvm_unregister_irq_ack_notifier(kvm, &ps->irq_ack_notifier);
    316		kvm_unregister_irq_mask_notifier(kvm, 0, &pit->mask_notifier);
    317	}
    318
    319	atomic_set(&ps->reinject, reinject);
    320}
    321
    322static void create_pit_timer(struct kvm_pit *pit, u32 val, int is_period)
    323{
    324	struct kvm_kpit_state *ps = &pit->pit_state;
    325	struct kvm *kvm = pit->kvm;
    326	s64 interval;
    327
    328	if (!ioapic_in_kernel(kvm) ||
    329	    ps->flags & KVM_PIT_FLAGS_HPET_LEGACY)
    330		return;
    331
    332	interval = mul_u64_u32_div(val, NSEC_PER_SEC, KVM_PIT_FREQ);
    333
    334	pr_debug("create pit timer, interval is %llu nsec\n", interval);
    335
    336	/* TODO The new value only affected after the retriggered */
    337	hrtimer_cancel(&ps->timer);
    338	kthread_flush_work(&pit->expired);
    339	ps->period = interval;
    340	ps->is_periodic = is_period;
    341
    342	kvm_pit_reset_reinject(pit);
    343
    344	/*
    345	 * Do not allow the guest to program periodic timers with small
    346	 * interval, since the hrtimers are not throttled by the host
    347	 * scheduler.
    348	 */
    349	if (ps->is_periodic) {
    350		s64 min_period = min_timer_period_us * 1000LL;
    351
    352		if (ps->period < min_period) {
    353			pr_info_ratelimited(
    354			    "kvm: requested %lld ns "
    355			    "i8254 timer period limited to %lld ns\n",
    356			    ps->period, min_period);
    357			ps->period = min_period;
    358		}
    359	}
    360
    361	hrtimer_start(&ps->timer, ktime_add_ns(ktime_get(), interval),
    362		      HRTIMER_MODE_ABS);
    363}
    364
    365static void pit_load_count(struct kvm_pit *pit, int channel, u32 val)
    366{
    367	struct kvm_kpit_state *ps = &pit->pit_state;
    368
    369	pr_debug("load_count val is %u, channel is %d\n", val, channel);
    370
    371	/*
    372	 * The largest possible initial count is 0; this is equivalent
    373	 * to 216 for binary counting and 104 for BCD counting.
    374	 */
    375	if (val == 0)
    376		val = 0x10000;
    377
    378	ps->channels[channel].count = val;
    379
    380	if (channel != 0) {
    381		ps->channels[channel].count_load_time = ktime_get();
    382		return;
    383	}
    384
    385	/* Two types of timer
    386	 * mode 1 is one shot, mode 2 is period, otherwise del timer */
    387	switch (ps->channels[0].mode) {
    388	case 0:
    389	case 1:
    390        /* FIXME: enhance mode 4 precision */
    391	case 4:
    392		create_pit_timer(pit, val, 0);
    393		break;
    394	case 2:
    395	case 3:
    396		create_pit_timer(pit, val, 1);
    397		break;
    398	default:
    399		destroy_pit_timer(pit);
    400	}
    401}
    402
    403void kvm_pit_load_count(struct kvm_pit *pit, int channel, u32 val,
    404		int hpet_legacy_start)
    405{
    406	u8 saved_mode;
    407
    408	WARN_ON_ONCE(!mutex_is_locked(&pit->pit_state.lock));
    409
    410	if (hpet_legacy_start) {
    411		/* save existing mode for later reenablement */
    412		WARN_ON(channel != 0);
    413		saved_mode = pit->pit_state.channels[0].mode;
    414		pit->pit_state.channels[0].mode = 0xff; /* disable timer */
    415		pit_load_count(pit, channel, val);
    416		pit->pit_state.channels[0].mode = saved_mode;
    417	} else {
    418		pit_load_count(pit, channel, val);
    419	}
    420}
    421
    422static inline struct kvm_pit *dev_to_pit(struct kvm_io_device *dev)
    423{
    424	return container_of(dev, struct kvm_pit, dev);
    425}
    426
    427static inline struct kvm_pit *speaker_to_pit(struct kvm_io_device *dev)
    428{
    429	return container_of(dev, struct kvm_pit, speaker_dev);
    430}
    431
    432static inline int pit_in_range(gpa_t addr)
    433{
    434	return ((addr >= KVM_PIT_BASE_ADDRESS) &&
    435		(addr < KVM_PIT_BASE_ADDRESS + KVM_PIT_MEM_LENGTH));
    436}
    437
    438static int pit_ioport_write(struct kvm_vcpu *vcpu,
    439				struct kvm_io_device *this,
    440			    gpa_t addr, int len, const void *data)
    441{
    442	struct kvm_pit *pit = dev_to_pit(this);
    443	struct kvm_kpit_state *pit_state = &pit->pit_state;
    444	int channel, access;
    445	struct kvm_kpit_channel_state *s;
    446	u32 val = *(u32 *) data;
    447	if (!pit_in_range(addr))
    448		return -EOPNOTSUPP;
    449
    450	val  &= 0xff;
    451	addr &= KVM_PIT_CHANNEL_MASK;
    452
    453	mutex_lock(&pit_state->lock);
    454
    455	if (val != 0)
    456		pr_debug("write addr is 0x%x, len is %d, val is 0x%x\n",
    457			 (unsigned int)addr, len, val);
    458
    459	if (addr == 3) {
    460		channel = val >> 6;
    461		if (channel == 3) {
    462			/* Read-Back Command. */
    463			for (channel = 0; channel < 3; channel++) {
    464				if (val & (2 << channel)) {
    465					if (!(val & 0x20))
    466						pit_latch_count(pit, channel);
    467					if (!(val & 0x10))
    468						pit_latch_status(pit, channel);
    469				}
    470			}
    471		} else {
    472			/* Select Counter <channel>. */
    473			s = &pit_state->channels[channel];
    474			access = (val >> 4) & KVM_PIT_CHANNEL_MASK;
    475			if (access == 0) {
    476				pit_latch_count(pit, channel);
    477			} else {
    478				s->rw_mode = access;
    479				s->read_state = access;
    480				s->write_state = access;
    481				s->mode = (val >> 1) & 7;
    482				if (s->mode > 5)
    483					s->mode -= 4;
    484				s->bcd = val & 1;
    485			}
    486		}
    487	} else {
    488		/* Write Count. */
    489		s = &pit_state->channels[addr];
    490		switch (s->write_state) {
    491		default:
    492		case RW_STATE_LSB:
    493			pit_load_count(pit, addr, val);
    494			break;
    495		case RW_STATE_MSB:
    496			pit_load_count(pit, addr, val << 8);
    497			break;
    498		case RW_STATE_WORD0:
    499			s->write_latch = val;
    500			s->write_state = RW_STATE_WORD1;
    501			break;
    502		case RW_STATE_WORD1:
    503			pit_load_count(pit, addr, s->write_latch | (val << 8));
    504			s->write_state = RW_STATE_WORD0;
    505			break;
    506		}
    507	}
    508
    509	mutex_unlock(&pit_state->lock);
    510	return 0;
    511}
    512
    513static int pit_ioport_read(struct kvm_vcpu *vcpu,
    514			   struct kvm_io_device *this,
    515			   gpa_t addr, int len, void *data)
    516{
    517	struct kvm_pit *pit = dev_to_pit(this);
    518	struct kvm_kpit_state *pit_state = &pit->pit_state;
    519	int ret, count;
    520	struct kvm_kpit_channel_state *s;
    521	if (!pit_in_range(addr))
    522		return -EOPNOTSUPP;
    523
    524	addr &= KVM_PIT_CHANNEL_MASK;
    525	if (addr == 3)
    526		return 0;
    527
    528	s = &pit_state->channels[addr];
    529
    530	mutex_lock(&pit_state->lock);
    531
    532	if (s->status_latched) {
    533		s->status_latched = 0;
    534		ret = s->status;
    535	} else if (s->count_latched) {
    536		switch (s->count_latched) {
    537		default:
    538		case RW_STATE_LSB:
    539			ret = s->latched_count & 0xff;
    540			s->count_latched = 0;
    541			break;
    542		case RW_STATE_MSB:
    543			ret = s->latched_count >> 8;
    544			s->count_latched = 0;
    545			break;
    546		case RW_STATE_WORD0:
    547			ret = s->latched_count & 0xff;
    548			s->count_latched = RW_STATE_MSB;
    549			break;
    550		}
    551	} else {
    552		switch (s->read_state) {
    553		default:
    554		case RW_STATE_LSB:
    555			count = pit_get_count(pit, addr);
    556			ret = count & 0xff;
    557			break;
    558		case RW_STATE_MSB:
    559			count = pit_get_count(pit, addr);
    560			ret = (count >> 8) & 0xff;
    561			break;
    562		case RW_STATE_WORD0:
    563			count = pit_get_count(pit, addr);
    564			ret = count & 0xff;
    565			s->read_state = RW_STATE_WORD1;
    566			break;
    567		case RW_STATE_WORD1:
    568			count = pit_get_count(pit, addr);
    569			ret = (count >> 8) & 0xff;
    570			s->read_state = RW_STATE_WORD0;
    571			break;
    572		}
    573	}
    574
    575	if (len > sizeof(ret))
    576		len = sizeof(ret);
    577	memcpy(data, (char *)&ret, len);
    578
    579	mutex_unlock(&pit_state->lock);
    580	return 0;
    581}
    582
    583static int speaker_ioport_write(struct kvm_vcpu *vcpu,
    584				struct kvm_io_device *this,
    585				gpa_t addr, int len, const void *data)
    586{
    587	struct kvm_pit *pit = speaker_to_pit(this);
    588	struct kvm_kpit_state *pit_state = &pit->pit_state;
    589	u32 val = *(u32 *) data;
    590	if (addr != KVM_SPEAKER_BASE_ADDRESS)
    591		return -EOPNOTSUPP;
    592
    593	mutex_lock(&pit_state->lock);
    594	pit_state->speaker_data_on = (val >> 1) & 1;
    595	pit_set_gate(pit, 2, val & 1);
    596	mutex_unlock(&pit_state->lock);
    597	return 0;
    598}
    599
    600static int speaker_ioport_read(struct kvm_vcpu *vcpu,
    601				   struct kvm_io_device *this,
    602				   gpa_t addr, int len, void *data)
    603{
    604	struct kvm_pit *pit = speaker_to_pit(this);
    605	struct kvm_kpit_state *pit_state = &pit->pit_state;
    606	unsigned int refresh_clock;
    607	int ret;
    608	if (addr != KVM_SPEAKER_BASE_ADDRESS)
    609		return -EOPNOTSUPP;
    610
    611	/* Refresh clock toggles at about 15us. We approximate as 2^14ns. */
    612	refresh_clock = ((unsigned int)ktime_to_ns(ktime_get()) >> 14) & 1;
    613
    614	mutex_lock(&pit_state->lock);
    615	ret = ((pit_state->speaker_data_on << 1) | pit_get_gate(pit, 2) |
    616		(pit_get_out(pit, 2) << 5) | (refresh_clock << 4));
    617	if (len > sizeof(ret))
    618		len = sizeof(ret);
    619	memcpy(data, (char *)&ret, len);
    620	mutex_unlock(&pit_state->lock);
    621	return 0;
    622}
    623
    624static void kvm_pit_reset(struct kvm_pit *pit)
    625{
    626	int i;
    627	struct kvm_kpit_channel_state *c;
    628
    629	pit->pit_state.flags = 0;
    630	for (i = 0; i < 3; i++) {
    631		c = &pit->pit_state.channels[i];
    632		c->mode = 0xff;
    633		c->gate = (i != 2);
    634		pit_load_count(pit, i, 0);
    635	}
    636
    637	kvm_pit_reset_reinject(pit);
    638}
    639
    640static void pit_mask_notifer(struct kvm_irq_mask_notifier *kimn, bool mask)
    641{
    642	struct kvm_pit *pit = container_of(kimn, struct kvm_pit, mask_notifier);
    643
    644	if (!mask)
    645		kvm_pit_reset_reinject(pit);
    646}
    647
    648static const struct kvm_io_device_ops pit_dev_ops = {
    649	.read     = pit_ioport_read,
    650	.write    = pit_ioport_write,
    651};
    652
    653static const struct kvm_io_device_ops speaker_dev_ops = {
    654	.read     = speaker_ioport_read,
    655	.write    = speaker_ioport_write,
    656};
    657
    658struct kvm_pit *kvm_create_pit(struct kvm *kvm, u32 flags)
    659{
    660	struct kvm_pit *pit;
    661	struct kvm_kpit_state *pit_state;
    662	struct pid *pid;
    663	pid_t pid_nr;
    664	int ret;
    665
    666	pit = kzalloc(sizeof(struct kvm_pit), GFP_KERNEL_ACCOUNT);
    667	if (!pit)
    668		return NULL;
    669
    670	pit->irq_source_id = kvm_request_irq_source_id(kvm);
    671	if (pit->irq_source_id < 0)
    672		goto fail_request;
    673
    674	mutex_init(&pit->pit_state.lock);
    675
    676	pid = get_pid(task_tgid(current));
    677	pid_nr = pid_vnr(pid);
    678	put_pid(pid);
    679
    680	pit->worker = kthread_create_worker(0, "kvm-pit/%d", pid_nr);
    681	if (IS_ERR(pit->worker))
    682		goto fail_kthread;
    683
    684	kthread_init_work(&pit->expired, pit_do_work);
    685
    686	pit->kvm = kvm;
    687
    688	pit_state = &pit->pit_state;
    689	hrtimer_init(&pit_state->timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
    690	pit_state->timer.function = pit_timer_fn;
    691
    692	pit_state->irq_ack_notifier.gsi = 0;
    693	pit_state->irq_ack_notifier.irq_acked = kvm_pit_ack_irq;
    694	pit->mask_notifier.func = pit_mask_notifer;
    695
    696	kvm_pit_reset(pit);
    697
    698	kvm_pit_set_reinject(pit, true);
    699
    700	mutex_lock(&kvm->slots_lock);
    701	kvm_iodevice_init(&pit->dev, &pit_dev_ops);
    702	ret = kvm_io_bus_register_dev(kvm, KVM_PIO_BUS, KVM_PIT_BASE_ADDRESS,
    703				      KVM_PIT_MEM_LENGTH, &pit->dev);
    704	if (ret < 0)
    705		goto fail_register_pit;
    706
    707	if (flags & KVM_PIT_SPEAKER_DUMMY) {
    708		kvm_iodevice_init(&pit->speaker_dev, &speaker_dev_ops);
    709		ret = kvm_io_bus_register_dev(kvm, KVM_PIO_BUS,
    710					      KVM_SPEAKER_BASE_ADDRESS, 4,
    711					      &pit->speaker_dev);
    712		if (ret < 0)
    713			goto fail_register_speaker;
    714	}
    715	mutex_unlock(&kvm->slots_lock);
    716
    717	return pit;
    718
    719fail_register_speaker:
    720	kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS, &pit->dev);
    721fail_register_pit:
    722	mutex_unlock(&kvm->slots_lock);
    723	kvm_pit_set_reinject(pit, false);
    724	kthread_destroy_worker(pit->worker);
    725fail_kthread:
    726	kvm_free_irq_source_id(kvm, pit->irq_source_id);
    727fail_request:
    728	kfree(pit);
    729	return NULL;
    730}
    731
    732void kvm_free_pit(struct kvm *kvm)
    733{
    734	struct kvm_pit *pit = kvm->arch.vpit;
    735
    736	if (pit) {
    737		mutex_lock(&kvm->slots_lock);
    738		kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS, &pit->dev);
    739		kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS, &pit->speaker_dev);
    740		mutex_unlock(&kvm->slots_lock);
    741		kvm_pit_set_reinject(pit, false);
    742		hrtimer_cancel(&pit->pit_state.timer);
    743		kthread_destroy_worker(pit->worker);
    744		kvm_free_irq_source_id(kvm, pit->irq_source_id);
    745		kfree(pit);
    746	}
    747}