mmu.h (9762B)
1/* SPDX-License-Identifier: GPL-2.0 */ 2#ifndef __KVM_X86_MMU_H 3#define __KVM_X86_MMU_H 4 5#include <linux/kvm_host.h> 6#include "kvm_cache_regs.h" 7#include "cpuid.h" 8 9extern bool __read_mostly enable_mmio_caching; 10 11#define PT64_PT_BITS 9 12#define PT64_ENT_PER_PAGE (1 << PT64_PT_BITS) 13#define PT32_PT_BITS 10 14#define PT32_ENT_PER_PAGE (1 << PT32_PT_BITS) 15 16#define PT_WRITABLE_SHIFT 1 17#define PT_USER_SHIFT 2 18 19#define PT_PRESENT_MASK (1ULL << 0) 20#define PT_WRITABLE_MASK (1ULL << PT_WRITABLE_SHIFT) 21#define PT_USER_MASK (1ULL << PT_USER_SHIFT) 22#define PT_PWT_MASK (1ULL << 3) 23#define PT_PCD_MASK (1ULL << 4) 24#define PT_ACCESSED_SHIFT 5 25#define PT_ACCESSED_MASK (1ULL << PT_ACCESSED_SHIFT) 26#define PT_DIRTY_SHIFT 6 27#define PT_DIRTY_MASK (1ULL << PT_DIRTY_SHIFT) 28#define PT_PAGE_SIZE_SHIFT 7 29#define PT_PAGE_SIZE_MASK (1ULL << PT_PAGE_SIZE_SHIFT) 30#define PT_PAT_MASK (1ULL << 7) 31#define PT_GLOBAL_MASK (1ULL << 8) 32#define PT64_NX_SHIFT 63 33#define PT64_NX_MASK (1ULL << PT64_NX_SHIFT) 34 35#define PT_PAT_SHIFT 7 36#define PT_DIR_PAT_SHIFT 12 37#define PT_DIR_PAT_MASK (1ULL << PT_DIR_PAT_SHIFT) 38 39#define PT32_DIR_PSE36_SIZE 4 40#define PT32_DIR_PSE36_SHIFT 13 41#define PT32_DIR_PSE36_MASK \ 42 (((1ULL << PT32_DIR_PSE36_SIZE) - 1) << PT32_DIR_PSE36_SHIFT) 43 44#define PT64_ROOT_5LEVEL 5 45#define PT64_ROOT_4LEVEL 4 46#define PT32_ROOT_LEVEL 2 47#define PT32E_ROOT_LEVEL 3 48 49#define KVM_MMU_CR4_ROLE_BITS (X86_CR4_PSE | X86_CR4_PAE | X86_CR4_LA57 | \ 50 X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE) 51 52#define KVM_MMU_CR0_ROLE_BITS (X86_CR0_PG | X86_CR0_WP) 53#define KVM_MMU_EFER_ROLE_BITS (EFER_LME | EFER_NX) 54 55static inline u64 cpc_protect_pte(u64 pte, enum kvm_page_track_mode mode) 56{ 57 if (mode == KVM_PAGE_TRACK_WRITE) { 58 pte &= ~PT_WRITABLE_MASK; 59 } else if (mode == KVM_PAGE_TRACK_ACCESS) { 60 pte &= ~PT_PRESENT_MASK; 61 pte &= ~PT_WRITABLE_MASK; 62 pte &= ~PT_USER_MASK; 63 pte |= PT64_NX_MASK; 64 } else if (mode == KVM_PAGE_TRACK_EXEC) { 65 pte |= PT64_NX_MASK; 66 } 67 68 return pte; 69} 70 71static __always_inline u64 rsvd_bits(int s, int e) 72{ 73 BUILD_BUG_ON(__builtin_constant_p(e) && __builtin_constant_p(s) && e < s); 74 75 if (__builtin_constant_p(e)) 76 BUILD_BUG_ON(e > 63); 77 else 78 e &= 63; 79 80 if (e < s) 81 return 0; 82 83 return ((2ULL << (e - s)) - 1) << s; 84} 85 86/* 87 * The number of non-reserved physical address bits irrespective of features 88 * that repurpose legal bits, e.g. MKTME. 89 */ 90extern u8 __read_mostly shadow_phys_bits; 91 92static inline gfn_t kvm_mmu_max_gfn(void) 93{ 94 /* 95 * Note that this uses the host MAXPHYADDR, not the guest's. 96 * EPT/NPT cannot support GPAs that would exceed host.MAXPHYADDR; 97 * assuming KVM is running on bare metal, guest accesses beyond 98 * host.MAXPHYADDR will hit a #PF(RSVD) and never cause a vmexit 99 * (either EPT Violation/Misconfig or #NPF), and so KVM will never 100 * install a SPTE for such addresses. If KVM is running as a VM 101 * itself, on the other hand, it might see a MAXPHYADDR that is less 102 * than hardware's real MAXPHYADDR. Using the host MAXPHYADDR 103 * disallows such SPTEs entirely and simplifies the TDP MMU. 104 */ 105 int max_gpa_bits = likely(tdp_enabled) ? shadow_phys_bits : 52; 106 107 return (1ULL << (max_gpa_bits - PAGE_SHIFT)) - 1; 108} 109 110static inline u8 kvm_get_shadow_phys_bits(void) 111{ 112 /* 113 * boot_cpu_data.x86_phys_bits is reduced when MKTME or SME are detected 114 * in CPU detection code, but the processor treats those reduced bits as 115 * 'keyID' thus they are not reserved bits. Therefore KVM needs to look at 116 * the physical address bits reported by CPUID. 117 */ 118 if (likely(boot_cpu_data.extended_cpuid_level >= 0x80000008)) 119 return cpuid_eax(0x80000008) & 0xff; 120 121 /* 122 * Quite weird to have VMX or SVM but not MAXPHYADDR; probably a VM with 123 * custom CPUID. Proceed with whatever the kernel found since these features 124 * aren't virtualizable (SME/SEV also require CPUIDs higher than 0x80000008). 125 */ 126 return boot_cpu_data.x86_phys_bits; 127} 128 129void kvm_mmu_set_mmio_spte_mask(u64 mmio_value, u64 mmio_mask, u64 access_mask); 130void kvm_mmu_set_me_spte_mask(u64 me_value, u64 me_mask); 131void kvm_mmu_set_ept_masks(bool has_ad_bits, bool has_exec_only); 132 133void kvm_init_mmu(struct kvm_vcpu *vcpu); 134void kvm_init_shadow_npt_mmu(struct kvm_vcpu *vcpu, unsigned long cr0, 135 unsigned long cr4, u64 efer, gpa_t nested_cr3); 136void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly, 137 int huge_page_level, bool accessed_dirty, 138 gpa_t new_eptp); 139bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu); 140int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code, 141 u64 fault_address, char *insn, int insn_len); 142 143int kvm_mmu_load(struct kvm_vcpu *vcpu); 144void kvm_mmu_unload(struct kvm_vcpu *vcpu); 145void kvm_mmu_free_obsolete_roots(struct kvm_vcpu *vcpu); 146void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu); 147void kvm_mmu_sync_prev_roots(struct kvm_vcpu *vcpu); 148 149static inline int kvm_mmu_reload(struct kvm_vcpu *vcpu) 150{ 151 if (likely(vcpu->arch.mmu->root.hpa != INVALID_PAGE)) 152 return 0; 153 154 return kvm_mmu_load(vcpu); 155} 156 157static inline unsigned long kvm_get_pcid(struct kvm_vcpu *vcpu, gpa_t cr3) 158{ 159 BUILD_BUG_ON((X86_CR3_PCID_MASK & PAGE_MASK) != 0); 160 161 return kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE) 162 ? cr3 & X86_CR3_PCID_MASK 163 : 0; 164} 165 166static inline unsigned long kvm_get_active_pcid(struct kvm_vcpu *vcpu) 167{ 168 return kvm_get_pcid(vcpu, kvm_read_cr3(vcpu)); 169} 170 171static inline void kvm_mmu_load_pgd(struct kvm_vcpu *vcpu) 172{ 173 u64 root_hpa = vcpu->arch.mmu->root.hpa; 174 175 if (!VALID_PAGE(root_hpa)) 176 return; 177 178 static_call(kvm_x86_load_mmu_pgd)(vcpu, root_hpa, 179 vcpu->arch.mmu->root_role.level); 180} 181 182bool kvm_mmu_get_tdp_walk(struct kvm_vcpu *vcpu, gpa_t gpa, kvm_pfn_t *pfn, int *level); 183 184kvm_pfn_t kvm_mmu_map_tdp_page(struct kvm_vcpu *vcpu, gpa_t gpa, 185 u32 error_code, int max_level); 186 187/* 188 * Check if a given access (described through the I/D, W/R and U/S bits of a 189 * page fault error code pfec) causes a permission fault with the given PTE 190 * access rights (in ACC_* format). 191 * 192 * Return zero if the access does not fault; return the page fault error code 193 * if the access faults. 194 */ 195static inline u8 permission_fault(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, 196 unsigned pte_access, unsigned pte_pkey, 197 u64 access) 198{ 199 /* strip nested paging fault error codes */ 200 unsigned int pfec = access; 201 unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu); 202 203 /* 204 * For explicit supervisor accesses, SMAP is disabled if EFLAGS.AC = 1. 205 * For implicit supervisor accesses, SMAP cannot be overridden. 206 * 207 * SMAP works on supervisor accesses only, and not_smap can 208 * be set or not set when user access with neither has any bearing 209 * on the result. 210 * 211 * We put the SMAP checking bit in place of the PFERR_RSVD_MASK bit; 212 * this bit will always be zero in pfec, but it will be one in index 213 * if SMAP checks are being disabled. 214 */ 215 u64 implicit_access = access & PFERR_IMPLICIT_ACCESS; 216 bool not_smap = ((rflags & X86_EFLAGS_AC) | implicit_access) == X86_EFLAGS_AC; 217 int index = (pfec + (not_smap << PFERR_RSVD_BIT)) >> 1; 218 bool fault = (mmu->permissions[index] >> pte_access) & 1; 219 u32 errcode = PFERR_PRESENT_MASK; 220 221 WARN_ON(pfec & (PFERR_PK_MASK | PFERR_RSVD_MASK)); 222 if (unlikely(mmu->pkru_mask)) { 223 u32 pkru_bits, offset; 224 225 /* 226 * PKRU defines 32 bits, there are 16 domains and 2 227 * attribute bits per domain in pkru. pte_pkey is the 228 * index of the protection domain, so pte_pkey * 2 is 229 * is the index of the first bit for the domain. 230 */ 231 pkru_bits = (vcpu->arch.pkru >> (pte_pkey * 2)) & 3; 232 233 /* clear present bit, replace PFEC.RSVD with ACC_USER_MASK. */ 234 offset = (pfec & ~1) + 235 ((pte_access & PT_USER_MASK) << (PFERR_RSVD_BIT - PT_USER_SHIFT)); 236 237 pkru_bits &= mmu->pkru_mask >> offset; 238 errcode |= -pkru_bits & PFERR_PK_MASK; 239 fault |= (pkru_bits != 0); 240 } 241 242 return -(u32)fault & errcode; 243} 244 245int kvm_arch_write_log_dirty(struct kvm_vcpu *vcpu); 246 247int kvm_mmu_post_init_vm(struct kvm *kvm); 248void kvm_mmu_pre_destroy_vm(struct kvm *kvm); 249 250static inline bool kvm_shadow_root_allocated(struct kvm *kvm) 251{ 252 /* 253 * Read shadow_root_allocated before related pointers. Hence, threads 254 * reading shadow_root_allocated in any lock context are guaranteed to 255 * see the pointers. Pairs with smp_store_release in 256 * mmu_first_shadow_root_alloc. 257 */ 258 return smp_load_acquire(&kvm->arch.shadow_root_allocated); 259} 260 261#ifdef CONFIG_X86_64 262static inline bool is_tdp_mmu_enabled(struct kvm *kvm) { return kvm->arch.tdp_mmu_enabled; } 263#else 264static inline bool is_tdp_mmu_enabled(struct kvm *kvm) { return false; } 265#endif 266 267static inline bool kvm_memslots_have_rmaps(struct kvm *kvm) 268{ 269 return !is_tdp_mmu_enabled(kvm) || kvm_shadow_root_allocated(kvm); 270} 271 272static inline gfn_t gfn_to_index(gfn_t gfn, gfn_t base_gfn, int level) 273{ 274 /* KVM_HPAGE_GFN_SHIFT(PG_LEVEL_4K) must be 0. */ 275 return (gfn >> KVM_HPAGE_GFN_SHIFT(level)) - 276 (base_gfn >> KVM_HPAGE_GFN_SHIFT(level)); 277} 278 279static inline unsigned long 280__kvm_mmu_slot_lpages(struct kvm_memory_slot *slot, unsigned long npages, 281 int level) 282{ 283 return gfn_to_index(slot->base_gfn + npages - 1, 284 slot->base_gfn, level) + 1; 285} 286 287static inline unsigned long 288kvm_mmu_slot_lpages(struct kvm_memory_slot *slot, int level) 289{ 290 return __kvm_mmu_slot_lpages(slot, slot->npages, level); 291} 292 293static inline void kvm_update_page_stats(struct kvm *kvm, int level, int count) 294{ 295 atomic64_add(count, &kvm->stat.pages[level - 1]); 296} 297 298gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u64 access, 299 struct x86_exception *exception); 300 301static inline gpa_t kvm_translate_gpa(struct kvm_vcpu *vcpu, 302 struct kvm_mmu *mmu, 303 gpa_t gpa, u64 access, 304 struct x86_exception *exception) 305{ 306 if (mmu != &vcpu->arch.nested_mmu) 307 return gpa; 308 return translate_nested_gpa(vcpu, gpa, access, exception); 309} 310#endif