cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

mmu.h (9762B)


      1/* SPDX-License-Identifier: GPL-2.0 */
      2#ifndef __KVM_X86_MMU_H
      3#define __KVM_X86_MMU_H
      4
      5#include <linux/kvm_host.h>
      6#include "kvm_cache_regs.h"
      7#include "cpuid.h"
      8
      9extern bool __read_mostly enable_mmio_caching;
     10
     11#define PT64_PT_BITS 9
     12#define PT64_ENT_PER_PAGE (1 << PT64_PT_BITS)
     13#define PT32_PT_BITS 10
     14#define PT32_ENT_PER_PAGE (1 << PT32_PT_BITS)
     15
     16#define PT_WRITABLE_SHIFT 1
     17#define PT_USER_SHIFT 2
     18
     19#define PT_PRESENT_MASK (1ULL << 0)
     20#define PT_WRITABLE_MASK (1ULL << PT_WRITABLE_SHIFT)
     21#define PT_USER_MASK (1ULL << PT_USER_SHIFT)
     22#define PT_PWT_MASK (1ULL << 3)
     23#define PT_PCD_MASK (1ULL << 4)
     24#define PT_ACCESSED_SHIFT 5
     25#define PT_ACCESSED_MASK (1ULL << PT_ACCESSED_SHIFT)
     26#define PT_DIRTY_SHIFT 6
     27#define PT_DIRTY_MASK (1ULL << PT_DIRTY_SHIFT)
     28#define PT_PAGE_SIZE_SHIFT 7
     29#define PT_PAGE_SIZE_MASK (1ULL << PT_PAGE_SIZE_SHIFT)
     30#define PT_PAT_MASK (1ULL << 7)
     31#define PT_GLOBAL_MASK (1ULL << 8)
     32#define PT64_NX_SHIFT 63
     33#define PT64_NX_MASK (1ULL << PT64_NX_SHIFT)
     34
     35#define PT_PAT_SHIFT 7
     36#define PT_DIR_PAT_SHIFT 12
     37#define PT_DIR_PAT_MASK (1ULL << PT_DIR_PAT_SHIFT)
     38
     39#define PT32_DIR_PSE36_SIZE 4
     40#define PT32_DIR_PSE36_SHIFT 13
     41#define PT32_DIR_PSE36_MASK \
     42	(((1ULL << PT32_DIR_PSE36_SIZE) - 1) << PT32_DIR_PSE36_SHIFT)
     43
     44#define PT64_ROOT_5LEVEL 5
     45#define PT64_ROOT_4LEVEL 4
     46#define PT32_ROOT_LEVEL 2
     47#define PT32E_ROOT_LEVEL 3
     48
     49#define KVM_MMU_CR4_ROLE_BITS (X86_CR4_PSE | X86_CR4_PAE | X86_CR4_LA57 | \
     50			       X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE)
     51
     52#define KVM_MMU_CR0_ROLE_BITS (X86_CR0_PG | X86_CR0_WP)
     53#define KVM_MMU_EFER_ROLE_BITS (EFER_LME | EFER_NX)
     54
     55static inline u64 cpc_protect_pte(u64 pte, enum kvm_page_track_mode mode)
     56{
     57	if (mode == KVM_PAGE_TRACK_WRITE) {
     58		pte &= ~PT_WRITABLE_MASK;
     59	} else if (mode == KVM_PAGE_TRACK_ACCESS) {
     60		pte &= ~PT_PRESENT_MASK;
     61		pte &= ~PT_WRITABLE_MASK;
     62		pte &= ~PT_USER_MASK;
     63		pte |= PT64_NX_MASK;
     64	} else if (mode == KVM_PAGE_TRACK_EXEC) {
     65		pte |= PT64_NX_MASK;
     66	}
     67
     68	return pte;
     69}
     70
     71static __always_inline u64 rsvd_bits(int s, int e)
     72{
     73	BUILD_BUG_ON(__builtin_constant_p(e) && __builtin_constant_p(s) && e < s);
     74
     75	if (__builtin_constant_p(e))
     76		BUILD_BUG_ON(e > 63);
     77	else
     78		e &= 63;
     79
     80	if (e < s)
     81		return 0;
     82
     83	return ((2ULL << (e - s)) - 1) << s;
     84}
     85
     86/*
     87 * The number of non-reserved physical address bits irrespective of features
     88 * that repurpose legal bits, e.g. MKTME.
     89 */
     90extern u8 __read_mostly shadow_phys_bits;
     91
     92static inline gfn_t kvm_mmu_max_gfn(void)
     93{
     94	/*
     95	 * Note that this uses the host MAXPHYADDR, not the guest's.
     96	 * EPT/NPT cannot support GPAs that would exceed host.MAXPHYADDR;
     97	 * assuming KVM is running on bare metal, guest accesses beyond
     98	 * host.MAXPHYADDR will hit a #PF(RSVD) and never cause a vmexit
     99	 * (either EPT Violation/Misconfig or #NPF), and so KVM will never
    100	 * install a SPTE for such addresses.  If KVM is running as a VM
    101	 * itself, on the other hand, it might see a MAXPHYADDR that is less
    102	 * than hardware's real MAXPHYADDR.  Using the host MAXPHYADDR
    103	 * disallows such SPTEs entirely and simplifies the TDP MMU.
    104	 */
    105	int max_gpa_bits = likely(tdp_enabled) ? shadow_phys_bits : 52;
    106
    107	return (1ULL << (max_gpa_bits - PAGE_SHIFT)) - 1;
    108}
    109
    110static inline u8 kvm_get_shadow_phys_bits(void)
    111{
    112	/*
    113	 * boot_cpu_data.x86_phys_bits is reduced when MKTME or SME are detected
    114	 * in CPU detection code, but the processor treats those reduced bits as
    115	 * 'keyID' thus they are not reserved bits. Therefore KVM needs to look at
    116	 * the physical address bits reported by CPUID.
    117	 */
    118	if (likely(boot_cpu_data.extended_cpuid_level >= 0x80000008))
    119		return cpuid_eax(0x80000008) & 0xff;
    120
    121	/*
    122	 * Quite weird to have VMX or SVM but not MAXPHYADDR; probably a VM with
    123	 * custom CPUID.  Proceed with whatever the kernel found since these features
    124	 * aren't virtualizable (SME/SEV also require CPUIDs higher than 0x80000008).
    125	 */
    126	return boot_cpu_data.x86_phys_bits;
    127}
    128
    129void kvm_mmu_set_mmio_spte_mask(u64 mmio_value, u64 mmio_mask, u64 access_mask);
    130void kvm_mmu_set_me_spte_mask(u64 me_value, u64 me_mask);
    131void kvm_mmu_set_ept_masks(bool has_ad_bits, bool has_exec_only);
    132
    133void kvm_init_mmu(struct kvm_vcpu *vcpu);
    134void kvm_init_shadow_npt_mmu(struct kvm_vcpu *vcpu, unsigned long cr0,
    135			     unsigned long cr4, u64 efer, gpa_t nested_cr3);
    136void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly,
    137			     int huge_page_level, bool accessed_dirty,
    138			     gpa_t new_eptp);
    139bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu);
    140int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code,
    141				u64 fault_address, char *insn, int insn_len);
    142
    143int kvm_mmu_load(struct kvm_vcpu *vcpu);
    144void kvm_mmu_unload(struct kvm_vcpu *vcpu);
    145void kvm_mmu_free_obsolete_roots(struct kvm_vcpu *vcpu);
    146void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu);
    147void kvm_mmu_sync_prev_roots(struct kvm_vcpu *vcpu);
    148
    149static inline int kvm_mmu_reload(struct kvm_vcpu *vcpu)
    150{
    151	if (likely(vcpu->arch.mmu->root.hpa != INVALID_PAGE))
    152		return 0;
    153
    154	return kvm_mmu_load(vcpu);
    155}
    156
    157static inline unsigned long kvm_get_pcid(struct kvm_vcpu *vcpu, gpa_t cr3)
    158{
    159	BUILD_BUG_ON((X86_CR3_PCID_MASK & PAGE_MASK) != 0);
    160
    161	return kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE)
    162	       ? cr3 & X86_CR3_PCID_MASK
    163	       : 0;
    164}
    165
    166static inline unsigned long kvm_get_active_pcid(struct kvm_vcpu *vcpu)
    167{
    168	return kvm_get_pcid(vcpu, kvm_read_cr3(vcpu));
    169}
    170
    171static inline void kvm_mmu_load_pgd(struct kvm_vcpu *vcpu)
    172{
    173	u64 root_hpa = vcpu->arch.mmu->root.hpa;
    174
    175	if (!VALID_PAGE(root_hpa))
    176		return;
    177
    178	static_call(kvm_x86_load_mmu_pgd)(vcpu, root_hpa,
    179					  vcpu->arch.mmu->root_role.level);
    180}
    181
    182bool kvm_mmu_get_tdp_walk(struct kvm_vcpu *vcpu, gpa_t gpa, kvm_pfn_t *pfn, int *level);
    183
    184kvm_pfn_t kvm_mmu_map_tdp_page(struct kvm_vcpu *vcpu, gpa_t gpa,
    185			       u32 error_code, int max_level);
    186
    187/*
    188 * Check if a given access (described through the I/D, W/R and U/S bits of a
    189 * page fault error code pfec) causes a permission fault with the given PTE
    190 * access rights (in ACC_* format).
    191 *
    192 * Return zero if the access does not fault; return the page fault error code
    193 * if the access faults.
    194 */
    195static inline u8 permission_fault(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
    196				  unsigned pte_access, unsigned pte_pkey,
    197				  u64 access)
    198{
    199	/* strip nested paging fault error codes */
    200	unsigned int pfec = access;
    201	unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu);
    202
    203	/*
    204	 * For explicit supervisor accesses, SMAP is disabled if EFLAGS.AC = 1.
    205	 * For implicit supervisor accesses, SMAP cannot be overridden.
    206	 *
    207	 * SMAP works on supervisor accesses only, and not_smap can
    208	 * be set or not set when user access with neither has any bearing
    209	 * on the result.
    210	 *
    211	 * We put the SMAP checking bit in place of the PFERR_RSVD_MASK bit;
    212	 * this bit will always be zero in pfec, but it will be one in index
    213	 * if SMAP checks are being disabled.
    214	 */
    215	u64 implicit_access = access & PFERR_IMPLICIT_ACCESS;
    216	bool not_smap = ((rflags & X86_EFLAGS_AC) | implicit_access) == X86_EFLAGS_AC;
    217	int index = (pfec + (not_smap << PFERR_RSVD_BIT)) >> 1;
    218	bool fault = (mmu->permissions[index] >> pte_access) & 1;
    219	u32 errcode = PFERR_PRESENT_MASK;
    220
    221	WARN_ON(pfec & (PFERR_PK_MASK | PFERR_RSVD_MASK));
    222	if (unlikely(mmu->pkru_mask)) {
    223		u32 pkru_bits, offset;
    224
    225		/*
    226		* PKRU defines 32 bits, there are 16 domains and 2
    227		* attribute bits per domain in pkru.  pte_pkey is the
    228		* index of the protection domain, so pte_pkey * 2 is
    229		* is the index of the first bit for the domain.
    230		*/
    231		pkru_bits = (vcpu->arch.pkru >> (pte_pkey * 2)) & 3;
    232
    233		/* clear present bit, replace PFEC.RSVD with ACC_USER_MASK. */
    234		offset = (pfec & ~1) +
    235			((pte_access & PT_USER_MASK) << (PFERR_RSVD_BIT - PT_USER_SHIFT));
    236
    237		pkru_bits &= mmu->pkru_mask >> offset;
    238		errcode |= -pkru_bits & PFERR_PK_MASK;
    239		fault |= (pkru_bits != 0);
    240	}
    241
    242	return -(u32)fault & errcode;
    243}
    244
    245int kvm_arch_write_log_dirty(struct kvm_vcpu *vcpu);
    246
    247int kvm_mmu_post_init_vm(struct kvm *kvm);
    248void kvm_mmu_pre_destroy_vm(struct kvm *kvm);
    249
    250static inline bool kvm_shadow_root_allocated(struct kvm *kvm)
    251{
    252	/*
    253	 * Read shadow_root_allocated before related pointers. Hence, threads
    254	 * reading shadow_root_allocated in any lock context are guaranteed to
    255	 * see the pointers. Pairs with smp_store_release in
    256	 * mmu_first_shadow_root_alloc.
    257	 */
    258	return smp_load_acquire(&kvm->arch.shadow_root_allocated);
    259}
    260
    261#ifdef CONFIG_X86_64
    262static inline bool is_tdp_mmu_enabled(struct kvm *kvm) { return kvm->arch.tdp_mmu_enabled; }
    263#else
    264static inline bool is_tdp_mmu_enabled(struct kvm *kvm) { return false; }
    265#endif
    266
    267static inline bool kvm_memslots_have_rmaps(struct kvm *kvm)
    268{
    269	return !is_tdp_mmu_enabled(kvm) || kvm_shadow_root_allocated(kvm);
    270}
    271
    272static inline gfn_t gfn_to_index(gfn_t gfn, gfn_t base_gfn, int level)
    273{
    274	/* KVM_HPAGE_GFN_SHIFT(PG_LEVEL_4K) must be 0. */
    275	return (gfn >> KVM_HPAGE_GFN_SHIFT(level)) -
    276		(base_gfn >> KVM_HPAGE_GFN_SHIFT(level));
    277}
    278
    279static inline unsigned long
    280__kvm_mmu_slot_lpages(struct kvm_memory_slot *slot, unsigned long npages,
    281		      int level)
    282{
    283	return gfn_to_index(slot->base_gfn + npages - 1,
    284			    slot->base_gfn, level) + 1;
    285}
    286
    287static inline unsigned long
    288kvm_mmu_slot_lpages(struct kvm_memory_slot *slot, int level)
    289{
    290	return __kvm_mmu_slot_lpages(slot, slot->npages, level);
    291}
    292
    293static inline void kvm_update_page_stats(struct kvm *kvm, int level, int count)
    294{
    295	atomic64_add(count, &kvm->stat.pages[level - 1]);
    296}
    297
    298gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u64 access,
    299			   struct x86_exception *exception);
    300
    301static inline gpa_t kvm_translate_gpa(struct kvm_vcpu *vcpu,
    302				      struct kvm_mmu *mmu,
    303				      gpa_t gpa, u64 access,
    304				      struct x86_exception *exception)
    305{
    306	if (mmu != &vcpu->arch.nested_mmu)
    307		return gpa;
    308	return translate_nested_gpa(vcpu, gpa, access, exception);
    309}
    310#endif