cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

mmu_internal.h (8677B)


      1/* SPDX-License-Identifier: GPL-2.0 */
      2#ifndef __KVM_X86_MMU_INTERNAL_H
      3#define __KVM_X86_MMU_INTERNAL_H
      4
      5#include <linux/types.h>
      6#include <linux/kvm_host.h>
      7#include <asm/kvm_host.h>
      8
      9#undef MMU_DEBUG
     10
     11#ifdef MMU_DEBUG
     12extern bool dbg;
     13
     14#define pgprintk(x...) do { if (dbg) printk(x); } while (0)
     15#define rmap_printk(fmt, args...) do { if (dbg) printk("%s: " fmt, __func__, ## args); } while (0)
     16#define MMU_WARN_ON(x) WARN_ON(x)
     17#else
     18#define pgprintk(x...) do { } while (0)
     19#define rmap_printk(x...) do { } while (0)
     20#define MMU_WARN_ON(x) do { } while (0)
     21#endif
     22
     23/*
     24 * Unlike regular MMU roots, PAE "roots", a.k.a. PDPTEs/PDPTRs, have a PRESENT
     25 * bit, and thus are guaranteed to be non-zero when valid.  And, when a guest
     26 * PDPTR is !PRESENT, its corresponding PAE root cannot be set to INVALID_PAGE,
     27 * as the CPU would treat that as PRESENT PDPTR with reserved bits set.  Use
     28 * '0' instead of INVALID_PAGE to indicate an invalid PAE root.
     29 */
     30#define INVALID_PAE_ROOT	0
     31#define IS_VALID_PAE_ROOT(x)	(!!(x))
     32
     33typedef u64 __rcu *tdp_ptep_t;
     34
     35struct kvm_mmu_page {
     36	/*
     37	 * Note, "link" through "spt" fit in a single 64 byte cache line on
     38	 * 64-bit kernels, keep it that way unless there's a reason not to.
     39	 */
     40	struct list_head link;
     41	struct hlist_node hash_link;
     42
     43	bool tdp_mmu_page;
     44	bool unsync;
     45	u8 mmu_valid_gen;
     46	bool lpage_disallowed; /* Can't be replaced by an equiv large page */
     47
     48	/*
     49	 * The following two entries are used to key the shadow page in the
     50	 * hash table.
     51	 */
     52	union kvm_mmu_page_role role;
     53	gfn_t gfn;
     54
     55	u64 *spt;
     56	/* hold the gfn of each spte inside spt */
     57	gfn_t *gfns;
     58	/* Currently serving as active root */
     59	union {
     60		int root_count;
     61		refcount_t tdp_mmu_root_count;
     62	};
     63	unsigned int unsync_children;
     64	union {
     65		struct kvm_rmap_head parent_ptes; /* rmap pointers to parent sptes */
     66		tdp_ptep_t ptep;
     67	};
     68	union {
     69		DECLARE_BITMAP(unsync_child_bitmap, 512);
     70		struct {
     71			struct work_struct tdp_mmu_async_work;
     72			void *tdp_mmu_async_data;
     73		};
     74	};
     75
     76	struct list_head lpage_disallowed_link;
     77#ifdef CONFIG_X86_32
     78	/*
     79	 * Used out of the mmu-lock to avoid reading spte values while an
     80	 * update is in progress; see the comments in __get_spte_lockless().
     81	 */
     82	int clear_spte_count;
     83#endif
     84
     85	/* Number of writes since the last time traversal visited this page.  */
     86	atomic_t write_flooding_count;
     87
     88#ifdef CONFIG_X86_64
     89	/* Used for freeing the page asynchronously if it is a TDP MMU page. */
     90	struct rcu_head rcu_head;
     91#endif
     92};
     93
     94extern struct kmem_cache *mmu_page_header_cache;
     95
     96static inline struct kvm_mmu_page *to_shadow_page(hpa_t shadow_page)
     97{
     98	struct page *page = pfn_to_page(shadow_page >> PAGE_SHIFT);
     99
    100	return (struct kvm_mmu_page *)page_private(page);
    101}
    102
    103static inline struct kvm_mmu_page *sptep_to_sp(u64 *sptep)
    104{
    105	return to_shadow_page(__pa(sptep));
    106}
    107
    108static inline int kvm_mmu_role_as_id(union kvm_mmu_page_role role)
    109{
    110	return role.smm ? 1 : 0;
    111}
    112
    113static inline int kvm_mmu_page_as_id(struct kvm_mmu_page *sp)
    114{
    115	return kvm_mmu_role_as_id(sp->role);
    116}
    117
    118static inline bool kvm_mmu_page_ad_need_write_protect(struct kvm_mmu_page *sp)
    119{
    120	/*
    121	 * When using the EPT page-modification log, the GPAs in the CPU dirty
    122	 * log would come from L2 rather than L1.  Therefore, we need to rely
    123	 * on write protection to record dirty pages, which bypasses PML, since
    124	 * writes now result in a vmexit.  Note, the check on CPU dirty logging
    125	 * being enabled is mandatory as the bits used to denote WP-only SPTEs
    126	 * are reserved for PAE paging (32-bit KVM).
    127	 */
    128	return kvm_x86_ops.cpu_dirty_log_size && sp->role.guest_mode;
    129}
    130
    131int mmu_try_to_unsync_pages(struct kvm *kvm, const struct kvm_memory_slot *slot,
    132			    gfn_t gfn, bool can_unsync, bool prefetch);
    133
    134void kvm_mmu_gfn_disallow_lpage(const struct kvm_memory_slot *slot, gfn_t gfn);
    135void kvm_mmu_gfn_allow_lpage(const struct kvm_memory_slot *slot, gfn_t gfn);
    136bool cpc_kvm_mmu_slot_gfn_protect(struct kvm *kvm,
    137				    struct kvm_memory_slot *slot, u64 gfn,
    138				    int min_level, enum kvm_page_track_mode mode);
    139bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm,
    140				    struct kvm_memory_slot *slot, u64 gfn,
    141				    int min_level);
    142void kvm_flush_remote_tlbs_with_address(struct kvm *kvm,
    143					u64 start_gfn, u64 pages);
    144unsigned int pte_list_count(struct kvm_rmap_head *rmap_head);
    145
    146extern int nx_huge_pages;
    147static inline bool is_nx_huge_page_enabled(void)
    148{
    149	return READ_ONCE(nx_huge_pages);
    150}
    151
    152struct kvm_page_fault {
    153	/* arguments to kvm_mmu_do_page_fault.  */
    154	const gpa_t addr;
    155	const u32 error_code;
    156	const bool prefetch;
    157
    158	/* Derived from error_code.  */
    159	const bool exec;
    160	const bool write;
    161	const bool present;
    162	const bool rsvd;
    163	const bool user;
    164
    165	/* Derived from mmu and global state.  */
    166	const bool is_tdp;
    167	const bool nx_huge_page_workaround_enabled;
    168
    169	/*
    170	 * Whether a >4KB mapping can be created or is forbidden due to NX
    171	 * hugepages.
    172	 */
    173	bool huge_page_disallowed;
    174
    175	/*
    176	 * Maximum page size that can be created for this fault; input to
    177	 * FNAME(fetch), __direct_map and kvm_tdp_mmu_map.
    178	 */
    179	u8 max_level;
    180
    181	/*
    182	 * Page size that can be created based on the max_level and the
    183	 * page size used by the host mapping.
    184	 */
    185	u8 req_level;
    186
    187	/*
    188	 * Page size that will be created based on the req_level and
    189	 * huge_page_disallowed.
    190	 */
    191	u8 goal_level;
    192
    193	/* Shifted addr, or result of guest page table walk if addr is a gva.  */
    194	gfn_t gfn;
    195
    196	/* The memslot containing gfn. May be NULL. */
    197	struct kvm_memory_slot *slot;
    198
    199	/* Outputs of kvm_faultin_pfn.  */
    200	kvm_pfn_t pfn;
    201	hva_t hva;
    202	bool map_writable;
    203};
    204
    205int kvm_tdp_page_fault(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault);
    206
    207/*
    208 * Return values of handle_mmio_page_fault(), mmu.page_fault(), fast_page_fault(),
    209 * and of course kvm_mmu_do_page_fault().
    210 *
    211 * RET_PF_CONTINUE: So far, so good, keep handling the page fault.
    212 * RET_PF_RETRY: let CPU fault again on the address.
    213 * RET_PF_EMULATE: mmio page fault, emulate the instruction directly.
    214 * RET_PF_INVALID: the spte is invalid, let the real page fault path update it.
    215 * RET_PF_FIXED: The faulting entry has been fixed.
    216 * RET_PF_SPURIOUS: The faulting entry was already fixed, e.g. by another vCPU.
    217 *
    218 * Any names added to this enum should be exported to userspace for use in
    219 * tracepoints via TRACE_DEFINE_ENUM() in mmutrace.h
    220 *
    221 * Note, all values must be greater than or equal to zero so as not to encroach
    222 * on -errno return values.  Somewhat arbitrarily use '0' for CONTINUE, which
    223 * will allow for efficient machine code when checking for CONTINUE, e.g.
    224 * "TEST %rax, %rax, JNZ", as all "stop!" values are non-zero.
    225 */
    226enum {
    227	RET_PF_CONTINUE = 0,
    228	RET_PF_RETRY,
    229	RET_PF_EMULATE,
    230	RET_PF_INVALID,
    231	RET_PF_FIXED,
    232	RET_PF_SPURIOUS,
    233};
    234
    235static inline int kvm_mmu_do_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
    236					u32 err, bool prefetch)
    237{
    238	struct kvm_page_fault fault = {
    239		.addr = cr2_or_gpa,
    240		.error_code = err,
    241		.exec = err & PFERR_FETCH_MASK,
    242		.write = err & PFERR_WRITE_MASK,
    243		.present = err & PFERR_PRESENT_MASK,
    244		.rsvd = err & PFERR_RSVD_MASK,
    245		.user = err & PFERR_USER_MASK,
    246		.prefetch = prefetch,
    247		.is_tdp = likely(vcpu->arch.mmu->page_fault == kvm_tdp_page_fault),
    248		.nx_huge_page_workaround_enabled = is_nx_huge_page_enabled(),
    249
    250		.max_level = KVM_MAX_HUGEPAGE_LEVEL,
    251		.req_level = PG_LEVEL_4K,
    252		.goal_level = PG_LEVEL_4K,
    253	};
    254	int r;
    255
    256	/*
    257	 * Async #PF "faults", a.k.a. prefetch faults, are not faults from the
    258	 * guest perspective and have already been counted at the time of the
    259	 * original fault.
    260	 */
    261	if (!prefetch)
    262		vcpu->stat.pf_taken++;
    263
    264	if (IS_ENABLED(CONFIG_RETPOLINE) && fault.is_tdp)
    265		r = kvm_tdp_page_fault(vcpu, &fault);
    266	else
    267		r = vcpu->arch.mmu->page_fault(vcpu, &fault);
    268
    269	/*
    270	 * Similar to above, prefetch faults aren't truly spurious, and the
    271	 * async #PF path doesn't do emulation.  Do count faults that are fixed
    272	 * by the async #PF handler though, otherwise they'll never be counted.
    273	 */
    274	if (r == RET_PF_FIXED)
    275		vcpu->stat.pf_fixed++;
    276	else if (prefetch)
    277		;
    278	else if (r == RET_PF_EMULATE)
    279		vcpu->stat.pf_emulate++;
    280	else if (r == RET_PF_SPURIOUS)
    281		vcpu->stat.pf_spurious++;
    282	return r;
    283}
    284
    285int kvm_mmu_max_mapping_level(struct kvm *kvm,
    286			      const struct kvm_memory_slot *slot, gfn_t gfn,
    287			      kvm_pfn_t pfn, int max_level);
    288void kvm_mmu_hugepage_adjust(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault);
    289void disallowed_hugepage_adjust(struct kvm_page_fault *fault, u64 spte, int cur_level);
    290
    291void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc);
    292
    293void account_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp);
    294void unaccount_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp);
    295
    296#endif /* __KVM_X86_MMU_INTERNAL_H */