spte.h (16426B)
1// SPDX-License-Identifier: GPL-2.0-only 2 3#ifndef KVM_X86_MMU_SPTE_H 4#define KVM_X86_MMU_SPTE_H 5 6#include "mmu_internal.h" 7 8/* 9 * A MMU present SPTE is backed by actual memory and may or may not be present 10 * in hardware. E.g. MMIO SPTEs are not considered present. Use bit 11, as it 11 * is ignored by all flavors of SPTEs and checking a low bit often generates 12 * better code than for a high bit, e.g. 56+. MMU present checks are pervasive 13 * enough that the improved code generation is noticeable in KVM's footprint. 14 */ 15#define SPTE_MMU_PRESENT_MASK BIT_ULL(11) 16 17/* 18 * TDP SPTES (more specifically, EPT SPTEs) may not have A/D bits, and may also 19 * be restricted to using write-protection (for L2 when CPU dirty logging, i.e. 20 * PML, is enabled). Use bits 52 and 53 to hold the type of A/D tracking that 21 * is must be employed for a given TDP SPTE. 22 * 23 * Note, the "enabled" mask must be '0', as bits 62:52 are _reserved_ for PAE 24 * paging, including NPT PAE. This scheme works because legacy shadow paging 25 * is guaranteed to have A/D bits and write-protection is forced only for 26 * TDP with CPU dirty logging (PML). If NPT ever gains PML-like support, it 27 * must be restricted to 64-bit KVM. 28 */ 29#define SPTE_TDP_AD_SHIFT 52 30#define SPTE_TDP_AD_MASK (3ULL << SPTE_TDP_AD_SHIFT) 31#define SPTE_TDP_AD_ENABLED_MASK (0ULL << SPTE_TDP_AD_SHIFT) 32#define SPTE_TDP_AD_DISABLED_MASK (1ULL << SPTE_TDP_AD_SHIFT) 33#define SPTE_TDP_AD_WRPROT_ONLY_MASK (2ULL << SPTE_TDP_AD_SHIFT) 34static_assert(SPTE_TDP_AD_ENABLED_MASK == 0); 35 36#ifdef CONFIG_DYNAMIC_PHYSICAL_MASK 37#define PT64_BASE_ADDR_MASK (physical_mask & ~(u64)(PAGE_SIZE-1)) 38#else 39#define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1)) 40#endif 41 42#define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | shadow_user_mask \ 43 | shadow_x_mask | shadow_nx_mask | shadow_me_mask) 44 45#define ACC_EXEC_MASK 1 46#define ACC_WRITE_MASK PT_WRITABLE_MASK 47#define ACC_USER_MASK PT_USER_MASK 48#define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK) 49 50/* The mask for the R/X bits in EPT PTEs */ 51#define PT64_EPT_READABLE_MASK 0x1ull 52#define PT64_EPT_EXECUTABLE_MASK 0x4ull 53 54#define PT64_LEVEL_BITS 9 55 56#define PT64_LEVEL_SHIFT(level) \ 57 (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS) 58 59#define PT64_INDEX(address, level)\ 60 (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1)) 61#define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level) 62 63/* 64 * The mask/shift to use for saving the original R/X bits when marking the PTE 65 * as not-present for access tracking purposes. We do not save the W bit as the 66 * PTEs being access tracked also need to be dirty tracked, so the W bit will be 67 * restored only when a write is attempted to the page. This mask obviously 68 * must not overlap the A/D type mask. 69 */ 70#define SHADOW_ACC_TRACK_SAVED_BITS_MASK (PT64_EPT_READABLE_MASK | \ 71 PT64_EPT_EXECUTABLE_MASK) 72#define SHADOW_ACC_TRACK_SAVED_BITS_SHIFT 54 73#define SHADOW_ACC_TRACK_SAVED_MASK (SHADOW_ACC_TRACK_SAVED_BITS_MASK << \ 74 SHADOW_ACC_TRACK_SAVED_BITS_SHIFT) 75static_assert(!(SPTE_TDP_AD_MASK & SHADOW_ACC_TRACK_SAVED_MASK)); 76 77/* 78 * {DEFAULT,EPT}_SPTE_{HOST,MMU}_WRITABLE are used to keep track of why a given 79 * SPTE is write-protected. See is_writable_pte() for details. 80 */ 81 82/* Bits 9 and 10 are ignored by all non-EPT PTEs. */ 83#define DEFAULT_SPTE_HOST_WRITABLE BIT_ULL(9) 84#define DEFAULT_SPTE_MMU_WRITABLE BIT_ULL(10) 85 86/* 87 * Low ignored bits are at a premium for EPT, use high ignored bits, taking care 88 * to not overlap the A/D type mask or the saved access bits of access-tracked 89 * SPTEs when A/D bits are disabled. 90 */ 91#define EPT_SPTE_HOST_WRITABLE BIT_ULL(57) 92#define EPT_SPTE_MMU_WRITABLE BIT_ULL(58) 93 94static_assert(!(EPT_SPTE_HOST_WRITABLE & SPTE_TDP_AD_MASK)); 95static_assert(!(EPT_SPTE_MMU_WRITABLE & SPTE_TDP_AD_MASK)); 96static_assert(!(EPT_SPTE_HOST_WRITABLE & SHADOW_ACC_TRACK_SAVED_MASK)); 97static_assert(!(EPT_SPTE_MMU_WRITABLE & SHADOW_ACC_TRACK_SAVED_MASK)); 98 99/* Defined only to keep the above static asserts readable. */ 100#undef SHADOW_ACC_TRACK_SAVED_MASK 101 102/* 103 * Due to limited space in PTEs, the MMIO generation is a 19 bit subset of 104 * the memslots generation and is derived as follows: 105 * 106 * Bits 0-7 of the MMIO generation are propagated to spte bits 3-10 107 * Bits 8-18 of the MMIO generation are propagated to spte bits 52-62 108 * 109 * The KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS flag is intentionally not included in 110 * the MMIO generation number, as doing so would require stealing a bit from 111 * the "real" generation number and thus effectively halve the maximum number 112 * of MMIO generations that can be handled before encountering a wrap (which 113 * requires a full MMU zap). The flag is instead explicitly queried when 114 * checking for MMIO spte cache hits. 115 */ 116 117#define MMIO_SPTE_GEN_LOW_START 3 118#define MMIO_SPTE_GEN_LOW_END 10 119 120#define MMIO_SPTE_GEN_HIGH_START 52 121#define MMIO_SPTE_GEN_HIGH_END 62 122 123#define MMIO_SPTE_GEN_LOW_MASK GENMASK_ULL(MMIO_SPTE_GEN_LOW_END, \ 124 MMIO_SPTE_GEN_LOW_START) 125#define MMIO_SPTE_GEN_HIGH_MASK GENMASK_ULL(MMIO_SPTE_GEN_HIGH_END, \ 126 MMIO_SPTE_GEN_HIGH_START) 127static_assert(!(SPTE_MMU_PRESENT_MASK & 128 (MMIO_SPTE_GEN_LOW_MASK | MMIO_SPTE_GEN_HIGH_MASK))); 129 130#define MMIO_SPTE_GEN_LOW_BITS (MMIO_SPTE_GEN_LOW_END - MMIO_SPTE_GEN_LOW_START + 1) 131#define MMIO_SPTE_GEN_HIGH_BITS (MMIO_SPTE_GEN_HIGH_END - MMIO_SPTE_GEN_HIGH_START + 1) 132 133/* remember to adjust the comment above as well if you change these */ 134static_assert(MMIO_SPTE_GEN_LOW_BITS == 8 && MMIO_SPTE_GEN_HIGH_BITS == 11); 135 136#define MMIO_SPTE_GEN_LOW_SHIFT (MMIO_SPTE_GEN_LOW_START - 0) 137#define MMIO_SPTE_GEN_HIGH_SHIFT (MMIO_SPTE_GEN_HIGH_START - MMIO_SPTE_GEN_LOW_BITS) 138 139#define MMIO_SPTE_GEN_MASK GENMASK_ULL(MMIO_SPTE_GEN_LOW_BITS + MMIO_SPTE_GEN_HIGH_BITS - 1, 0) 140 141extern u64 __read_mostly shadow_host_writable_mask; 142extern u64 __read_mostly shadow_mmu_writable_mask; 143extern u64 __read_mostly shadow_nx_mask; 144extern u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */ 145extern u64 __read_mostly shadow_user_mask; 146extern u64 __read_mostly shadow_accessed_mask; 147extern u64 __read_mostly shadow_dirty_mask; 148extern u64 __read_mostly shadow_mmio_value; 149extern u64 __read_mostly shadow_mmio_mask; 150extern u64 __read_mostly shadow_mmio_access_mask; 151extern u64 __read_mostly shadow_present_mask; 152extern u64 __read_mostly shadow_me_value; 153extern u64 __read_mostly shadow_me_mask; 154 155/* 156 * SPTEs in MMUs without A/D bits are marked with SPTE_TDP_AD_DISABLED_MASK; 157 * shadow_acc_track_mask is the set of bits to be cleared in non-accessed 158 * pages. 159 */ 160extern u64 __read_mostly shadow_acc_track_mask; 161 162/* 163 * This mask must be set on all non-zero Non-Present or Reserved SPTEs in order 164 * to guard against L1TF attacks. 165 */ 166extern u64 __read_mostly shadow_nonpresent_or_rsvd_mask; 167 168/* 169 * The number of high-order 1 bits to use in the mask above. 170 */ 171#define SHADOW_NONPRESENT_OR_RSVD_MASK_LEN 5 172 173/* 174 * If a thread running without exclusive control of the MMU lock must perform a 175 * multi-part operation on an SPTE, it can set the SPTE to REMOVED_SPTE as a 176 * non-present intermediate value. Other threads which encounter this value 177 * should not modify the SPTE. 178 * 179 * Use a semi-arbitrary value that doesn't set RWX bits, i.e. is not-present on 180 * bot AMD and Intel CPUs, and doesn't set PFN bits, i.e. doesn't create a L1TF 181 * vulnerability. Use only low bits to avoid 64-bit immediates. 182 * 183 * Only used by the TDP MMU. 184 */ 185#define REMOVED_SPTE 0x5a0ULL 186 187/* Removed SPTEs must not be misconstrued as shadow present PTEs. */ 188static_assert(!(REMOVED_SPTE & SPTE_MMU_PRESENT_MASK)); 189 190static inline bool is_removed_spte(u64 spte) 191{ 192 return spte == REMOVED_SPTE; 193} 194 195/* 196 * In some cases, we need to preserve the GFN of a non-present or reserved 197 * SPTE when we usurp the upper five bits of the physical address space to 198 * defend against L1TF, e.g. for MMIO SPTEs. To preserve the GFN, we'll 199 * shift bits of the GFN that overlap with shadow_nonpresent_or_rsvd_mask 200 * left into the reserved bits, i.e. the GFN in the SPTE will be split into 201 * high and low parts. This mask covers the lower bits of the GFN. 202 */ 203extern u64 __read_mostly shadow_nonpresent_or_rsvd_lower_gfn_mask; 204 205static inline bool is_mmio_spte(u64 spte) 206{ 207 return (spte & shadow_mmio_mask) == shadow_mmio_value && 208 likely(enable_mmio_caching); 209} 210 211static inline bool is_shadow_present_pte(u64 pte) 212{ 213 return !!(pte & SPTE_MMU_PRESENT_MASK); 214} 215 216/* 217 * Returns true if A/D bits are supported in hardware and are enabled by KVM. 218 * When enabled, KVM uses A/D bits for all non-nested MMUs. Because L1 can 219 * disable A/D bits in EPTP12, SP and SPTE variants are needed to handle the 220 * scenario where KVM is using A/D bits for L1, but not L2. 221 */ 222static inline bool kvm_ad_enabled(void) 223{ 224 return !!shadow_accessed_mask; 225} 226 227static inline bool sp_ad_disabled(struct kvm_mmu_page *sp) 228{ 229 return sp->role.ad_disabled; 230} 231 232static inline bool spte_ad_enabled(u64 spte) 233{ 234 MMU_WARN_ON(!is_shadow_present_pte(spte)); 235 return (spte & SPTE_TDP_AD_MASK) != SPTE_TDP_AD_DISABLED_MASK; 236} 237 238static inline bool spte_ad_need_write_protect(u64 spte) 239{ 240 MMU_WARN_ON(!is_shadow_present_pte(spte)); 241 /* 242 * This is benign for non-TDP SPTEs as SPTE_TDP_AD_ENABLED_MASK is '0', 243 * and non-TDP SPTEs will never set these bits. Optimize for 64-bit 244 * TDP and do the A/D type check unconditionally. 245 */ 246 return (spte & SPTE_TDP_AD_MASK) != SPTE_TDP_AD_ENABLED_MASK; 247} 248 249static inline u64 spte_shadow_accessed_mask(u64 spte) 250{ 251 MMU_WARN_ON(!is_shadow_present_pte(spte)); 252 return spte_ad_enabled(spte) ? shadow_accessed_mask : 0; 253} 254 255static inline u64 spte_shadow_dirty_mask(u64 spte) 256{ 257 MMU_WARN_ON(!is_shadow_present_pte(spte)); 258 return spte_ad_enabled(spte) ? shadow_dirty_mask : 0; 259} 260 261static inline bool is_access_track_spte(u64 spte) 262{ 263 return !spte_ad_enabled(spte) && (spte & shadow_acc_track_mask) == 0; 264} 265 266static inline bool is_large_pte(u64 pte) 267{ 268 return pte & PT_PAGE_SIZE_MASK; 269} 270 271static inline bool is_last_spte(u64 pte, int level) 272{ 273 return (level == PG_LEVEL_4K) || is_large_pte(pte); 274} 275 276static inline bool is_executable_pte(u64 spte) 277{ 278 return (spte & (shadow_x_mask | shadow_nx_mask)) == shadow_x_mask; 279} 280 281static inline kvm_pfn_t spte_to_pfn(u64 pte) 282{ 283 return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT; 284} 285 286static inline bool is_accessed_spte(u64 spte) 287{ 288 u64 accessed_mask = spte_shadow_accessed_mask(spte); 289 290 return accessed_mask ? spte & accessed_mask 291 : !is_access_track_spte(spte); 292} 293 294static inline bool is_dirty_spte(u64 spte) 295{ 296 u64 dirty_mask = spte_shadow_dirty_mask(spte); 297 298 return dirty_mask ? spte & dirty_mask : spte & PT_WRITABLE_MASK; 299} 300 301static inline u64 get_rsvd_bits(struct rsvd_bits_validate *rsvd_check, u64 pte, 302 int level) 303{ 304 int bit7 = (pte >> 7) & 1; 305 306 return rsvd_check->rsvd_bits_mask[bit7][level-1]; 307} 308 309static inline bool __is_rsvd_bits_set(struct rsvd_bits_validate *rsvd_check, 310 u64 pte, int level) 311{ 312 return pte & get_rsvd_bits(rsvd_check, pte, level); 313} 314 315static inline bool __is_bad_mt_xwr(struct rsvd_bits_validate *rsvd_check, 316 u64 pte) 317{ 318 return rsvd_check->bad_mt_xwr & BIT_ULL(pte & 0x3f); 319} 320 321static __always_inline bool is_rsvd_spte(struct rsvd_bits_validate *rsvd_check, 322 u64 spte, int level) 323{ 324 return __is_bad_mt_xwr(rsvd_check, spte) || 325 __is_rsvd_bits_set(rsvd_check, spte, level); 326} 327 328/* 329 * An shadow-present leaf SPTE may be non-writable for 3 possible reasons: 330 * 331 * 1. To intercept writes for dirty logging. KVM write-protects huge pages 332 * so that they can be split be split down into the dirty logging 333 * granularity (4KiB) whenever the guest writes to them. KVM also 334 * write-protects 4KiB pages so that writes can be recorded in the dirty log 335 * (e.g. if not using PML). SPTEs are write-protected for dirty logging 336 * during the VM-iotcls that enable dirty logging. 337 * 338 * 2. To intercept writes to guest page tables that KVM is shadowing. When a 339 * guest writes to its page table the corresponding shadow page table will 340 * be marked "unsync". That way KVM knows which shadow page tables need to 341 * be updated on the next TLB flush, INVLPG, etc. and which do not. 342 * 343 * 3. To prevent guest writes to read-only memory, such as for memory in a 344 * read-only memslot or guest memory backed by a read-only VMA. Writes to 345 * such pages are disallowed entirely. 346 * 347 * To keep track of why a given SPTE is write-protected, KVM uses 2 348 * software-only bits in the SPTE: 349 * 350 * shadow_mmu_writable_mask, aka MMU-writable - 351 * Cleared on SPTEs that KVM is currently write-protecting for shadow paging 352 * purposes (case 2 above). 353 * 354 * shadow_host_writable_mask, aka Host-writable - 355 * Cleared on SPTEs that are not host-writable (case 3 above) 356 * 357 * Note, not all possible combinations of PT_WRITABLE_MASK, 358 * shadow_mmu_writable_mask, and shadow_host_writable_mask are valid. A given 359 * SPTE can be in only one of the following states, which map to the 360 * aforementioned 3 cases: 361 * 362 * shadow_host_writable_mask | shadow_mmu_writable_mask | PT_WRITABLE_MASK 363 * ------------------------- | ------------------------ | ---------------- 364 * 1 | 1 | 1 (writable) 365 * 1 | 1 | 0 (case 1) 366 * 1 | 0 | 0 (case 2) 367 * 0 | 0 | 0 (case 3) 368 * 369 * The valid combinations of these bits are checked by 370 * check_spte_writable_invariants() whenever an SPTE is modified. 371 * 372 * Clearing the MMU-writable bit is always done under the MMU lock and always 373 * accompanied by a TLB flush before dropping the lock to avoid corrupting the 374 * shadow page tables between vCPUs. Write-protecting an SPTE for dirty logging 375 * (which does not clear the MMU-writable bit), does not flush TLBs before 376 * dropping the lock, as it only needs to synchronize guest writes with the 377 * dirty bitmap. 378 * 379 * So, there is the problem: clearing the MMU-writable bit can encounter a 380 * write-protected SPTE while CPUs still have writable mappings for that SPTE 381 * cached in their TLB. To address this, KVM always flushes TLBs when 382 * write-protecting SPTEs if the MMU-writable bit is set on the old SPTE. 383 * 384 * The Host-writable bit is not modified on present SPTEs, it is only set or 385 * cleared when an SPTE is first faulted in from non-present and then remains 386 * immutable. 387 */ 388static inline bool is_writable_pte(unsigned long pte) 389{ 390 return pte & PT_WRITABLE_MASK; 391} 392 393/* Note: spte must be a shadow-present leaf SPTE. */ 394static inline void check_spte_writable_invariants(u64 spte) 395{ 396 if (spte & shadow_mmu_writable_mask) 397 WARN_ONCE(!(spte & shadow_host_writable_mask), 398 "kvm: MMU-writable SPTE is not Host-writable: %llx", 399 spte); 400 //else /* cachepc: this is intended! we dont want to give mmu ctrl */ 401 // WARN_ONCE(is_writable_pte(spte), 402 // "kvm: Writable SPTE is not MMU-writable: %llx", spte); 403} 404 405static inline bool is_mmu_writable_spte(u64 spte) 406{ 407 return spte & shadow_mmu_writable_mask; 408} 409 410static inline u64 get_mmio_spte_generation(u64 spte) 411{ 412 u64 gen; 413 414 gen = (spte & MMIO_SPTE_GEN_LOW_MASK) >> MMIO_SPTE_GEN_LOW_SHIFT; 415 gen |= (spte & MMIO_SPTE_GEN_HIGH_MASK) >> MMIO_SPTE_GEN_HIGH_SHIFT; 416 return gen; 417} 418 419bool spte_has_volatile_bits(u64 spte); 420 421bool make_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp, 422 const struct kvm_memory_slot *slot, 423 unsigned int pte_access, gfn_t gfn, kvm_pfn_t pfn, 424 u64 old_spte, bool prefetch, bool can_unsync, 425 bool host_writable, u64 *new_spte); 426u64 make_huge_page_split_spte(u64 huge_spte, int huge_level, int index); 427u64 make_nonleaf_spte(u64 *child_pt, bool ad_disabled); 428u64 make_mmio_spte(struct kvm_vcpu *vcpu, u64 gfn, unsigned int access); 429u64 mark_spte_for_access_track(u64 spte); 430 431/* Restore an acc-track PTE back to a regular PTE */ 432static inline u64 restore_acc_track_spte(u64 spte) 433{ 434 u64 saved_bits = (spte >> SHADOW_ACC_TRACK_SAVED_BITS_SHIFT) 435 & SHADOW_ACC_TRACK_SAVED_BITS_MASK; 436 437 spte &= ~shadow_acc_track_mask; 438 spte &= ~(SHADOW_ACC_TRACK_SAVED_BITS_MASK << 439 SHADOW_ACC_TRACK_SAVED_BITS_SHIFT); 440 spte |= saved_bits; 441 442 return spte; 443} 444 445u64 kvm_mmu_changed_pte_notifier_make_spte(u64 old_spte, kvm_pfn_t new_pfn); 446 447void __init kvm_mmu_spte_module_init(void); 448void kvm_mmu_reset_all_pte_masks(void); 449 450#endif