cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

spte.h (16426B)


      1// SPDX-License-Identifier: GPL-2.0-only
      2
      3#ifndef KVM_X86_MMU_SPTE_H
      4#define KVM_X86_MMU_SPTE_H
      5
      6#include "mmu_internal.h"
      7
      8/*
      9 * A MMU present SPTE is backed by actual memory and may or may not be present
     10 * in hardware.  E.g. MMIO SPTEs are not considered present.  Use bit 11, as it
     11 * is ignored by all flavors of SPTEs and checking a low bit often generates
     12 * better code than for a high bit, e.g. 56+.  MMU present checks are pervasive
     13 * enough that the improved code generation is noticeable in KVM's footprint.
     14 */
     15#define SPTE_MMU_PRESENT_MASK		BIT_ULL(11)
     16
     17/*
     18 * TDP SPTES (more specifically, EPT SPTEs) may not have A/D bits, and may also
     19 * be restricted to using write-protection (for L2 when CPU dirty logging, i.e.
     20 * PML, is enabled).  Use bits 52 and 53 to hold the type of A/D tracking that
     21 * is must be employed for a given TDP SPTE.
     22 *
     23 * Note, the "enabled" mask must be '0', as bits 62:52 are _reserved_ for PAE
     24 * paging, including NPT PAE.  This scheme works because legacy shadow paging
     25 * is guaranteed to have A/D bits and write-protection is forced only for
     26 * TDP with CPU dirty logging (PML).  If NPT ever gains PML-like support, it
     27 * must be restricted to 64-bit KVM.
     28 */
     29#define SPTE_TDP_AD_SHIFT		52
     30#define SPTE_TDP_AD_MASK		(3ULL << SPTE_TDP_AD_SHIFT)
     31#define SPTE_TDP_AD_ENABLED_MASK	(0ULL << SPTE_TDP_AD_SHIFT)
     32#define SPTE_TDP_AD_DISABLED_MASK	(1ULL << SPTE_TDP_AD_SHIFT)
     33#define SPTE_TDP_AD_WRPROT_ONLY_MASK	(2ULL << SPTE_TDP_AD_SHIFT)
     34static_assert(SPTE_TDP_AD_ENABLED_MASK == 0);
     35
     36#ifdef CONFIG_DYNAMIC_PHYSICAL_MASK
     37#define PT64_BASE_ADDR_MASK (physical_mask & ~(u64)(PAGE_SIZE-1))
     38#else
     39#define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
     40#endif
     41
     42#define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | shadow_user_mask \
     43			| shadow_x_mask | shadow_nx_mask | shadow_me_mask)
     44
     45#define ACC_EXEC_MASK    1
     46#define ACC_WRITE_MASK   PT_WRITABLE_MASK
     47#define ACC_USER_MASK    PT_USER_MASK
     48#define ACC_ALL          (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
     49
     50/* The mask for the R/X bits in EPT PTEs */
     51#define PT64_EPT_READABLE_MASK			0x1ull
     52#define PT64_EPT_EXECUTABLE_MASK		0x4ull
     53
     54#define PT64_LEVEL_BITS 9
     55
     56#define PT64_LEVEL_SHIFT(level) \
     57		(PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
     58
     59#define PT64_INDEX(address, level)\
     60	(((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
     61#define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
     62
     63/*
     64 * The mask/shift to use for saving the original R/X bits when marking the PTE
     65 * as not-present for access tracking purposes. We do not save the W bit as the
     66 * PTEs being access tracked also need to be dirty tracked, so the W bit will be
     67 * restored only when a write is attempted to the page.  This mask obviously
     68 * must not overlap the A/D type mask.
     69 */
     70#define SHADOW_ACC_TRACK_SAVED_BITS_MASK (PT64_EPT_READABLE_MASK | \
     71					  PT64_EPT_EXECUTABLE_MASK)
     72#define SHADOW_ACC_TRACK_SAVED_BITS_SHIFT 54
     73#define SHADOW_ACC_TRACK_SAVED_MASK	(SHADOW_ACC_TRACK_SAVED_BITS_MASK << \
     74					 SHADOW_ACC_TRACK_SAVED_BITS_SHIFT)
     75static_assert(!(SPTE_TDP_AD_MASK & SHADOW_ACC_TRACK_SAVED_MASK));
     76
     77/*
     78 * {DEFAULT,EPT}_SPTE_{HOST,MMU}_WRITABLE are used to keep track of why a given
     79 * SPTE is write-protected. See is_writable_pte() for details.
     80 */
     81
     82/* Bits 9 and 10 are ignored by all non-EPT PTEs. */
     83#define DEFAULT_SPTE_HOST_WRITABLE	BIT_ULL(9)
     84#define DEFAULT_SPTE_MMU_WRITABLE	BIT_ULL(10)
     85
     86/*
     87 * Low ignored bits are at a premium for EPT, use high ignored bits, taking care
     88 * to not overlap the A/D type mask or the saved access bits of access-tracked
     89 * SPTEs when A/D bits are disabled.
     90 */
     91#define EPT_SPTE_HOST_WRITABLE		BIT_ULL(57)
     92#define EPT_SPTE_MMU_WRITABLE		BIT_ULL(58)
     93
     94static_assert(!(EPT_SPTE_HOST_WRITABLE & SPTE_TDP_AD_MASK));
     95static_assert(!(EPT_SPTE_MMU_WRITABLE & SPTE_TDP_AD_MASK));
     96static_assert(!(EPT_SPTE_HOST_WRITABLE & SHADOW_ACC_TRACK_SAVED_MASK));
     97static_assert(!(EPT_SPTE_MMU_WRITABLE & SHADOW_ACC_TRACK_SAVED_MASK));
     98
     99/* Defined only to keep the above static asserts readable. */
    100#undef SHADOW_ACC_TRACK_SAVED_MASK
    101
    102/*
    103 * Due to limited space in PTEs, the MMIO generation is a 19 bit subset of
    104 * the memslots generation and is derived as follows:
    105 *
    106 * Bits 0-7 of the MMIO generation are propagated to spte bits 3-10
    107 * Bits 8-18 of the MMIO generation are propagated to spte bits 52-62
    108 *
    109 * The KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS flag is intentionally not included in
    110 * the MMIO generation number, as doing so would require stealing a bit from
    111 * the "real" generation number and thus effectively halve the maximum number
    112 * of MMIO generations that can be handled before encountering a wrap (which
    113 * requires a full MMU zap).  The flag is instead explicitly queried when
    114 * checking for MMIO spte cache hits.
    115 */
    116
    117#define MMIO_SPTE_GEN_LOW_START		3
    118#define MMIO_SPTE_GEN_LOW_END		10
    119
    120#define MMIO_SPTE_GEN_HIGH_START	52
    121#define MMIO_SPTE_GEN_HIGH_END		62
    122
    123#define MMIO_SPTE_GEN_LOW_MASK		GENMASK_ULL(MMIO_SPTE_GEN_LOW_END, \
    124						    MMIO_SPTE_GEN_LOW_START)
    125#define MMIO_SPTE_GEN_HIGH_MASK		GENMASK_ULL(MMIO_SPTE_GEN_HIGH_END, \
    126						    MMIO_SPTE_GEN_HIGH_START)
    127static_assert(!(SPTE_MMU_PRESENT_MASK &
    128		(MMIO_SPTE_GEN_LOW_MASK | MMIO_SPTE_GEN_HIGH_MASK)));
    129
    130#define MMIO_SPTE_GEN_LOW_BITS		(MMIO_SPTE_GEN_LOW_END - MMIO_SPTE_GEN_LOW_START + 1)
    131#define MMIO_SPTE_GEN_HIGH_BITS		(MMIO_SPTE_GEN_HIGH_END - MMIO_SPTE_GEN_HIGH_START + 1)
    132
    133/* remember to adjust the comment above as well if you change these */
    134static_assert(MMIO_SPTE_GEN_LOW_BITS == 8 && MMIO_SPTE_GEN_HIGH_BITS == 11);
    135
    136#define MMIO_SPTE_GEN_LOW_SHIFT		(MMIO_SPTE_GEN_LOW_START - 0)
    137#define MMIO_SPTE_GEN_HIGH_SHIFT	(MMIO_SPTE_GEN_HIGH_START - MMIO_SPTE_GEN_LOW_BITS)
    138
    139#define MMIO_SPTE_GEN_MASK		GENMASK_ULL(MMIO_SPTE_GEN_LOW_BITS + MMIO_SPTE_GEN_HIGH_BITS - 1, 0)
    140
    141extern u64 __read_mostly shadow_host_writable_mask;
    142extern u64 __read_mostly shadow_mmu_writable_mask;
    143extern u64 __read_mostly shadow_nx_mask;
    144extern u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
    145extern u64 __read_mostly shadow_user_mask;
    146extern u64 __read_mostly shadow_accessed_mask;
    147extern u64 __read_mostly shadow_dirty_mask;
    148extern u64 __read_mostly shadow_mmio_value;
    149extern u64 __read_mostly shadow_mmio_mask;
    150extern u64 __read_mostly shadow_mmio_access_mask;
    151extern u64 __read_mostly shadow_present_mask;
    152extern u64 __read_mostly shadow_me_value;
    153extern u64 __read_mostly shadow_me_mask;
    154
    155/*
    156 * SPTEs in MMUs without A/D bits are marked with SPTE_TDP_AD_DISABLED_MASK;
    157 * shadow_acc_track_mask is the set of bits to be cleared in non-accessed
    158 * pages.
    159 */
    160extern u64 __read_mostly shadow_acc_track_mask;
    161
    162/*
    163 * This mask must be set on all non-zero Non-Present or Reserved SPTEs in order
    164 * to guard against L1TF attacks.
    165 */
    166extern u64 __read_mostly shadow_nonpresent_or_rsvd_mask;
    167
    168/*
    169 * The number of high-order 1 bits to use in the mask above.
    170 */
    171#define SHADOW_NONPRESENT_OR_RSVD_MASK_LEN 5
    172
    173/*
    174 * If a thread running without exclusive control of the MMU lock must perform a
    175 * multi-part operation on an SPTE, it can set the SPTE to REMOVED_SPTE as a
    176 * non-present intermediate value. Other threads which encounter this value
    177 * should not modify the SPTE.
    178 *
    179 * Use a semi-arbitrary value that doesn't set RWX bits, i.e. is not-present on
    180 * bot AMD and Intel CPUs, and doesn't set PFN bits, i.e. doesn't create a L1TF
    181 * vulnerability.  Use only low bits to avoid 64-bit immediates.
    182 *
    183 * Only used by the TDP MMU.
    184 */
    185#define REMOVED_SPTE	0x5a0ULL
    186
    187/* Removed SPTEs must not be misconstrued as shadow present PTEs. */
    188static_assert(!(REMOVED_SPTE & SPTE_MMU_PRESENT_MASK));
    189
    190static inline bool is_removed_spte(u64 spte)
    191{
    192	return spte == REMOVED_SPTE;
    193}
    194
    195/*
    196 * In some cases, we need to preserve the GFN of a non-present or reserved
    197 * SPTE when we usurp the upper five bits of the physical address space to
    198 * defend against L1TF, e.g. for MMIO SPTEs.  To preserve the GFN, we'll
    199 * shift bits of the GFN that overlap with shadow_nonpresent_or_rsvd_mask
    200 * left into the reserved bits, i.e. the GFN in the SPTE will be split into
    201 * high and low parts.  This mask covers the lower bits of the GFN.
    202 */
    203extern u64 __read_mostly shadow_nonpresent_or_rsvd_lower_gfn_mask;
    204
    205static inline bool is_mmio_spte(u64 spte)
    206{
    207	return (spte & shadow_mmio_mask) == shadow_mmio_value &&
    208	       likely(enable_mmio_caching);
    209}
    210
    211static inline bool is_shadow_present_pte(u64 pte)
    212{
    213	return !!(pte & SPTE_MMU_PRESENT_MASK);
    214}
    215
    216/*
    217 * Returns true if A/D bits are supported in hardware and are enabled by KVM.
    218 * When enabled, KVM uses A/D bits for all non-nested MMUs.  Because L1 can
    219 * disable A/D bits in EPTP12, SP and SPTE variants are needed to handle the
    220 * scenario where KVM is using A/D bits for L1, but not L2.
    221 */
    222static inline bool kvm_ad_enabled(void)
    223{
    224	return !!shadow_accessed_mask;
    225}
    226
    227static inline bool sp_ad_disabled(struct kvm_mmu_page *sp)
    228{
    229	return sp->role.ad_disabled;
    230}
    231
    232static inline bool spte_ad_enabled(u64 spte)
    233{
    234	MMU_WARN_ON(!is_shadow_present_pte(spte));
    235	return (spte & SPTE_TDP_AD_MASK) != SPTE_TDP_AD_DISABLED_MASK;
    236}
    237
    238static inline bool spte_ad_need_write_protect(u64 spte)
    239{
    240	MMU_WARN_ON(!is_shadow_present_pte(spte));
    241	/*
    242	 * This is benign for non-TDP SPTEs as SPTE_TDP_AD_ENABLED_MASK is '0',
    243	 * and non-TDP SPTEs will never set these bits.  Optimize for 64-bit
    244	 * TDP and do the A/D type check unconditionally.
    245	 */
    246	return (spte & SPTE_TDP_AD_MASK) != SPTE_TDP_AD_ENABLED_MASK;
    247}
    248
    249static inline u64 spte_shadow_accessed_mask(u64 spte)
    250{
    251	MMU_WARN_ON(!is_shadow_present_pte(spte));
    252	return spte_ad_enabled(spte) ? shadow_accessed_mask : 0;
    253}
    254
    255static inline u64 spte_shadow_dirty_mask(u64 spte)
    256{
    257	MMU_WARN_ON(!is_shadow_present_pte(spte));
    258	return spte_ad_enabled(spte) ? shadow_dirty_mask : 0;
    259}
    260
    261static inline bool is_access_track_spte(u64 spte)
    262{
    263	return !spte_ad_enabled(spte) && (spte & shadow_acc_track_mask) == 0;
    264}
    265
    266static inline bool is_large_pte(u64 pte)
    267{
    268	return pte & PT_PAGE_SIZE_MASK;
    269}
    270
    271static inline bool is_last_spte(u64 pte, int level)
    272{
    273	return (level == PG_LEVEL_4K) || is_large_pte(pte);
    274}
    275
    276static inline bool is_executable_pte(u64 spte)
    277{
    278	return (spte & (shadow_x_mask | shadow_nx_mask)) == shadow_x_mask;
    279}
    280
    281static inline kvm_pfn_t spte_to_pfn(u64 pte)
    282{
    283	return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
    284}
    285
    286static inline bool is_accessed_spte(u64 spte)
    287{
    288	u64 accessed_mask = spte_shadow_accessed_mask(spte);
    289
    290	return accessed_mask ? spte & accessed_mask
    291			     : !is_access_track_spte(spte);
    292}
    293
    294static inline bool is_dirty_spte(u64 spte)
    295{
    296	u64 dirty_mask = spte_shadow_dirty_mask(spte);
    297
    298	return dirty_mask ? spte & dirty_mask : spte & PT_WRITABLE_MASK;
    299}
    300
    301static inline u64 get_rsvd_bits(struct rsvd_bits_validate *rsvd_check, u64 pte,
    302				int level)
    303{
    304	int bit7 = (pte >> 7) & 1;
    305
    306	return rsvd_check->rsvd_bits_mask[bit7][level-1];
    307}
    308
    309static inline bool __is_rsvd_bits_set(struct rsvd_bits_validate *rsvd_check,
    310				      u64 pte, int level)
    311{
    312	return pte & get_rsvd_bits(rsvd_check, pte, level);
    313}
    314
    315static inline bool __is_bad_mt_xwr(struct rsvd_bits_validate *rsvd_check,
    316				   u64 pte)
    317{
    318	return rsvd_check->bad_mt_xwr & BIT_ULL(pte & 0x3f);
    319}
    320
    321static __always_inline bool is_rsvd_spte(struct rsvd_bits_validate *rsvd_check,
    322					 u64 spte, int level)
    323{
    324	return __is_bad_mt_xwr(rsvd_check, spte) ||
    325	       __is_rsvd_bits_set(rsvd_check, spte, level);
    326}
    327
    328/*
    329 * An shadow-present leaf SPTE may be non-writable for 3 possible reasons:
    330 *
    331 *  1. To intercept writes for dirty logging. KVM write-protects huge pages
    332 *     so that they can be split be split down into the dirty logging
    333 *     granularity (4KiB) whenever the guest writes to them. KVM also
    334 *     write-protects 4KiB pages so that writes can be recorded in the dirty log
    335 *     (e.g. if not using PML). SPTEs are write-protected for dirty logging
    336 *     during the VM-iotcls that enable dirty logging.
    337 *
    338 *  2. To intercept writes to guest page tables that KVM is shadowing. When a
    339 *     guest writes to its page table the corresponding shadow page table will
    340 *     be marked "unsync". That way KVM knows which shadow page tables need to
    341 *     be updated on the next TLB flush, INVLPG, etc. and which do not.
    342 *
    343 *  3. To prevent guest writes to read-only memory, such as for memory in a
    344 *     read-only memslot or guest memory backed by a read-only VMA. Writes to
    345 *     such pages are disallowed entirely.
    346 *
    347 * To keep track of why a given SPTE is write-protected, KVM uses 2
    348 * software-only bits in the SPTE:
    349 *
    350 *  shadow_mmu_writable_mask, aka MMU-writable -
    351 *    Cleared on SPTEs that KVM is currently write-protecting for shadow paging
    352 *    purposes (case 2 above).
    353 *
    354 *  shadow_host_writable_mask, aka Host-writable -
    355 *    Cleared on SPTEs that are not host-writable (case 3 above)
    356 *
    357 * Note, not all possible combinations of PT_WRITABLE_MASK,
    358 * shadow_mmu_writable_mask, and shadow_host_writable_mask are valid. A given
    359 * SPTE can be in only one of the following states, which map to the
    360 * aforementioned 3 cases:
    361 *
    362 *   shadow_host_writable_mask | shadow_mmu_writable_mask | PT_WRITABLE_MASK
    363 *   ------------------------- | ------------------------ | ----------------
    364 *   1                         | 1                        | 1       (writable)
    365 *   1                         | 1                        | 0       (case 1)
    366 *   1                         | 0                        | 0       (case 2)
    367 *   0                         | 0                        | 0       (case 3)
    368 *
    369 * The valid combinations of these bits are checked by
    370 * check_spte_writable_invariants() whenever an SPTE is modified.
    371 *
    372 * Clearing the MMU-writable bit is always done under the MMU lock and always
    373 * accompanied by a TLB flush before dropping the lock to avoid corrupting the
    374 * shadow page tables between vCPUs. Write-protecting an SPTE for dirty logging
    375 * (which does not clear the MMU-writable bit), does not flush TLBs before
    376 * dropping the lock, as it only needs to synchronize guest writes with the
    377 * dirty bitmap.
    378 *
    379 * So, there is the problem: clearing the MMU-writable bit can encounter a
    380 * write-protected SPTE while CPUs still have writable mappings for that SPTE
    381 * cached in their TLB. To address this, KVM always flushes TLBs when
    382 * write-protecting SPTEs if the MMU-writable bit is set on the old SPTE.
    383 *
    384 * The Host-writable bit is not modified on present SPTEs, it is only set or
    385 * cleared when an SPTE is first faulted in from non-present and then remains
    386 * immutable.
    387 */
    388static inline bool is_writable_pte(unsigned long pte)
    389{
    390	return pte & PT_WRITABLE_MASK;
    391}
    392
    393/* Note: spte must be a shadow-present leaf SPTE. */
    394static inline void check_spte_writable_invariants(u64 spte)
    395{
    396	if (spte & shadow_mmu_writable_mask)
    397		WARN_ONCE(!(spte & shadow_host_writable_mask),
    398			  "kvm: MMU-writable SPTE is not Host-writable: %llx",
    399			  spte);
    400	//else /* cachepc: this is intended! we dont want to give mmu ctrl */
    401	//	WARN_ONCE(is_writable_pte(spte),
    402	//		  "kvm: Writable SPTE is not MMU-writable: %llx", spte);
    403}
    404
    405static inline bool is_mmu_writable_spte(u64 spte)
    406{
    407	return spte & shadow_mmu_writable_mask;
    408}
    409
    410static inline u64 get_mmio_spte_generation(u64 spte)
    411{
    412	u64 gen;
    413
    414	gen = (spte & MMIO_SPTE_GEN_LOW_MASK) >> MMIO_SPTE_GEN_LOW_SHIFT;
    415	gen |= (spte & MMIO_SPTE_GEN_HIGH_MASK) >> MMIO_SPTE_GEN_HIGH_SHIFT;
    416	return gen;
    417}
    418
    419bool spte_has_volatile_bits(u64 spte);
    420
    421bool make_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
    422	       const struct kvm_memory_slot *slot,
    423	       unsigned int pte_access, gfn_t gfn, kvm_pfn_t pfn,
    424	       u64 old_spte, bool prefetch, bool can_unsync,
    425	       bool host_writable, u64 *new_spte);
    426u64 make_huge_page_split_spte(u64 huge_spte, int huge_level, int index);
    427u64 make_nonleaf_spte(u64 *child_pt, bool ad_disabled);
    428u64 make_mmio_spte(struct kvm_vcpu *vcpu, u64 gfn, unsigned int access);
    429u64 mark_spte_for_access_track(u64 spte);
    430
    431/* Restore an acc-track PTE back to a regular PTE */
    432static inline u64 restore_acc_track_spte(u64 spte)
    433{
    434	u64 saved_bits = (spte >> SHADOW_ACC_TRACK_SAVED_BITS_SHIFT)
    435			 & SHADOW_ACC_TRACK_SAVED_BITS_MASK;
    436
    437	spte &= ~shadow_acc_track_mask;
    438	spte &= ~(SHADOW_ACC_TRACK_SAVED_BITS_MASK <<
    439		  SHADOW_ACC_TRACK_SAVED_BITS_SHIFT);
    440	spte |= saved_bits;
    441
    442	return spte;
    443}
    444
    445u64 kvm_mmu_changed_pte_notifier_make_spte(u64 old_spte, kvm_pfn_t new_pfn);
    446
    447void __init kvm_mmu_spte_module_init(void);
    448void kvm_mmu_reset_all_pte_masks(void);
    449
    450#endif